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Abstract

When firstly studying the large structure formation from a cosmological per-

spective it was found that it required the use of simulations to compute the high

number of calculations. Nowadays, cosmological simulations are used to discern

between different cosmological models through comparison with the observational

data. In recent years, Cosmology is entering into an era of precision with goals to

drastically reduce the uncertainties of the observations. This will possibly challenge

our knowledge of the Universe. In this work, how the newest observations fit inside

the current cosmological model has been studied. To do this I have learnt how to use

GIZMO by running small cosmological simulations and Rockstar to analyse their

results. After this, and using a set of larger simulations, the HMF was obtained

and, through an abundance matching with the GSMF from observational data, the

stellar-to-halo mass fraction. The observational data at very high redshift used came

from the JWST. It was found that the evolution of the HMF and the stellar-to-halo

mass fraction was consistent with the current model. On the other hand, the data

from the JWST showed bigger stellar masses than what was expected at z = 10,

showing that star formation should have started before or had been faster than

what was thought to be. In conclusion, the JWST data seems to defy the current

cosmological model, but the uncertainties do not exclude an agreement between

both and more precise observational data is needed to give a clearer answer.
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Resumen

Cuando se estudió por primera vez la formación de estructura desde una perspec-

tiva cosmológica, se descubrió que era necesario utilizar simulaciones para realizar

los numerosos cálculos. Hoy en d́ıa, las simulaciones cosmológicas se utilizan para

discernir entre distintos modelos cosmológicos a través de la comparación con los

datos observacionales. En los últimos años, la Cosmoloǵıa está entrando en una

era de precisión con objetivos de reducir drásticamente las incertidumbres de las

observaciones que posiblemente desafiarán nuestro conocimiento del Universo. En

este trabajo se ha estudiado cómo encajan las observaciones más recientes en el

modelo cosmológico actual. Para ello he aprendido a utilizar GIZMO ejecutando

pequeñas simulaciones cosmológicas y Rockstar para analizar sus resultados. Después

de esto, y utilizando un conjunto de simulaciones más grandes, se obtuvo la HMF y,

a través de un abundance matching con el GSMF a partir de datos observacionales,

la fracción de masa estelar-masa halo. Los datos observacionales a muy alto redshift

utilizados proced́ıan del JWST. Se encontró que la evolución de la HMF y de la

fracción de masa estelar-masa halo era consistente con el modelo actual. Por otro

lado, los datos del JWST mostraban masas estelares mayores de lo esperado a z = 10,

mostrando que la formación estelar debeŕıa haber comenzado antes o haber sido más

rápida de lo que se pensaba. En conclusión, los datos del JWST parecen desafiar el

modelo cosmológico actual, pero las incertidumbres no excluyen un acuerdo entre

ambos y se necesitan datos observacionales más precisos para dar una respuesta más

clara.
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1 Introduction

Since the beginning of the 20th century, the development of Einstein’s theory of general

relativity has allowed us to study the evolution of the Universe through time as a dynamical

system, allowing modern Cosmology to be included as a branch of Physics and Science.

Accompanied by the building of more modern and complex telescopes, cosmologist were

able to obtain more precise measurements of the parameters that drive the evolution of the

Universe, expanding our knowledge about the mechanisms that made the Universe take

the form it has today. At the end of the 20th century, Cosmology had already accomplished

several successes such as the discovery of the expansion of the Universe which led to the

development of the Big Bang theory, the characterization of the nature of dark matter or

the discovery of dark energy. In less than 80 years, what we knew as the Universe went from

being a single galaxy, the Milky Way, to becoming an ever expanding Universe, possibly

infinite, and filled with billions of galaxies. But, as the Universe grew, its complexity grew

with it.

