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A B S T R A C T

In this paper, we propose a new approach for including quay crane travel and setup times in the berth allocation
and quay crane assignment problem. We first develop a new mixed integer linear programming model (MILP)
for the problem without setups (BACASP), in which berthing positions and times are considered as continuous
variables. Several groups of valid inequalities are also set forth. Then, for the BACASP with crane travel
and setup times, which we denote as BACASP-S, we propose two MILPs: the first is based on the previous
BACASP formulation and the second on routing formulations. Due to the complexity of the BACASP-S, we also
propose a genetic algorithm and an exact approach which combines various MILPs with the genetic algorithm.
All methods and valid inequalities are computationally tested over two different sets of randomly generated
instances. According to the results, the models and algorithms can optimally solve, in less than one hour,
BACASP-S instances of up to 40 vessels within a quay one kilometer long and a time horizon of one week.
Additionally, extensive experiments were conducted on a new large set of instances to assess the effect of
various BACASP-S input parameters on the computation effort required to solve the problem. Ceteris paribus,
the computational effort required seems to increase with decreasing number of cranes, while vessel processing
times and crane setup times seem not to affect it.
1. Introduction

Maritime transportation accounts nowadays for 90% of world trade.
Despite current uncertainties, it is expected to continue growing at
a rapid pace in the coming years. Among cargo types, containerized
transport represents 24% of dry cargo and reached a volume of 165
million TEUs (Twenty-foot Equivalent Unit) in 2021 (UNCTAD, 2022).
Most manufactured goods and many other types of products, including
food and fresh produce, are increasingly using containers because of
their advantages in terms of protection, standardization, and ease of
exchange between different transportation modes. Container terminals
act as sea-land interfaces between the various modes of transport and
therefore play a key role in the efficient operation of the process.
In 2022, there were 857 million TEU movements, and ports such as
Shanghai moved 47 million TEUs.

Maritime container terminals compete to provide better services to
customers and face two main challenges. On the one hand, the shipping
industry has undergone a process of mergers and acquisitions that has
resulted in three major alliances controlling more than 80% of the
traffic on the main inter-oceanic routes, putting them in a strong bar-
gaining position. On the other hand, the size of ships is increasing (note

∗ Corresponding author.
E-mail addresses: juan.correcher@uv.es (J.F. Correcher), perea@us.es (F. Perea), ramon.alvarez@uv.es (R. Alvarez-Valdes).

that in this paper we use vessel and ship interchangeably). Terminals
have to cope with larger ships and fewer but longer calls, resulting in
peak workloads at some times and idleness at others.

A key indicator of port efficiency and competitiveness is the time
that ships spend in the terminal. In 2021, container ships spent a
median time of 0.8 days and terminals are under pressure to further
reduce it. To minimize the time ships spend in port for a given volume
of cargo handled, ships must arrive at their allocated berthing time,
as arriving too early entails additional costs and more pollution. Once
they reach the quay, their processing must begin immediately and the
flow of loading and unloading operations must be fast and reliable.

Although container terminals are interconnected systems and all
their subsystems must be synchronized to operate efficiently, the above
indicators, taken from UNCTAD’s Review of Maritime Transport 2022
(UNCTAD, 2022), directly point to the optimization of processes in the
seaside subsystem.

In the seaside area, the most important problem is the Berth Allo-
cation Problem (BAP), where each ship to be served must be assigned
a berthing position and time within a planning horizon. When several
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ships arrive simultaneously at the quay, a Quay Crane Assignment Prob-
lem (QCAP) arises to allocate the available cranes. These two problems
are usually addressed together, because the number of quay cranes
assigned to a ship determines its processing time. In the combined berth
and quay crane assignment problem (BACAP), a number of cranes is
assigned to each ship, as well as its berthing time and position. A more
realistic problem is the BACASP, in which not only a number of cranes,
but a specific set of cranes is assigned to each ship, thus ensuring that
the cranes can serve the ships without crossing each other (we assume
that it is not possible for cranes to cross each other along the quay).

There are two versions of the BACAP and the BACASP. In the
time-invariant version, the crane-ship assignment remains constant
throughout its operation, while in the variable-in-time version this
assignment can change. The variable-in-time version allows for a more
efficient use of cranes, since those initially assigned to a ship can be
reassigned to newly arriving vessels. However, the solutions may have
more complex crane-to-ship assignments, with a greater number of
crane movements. In the time-invariant version, the assignment of a
crane to a vessel remains constant, resulting in simpler solutions with
fewer crane movements, although they often waste crane capacity.

It is very interesting to compare the two versions of the problem,
but a key factor is how crane movements are taken into account. If
one considers that the time required for cranes to move from one ship
to another is negligible, the variable-in-time version may yield more
efficient solutions. However, in practice the movement of quay cranes is
not an easy task, especially if that movement involves the movement of
other adjacent cranes. Here a new question arises. If time is discretized,
for example in 1-h periods, as is often considered in the literature, the
time allocated to a movement must be a number of periods. Even if we
consider only one period, it would be a very rough and rigid estimate
that could lead to solutions with very few movements. Consequently, a
more realistic and flexible way of assigning times to crane movements
has to consider continuous time or a much more granular discretization.

This has been done when designing heuristic algorithms (Hsu et al.,
2019), but to the best of our knowledge it has not been attempted
in the development of integer linear programming models. In this
paper we propose mixed integer linear programming models for the
time-invariant version of BACASP in which the two dimensions of the
assignment process, time and position, are considered continuous. This
allows us to extend the models to include the times for crane setups and
movements that consider the initial and final position of a crane when
moving from one vessel to another. Although crane travel and setup
times are usually much shorter than vessel processing times, they must
be taken into account when designing the schedule in order to control
the number of moves and to properly reflect their cumulative effect
throughout the planning horizon.

This paper presents five main contributions:

1. We propose a mixed integer linear programming model for the
BACASP in which no discretization is needed for either for the
berthing position of the ships at the quay or their berthing times.
The model is enhanced by developing several families of valid
inequalities.

2. We include crane travel and setup times in the BACASP, produc-
ing a new problem, BACASP-S, for which two alternative MILP
models are proposed.

3. We also develop a genetic algorithm for the BACASP-S to provide
solutions for large instances.

4. We also propose an exact method for the BACASP-S which
combines exact and heuristic procedures for the BACASP-S and
the related BACAP and BACASP.

5. We have generated an extensive benchmark of test instances,
with controlling factors such as the number of cranes available,
vessel processing times and crane speed and setup time.
2

A computational study shows that the new MILP model for the
continuous BACASP is able to optimally solve instances with up to 40
vessels. Although the BACASP-S is more complex, good results are also
obtained with one of the proposed models. The flexible exact procedure
that allows the inclusion of other simpler related problems is able to
reduce the gaps and obtain some optimal solutions in difficult instances.

The rest of this paper is organized as follows. In Section 2, we
review the related literature. In Section 3, we describe the problem
and the specific assumptions of our approach. In Section 4, we propose
a new mixed integer linear programming model for the BACASP. In
Section 5, several valid constraints are added to reinforce the MILP. The
MILP models are extended to solve the BACASP with crane travel and
setup times in Section 6. In Section 7, a genetic algorithm for solving
the BACASP-S is introduced. Section 8 presents a MILP-based exact
algorithm which aims to solve the proposed problems more efficiently.
In Section 9, we describe the experiments conducted and discuss their
results. Finally, in Section 10, we draw some conclusions and indicate
future research directions.

2. Related literature

In this section we focus on reviewing BACASP studies, especially
those that consider crane setup or travel times. Early surveys on BAP
and BACAP were conducted by Bierwirth and Meisel (2010, 2015)
and Carlo et al. (2015). More recent papers such as those by Agra
and Oliveira (2018) and Malekahmadi et al. (2020) contain excellent
reviews of the latest proposals for these problems.

2.1. BACASP studies

The study of BACASP can be traced back to Park and Kim (2003)
who developed a MILP and a Lagrangean-based heuristic for the BACAP
with variable-in-time crane assignments and then a dynamic program-
ming algorithm to solve the corresponding BACASP. Zhang et al. (2010)
also proposed an integer linear formulation and a Lagrangean-based
procedure to solve the BACASP in a single phase, including ranges in
which cranes can move along the quay. Chang et al. (2010) developed
a multiobjective approach to the variable-in-time BACASP, including
the energy consumption of the cranes, and developed a parallel genetic
algorithm. Yang et al. (2012) proposed a Nested Loop Evolutionary Al-
gorithm for time-invariant BACASP, obtaining better results than (Park
and Kim, 2003). Le et al. (2012) solved the time-invariant BACASP
by a multi-objective MILP model and a multi-objective Particle Swarm
Optimization procedure.

Rodriguez-Molins et al. (2014s) developed a GRASP algorithm to
solve both time-invariant and variable-in-time versions of the BA-
CASP. Rodriguez-Molins et al. (2014b) also proposed a multi-objective
MILP and a multi-objective genetic algorithm to obtain robust solutions
for the time-invariant BACASP. Türkoǧullari et al. (2014) proposed
integer linear formulations for time-invariant BACAP and BACASP and
developed a cutting plane algorithm to solve BACASP by repeatedly
solving BACAP with additional constraints. Türkoǧullari et al. (2016)
extended their study to the variable-in-time BACASP, proposing a MILP
and a cutting plane procedure based on a decomposition scheme.

Li et al. (2015) studied the time-invariant version with crane ranges
and proposed a nonlinear mixed integer formulation. A novel heuristic
based on the spatio-temporal analysis of vessel conflicts was applied
to obtain good quality solutions. Karam and Eltawil (2016) solved the
variable-in-time version by decomposing it into two problems, BAP
and SQCAP. The two problems are optimally solved and function-
ally integrated through a feedback loop. Li et al. (2017) proposed a
multi-objective model for the time-invariant version and developed a
Chaos Cloud Particle Swarm Optimization algorithm. Agra and Oliveira
(2018) also addressed the variable-in-time BACASP, proposing new

integer linear programming models and a rolling-horizon heuristic.
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Correcher and Alvarez-Valdes (2017) solved the time-invariant BA-
CASP by means of a metaheuristic approach based on a Biased Random-
key Genetic Algorithm with memetic characteristics and several Local
Search procedures. Correcher et al. (2019a) extended the study by
proposing a MILP model, an iterative procedure in which the BACAP
model is solved, and if its solution is not feasible for the BACASP,
specific constraints are added until an optimal solution for the BA-
CASP is found. Additionally, a branch-and-cut algorithm is proposed
based on the cuts used in the iterative procedure. Zheng et al. (2019)
studied the variable-in-time BACASP including preventive maintenance
activities in which cranes are temporarily unavailable and proposed an
integer model, a heuristic and a genetic algorithm. Malekahmadi et al.
(2020) addressed the variable-in-time BACASP with tidal constraints
and proposed a Random Topology Particle Swarm Optimization algo-
rithm. Ji et al. (2022) tackled the time-invariant BACASP, embedding it
into a rolling-horizon procedure to dynamically consider unscheduled
incoming vessels and solving it by means of an ALNS algorithm.

All the above studies considered the discretization of time or posi-
tion on the quay, so some of the related variables in the models were
always integer or binary. In fact, for some time, this seemed to be
the only way to address the problem. However, in the recent work
by Cheimanoff et al. (2022) both time and position variables are con-
tinuous. Their results show that this approach compares favorably with
discrete-time approaches. The model that they developed is similar to
the one proposed here for the BACASP, although with some differences
in the way they address the crane assignment.

2.2. Considering crane travel and setup times

Many of the above-mentioned papers consider crane travel times to
be negligible, so they are not included in the solutions. A crane may
be in one position on the quay at the end of one period and in another
position at the beginning of the next period (Park and Kim, 2003; Chang
et al., 2010; Zhang et al., 2010; Le et al., 2012; Rodriguez-Molins et al.,
2014b; Türkoǧullari et al., 2014; Li et al., 2015, 2017; Correcher and

lvarez-Valdes, 2017; Song et al., 2019; Zheng et al., 2019; Abou Kasm
t al., 2020; Malekahmadi et al., 2020; Grubisic et al., 2020).

However, some authors do consider these crane movements and
here is a growing trend in recent years to take them into account in
ifferent ways. Zampelli et al. (2013), in their Constraint Programming
pproach to the BACAP, consider that when a crane moves it is un-
vailable for 30 min, regardless of the movement. The model proposed
y Shang et al. (2016) takes crane setup times into account. As time
s discrete in their model, these setups take one period, irrespective
f the positions of cranes and vessels. The authors extend their study
y including uncertainties and proposing a robust optimization model
s well as a genetic and a heuristic insertion algorithm. Karam and
ltawil (2016) approximate the time needed to move a crane to a
onstant average value and multiply it by the number of moves when
olving the SQCAP to minimize the vessel processing time. Liu et al.
2016) consider the variable-in-time BACASP with crane disruptions
nd develop a two-phase procedure in which Phase I solves the BACAP
nd Phase II solves the crane assignment. In Phase II, the objective is
o minimize the number of crane changes between vessels, although
rane movements do not affect the BACAP solution. Their strategy is
imilar to that of Yang et al. (2012) in their Nested Loop Evolutionary
lgorithm.

Türkoǧullari et al. (2016) include crane setup costs in the objective
unction of their variable-in-time BACASP integer model. These setup
osts are general and may include travel times between vessel posi-
ions. In particular, they are calculated in an iterative decomposition
rocedure, but they do not affect vessel processing times. Agra and
liveira (2018) use an auxiliary model for finding the solution with

he minimum number of movements among the optimal solutions of the
ACASP, in which they do not consider crane travel times. Hsu et al.
3

2019) compare the time-invariant and variable-in-time versions of a
discrete BACAP, considering that crane reassignments are only made
when a vessel leaves the quay and the cranes servicing it are released.
To make the comparison fair, the objective function takes into account
the cost of cranes setups and movements. They propose a genetic
algorithm that provides solutions for the time-invariant case and an
event heuristic that modifies them by allowing crane reassignments.
They find that with their parameters and costs the variable-in-time
version obtains better solutions. Salhi et al. (2019) study an integrated
problem that includes BAP, QCAP, and the crane tasks scheduling
problem (QCSP). In their model they include the travel times of the
cranes between consecutive task locations performed by the same
crane, considering berthing positions and times as continuous variables.
They propose a MILP model able to solve only small instances, and a
genetic algorithm for large instances.

In summary, the issue of considering quay crane travel and setup
times as part of the planning process cannot be properly addressed with
discrete-time models. These times can be considered neither constant
nor integer multiples of the discrete periods. In order to handle jointly
the loading/unloading processing times and the travel and setup times
of cranes, a continuous time scale is needed. In this context, only Salhi
et al. (2019) use continuous variables for berthing times and count the
crane travel times as part of the solution. However, they address a more
complex problem, including also the scheduling of the cranes, and their
mixed integer linear programming model for the combined problem is
only able to solve instances with a few vessels. In this paper, we focus
on the BACASP, develop models with continuous berthing positions
and times, with and without crane setups and travel times, and solve
instances with up to 40 vessels within a time horizon of one week and
a quay one kilometer long.

3. Description of the problem

In this section we describe the problem addressed in this paper. We
begin with a brief outline of its main characteristics, followed by a
formal description.

3.1. Outline

We consider a set of ships arriving at a port terminal with a single
quay that will be scheduled over a planning horizon. The quay is
represented as a continuous line along which vessels can berth. The
vessels must be processed at the quay to be loaded and unloaded.
These tasks are carried out by a number of cranes, available on the
quay. No crane can process more than one vessel at a time. The
number of cranes assigned to a vessel remains constant throughout
the vessel’s processing (time-invariant). The objective of the problem
is to determine a schedule for all the vessels that minimizes the sum
of waiting times, delays, and deviations from their desired positions on
the quay.

More specifically, we assume that: (1) Each vessel has a known
arrival time and a maximum desired departure time. Waiting times
before berthing and delays with respect to departure times are penal-
ized. (2) Each vessel requires a number of quay cranes to be served,
between a minimum and a maximum value. The processing time of
a vessel depends on the number of cranes assigned. (3) Each vessel
has a desired position on the quay, due to its proximity to the area
of the yard from which containers are to be loaded into the vessel or to
which containers are to be unloaded from the vessel. Deviations from
this position are penalized because they increase the distance to be
covered by the vehicles moving containers between the yard and the
quay (Hendriks et al., 2013; Bierwirth and Meisel, 2015; Türkoǧullari
et al., 2016; Salhi et al., 2019).

The schedule will explicitly consider travel and setup times required
for the cranes between the processing of two consecutive vessels. The
crane travel time is variable and depends on the crane travel speed and

the distance between the two vessels at the quay, while the setup time
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has a fixed value and comprehends the activities necessary to decouple
the crane after servicing a vessel and the activities needed to setup the
crane to serve another vessel. We call this problem the Berth Allocation
and Crane Assignment Problem with Setup (BACASP-S).

3.2. Input data

The following sets are defined:

• 𝑉 = {1,… , 𝑁}, 𝑁 ∈ Z+ is the set of vessels. For modeling
purposes, let 𝑉 0 = 𝑉 ∪ {0}, where vessel 0 is a dummy vessel.
The vessels are indexed by 𝑖 and 𝑗.

• 𝐾 = {1,… , 𝑄}, 𝑄 ∈ Z+ is the set of available cranes, indexed
by 𝑘, 𝑘′ (which refer to specific cranes) and 𝑞 (which refers to
the number of cranes assigned to a vessel). Cranes are numbered
from 1 to 𝑄, increasing with their distance from the start of the
quay. As the cranes can move along the quay but cannot cross
each other, their relative ordering remains constant.

• 𝐿 > 0 is the length of the quay.

The following input data are assumed to be known and determinis-
ic. For each vessel 𝑖 ∈ 𝑉 we know:

• Length: 𝑙𝑖 ∈ [0, 𝐿], which also includes the safety distance be-
tween vessels, so it actually is the required space for the vessel to
be properly moored.

• Arrival time: 𝑎𝑖 ≥ 0
• Cost per unit of waiting time for berthing after the expected

arrival time: 𝐶𝑤
𝑖 ≥ 0

• Maximum desired departure time: 𝑠𝑖 > 0
• Cost per unit of delay time after the maximum desired departure

time: 𝐶𝑑
𝑖 ≥ 0

• Desired position at the quay: 𝑏𝑖 ∈ [0, 𝐿 − 𝑙𝑖]
• Cost per unit of length away from the desired position at the quay:
𝐶𝑝
𝑖 ≥ 0

• Minimum and maximum number of cranes that can be assigned
to the vessel: 𝑞min

𝑖 , 𝑞max
𝑖 ∈ Z+, with 𝑞min

𝑖 ≤ 𝑞max
𝑖 ≤ 𝑄.

• We define 𝐾𝑖 = {1,… , 𝑄−𝑞min
𝑖 +1} ⊆ 𝐾,∀𝑖 ∈ 𝑉 , as the set of cranes

that can be the first crane assigned to vessel 𝑖. Cranes assigned to
a vessel are consecutive, so the first crane assigned to vessel 𝑖
cannot be greater than 𝑄 − 𝑞min

𝑖 + 1.
• Let 𝑄𝑖 = {𝑞min

𝑖 ,… , 𝑞max
𝑖 } be the set of all numbers of cranes

admitted for vessel 𝑖.
• Processing time if 𝑞 cranes are assigned to the vessel: 𝑢𝑖𝑞 > 0, 𝑞 ∈
𝑄𝑖. The processing time of a vessel can vary linearly with the
number of cranes or can be related to the number of cranes
by a more complex expression, considering crane interference.
It may include the time estimated for berthing and unberthing
operations.

When considering crane travel and setup time, for each crane 𝑘 ∈ 𝐾
the following are also known:

• 𝛼𝑘 > 0: the speed of crane 𝑘, in order to measure how long it
will take to move from one position to another on the quay. Let
𝛼 = min𝑘∈𝐾 (𝛼𝑘).

• 𝛽𝑘 > 0: the setup time that crane 𝑘 requires between serving two
consecutive vessels. Let 𝛽 = max𝑘∈𝐾 (𝛽𝑘).

The notation is summarized in Table 10 (Appendix A). Fig. 1 shows an
example of a berth plan depicting the terminology used.

4. A model for the time-invariant BACASP with continuous space
and time

In this section we present a new mixed integer linear programming
4

model for the BACASP problem, with the novelty that it considers
both time and space as continuous, as opposed to the more usual
discretization of these dimensions. This model does not consider crane
movements and setup times.

4.1. Variables

• 𝑡𝑖 ≥ 𝑎𝑖: berthing time of vessel 𝑖. Note that we impose the
condition that vessel 𝑖 cannot be moored before its arrival time.

• 𝑝𝑖 ∈ [0, 𝐿 − 𝑙𝑖]: the berthing position for vessel 𝑖 at the quay,
measured as the shortest distance from the vessel to the start of
the quay.

• 𝑑𝑖 ≥ 0: delay incurred in processing vessel 𝑖 with respect to its
maximum desired departure time.

• 𝑒𝑖 ≥ 0: deviation of the berthing position of vessel 𝑖 with respect
to its desired position at the quay.

• 𝜎𝑖𝑗 = 1 if the departure time of vessel 𝑖 is prior to the berthing
time of vessel 𝑗, 0 otherwise.