When studying the Universe large structure it was found that galaxies are not isolated

from one another, but that the interactions between them directly participated in their

respective evolution. This resulted in the hierarchical structure formation model, where

galaxies grow through mergers with smaller ones. This imposed the necessity of using

computer simulations to understand how the matter in the Universe organizes itself and

how those structures evolve through time in a cosmological context. Although the equations

that govern the evolution of the Universe are not complex, inside the high density regions

where galaxies are formed they become nonlinear. This led to the introduction of computers

and supercomputers in the studies of large scale structure. Since 1974 (Bertschinger, 1998),

when the first cosmological simulation to study structure formation was performed, the

use of computer simulations of structure formation to test models and make predictions

has continued to grow. One of the biggest successes of the cosmological simulations came

in 1984 when the hot dark matter model, which proposed that the dark matter was formed

by neutrinos, was discarded as the large scale structure formation under that model would

have been completely different to the observations (Peebles, 2020, Chapter 7.1).

Computer simulations have proved to be a powerful tool to evaluate cosmological

models. In the current one, the Universe is composed fundamentally by dark energy,

which affects the rate of expansion of the Universe, dark matter, which only interacts
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gravitationally, and baryonic matter, which is the “normal” matter that forms all that we

see. Approximately 85% of all matter in the Universe is in the form of dark matter while

the rest is baryonic matter. According to this, the most simple cosmological simulation to

study the structure formation will be the one that simulates the behaviour of dark matter

in an expanding universe. As dark matter only interacts gravitationally, the dynamic of

the system will be equal to a N-body simulation with Newtonian gravity. Using different

models of dark matter, which are differentiated by, for example, their state equations, will

result in a different formation of large scale structure, which allows us to discard dark

matter models comparing the results with the observations.

The precision of the observations will directly affect how well It can be discerned

between different cosmological models. During the 20th century the precision of the

measurements presented errors drifting between 10% and 20%, limiting the models that

could be discarded. But this has changed in recent years. More precise instruments like

the Planck satellite to study the cosmic microwave background, the Hubble space telescope

or the more recent James Webb space telescope among others, have offered more precise

measurement of the characteristics of the CMB, the galaxy distribution or their luminosity,

allowing to more accurately discern between models that seemed equivalent years before.

We are now entering an era of precision Cosmology, where the main goal is to reduce the

errors to 1%. If this level of precision is achieved, new studies will possibly end with a

more comprehensive understanding of our Universe and its evolution.

The aim of this work is to study the formation and evolution of the large scale structure

from a cosmological point of view. This will be achieved through the analysis of different

cosmological simulations. In order to do this, I compiled the codes GIZMO and Rockstar,

two codes widely used in cosmological studies, to run and analyse a set of simple simulations

in my computer. This allowed me to directly observe the operation of both codes and

to determine the data of interest that the codes provided. I was not able to use the

simulations performed in my computer as they were too simple so that they could be

run promptly. Instead, another set of more complex simulations was used. From these

simulations, the number density distribution will be obtained as a function of the mass of

what is known as dark matter halos, which are basic unit of the large structure. As these

halos are stable structures, they obey the virial theorem. Galaxies will form inside the

halos, as the will pull gas and dust towards their center, resulting in a relation between
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the halos and galaxy density distributions. This relationship between distributions can be

found assuming that the most massive halo hosts the most massive galaxy and pairing

the rest of galaxies and halos following the same rule. This procedure is called abundance

matching. The galaxy density distribution can be obtained from observational data, so this

will be the link between simulations and observations. Observational results of near and

distant galaxies from the Hubble space telescope and of very distant galaxies from James

Webb space telescope will be used. From these observational data and the simulation

results, the stellar-to-halo mass fraction as a function of the halo mass will be obtained.

Analysing the evolution of this parameter with redshift and comparing with the expected

evolution, it will be possible to discern how well the newest data from the JWST agree

with the current cosmological model.

A brief summary of the structure of this work follows. In section 2, the basis of modern

Cosmology and the Λ-CDM model is introduced, followed by an introduction in dark

matter halos and large structure formation. In section 3, the methodology followed during

this work in order to obtain the halo mass function and the stellar-to-halo mass fraction is

described, in addition to a explanation about the operation of the GIZMO and Rockstar

codes. In section 4, the results for the halo mass function and the stellar-to-halo mass

fraction are presented for the HST and JWST data. In section 5, the conclusions of this

work and a discussion of the results is shown.

2 Theoretical framework

2.1 Introduction to Modern Cosmology

To study the behaviour of the Universe as a whole, it is necessary to use Einstein’s General

Relativity, which describes the gravitational interaction between two massive bodies as a

curvature of space-time. Even though Newtonian gravity offers a much simpler theoretical

framework to work with, it does not take into account the dynamic natures of space and

time. Those magnitudes are neither absolute nor passive as Newton thought, but affect

the relative movement between objects in the Universe.

After Einstein published his general theory of relativity, multiple cosmologists tried

to describe the Universe and its properties in terms of a space-time metric. One of the

first tries came by the hand of Einstein himself, who used his own theory to describe
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a stationary and eternal Universe. In order to make his model consistent with general

relativity, Einstein had to modify its equations to add a new component that could counter

the gravitational attraction and avoid the gravitational collapse in its model. This is

known as the Einstein’s static universe, which was disproved by observations some years

later. The modifications that Einstein introduced in the equations of his theory later

became what is now known as dark energy or vacuum energy, as it will be seen later.

Figure 1: Radial velocities vs. distance for the galaxies observed by Hubble from his
original paper. Imagen from Hubble (1929).

In 1927 and 1929, George Lemâıtre and Edwin Hubble, respectively, observed a linear

relation between the radial velocities of galaxies relative to the Milky Way and the distance

to them, as shown in figure 1. From these results, Hubble and Lemâıtre concluded that

distant objects’ movement follow the equation

v = H0 ·D (1)

where v is the radial speed of a galaxy, D is the distance between the Milky Way and

that galaxy and H0 is the Hubble’s constant at the present. This equation is called the

Hubble-Lemâıtre law. This law was the final proof that disproved Einstein’s static universe,

as it showed that distances between galaxies changed over time and the Universe could

not be in a stationary state.

During the following decades, the determination of the Hubble constant H0 couldn’t be

achieved with a high precision. As the value of H0 directly affects the results, the following
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notation was introduced: H0 = h · 100 (km/s)/Mpc, where h is a dimensionless parameter

in the interval 0 < h < 1. Obtaining results as a function of the parameter h helped to

make the results independent of the chosen value for H0. More information about this

notation can be found in Croton (2013).

The discovery of the Hubble-Lemâıtre law provided an observational foothold for other

models that predicted an expansion of the Universe. These models form what is known

today as the Friedmann-Lemâıtre-Robertson-Walker metric (FLRW metric). This metric

can be derived from the general properties of the Universe, without knowing its content in

matter and energy (Weinberg, 2008). The FLRW metric assumed two main properties of

the large scale structure of the Universe:

• Homogeneity: there are no privileged points of observation. All observers are

equivalent regardless of their position in space.

• Isotropy: There are no privileged directions. The Universe looks the same regardless

of the orientation.

These properties are not applicable to every observer, i.e. not every observer will

see the Universe as homogeneous and isotropic at its large-scale structure. For example,

if an observer A is moving respect to and observer B, and B observes the Universe as

homogeneous and isotropic, A will observe that the number density of galaxies measured

parallel to its direction of movement is greater than that measured in the perpendicular

direction due to the relativistic contraction of distances. Therefore, A won’t observe the

universe as isotrope. The set of observers that see the Universe as homogeneous and

isotrope are called comoving observers, so the FLRW metric is derived from their point of

view.

In spherical coordinates, the FLRW metric can be written as

ds2 = dt2 − a2(t)

(
dr2

1− kr2
+ r2(dθ2 + sin θdϕ2)

)
(2)

where: a(t) is the scale factor used to convert comoving distances to physical distances. A

comoving distance is measured using a scale that expands or contracts with the Universe.