• 𝛿𝑖𝑗 = 1 if vessel 𝑖 is completely below vessel 𝑗, 0 otherwise.
• 𝑟𝑖𝑞 = 1 if vessel 𝑖 is served exactly by 𝑞 cranes, 0 otherwise.
• 𝑤𝑖𝑘 = 1 if 𝑘 is the first crane in the sequence of consecutive cranes

assigned to 𝑖, 0 otherwise.

4.2. Objective function and constraints

Using the input data and the variables defined above, we pro-
pose the following MILP model for the time-invariant BACASP with
continuous space and time:

min
∑

𝑖∈𝑉

(

𝐶𝑤
𝑖 (𝑡𝑖 − 𝑎𝑖) + 𝐶𝑑

𝑖 𝑑𝑖 + 𝐶𝑝
𝑖 𝑒𝑖

)

(1)

subject to

𝑒𝑖 ≥ 𝑝𝑖 − 𝑏𝑖, ∀𝑖 ∈ 𝑉 (2)

𝑒𝑖 ≥ −(𝑝𝑖 − 𝑏𝑖), ∀𝑖 ∈ 𝑉 (3)

𝑑𝑖 ≥ 𝑡𝑖 +
∑

𝑞∈𝑄𝑖

𝑢𝑖𝑞𝑟𝑖𝑞 − 𝑠𝑖, ∀𝑖 ∈ 𝑉 (4)

𝑗 ≥ 𝑝𝑖 + 𝑙𝑖 − 𝐿(1 − 𝛿𝑖𝑗 ), ∀𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗 (5)

𝑗 ≥ 𝑡𝑖 +
∑

𝑞∈𝑄𝑖

𝑢𝑖𝑞𝑟𝑖𝑞 − 𝑇 (1 − 𝜎𝑖𝑗 ), ∀𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗 (6)

𝑖𝑗 + 𝜎𝑗𝑖 + 𝛿𝑖𝑗 + 𝛿𝑗𝑖 ≥ 1, ∀𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗 (7)
∑

𝑞∈𝑄𝑖

𝑟𝑖𝑞 = 1, ∀𝑖 ∈ 𝑉 (8)

∑

𝑘∈𝐾𝑖

𝑤𝑖𝑘 = 1, ∀𝑖 ∈ 𝑉 (9)

∑

𝑘∈𝐾𝑖

𝑘𝑤𝑖𝑘 +
∑

𝑞∈𝑄𝑖

𝑞𝑟𝑖𝑞 ≤ 𝑄 + 1, ∀𝑖 ∈ 𝑉 (10)

∑

𝑘∈𝐾𝑗

𝑘𝑤𝑗𝑘 ≥
∑

𝑘′∈𝐾𝑖

𝑘′𝑤𝑖𝑘′ +
∑

𝑞∈𝑄𝑖

𝑞𝑟𝑖𝑞 −𝑄(𝛿𝑗𝑖 + 𝜎𝑖𝑗 + 𝜎𝑗𝑖), ∀𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗 (11)

The objective function (1) sums up the total cost due to vessels
waiting for berthing after their arrival times, the total cost of delay
after their maximum desired departure times, and the total cost of
deviations from their desired positions at the quay. Constraints (2)
and (3) define the deviation of vessels from their desired position at
the quay and constraints (4) the delay with respect to their maximum
desired departure times. Constraints (5), (6), and (7) ensure that vessel
assignments do not overlap. If 𝛿𝑖𝑗 or 𝛿𝑗𝑖 take value 1, vessels 𝑖 and
𝑗 are separated in space by (5). If 𝜎𝑖𝑗 or 𝜎𝑗𝑖 take value 1, vessels
are separated in time by (6). Note that 𝑇 is an upper bound on the
total time required to berth all the vessels. It can be given as input
data (i.e. the time horizon) or determined by using algorithms such as
Algorithm 2 in Correcher et al. (2019b). By (7), at least one of these
variables takes value one. Constraints (8) force the number of cranes

assigned to vessel 𝑖 to be within its allowed range and constraints (9)
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Fig. 1. Graphic representation of a berth plan with two vessels 𝑖 and 𝑗. The cranes assigned to the vessels appear in brackets. The data indicated correspond to vessel 𝑖. Both
vessels use cranes 1 and 2, so the processing of vessel 𝑗 cannot start until those cranes are in position and ready after serving vessel 𝑖.
set the number of the crane with the lowest number assigned to each
vessel. Together, (8) and (9) fix the number of cranes assigned to each
vessel. By constraints (10), the numbers of the cranes assigned to a
vessel cannot exceed the number of available cranes. Constraints (11)
ensure that the cranes assigned to each pair of vessels 𝑖 and 𝑗 that are
served simultaneously at the quay do not cross each other. The number
of the first crane assigned to vessel 𝑗 is greater than the number of the
last crane assigned to vessel 𝑖 if vessel 𝑖 is below vessel 𝑗 (𝛿𝑖𝑗 = 1) and
oth vessels are concurrent (𝜎𝑖𝑗 = 𝜎𝑗𝑖 = 0).

. Valid inequalities

With the aim of improving the previous formulation, in this section
e propose several families of valid inequalities.

.1. Transitivity

For any three vessels 𝑖, 𝑗, 𝑘, if 𝑖 and 𝑗, and 𝑗 and 𝑘 are separated, in
pace or in time, then 𝑖 and 𝑘 must also be separated:

𝑖𝑗 + 𝛿𝑗𝑘 ≤ 1 + 𝛿𝑖𝑘, ∀𝑖, 𝑗, 𝑘 ∈ 𝑉 , (12)

𝜎𝑖𝑗 + 𝜎𝑗𝑘 ≤ 1 + 𝜎𝑖𝑘, ∀𝑖, 𝑗, 𝑘 ∈ 𝑉 . (13)

Many inequalities could be generated in this way, so we introduce
only those that we consider interesting, namely those in which the ves-
sel assignments are sufficiently separated in space/time. In particular,
in the case of the delta inequalities, we include only those for which
∀𝑖, 𝑗, 𝑘 ∈ 𝑉 ∶ 𝑎𝑖 + ℎ𝛿 ⋅ 𝑢𝑖𝑞min

𝑖
< 𝑎𝑗 and 𝑎𝑗 + ℎ𝛿 ⋅ 𝑢𝑗𝑞min

𝑗
< 𝑎𝑘, being ℎ𝛿 a

constant greater than 0. Regarding sigma inequalities, we include only
those for which ∀𝑖, 𝑗, 𝑘 ∈ 𝑉 ∶ 𝑏𝑖 + ℎ𝜎 ⋅ 𝑙𝑖 < 𝑏𝑗 and 𝑏𝑗 + ℎ𝜎 ⋅ 𝑙𝑗 < 𝑏𝑘, ℎ𝜎
being a constant greater than 0.

5.2. Use of cranes

Constraints (10) of the model apply to each individual vessel. A
valid constraint on the use of the cranes by a subset 𝑆 of vessels would
be:
∑

𝑖∈𝑆

∑

𝑞∈𝑄𝑖

𝑞𝑟𝑖𝑞 ≤ 𝑄 +𝑀
∑

𝑖,𝑗∈𝑆,𝑖≠𝑗
𝜎𝑖𝑗 , ∀𝑆 ⊆ 𝑉 , (14)

where 𝑀 =
∑

𝑖∈𝑆 𝑞max
𝑖 −𝑄. To limit the number of such inequalities, we

introduce only those related to relevant sets of vessels 𝑆 such that:
5

- |𝑆| ≤ 𝑐, where 𝑐 is the maximum number of vessels allowed to
constitute a set 𝑆;

- all vessels in 𝑆 would be concurrent if they were assigned at their
time of arrival and their departure time would be 𝑎𝑖+ℎ𝑐 ⋅𝑢𝑖𝑞min

𝑖
,∀𝑖 ∈

𝑆, ℎ𝑐 being a constant greater than 0;
- the sum of their minimum number of cranes is less than or equal

to 𝑄: ∑𝑖∈𝑆 𝑞min
𝑖 ≤ 𝑄;

- the sum of their maximum number of cranes is greater than or
equal to 𝑄: ∑𝑖∈𝑆 𝑞max

𝑖 > 𝑄;
- the sum of their lengths is less than or equal to 𝐿: ∑𝑖∈𝑆 𝑙𝑖 ≤ 𝐿.

5.3. Separation in time of vessels using the same cranes

If vessels 𝑖 and 𝑗 use the same cranes they must be separated in time:

𝑤𝑖𝑘 +𝑤𝑗𝑘′ ≤ 1 + 𝜎𝑖𝑗 + 𝜎𝑗𝑖, ∀𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗, ∀𝑘 ∈ {1,… , 𝑄 − 𝑞min
𝑖 + 1},

𝑘′ ≥ 𝑘, 𝑘′ < 𝑘 + 𝑞min
𝑖 , 𝑘′ ≤ 𝑄 + 𝑞min

𝑗 + 1. (15)

For each vessel 𝑖, we introduce only the inequalities related to the
first 𝜂 vessels 𝑗 that would concur with 𝑖 if they were assigned to their
time of arrival with their maximum number of cranes allowed, ordered
by non-increasing time of concurrence with 𝑖, 𝜂 being an integer greater
than 0.

5.4. Non-concurrence by the sum of the lengths or the sum of the minimum
number of cranes

For all subsets of vessels 𝐹 ⊆ 𝑉 ∶
∑

𝑖∈𝐹 𝑙𝑖 > 𝐿 and for all 𝐺 ⊆ 𝑉 ∶
∑

𝑖∈𝐺 𝑞min
𝑖 > 𝑄, at least one vessel in the subset must be separated in

time with respect to another vessel in the subset. In other words, not
all vessels in the subset can be concurrent. Let 𝐷 = 𝐹 ∪ 𝐺:
∑

𝑖∈𝐺

∑

𝑗∈𝐺,𝑗≠𝑖
𝜎𝑖𝑗 ≥ 1, ∀𝑆 ∈ 𝐷. (16)

To limit the number of inequalities included, we only consider the
minimal subsets 𝑆 in which the vessels would be concurrent if they
were assigned to their arrival time with their minimum number of
cranes allowed and |𝑆| ≤ �̄�, �̄� being an integer strictly greater than
1. To illustrate the concept of a minimal set, let 𝑆1, 𝑆2 ∈ 𝐷: if 𝑆1 ⊂ 𝑆2,

then 𝑆2 would not be minimal.
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Fig. 2. Minimal separation in time and space.

.5. Coherence between variables 𝑤𝑖𝑘 and 𝑟𝑖𝑞

Constraints (10) can be disaggregated as follows:

𝑘𝑤𝑖𝑘+𝑞𝑟𝑖𝑞 ≤ 𝑄+1, ∀𝑖 ∈ 𝑉 , ∀𝑘 ∈ 𝐾𝑖, ∀𝑞 ∈ 𝑄𝑖, 𝑞+𝑘 > 𝑄+1. (17)

If 𝑘 is the first crane assigned to vessel 𝑖, the number of cranes assigned
to it must not be greater than 𝑄−𝑘+1. Similarly, if vessel 𝑖 has 𝑞 cranes
ssigned, the first crane cannot be greater than 𝑄 − 𝑞 + 1. Note that if

𝑞 +𝐾 ≤ 𝑄 + 1, the previous constraint would be trivial.
Moreover, we can replace this set of constraints with a stronger

version of them:

𝑤𝑖𝑘 + 𝑟𝑖𝑞 ≤ 1, ∀𝑖 ∈ 𝑉 , ∀𝑘 ∈ 𝐾𝑖, ∀𝑞 ∈ 𝑄𝑖, 𝑞 + 𝑘 > 𝑄 + 1. (18)

The latter are stronger because both 𝑘 and 𝑞 are less than 𝑄+1, and
therefore 𝑘

𝑄+1𝑤𝑖𝑘 +
𝑞

𝑄+1 𝑟𝑖𝑞 ≤ 𝑤𝑖𝑘 + 𝑟𝑖𝑘. Moreover, those constraints can
e lifted, so their final version would be:

𝑄−𝑞min
𝑖 +1
∑

𝑘′=𝑘
𝑤𝑖𝑘′ +

𝑞max
𝑖
∑

𝑞′=𝑞
𝑟𝑖𝑞′ ≤ 1, (19)

𝑖 ∈ 𝑉 , ∀𝑘 ∈ 𝐾𝑖|∃𝑔 ∈ 𝑄𝑖, 𝑔 + 𝑘 > 𝑄 + 1, 𝑞 = arg min
𝑔∈𝑄𝑖

(𝑔 + 𝑘 > 𝑄 + 1).

.6. Minimum separation in time and space (Correcher et al., 2019a)

A vessel has a least-cost assignment if it is berthed at its arrival
ime and in its desired position at the quay. If a pair of vessels 𝑖 and
overlap in their least-cost assignments, as shown in Fig. 2, then in

ny feasible solution they must be separated in space and/or in time. If
hey are separated in time (𝜎𝑖𝑗+𝜎𝑗𝑖 = 1), we can compute the minimum
eparation 𝑡 (in Fig. 2: 𝑡 = 𝑎𝑖 + min(𝑢𝑖𝑞) − 𝑎𝑗) and then:

𝑡𝑖 + 𝑡𝑗 ≥ 𝑎𝑖 + 𝑎𝑗 + 𝑡 ⋅ (𝜎𝑖𝑗 + 𝜎𝑗𝑖), ∀𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗. (20)

f they are separated in space (𝛿𝑖𝑗 + 𝛿𝑗𝑖 = 1), we can compute the
inimum separation e (in Fig. 2: 𝑒 = 𝑏𝑖 + 𝑙𝑖 − 𝑏𝑗) and hence:

𝑒𝑖 + 𝑒𝑗 ≥ 𝑒 ⋅ (𝛿𝑖𝑗 + 𝛿𝑗𝑖), ∀𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗. (21)

n general, 𝑡 = min(max(0, 𝑎𝑖 + 𝑢𝑖𝑞max − 𝑎𝑗 ),max(0, 𝑎𝑗 + 𝑢𝑗𝑞max − 𝑎𝑖)) and
𝑒 = min(max(0, 𝑏𝑗 + 𝑙𝑗 − 𝑏𝑖),max(0, 𝑏𝑖 + 𝑙𝑖 − 𝑏𝑗 )).

5.7. Cover constraints on ordered sets of vessels that together exceed the
length of the quay (Correcher et al., 2019a)

If there is a set of vessels 𝑆 such that ∑

𝑖∈𝑆 𝑙𝑖 > 𝐿, then not all of
them can be served simultaneously and at least one of them must be
separated in time. Fig. 3 shows an example with 𝑆 = {𝑖, 𝑗, 𝑘}. In this
case, the inequality 𝛿𝑖𝑗 + 𝛿𝑗𝑘 + 𝛿𝑘𝑖 ≤ 1 must be satisfied, and we can add
similar constraints for other orderings, for instance, 𝛿 + 𝛿 + 𝛿 ≤ 1.
6

𝑗𝑖 𝑖𝑘 𝑘𝑗
Fig. 3. Vessels that do not fit together at the quay.

Fig. 4. Cover constraint on a non-ordered set of vessels violated.

In general, if we identify a subset of vessels 𝑆 such that the sum of
their lengths exceeds the length of the quay, for each permutation of
vessels in 𝑆, 𝑖1, 𝑖2,… , 𝑖

|𝑆|, we have a constraint:

𝛿𝑖1𝑖2 + 𝛿𝑖2𝑖3 +⋯ + 𝛿𝑖
|𝑆|−1𝑖|𝑆| + 𝛿𝑖

|𝑆|𝑖1 ≤ |𝑆| − 2, 𝑖1, 𝑖2,… , 𝑖
|𝑆| ∈ 𝑆. (22)

We only consider minimal subsets 𝑆 of vessels that do not fit
together at the quay and coincide in time if they were moored at their
arrival times, considering their maximum processing times. We also
limit the cardinality of the subsets, using a parameter 𝛿, so |𝑆| ≤ 𝛿.

5.8. Cover constraints on non-ordered sets of vessels that together exceed
the length of the quay (Correcher et al., 2019a)

Other valid constraints can be developed if all possible variables
separating vessels in time are considered together, as can be seen in
Fig. 4:
∑

𝑖∈𝑆

∑

𝑗∈𝑆,𝑗≠𝑖
𝛿𝑖𝑗 ≤

|𝑆|2 − |𝑆|
2

− 1, ∀𝑆 ∶
∑

𝑖∈𝑆
𝑙𝑖 > 𝐿. (23)

As in the previous case, we only consider minimal subsets of vessels
𝑆 that do not fit together at the quay and coincide in time if they are
moored at their arrival times, considering their maximum processing
times. Here we do not limit the cardinality of 𝑆, as there are not so
many such inequalities.

6. A model for the time-invariant BACASP-S

We now propose a MILP for the BACASP with crane travel and
setup times (BACASP-S), which is based on the previous BACASP model
presented in Section 4. A second model, based on traditional routing
models, has also been designed. However, since its results were clearly
outperformed by the first model, we only show it in the Appendix II.

6.1. Model based on Section 4

This new model needs, in addition to the variables in the BACASP
model, the following:
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• 𝑣𝑖𝑗 = 1 if vessel 𝑖 is below vessel 𝑗 and the crane with the highest
number among those assigned to vessel 𝑖 (its last crane) has a
number lower than the number of the crane with the lowest
number among those assigned to 𝑗 (its first crane); 0 otherwise.

• 𝑓𝑖𝑗 ≥ 0 is the distance between vessels 𝑖 and 𝑗, measured as the
distance between their middle positions.

MILP model for the BACASP-S consists of minimizing (1) subject to
onstraints (2)–(11) and:

𝑖𝑗 ≥
(

𝑝𝑖 +
𝑙𝑖
2

)

−
(

𝑝𝑗 +
𝑙𝑗
2

)

, ∀𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗 (24)

𝑓𝑖𝑗 ≥
(

𝑝𝑗 +
𝑙𝑗
2

)

−
(

𝑝𝑖 +
𝑙𝑖
2

)

, ∀𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗 (25)

𝑡𝑗 ≥ 𝑡𝑖 +
∑

𝑞∈𝑄𝑖

𝑢𝑖𝑞𝑟𝑖𝑞 +
𝑓𝑖𝑗
𝛼

+ 𝛽 − 𝑇 (1 − 𝜎𝑖𝑗 + 𝑣𝑖𝑗 + 𝑣𝑗𝑖), ∀𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗 (26)

𝑣𝑖𝑗 ≥ 𝛿𝑖𝑗 − 𝜎𝑗𝑖 − 𝜎𝑖𝑗 , ∀𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗 (27)
∑

𝑘∈𝐾
𝑘𝑤𝑗𝑘 ≥

∑

𝑘′∈𝐾
𝑘′𝑤𝑖𝑘 +

∑

𝑞∈𝑄𝑖

𝑞𝑟𝑖𝑞 −𝑄(1 − 𝑣𝑖𝑗 ), ∀𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗 (28)

Constraints (24) and (25) define the distance between vessels 𝑖 and
𝑗. Constraints (26) extend constraints (6) by including between the
starting times of vessels 𝑖 and 𝑗 not only the processing time of vessel
𝑖, but also the setup times of the cranes that are assigned to both
consecutively. Constraints (27) link the new variables 𝑣𝑖𝑗 with variables
𝛿𝑖𝑗 and 𝜎𝑖𝑗 defined to avoid overlaps. Constraints (28) ensure that the
cranes assigned to each pair of vessels 𝑖 and 𝑗 do not cross each other.
Now constraints (11) become redundant with (28) and can be removed,
although they may be kept as additional cuts.

The BACASP-S model can be simplified under certain conditions. Let
𝐹 be the set of pairs of vessels (𝑖, 𝑗), 𝑖 ≠ 𝑗, satisfying 𝑞min

𝑖 +𝑞min
𝑗 > 𝑄. For

these pairs, as vessels 𝑖 and 𝑗 cannot be handled concurrently and will
use at least one of the same cranes, constraints (6) and (26) for those
pairs can be replaced by:

𝑡𝑗 ≥ 𝑡𝑖 +
∑

𝑞∈𝑄𝑖

𝑢𝑖𝑞𝑟𝑖𝑞 +
𝑓𝑖𝑗
𝛼

+ 𝛽 − 𝑇 (1 − 𝜎𝑖𝑗 ), ∀(𝑖, 𝑗) ∈ 𝐹 , (29)

and variables and constraints related to 𝑣𝑖𝑗 , 𝛿𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐹 need not
be included. Moreover, their corresponding constraints (7), can be
replaced by:

𝜎𝑖𝑗 + 𝜎𝑗𝑖 = 1, ∀(𝑖, 𝑗) ∈ 𝐹 , (30)

and constraints (5) and (11) can be eliminated likewise.
This changes the interpretation of variables 𝜎𝑖𝑗 ,∀(𝑖, 𝑗) ∈ 𝐹 . Thus, for

hose pairs 𝜎𝑖𝑗 = 1 now means that vessel 𝑗 starts after the processing of
essel 𝑖 ends plus the time needed for the cranes to move to the position
f 𝑗. Note that the valid inequalities proposed in Section 5 can also be
pplied to this model.