Therefore, if two objects maintain a constant comoving distance dcom between them, their

relative velocities will follow equation 1. The scale factor is normalised to its value at the

present time t0, so a(t0) = 1. It is also related to the Hubble parameter at a given time
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H(t) as:

H(t) =
ȧ(t)

a(t)
(3)

k is a parameter that determines the curvature of space. 3 different geometries are found

depending on the sign of k. If k < 0 space geometry is hyperbolic. The radial coordinate

is not bounded, r ∈ [0,∞]. When k = 0 space geometry is euclidean and the Universe

is flat. The radial coordinate is again not bounded. Finally, if k > 0 space geometry is

spherical and the radial coordinate must take values in the interval [0,1/
√
k].

This is a general form of the FLRWmetric and, apart from the properties of homogeneity

and isotropy, it cannot give more specific information about the Universe, such as the

curvature factor k or the evolution of the a(t). To know the value and temporal evolution

of these parameters it is necessary to introduce the metric in Einstein’s field equation to

relate it to the energy and matter densities of the Universe.

2.2 Expanding Universe dynamics. Friedmann equations

Einstein’s field equation shows a relation between the geometry of space-time and the

energy-momentum tensor:

Rµν −
1

2
gµνR = 8πGTµν (4)

where Rµν is the Ricci tensor, defined as an index contraction of the Riemman tensor

Rνσ = Rµ
νµσ = ∂µΓ

µ
νµ − ∂σΓ

µ
νµ + Γµ

λµΓ
λ
νσ − Γµ

λσΓ
λ
νµ, where Γµ

νρ = 1
2
gµλ(∂gλν

∂xρ +
∂gλρ
∂xν − ∂gνρ

∂xλ
)

are the Christoffel symbols, R = Rµ
µ is the Ricci scalar or scalar curvature and Tµν is

the energy-momentum tensor, which describes the energy and matter distributions. A

more comprehensive introduction of the Einstein’s field equation and its relation with the

geometry of space-time and the energy content can be found in Weinberg (2008, Chapter

1).

As the Universe is composed of different forms of energy and matter, Tµν can be

rewritten as:

Tµν =
∑
α

T (α)
µν (5)

where each T
(α)
µν is the different component of the total energy and matter density of the

Universe. As a good approximation, each component can be treated as a perfect relativistic

fluid, i.e. fluids that present no viscosity or heat conduction. For any perfect fluid, it’s
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energy-momentum tensor must be:

Tµν =


ρ

p

p

p

 (6)

where p is the pressure the fluid exerts on its surroundings, which must be equal in all

directions to preserve the isometry, and ρ is the energy density. These two magnitudes are

related by a equation of state that describe the fluid. It can be assumed that the fluids

that are present in the Universe are barotropic, i.e. its density is a function of its pressure

ρ = ρ(p). This function can be written as

p = ωρ (7)

where ω is a dimensionless constant that will define the behaviour of the perfect fluid:

• Non-relativistic matter: ω = 0 ⇒ p = 0. For this kind of matter, the energy density

is much grater than its pressure. In this group, baryonic matter and cold dark

matter is found. The baryonic matter is composed of baryons and leptons and is the

one which forms the stars, planet, nebulae, etc. On the other hand, dark matter’s

composition is unknown and it can only be observed by its gravitational effect on

the baryonic matter around it as it does not interact electromagnetically.

• Radiation: ω = 1/3 ⇒ p = 1
3
ρ. This applies to electromagnetic radiation and

ultra-relativistic particles, such as neutrinos.

• Vacuum energy or dark energy: ω = −1 ⇒ p = −ρ. This kind of energy was

introduced after the discovery that the expansion of the Universe is accelerating. Its

true nature and origin is unknown as of today but its properties can be studied, as

explained below.