. A genetic algorithm for the BACASP-S

In this section we propose a Biased Random-key Genetic Algorithm
BRKGA) for the BACASP-S based on our BRKGA developed for the
ontinuous BACAP and discrete-time BACASP (Correcher and Alvarez-
aldes, 2017). The main differences from these previous heuristics
re: a new constructive algorithm considering continuous time and
rane setup time, with a crane utilization list developed to reduce
omputational time; and a new local search matheuristic which uses the
roposed BACASP-S model to solve the problem with some variables
ixed according to an input solution.

The BRKGA works as a genetic algorithm with 𝑁𝑝𝑜𝑝 populations
ith 𝑁𝑖𝑛𝑑 individuals each. The best individual in each population is
dded to the other populations each certain number of generations.
uring each generation, a percentage of the best individuals in the
opulation is declared elite and passes directly to the next generation.

percentage of the worst individuals are replaced by new random
7

i

ones. The rest of the individuals are generated by crossover, which is
performed in pairs, always with a random individual from the elite
set and a random individual from the entire population. The elite
individual is favored during crossover with a bias, so the probability
that a gene from the elite individual is passed on to the offspring is
a value in the interval [0.5, 1]. The genetic algorithm is run for some
time, and afterwards the local search procedure is applied over the
individuals of the resulting populations, ordered by non-decreasing
cost.

An individual codifies a solution in the form of a chromosome.
A chromosome consists of two lists: a list of vessels and a list with
the number of cranes assigned to each vessel. Each element of these
lists is considered a gene for crossover purposes and the constructive
algorithm is able to decode them and construct a feasible solution to
the problem.

To avoid redundancies, in the following we will focus on the new
contributions, since the detailed explanation of the whole approach can
be found in Correcher and Alvarez-Valdes (2017).

7.1. Constructive algorithm

The constructive algorithm is based on the procedure proposed in
the cited paper for the BACASP with discretized times, adapting it to
the case considered here: continuous time and including crane travel
and setup times.

The algorithm creates a solution from an ordered list of pairs (𝑖, 𝑞),
𝑖 being a vessel and 𝑞 ∈ 𝑄𝑖 a valid number of cranes for 𝑖. For each
𝑖 ∈ 𝑉 , only one pair is admitted in the list. Starting from an empty
berth schedule, the algorithm adds the vessels to the schedule in the
order of the list, one by one, with their corresponding number of cranes
𝑞. At each step, the algorithm finds the berthing time and position that
minimize the objective function for the vessel, given the partial solution
with the previous vessels in the list already included.

To do this, once a vessel 𝑖 is taken to be included in the schedule, the
lgorithm starts from the candidate point in which the vessel would be
t its zero-cost position on the quay and with berthing time equal to its
ime of arrival. If the vessel cannot be assigned there, a list of alterna-
ive candidate assignments is generated and iteratively explored until
he minimum-cost feasible assignment is found. Feasibility requires not
nly that there is no overlap with previous vessel assignments, but also
ompatibility with the number of cranes and the specific cranes used.
hus, we must ensure that (1) there will be at least 𝑞 consecutive cranes
vailable and ready on the quay for the entire vessel processing time,
𝑖𝑞 ; and (2) that the vessel assignment satisfies travel and setup time
onstraints for all the specific cranes allocated to serve the vessel.

As time is continuous, we cannot keep track of the number of
ranes used per time period. Instead, we generate a list of tuples
𝑡, 𝑣𝑖𝑛, 𝑣𝑜𝑢𝑡, 𝑞𝑢𝑠𝑒𝑑 ), where 𝑡 is a time instant, 𝑣𝑖𝑛 and 𝑣𝑜𝑢𝑡 are the number
f vessels berthing and departing at that time, respectively, and 𝑞𝑢𝑠𝑒𝑑 is
he number of cranes in use from that time until the next time in the
ist. The list is ordered by increasing time and updated as the vessels
re included in the schedule.

Once a feasible BACASP solution is obtained, the crane travel and
etup time constraints are checked, as it is necessary to know which
pecific cranes are assigned to each vessel. If any of these constraints
re not met, the solution is partially destroyed and recreated. Thus, if
crane 𝑘 is assigned to two vessels 𝑖 and 𝑗 such that vessel 𝑗 berths

after 𝑖 departs and the travel and setup times of the crane moving from
𝑖 to 𝑗 are not respected, vessel 𝑗 and all the vessels with berthing time
qual to or greater than the departure time of 𝑗 are removed from
he solution. The algorithm is then applied over the resulting partial
olution to include 𝑗, but now its berthing time is forced to be the
erthing time it had in the previous solution plus the time needed
o satisfy the travel and setup constraints. The remaining vessels are

ncluded using the algorithm in the order established in the original
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input list. The process is repeated until a feasible solution is found for
the BACASP-S with crane travel and setup times.

7.2. Matheuristic local search

The local search procedure (LS) is a final attempt to refine the
best solutions obtained by the BRKGA. This particular algorithm is
a matheuristic, as it solves a subproblem using a solver running the
proposed BACASP-S MILP.

Given an input solution, this procedure first constructs a list of
vessels ordered by non-increasing score, which is calculated, for each
vessel, as the sum of its cost and the cost of its adjacent vessels in the
space–time diagram (i.e., the vessels whose rectangle is in contact with
the rectangle representing the schedule of the vessel in question). Then,
a vessel is selected from the list with a predefined probability, starting
from the first element. If the size of the cluster is less than a predefined
value, the vessel selected and the adjacent vessels are removed and
reintroduced in the solution by solving the model for the BACASP-S
with the variables corresponding to the remaining vessels fixed at the
values they have in the solution, while the rest are not fixed. Otherwise,
another vessel is selected. By limiting the number of adjacent vessels
admitted we ensure that the model will be solved very fast. If the
solution obtained is not the best solution found so far, another vessel is
selected. Otherwise, the process is repeated over the new best solution
and the procedure continues until the time limit is reached.

8. A multi-model and multi-heuristic exact approach

To solve the BACASP and BACASP-S, we can use a model for the
problem that does not consider specific crane assignment, namely, the
problem in which only a number of cranes is assigned to each vessel
(BACAP). In past experiments we observed that the BACAP model (Cor-
recher et al., 2019a) can be solved significantly faster than the BACASP
model, and that it can provide good lower bounds for the latter in
a very short time. Furthermore, the genetic algorithms proposed to
solve all the three problems (BACAP, BACASP and BACASP-S) can
provide the MILP solver with good feasible starting solutions. Taking
all these remarks into consideration, we propose a solution scheme in
which the problems are solved consecutively using the models and the
metaheuristics to take full advantage of the lower and upper bounds
obtained with them. The proposed algorithm is the following:

(1) Run the BRKGA+LS for the BACAP of Correcher and Alvarez-
Valdes (2017) for 𝜏1 seconds.

(2) Solve the MILP for the BACAP of Correcher et al. (2019a) for 𝜏2
seconds, using the best solution obtained in step 1 as the starting
solution.

(3) Run the BRKGA+LS for the BACASP of Correcher et al. (2019a)
for 𝜏3 seconds.

(4) Solve the MILP for the BACASP proposed in Section 4 for 𝜏4
seconds, using the best solution obtained in step 3 as the starting
solution.

(5) Run the BRKGA+LS for the BACASP-S proposed in Section 7 for
𝜏5 seconds.

(6) Solve the MILP for the BACASP-S proposed in Section 6 for 𝜏6
seconds, using the best solution obtained in step 5 as the starting
solution.

Since the best lower bound achieved in a step is also a lower bound
or the next step, it is possible to calculate a final optimality gap with
he best lower and upper bounds obtained through the chain.

Note that it is not necessary to run all the steps of the algorithm, but
ust those we find useful empirically to solve the final problem, either
he BACASP or the BACASP-S. In Section 9 we will evaluate different
ombinations of this chain of steps. This algorithm is summarized in
8

ig. 5.
. Computational study

In this section, the models and the genetic algorithm are tested
nd evaluated in several computational experiments. In Section 9.1
e present and describe the sets of instances used throughout all the
xperiments. Then, in Section 9.2, we compare the computational re-
ults of the proposed continuous-time model with those of our previous
iscrete-time model. The effect of the valid inequalities is analyzed in
ection 9.3, and the BACASP-S model is evaluated and discussed in
ection 9.4. Next, we assess the multimodel multiheuristic approach
n Section 9.5, and finally we study the effect of some relevant prob-
em parameters on the computation effort required by the solver in
ection 9.6.

The solution methods were implemented in C++ using GCC–G++
.4 and CPLEX 12.10, limiting the size of the search tree to 30 GiB.
he compilation was performed specifying the parameters –O2 and -
openmp in order to generate an executable file that uses the OpenMP
arallelization library. The experiments were run on a cluster with 16
MD Opteron 6344 at 2.6 GHz with 31.4 gibibytes of RAM, running

he Ubuntu 20.04 operating system. The instances and results can be
ound at https://github.com/juanfdata/bacasp_setup.

.1. Problem instances

We use a number of sets of instances generated by Correcher and
lvarez-Valdes (2017), following the schemes of Park and Kim (2003)
nd Meisel and Bierwirth (2009), extended to include the special
eatures of the new BACASP-S. We now detail each set.

• GenPK, generated according to the criteria of Park and Kim
(2003). All instances consider a time horizon of 𝑇 = 300 h and
a quay length of 𝐿 = 1200 meters, discretized in units of 1 h and
10 m, respectively, with 𝑄 = 11 cranes. The set consists of 50
instances, 10 for each number of vessels 𝑁 ∈ {20, 25, 30, 35, 40}.
The vessel characteristics are generated from uniform distribu-
tions, the arrival time from 𝑈 [1, 170], the length from 𝑈 [15, 35],
the number of crane-hours required from 𝑈 [10, 48], and the de-
sired position on the quay from 𝑈 [1, 120]. The maximum desired
departure time is determined by applying the expression: 𝑠𝑖 =
𝑎𝑖 + 1.5min𝑞{𝑢𝑖𝑞} (Meisel and Bierwirth, 2009). The processing
time for each number of cranes is calculated by dividing the
number of crane-hours required for the vessel by the number of
cranes and rounding up to the next integer. The cost coefficients
are 𝐶𝑤

𝑖 = 1000, 𝐶𝑑
𝑖 = 2000, 𝐶𝑝

𝑖 = 200, ∀𝑖 ∈ 𝑉 . Additionally, crane
setup time 𝛽 = 6 minutes and crane speed 𝛼 = 40 meters per
minute.

• GenMB, generated according to the criteria of Meisel and Bier-
wirth (2009). The time horizon is 𝑇 = 210 h, the quay length
is 𝐿 = 1000 meters, discretized as before, with 𝑄 = 10 cranes.
There are 50 instances, 10 for each number of vessels 𝑁 ∈
{20, 30, 40, 50, 60}. The vessels are divided into three types: Feeder,
Medium, and Jumbo, and each instance has 60%, 30%, and 10%
of vessels of each type. Arrival times are taken from 𝑈 [1, 168],
corresponding to one week, although the time horizon is longer
to avoid unfeasible instances. Lengths, crane-hours, and minimum
and maximum number of cranes are generated according to
Table 1, taken from Meisel and Bierwirth (2009). The desired
position of each vessel 𝑖 on the quay is generated from 𝑈 [1, 𝐿+1−
𝑙𝑖]. The processing time for each number of cranes, the maximum
desired departure time, the cost coefficients and the crane setup
time and speed are the same as in the GenPK set.

• LargeMB, consisting of 2430 instances of 30 vessels, generated in
the same manner as GenMB. Specifically, the generation process
was as follows. First, a total of 90 base instances were constructed
with 𝑇 = 300 h, 𝐿 = 500 meters and the corresponding vessel

data. Then, from each of these base instances, a total of 27

https://github.com/juanfdata/bacasp_setup
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Fig. 5. Summary of the multi-model and multi-heuristic exact approach. LB stands for the best lower bound found.
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Table 1
Specifications for the different classes of vessels in set GenMB.

Class 𝑙𝑖 crane-hours 𝑞min
𝑖 𝑞max

𝑖

Feeder 𝑈 [8, 21] 𝑈 [5, 15] 1 2
Medium 𝑈 [21, 30] 𝑈 [15, 50] 2 4
Jumbo 𝑈 [30, 40] 𝑈 [50, 65] 4 6

instances were generated and included in the set, resulting in all
the combinations of the following parameters: number of cranes
𝑄 ∈ {5, 10, 15}, crane speed and setup times (𝛼 in meters/minute,
𝛽 in minutes) ∈ {(26.7, 12), (33.3, 9), (40, 6)}, and vessel processing
times multiplied by 1, 1.5 or 2.

.2. Continuous-time BACASP model vs. previous discrete-time BACASP
odel

The continuous-time BACASP model proposed here and our previ-
us discrete-time BACASP model (Correcher et al., 2019a) were run
ver GenMB and GenPK instance sets using CPLEX with a time limit of
600 s for each instance. The results are shown in Table 2. Instances
re grouped by number of vessels. For each number of vessels, the
able shows: Avg.cost, the average cost obtained on the instances for
hich at least one feasible solution was obtained; Feasible, the number
f instances in each group for which a feasible solution was found;
ptimum, the number of instances in each group for which an optimal

olution was found (and proven optimal); Avg. time, the average time
in seconds) needed by the solver; Av. gap, the average MILP gap,
n percentage; and Max gap, the maximum MILP gap found in the
orresponding group of instances.

It can be observed that the new model reduces the computational
imes in both sets and optimally solves more instances with 50 vessels
n GenMB and 35 and 40 vessels in GenPK. The average and maximum
aps are also reduced and, in contrast to the discrete-time model,
easible solutions are found in all the instances with 60 and 40 vessels,
n GenMB and GenPK, respectively. The better performance of the
ontinuous model may be due to its lower number of variables and
onstraints. The number of variables in the discrete model is 𝑂(𝑁2 +
𝑄𝑇 ), in particular: 𝑂(𝑁2) variables 𝜎𝑖𝑗 and 𝛿𝑖𝑗 , 𝑖, 𝑗 ∈ 𝑉 ; 𝑂(𝑁𝑄𝑇 )

ariables 𝑟𝑖𝑗𝑡, 𝑖, 𝑗 ∈ 𝑉 , 𝑡 ∈ {1,… , 𝑇 }; and 𝑂(𝑁) variables 𝑡𝑖, 𝑝𝑖 and 𝑒𝑖,
∈ 𝑉 . However, the continuous model has only 𝑂(𝑁2 +𝑁𝑄) variables,
s its 𝑟 variables do not have the time as a subindex. Moreover, the
umber of constraints in the discrete model is 𝑂(𝑁2 + 𝑄2𝑇 ), while in
he continuous model it is 𝑂(𝑁2).
9

.3. Evaluating the effect of the valid inequalities

Preliminary experiments were conducted to determine the best
alues for the parameters of the various families of valid inequalities,
rom which we finally obtained ℎ𝜎 = 5, ℎ𝛿 = 2, ℎ𝑐 = 2, 𝜂 = 1,
̄ = 4, 𝑐 = �̄� = 100000. This parameter configuration was used in the
emaining experiments.

Table 3 shows the effect of the valid inequalities described in
ection 5 on the performance of the model in Section 4, for the two sets
f GenMB and GenPK instances. Each inequality class has been tested
eparately, to assess its individual effect, while the last row shows the
ffect of all inequalities applied together. The solver was run for fifteen
inutes on each instance. The gap reduction, defined as the difference

etween the gap without the valid inequalities and the gap with the
alid inequalities, has been calculated only for the non-optimally solved
nstances. Conversely, the time reduction has been calculated for the
ptimally solved instances. In both cases, the table shows the mean
bsolute and percentage differences.

It can be seen that the effect of the valid inequalities is different in
he two sets of instances. Concerning gap reductions, the effect is more
niform in GenMB, in which all inequalities have a positive (small)
ffect, whereas it is more irregular in GenPK, although the joint effect

is larger. Running times are slightly reduced in GenMB and increased
in GenPK, but it is worth noting that the inclusion of a large number of
new inequalities does not significantly slow down the solution process
for instances that are solved optimally. Therefore, all valid inequalities
were included in the other computational tests in this section.

9.4. BACASP model vs. BACASP-S model

Table 4 compares the results obtained by the model without travel
and setup times with the same model including them. Instances and
results are grouped in the same way as in Table 2.

It can be seen how, when travel and setup times are added, the
costs increase, the number of solved instances in one of the groups (50
vessels) decreases, the number of optimal solutions decreases in most
of the groups, the average gaps increase and so do the maximum gaps.
These increments get larger with problem size. For small problems,
both models are rapidly solved to optimality, but as the number of
vessels increases, the model with travel and setup times becomes much
harder to solve. The example in Fig. 6 illustrates how crane travel
and setup times impact the whole solution. While in subfigure (a) the
BACASP is solved without considering crane travel and setup times, in
subfigure (b) they are taken into account. As can be seen, cranes 1 to 3
must move from their positions for vessel 1 to their positions on vessel

3 and prepare for new operations. The time they take to do so affects
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Table 2
Comparison between our previous MILP model for the BACASP and the new one.

GenMB GenPK

Vessels Previous New MILP Vessels Previous New MILP

20 Avg. cost 13 300 13 300 20 Avg. cost 22 620 22 620
Feasible 10 10 Feasible 10 10
Optimum 10 10 Optimum 10 10
Avg. time (s) 55.6 0.8 Avg. time (s) 284.2 1.2
Avg. gap (%) 0 0 Avg. gap (%) 0 0
Max. gap (%) 0 0 Max. gap (%) 0 0

30 Avg. cost 42 160 42 160 25 Avg. cost 31 920 31 920
Feasible 10 10 Feasible 10 10
Optimum 10 10 Optimum 10 10
Avg. time (s) 526.7 40.4 Avg. time (s) 752.3 2.4
Avg. gap (%) 0 0 Avg. gap (%) 0 0
Max. gap (%) 0 0 Max. gap (%) 0 0

40 Avg. cost 56 960 56 620 30 Avg. cost 52 520 52 520
Feasible 10 10 Feasible 10 10
Optimum 9 10 Optimum 10 10
Avg. time (s) 1625.6 123.3 Avg. time (s) 1556 25.9
Avg. gap (%) 2.02 0 Avg. gap (%) 0 0
Max. gap (%) 20.14 0 Max. gap (%) 0 0

50 Avg. cost 663 233 162 480 35 Avg. cost 1 556 622 86 260
Feasible 6 10 Feasible 10 10
Optimum 0 0 Optimum 5 7
Avg. time (s) 3600 3600 Avg. time (s) 2806.7 1282.2
Avg. gap (%) 67.49 38.84 Avg. gap (%) 25.26 6.39
Max. gap (%) 95.03 62.52 Max. gap (%) 99.25 28.42

60 Avg. cost 1 669 000 337 880 40 Avg. cost 7 060 800 144 060
Feasible 1 10 Feasible 1 10
Optimum 0 0 Optimum 0 5
Avg. time (s) 3600 3600 Avg. time (s) 3600 1957.2
Avg. gap (%) 95.27 64.63 Avg. gap (%) 99.1 24.74
Max. gap (%) 95.27 83.71 Max. gap (%) 99.1 73.24
Table 3
Effect of the valid inequalities on the performance of the model.
Inequality class (Section) GenMB GenPK

Gap red. (%) Time red. (s) Gap red. (%) Time red. (s)

Transitivity (5.1) 1.23 (3.97%) 7.03 (5.5%) 1.64 (9.0%) 7.28 (4.8%)
Use of cranes (5.2) 2.03 (4.12%) 25.80 (12.8%) 2.66 (23.8%) 0.75 (3.8%)
Sigma 𝑤 (5.3) 0.74 (2.38%) 22.47 (4.5%) −0.14 (7.0%) 1.95 (−8.1%)
Sum. sigma cranes (5.4) 1.48 (4.73%) 17.23 (4.9%) 0.10 (−8.5%) 1.15 (−0.6%)
Sum. sigma length (5.4) 2.40 (5.55%) 10.67 (−1.1%) −0.28 (−2.6%) 8.63 (2.7%)
Coherence 𝑤𝑟 (5.5) 0.99 (1.69%) 8.63 (6.4%) −0.70 (2.9%) −0.75 (−3.9%)
Minimum separation (5.6) 0.02 (0.45%) 9.33 (14.2%) −0.46 (11.1%) 3.80 (1.3%)
Ordered delta covers (5.7) 1.99 (1.35%) 2.87 (2.4%) −0.60 (−5.3%) 1.50 (−2.4%)
Non-ordered delta covers (5.8) 1.10 (3.70%) 11.03 (12.3%) −0.83 (−1.7%) 9.23 (8.3%)

All inequalities 3.61 (8.50%) 21.87 (10.9%) 8.13 (38.5%) −5.33 (−14.1%)
the start and departure times of vessel 3 and thereby the operations of
vessels 4 and 5. Now vessel 5 starts and departs later than in solution
(a), incurring an unavoidable waiting cost; while vessel 4 keeps its
berthing time, cannot use crane 3 and incurs a cost of deviating from
its desired position to prevent the increase in the penalty for waiting
before berthing, which in this case is greater than the deviation penalty.
In a week-long planning horizon such as the ones used in the literature
and in our experiments, this domino effect propagates to many other
vessels and thus leads to quite different optimal solutions.

9.5. The multi-model multi-heuristic exact algorithm

We evaluated the solution scheme proposed in Section 8 over the
set of instances of 50 vessels in GenMB, as this problem size is the first
for which our MILP cannot solve the instances to optimality in 1 h, ac-
cording to previous experiments. By using the exact solution approach,
we expected to reduce optimality gaps and, hopefully, optimally solve
10

some of the instances.
The total time limit of the process was set to 5 h (18000 s) and the
time devoted to each genetic algorithm together with its local search
was 200 s, of which the local search used 20 s. The remaining time was
distributed equally to set the time limits for each of the models selected
in each combination. For example, the full execution of the 6 steps
comprised the following time limits: 200 s for the BACAP BRKGA+LS,
5800 s for the BACAP model, 200 s for the BACASP BRKGA+LS, 5800 s
for the BACASP model, 200 s for the BACASP-S BRKGA+LS and the
remaining time for the BACASP-S model. Note that when a model is
solved before reaching its time limit, the final model in the chain has
more time available.

The genetic algorithm and the local search were run with the
best configuration of their parameters according to our previous pa-
per (Correcher and Alvarez-Valdes, 2017). In the case of the genetic
algorithm for the BACASP-S, the same configuration of the BACASP
genetic algorithm was used. As for the models, they included all the
valid inequalities selected in their final version.

Table 5 shows the results for the process applied to solve the

BACASP. In particular, the best lower bound (LB) and upper bound (UB)
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Table 4
Comparison between model without setup and model with setup.

GenMB GenPK

Vessels No Setup Setup Vessels No Setup Setup

20 Avg. cost 13 300 13 379 20 Avg. cost 22 620 23 027
Feasible 10 10 Feasible 10 10
Optimum 10 10 Optimum 10 10
Avg. time (s) 0.8 1.7 Avg. time (s) 1.2 3.2
Avg. gap (%) 0 0 Avg. gap (%) 0 0
Max. gap (%) 0 0 Max. gap (%) 0 0

30 Avg. cost 42 160 43 680 25 Avg. cost 31 920 32 761
Feasible 10 10 Feasible 10 10
Optimum 10 10 Optimum 10 10
Avg. time (s) 40.4 328.5 Avg. time (s) 2.4 9.7
Avg. gap (%) 0 0 Avg. gap (%) 0 0
Max. gap (%) 0 0 Max. gap (%) 0 0

40 Avg. cost 56 620 59 450 30 Avg. cost 52 520 55 299
Feasible 10 10 Feasible 10 10
Optimum 10 9 Optimum 10 9
Avg. time (s) 123.3 984.7 Avg. time (s) 25.9 529.6
Avg. gap (%) 0 0.92 Avg. gap (%) 0 0.16
Max. gap (%) 0 9.13 Max. gap (%) 0 1.59

50 Avg. cost 162 480 185 985 35 Avg. cost 86 260 91 635
Feasible 10 10 Feasible 10 10
Optimum 0 0 Optimum 7 6
Avg. time (s) 3600 3600 Avg. time (s) 1282.2 1704.4
Avg. gap (%) 38.83 54.58 Avg. gap (%) 6.39 12.24
Max. gap (%) 62.52 72.05 Max. gap (%) 28.42 39.66

60 Avg. cost 337 880 967 270 40 Avg. cost 144 060 166 908
Feasible 10 4 Feasible 10 10
Optimum 0 0 Optimum 5 1
Avg. time (s) 3600 3600 Avg. time (s) 1957.2 3594.4
Avg. gap (%) 64.63 77.88 Avg. gap (%) 24.74 36.67
Max. gap (%) 83.71 95.64 Max. gap (%) 73.24 76.58
Fig. 6. BACASP solutions for the same vessels in a terminal with 5 quay cranes, with and without considering crane travel and setup times. The cranes assigned to the vessels
are shown in brackets.
obtained during the process are reported for each of the configurations
tested: step 4 (BACASP MILP), steps 3 and 4 (BACASP GA+MILP)
and steps 1 to 4 (BACAP GA+MILP & BACASP GA+MILP). The gap is
calculated as 100(𝑈𝐵−𝐿𝐵)∕𝑈𝐵, as is the gap provided by CPLEX. The
results are rounded to units and those marked in bold indicate that they
are equal to or better than the results obtained by the BACASP MILP
alone (step 4).

First, we can see that the use of the BACASP GA to provide a starting
solution to the solver (steps 3 and 4) improves the UB in instances 2, 3,
11
4 and 5, and the LB in instances 3, 4, 6 and 10. The overall outcome is a
lower gap in instances 3, 4, 5, 6 and 9, but at the expense of increasing
the gap in instances 7 and 8. In general, it seems that running steps 3
and 4 slightly improves on the results of the MILP alone.

As for the use of both BACAP and BACASP GA+MILP (steps 1 to 4),
we can see that both lower bounds and gaps are drastically improved;
indeed, the average gap reduction is 71%. However, this is attained
at the expense of worsening the upper bound in some instances. This
configuration of the algorithm appears to be useful to reduce the
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Table 5
Solving the BACASP. Comparison between the execution of different configurations of the multimodel algorithm.
Instance Step 4 Steps 3 and 4 Steps 1 to 4

UB LB Gap (%) UB LB Gap (%) UB LB Gap (%)

1 115 000 115 000 0 115000 115000 0 115000 115000 0
2 226 600 101 361 55 224000 100 086 55 237 400 193400 19
3 99 600 89 732 10 99600 92009 8 99600 92247 7
4 108 400 95 253 12 108000 98865 8 108000 104027 4
5 192 600 95 246 51 183800 93 667 49 183800 164200 11
6 178 400 124 746 30 181 400 129612 29 181 400 160200 12
7 224 600 135 944 39 238 600 127 664 46 238 600 209400 12
8 162 200 122 640 24 162200 116 917 28 163 200 154400 5
9 119 200 119 200 0 119200 119200 0 119200 119200 0
10 181 600 103 766 43 168200 118930 29 166600 156800 6

Avg. 160 820 110 289 26 160 000 111 195 25 161 280 146 887 8
Table 6
Solving the BACASP-S. Comparison between the execution of different configurations of the multimodel algorithm.
Instance Step 6 Steps 5 and 6 Steps 1, 2, 5 and 6 Steps 1 to 6

UB LB Gap (%) UB LB Gap (%) UB LB Gap (%) UB LB Gap (%)

1 120 501 95 979 20 120501 97269 19 120501 111000 8 128 304 112127 13
2 407 419 84 486 76 407419 89575 78 407419 193400 53 436 735 193400 56
3 106 024 77 092 32 106024 76 640 28 134 302 88600 34 114 232 88600 22
4 115 409 79 059 31 115409 81018 30 139 233 103000 26 115410 103000 11
5 361 233 82 247 62 361233 79 380 78 385 604 164200 57 271210 164200 39
6 290 137 86 731 65 290137 97446 66 544 902 160200 71 579 765 160200 72
7 232 828 104 553 82 232828 127063 45 235 883 209400 11 235 718 209400 11
8 180 810 100 501 46 180810 96 265 47 168650 154400 8 201 227 154400 23
9 128 887 92 062 29 128887 101674 21 128772 115200 11 128 997 115957 10
10 178 489 99 205 58 178489 96 443 46 185 044 156800 15 186 707 156800 16

Avg. 212 174 90 192 50 212 174 94 277 46 245 031 145 620 29 239 831 145 808 27
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uncertainty on the interval where the optimal value is found (MILP gap)
and, furthermore, leads us to conclude that the best feasible solutions
obtained by the solver running the MILP alone are quite close to the
optimal ones.

Similarly, Table 6 shows the results for the process applied to solve
the BACASP-S considering different configurations: step 6 (BACASP-S
MILP), steps 5 and 6 (BACASP-S GA+MILP), steps 1, 2, 5 and 6 (BACAP
GA+MILP & BACASP-S GA+MILP), and steps 1 to 6 (BACAP GA+MILP
& BACASP GA+MILP & BACASP-S GA+MILP). The results are analo-
gous to the previous ones. The use of the BACASP-S GA+MILP slightly
improves on the LBs and the gaps in some instances with respect to
the MILP alone, while none of the UBs worsen. The configuration with
steps 1, 2, 5 and 6 achieves considerably better LBs and an average gap
reduction of 40%, although the UBs are worse in 6 instances. Finally, in
the configuration running steps 1 to 6 the UBs are worse in almost all
instances, but the LB obtained is much better in all of them, leading to
an average gap reduction of 47%. In short, the conclusions that can be
drawn in this case are similar to those on the BACASP configurations.
Running the MILP with a GA start-up solution is slightly better than
running it alone. The use of our previous BACAP and BACASP GAs and
MILPs allows us to find much better LBs and leads us to conclude that
the MILP alone achieves good-quality solutions.

9.6. The effect of problem parameters on computational effort

An important question regarding the new BACASP-S problem is
how some key parameters affect the computational effort required to
solve it. In previous works (Frojan et al., 2015) we concluded that
in the BAP the computation effort required increases, ceteris paribus,
with increasing number of vessels, vessel length and range of vessel
estimated time of arrival. Now we aim at assessing the effect of other
parameters that we consider relevant in the BACASP-S. To this end,
we conducted an extensive experiment in which the MILP model was
12

I

applied to the LargeMB set of instances, constructed with instances of
0 vessels, varying the number of cranes (5, 10 and 15), the vessel
rocessing times (multiplied by 1, 1.5 and 2), and the crane speed
𝛼 in meters/minute) and setup time (𝛽 in minutes) in three different
onfigurations: Slow (𝛼 = 26.7, 𝛽 = 12), Medium (33.3, 9) and Fast (40,
).

The solver was run for 120 s on each instance and, from a total
f 2430 instances, a feasible solution was found in all of them and an
ptimum in 951. The average gap in non-optimal instances was 43.9%.
ables 7, 8 and 9 show the mean gap of the instances grouped by pairs
f problem parameters (number of cranes, processing time multiplier
nd crane speed and setup time) to assess how the gap changes as
hey vary alone and together. In Table 7 we can see that the mean
ap decreases when the number of cranes in the instance increases.
he differences observed are statistically significant (Welch’s test 𝑝 <
.0001), especially in the instances with 5 cranes versus the group with
0 and 15 cranes, as the latter may be considered homogeneous (post-
oc t-test 𝑝 = 0.053). As for the other parameters, the mean gap is
ot statistically different between the groups defined by the processing
ime multiplier (Welch’s test 𝑝 = 0.669) nor between the groups defined
y crane speed (ANOVA test 𝑝 = 0.522). Besides, the mean gap does
ot change due to the interaction of the pairs of parameters studied.
n summary, we can conclude that the computational effort required
o solve the BACASP-S increases with decreasing number of cranes,
hereas the processing times and the crane travel and setup times do
ot affect it.

0. Conclusions

In this paper we have introduced a realistic variation of the berth al-
ocation and quay crane assignment problem (BACASP) in which cranes
eed travel and setup times between serving two consecutive vessels.

ncluding these times in berthing plans makes it possible to control
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Table 7
Mean gap (%) in instances grouped by number of cranes and processing time
multiplier.
#Cranes Proc. time mult. Total

1.0 1.5 2.0

5 54.2 58.4 59.9 57.5
10 13.0 11.8 12.0 12.3
15 11.3 9.6 10.6 10.5

Total 26.2 26.6 27.5 26.8

Table 8
Mean gap (%) in instances grouped by number of cranes and crane speed and
setup time.
#Cranes Crane setup speed Total

Slow Medium Fast

5 58.7 57.1 56.7 57.5
10 13.2 12.5 11.0 12.3
15 10.7 10.9 9.9 10.5

Total 27.6 26.8 25.9 26.8

Table 9
Mean gap (%) in instances grouped by processing time multiplier and crane speed
and setup time.
Proc. time mult. Crane setup speed Total

Slow Medium Fast

1.0 26.8 26.1 25.6 26.2
1.5 27.6 26.5 25.6 26.6
2.0 28.2 27.9 26.3 27.5

Total 27.6 26.8 25.9 26.8

the number of moves and to take into account their cumulative effect
over time. This new problem is denoted as BACASP-S and adds more
reliability to the resulting berth plan. To address it, we first propose a
BACASP MILP model that, unlike traditional formulations, does not rely
on the integrality of space and time variables. We strengthen this model
with new families of valid inequalities and finally we extend it to tackle
the BACASP-S. Both models prove to be efficient in solving instances of
moderate size (40 vessels or less within a one-week time horizon), but
alternative methods are needed to confront larger ones. This is why
we also propose a genetic algorithm and an exact method, which can
have up to 6 different phases and takes advantage of solutions to the
BACAP problem, which is much easier to solve than the BACASP and
BACASP-S.

Our experiments showed that the proposed BACASP model, with
continuous variables for time and position, is more efficient than previ-
ous BACASP models (Türkoǧullari et al., 2014; Correcher et al., 2019a)
hat rely on discretization of time and position. For the largest instances
n the existing benchmarks, with 60 vessels in GenMB and 40 vessels

in GenPK, the new model obtains feasible solutions for all of them and
several more optimal solutions. The BACASP-S is a new problem, so
the results obtained cannot be compared with previous approaches,
but it can be observed that it is harder to solve than the BACASP, as
expected, and the difficulty increases with problem size. The proposed
valid inequalities do help the solver, although the improvement in
computational efficiency thus attained is not enough for the MILPs to
deal with large instances. The exact method combined with the genetic
algorithm can find good quality solutions to instances of 50 vessels
within a one-week time horizon and drastically reduces the optimality
gaps. Finally, an extensive experiment allowed us to empirically prove
that BACASP-S instances become more difficult to solve as the number
of cranes decreases, whereas vessel processing time and crane speed
and setup time do not affect the difficulty.
13

c

This topic allows for various directions in future research. We are
planning to extend these models to accommodate more realistic as-
sumptions, such as the variable-in-time assignment of cranes to vessels
and the possibility of planning off-quay maintenance of specific cranes.
Berthing and unberthing operations should also be tackled in future
models together with crane setup times, as those operations depend
on the availability of tugboats, the shape of the terminal layout and
the presence of vessels in the quay, and so affect the berth plan.
An additional open problem that may be studied in the future is
the integration of the BACASP-S and the quay crane task scheduling
problem (QCSP).
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ppendix A. Summary of the input data

See Table 10.

ppendix B. Routing-based model

Here we present another way of modeling the BACASP-S, using
deas from vehicle routing models. For this purpose, we need the
ollowing new variables:

• 𝑦𝑘𝑖𝑗 = 1 if crane 𝑘 handles vessel 𝑖 immediately before processing
vessel 𝑗 (we say that 𝑖 and 𝑗 are consecutive for crane 𝑘)

• 𝑥𝑖𝑘 = 1 if vessel 𝑖 is handled by crane 𝑘

With these variables, and the input data defined in Section 3.2,
VRP-based MILP model for the BACASP-S, denoted as BACASP-S-1,
onsists of:
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Table 10
Notation used for BACASP and BACASP-S input.

𝑉 Set of vessels, 𝑉 = {1,… , 𝑛}. For modeling purposes, let 𝑉 0 = 𝑉 ∪ {0},
vessel 0 being a dummy vessel

𝐾 Set of available cranes, 𝐾 = {1,… , 𝑄}, indexed by 𝑘, 𝑘′ (referring to
specific cranes) and 𝑞 (referring to the number of cranes assigned to a
vessel). Cranes are numbered from 1 to 𝑄, increasing with their distance
from the start of the quay. As the cranes can move along the quay but
cannot cross each other, their relative position remains constant

𝐿 Length of the quay.

𝑙𝑖 Length of vessel 𝑖, 𝑙𝑖 ∈ [0, 𝐿]. Includes safety clearance.

𝑎𝑖 Arrival time of vessel 𝑖

𝐶𝑤
𝑖 Cost per unit of waiting time for berthing after the expected time of

arrival of vessel 𝑖

𝑠𝑖 Maximum desired departure time of vessel 𝑖

𝐶𝑑
𝑖 Cost per unit of time delay after the maximum desired departure time of

vessel 𝑖

𝑏𝑖 Desired position at the quay of vessel 𝑖, 𝑏𝑖 ∈ [0, 𝐿 − 𝑙𝑖]

𝐶𝑝
𝑖 Cost per unit of length away from the desired position at the quay of

vessel 𝑖

𝑞min
𝑖 Minimum number of cranes to be assigned to vessel 𝑖

𝑞max
𝑖 Maximum number of cranes that can be assigned to vessel 𝑖,

𝑞min
𝑖 ≤ 𝑞max

𝑖 ≤ 𝑄

𝐾𝑖 Set of cranes that can be the first crane assigned to vessel 𝑖. As the cranes
assigned to a vessel are consecutive, 𝐾𝑖 = {1,… , 𝑄 − 𝑞min

𝑖 + 1}

𝑄𝑖 Set of all the numbers of cranes admitted for vessel 𝑖, 𝑄𝑖 = {𝑞min
𝑖 ,… , 𝑞max

𝑖 }

𝑢𝑖𝑞 Processing time of vessel 𝑖 if 𝑞 cranes are assigned to it, 𝑞 ∈ 𝑄𝑖. The
processing time of a vessel can vary linearly with the number of cranes or
can be related to the number of cranes by a more complex expression,
considering crane interference. It may have a non-integer value

𝛼𝑘 Speed of crane 𝑘. If cranes are homogeneous, 𝛼 = min𝑘∈𝐾 (𝛼𝑘)

𝛽𝑘 The setup time that crane 𝑘 requires between serving two consecutive
vessels. If cranes are homogeneous, 𝛽 = max𝑘∈𝐾 (𝛽𝑘),∀𝑘 ∈ 𝐾

min (1)

.t.: (2), (3), (4), (5), (7), (8), (24), (25)

∑

𝑘
𝑥𝑖𝑘 =

𝑞max
𝑖
∑

𝑞=𝑞min
𝑖

𝑞𝑟𝑖𝑞 , ∀𝑖 ∈ 𝑉 (31)

∑

𝑗∈𝑉 0 ,𝑗≠𝑖

𝑦𝑘𝑖𝑗 = 𝑥𝑖𝑘, ∀𝑖 ∈ 𝑉 , 𝑘 ∈ 𝐾 (32)

∑

𝑖∈𝑉 0 ,𝑗≠𝑖

𝑦𝑘𝑖𝑗 = 𝑥𝑗𝑘, ∀𝑗 ∈ 𝑉 , 𝑘 ∈ 𝐾 (33)

∑

𝑗∈𝑉
𝑦𝑘0𝑗 ≤ 1, ∀𝑘 ∈ 𝐾 (34)

𝑗 ≥ 𝑡𝑖 +
𝑞=𝑞max

𝑖
∑

𝑞=𝑞min
𝑖

𝑢𝑖𝑞𝑟𝑖𝑞 +
1
𝛼𝑘

𝑓𝑖𝑗 + 𝛽𝑘 +𝑀(𝑦𝑘𝑖𝑗 − 1), ∀𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗,∀𝑘 ∈ 𝐾 (35)

𝑡𝑗 ≥ 𝑡𝑖 +
𝑞=𝑞max

𝑖
∑

𝑞=𝑞min
𝑖

𝑢𝑖𝑞𝑟𝑖𝑞 +𝑀(𝜎𝑖𝑗 − 1), ∀𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗 (36)

𝑘𝑥𝑗𝑘 − 𝑘′𝑥𝑖𝑘′ ≥ 1 −𝑄(𝛿𝑗𝑖 + 𝜎𝑖𝑗 + 𝜎𝑗𝑖) −𝑄(2 − 𝑥𝑖𝑘′ − 𝑥𝑗𝑘),

∀𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗,∀𝑘, 𝑘′ ∈ 𝐾, 𝑘 ≠ 𝑘′ (37)

Constraints (31) set exactly 𝑞 variables 𝑥𝑖𝑘 to 1. Constraints (32)
and (33) define the unique successor and predecessor (which could be
the dummy vessel) of each vessel and crane, provided that the crane
handles the vessel. Constraints (34) ensure that each crane has at most
one first vessel to handle. As for constraints (35), they ensure that
the processing of vessel 𝑗 starts when all cranes that were processing
previous vessels are available, and help to properly define variables 𝑦.
14
In these constraints we take into account the time it takes for a crane
to go from one position at the quay to another, and the time needed to
get the crane ready between vessels. Similar constraints are (36), which
help to properly define 𝜎 variables, establishing that, if 𝜎𝑖𝑗 = 1, then
vessel 𝑖 leaves before vessel 𝑗 arrives. Finally, constraints (37) avoid
crane crossing. The constraint is activated when two conditions are met:

(1) 𝛿𝑗𝑖 = 𝜎𝑖𝑗 = 𝜎𝑗𝑖 = 0 which, by (7), implies that 𝛿𝑖𝑗 = 1 and vessel
𝑖 is below vessel 𝑗,

(2) 𝑥𝑖𝑘′ = 𝑥𝑗𝑘 = 1, that is, when crane 𝑘′ handles vessel 𝑖 (the vessel
that is below) and crane 𝑘 handles vessel 𝑗 (the crane that is
above).

In this case the constraint ensures that 𝑘 > 𝑘′ and therefore they do not
have to cross at any time.
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