Upon these three fluids, the Λ−CDM model, also referred to as “standard cosmology”, is

built. This model takes into account the existence of a cosmological constant Λ which is

observed in the form of dark energy. Even though the nature of dark energy is currently

unknown, some of its properties can be studied through observation. In this case, the
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parameter ω inside the equation of state for dark energy can be determined from the CMB

fluctuations. The latest data from the Planck satellite show that ω = −1.006 ± 0.045

(Planck Collab., Aghanim, et al., 2020), so the approximation ω ≈ −1 is valid. CDM

means that the model assumes that all dark matter is non-relativistic and behaves as

ordinary matter. Other models used hot dark matter (HDM), meaning that it behaved

as an ultra-relativistic fluid such as radiation or neutrinos, or warm dark matter (WDM)

where it has an intermediate behaviour between an ultra-relativistic and non-relativistic

fluid. However, models that included CDM turned out to be closer to what had been

observed in simulations of large structure formation, CMB, etc (Peebles, 2020, Chapter

7.1).

The energy-momentum tensor must be conserved, so its divergence div T = 0 must be

zero. In General Relativity, the divergence of a tensor T µν is defined as:

div T µν = T µν
;ν = ∂νT

µν + Γµ
σνT

σν + Γν
σνT

µσ (8)

Making µ = 0, using equations 3 and 7, and assuming each component of the energy-

momentum tensor T
(α)
µν is conserved independently to the others, it is obtained obtain

T 0ν
;ν = ρ̇+ 3Hρ(ω + 1) = 0 (9)

Solving this differential equation a relation between the energy density ρ and the scale

factor a can be obtained:

ρ ∝ a−3(ω+1) (10)

Therefore, for the different state equations given previously it is found that the non-

relativistic energy density with ω = 0 will evolve as

ρ ∝ a−3 (11)

The relativistic energy density with ω = 1
3
as

ρ ∝ a−4 (12)
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and the dark energy with ω = −1 as

ρ ∝ 1 (13)

with the dark energy density being unaffected by the expansion of the Universe. These

relations show how the evolution of the scale factor a affects the energy densities in the

Universe in different ways according to their behaviour.

Introducing the energy-momentum tensor Tµν =
∑

α T
(α)
µν in equation 4, it can be seen

that there are only 2 independent equations, as the 3 relations obtained from the spatial

components of the tensors must be equivalent due to the isotropy. From the component

T00, the following is obtained:

R00 −
1

2
g00R = 8πG

∑
α

ρ(α)

ȧ2

a2
+

k

a2
=

8πG

3

∑
α

ρ(α)
(14)

This is the Friedmann equation and offers a relation between the temporal evolution of

the scale factor a and the energy densities. Using equations 3 and the relations 11, 12 and

13 the Friedmann equation can be rewritten as:

H2 =
8πG

3
ρ0Ma−3 +

8πG

3
ρ0Ra

−4 +
8πG

3
ρ0Λ − k

a2
(15)

where the different ρ0i correspond to the energy densities at the present day. Evaluating

this equation today (knowing that a(t0) = 1), defining the critical density ρc =
3H2

0

8πG
and

the density parameters Ωi =
ρi
ρc

and Ωk = − k
H2

0

ΩM + ΩR + ΩΛ + Ωk = 1 (16)

From this relation, it can be inferred how the energy density and the spatial curvature are

related. If ΩM +ΩR+ΩΛ = ρc, ΩK = 0 and the Universe will be flat. If ΩM +ΩR+ΩΛ > ρc,

ΩK < 0, k > 0 and the geometry of the universe is spherical and therefore closed. When

ΩM + ΩR + ΩΛ < ρc, the geometry will be hyperbolic and the Universe will be open. An

empty Universe (ΩM = ΩR = ΩΛ = 0) must have hyperbolic geometry.
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Finally, the Friedmann equation can be written as

H2

H2
0

= ΩMa−3 + ΩRa
−4 + ΩΛ + ΩKa

−2 (17)

which can be used to obtain the temporal evolution of the factor scale a for any energy

density of the relativistic fluids taken into account. This facilitates the study of certain

models, such as the Einstein-de Sitter Universe, which is a flat Universe that only contains

matter (ΩR = ΩΛ = ΩK = 0,ΩM = 1), the radiation Universe (ΩM = ΩΛ = ΩK = 0,ΩR =

1), etc. Data from Planck satellite (Planck Collab., Ade, et al., 2016) show that the

Universe’s densities parameters are:

ΩM = 0.315± 0.013

ΩR = (9.07± 0.24) · 10−5

ΩΛ = 0.685± 0.013

ΩK = 0.0007± 0.0019

(18)

These density parameters for the Universe show that it is mostly flat and dominated by

matter and dark energy. Radiation energy density is negligible during most part of the

history of the Universe, but, as ρR ∝ a−4 while ρM ∝ a−3, there was a time at high redshift

when both densities were equal and the contribution of radiation to the expansion was not

negligible. That equivalence occurred around zeq ∼ 3400 (Velten et al., 2014). Regarding

the flatness of space, although ΩK ≪ 1 and the approximation to a flat geometry is valid,

it shows a small spatial curvature with k < 0, which would generate a hyperbolic geometry

and an open space. But the absolute error ∆ΩK > ΩK , so a flat or spherical geometry

cannot be discarded.

From the spatial components of equation 4 only one independent relation can be

obtained:

Rii −
1

2
giiR = −8πGgii

∑
α

pα

2
ä

a
+

ȧ2

a2
+

k

a2
= −8πG

∑
α

pα

ä

a
= −4πG

3

∑
α

(1 + 3ω(α))ρ(α)

(19)
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Where the relations 11 to 13 and equation 14 have been used. This is the acceleration

equation, and gives information about how the different energy densities affects the rate

of expansion. For non-relativistic and ultra-relativistic fluids, with ω = 0 and ω = 1/3,

ä
a
< 0 and both fluids will slow the rate of expansion of the Universe. In an Universe with

only matter or radiation as contents, the expansion rate will increase at the beginning,

ȧ > 0, but as ä < 0, it will reach a point where it will start decreasing ȧ < 0, i.e. the

Universe is recollapsing. This is what is commonly known as Big Crunch. In an Universe

with only dark energy as content the situation would be different, as ω = −1. ä
a
> 0, so

the expansion rate will always grow. As the energy density of dark energy is not diluted

by the expansion, the growth will be accelerated. This situation is known as Big Rip.

The Friedmann (14) and acceleration (19) equations are valid in a homogeneous

Universe where the energy density is constant in every point of space. But the Universe is

homogeneous at large scales, not in smaller scales, as there are celestial bodies such as stars

and galaxies. The existence of these bodies is due to the presence of inhomogeneities in

the primordial density field. If there were no density inhomogeneities in the early Universe,

the gravitational pull on a single particle would be the same in every direction and no

larger structure would be formed as matter would not tend to accumulate at any point.

The nature of these inhomogeneities in the early Universe will be studied next.

2.3 Inhomogeneities in the early Universe. Structure formation

In 1965, radio astronomers Penzias andWilson discovered the cosmic microwave background

(CMB). They observed a microwave signal that appeared to be isotropic, unpolarized,

and not dependent on the moment of measurement which corresponded to a black body

radiation with a temperature of 3.5 K (Penzias et al., 1965). 20 years before this discovery,

Ralph Alpher, Robert Herman and George Gamow predicted the existence of a radiation

background as a result of the recombination of atomic nucleus and electrons approximately

300,000 years after the Big Bang. This event allowed the photons to travel freely as all

electric charges where confined in neutral atoms. This moment is called the recombination

era. Even though the recombination happened at a high temperature, the expansion of the

Universe decreased the photons’ energy. They estimated that today’s temperature of the

CMB today should be around 5 K. It was quickly found that the signal detected by Penzias

and Wilson corresponded to the CMB predicted by Alpher, Herman, and Gamow. More
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modern measuring of the CMB temperature made by the FIRAS (far Infrared Absolute

Spectrophotometer) aboard the WMAP satellite give a result of T0 = (2.72548±0.00057) K

(Fixsen, 2009). A fitting of the CMB spectrum measured by the COBE satellite to a black

body emission spectrum can be seen in Figure 2, showing a match between the collected

data and a black body spectrum.

Figure 2: Data from COBE satellite adjusting the intensity as a function of frequency to
a black body emission spectrum. Image from Fixsen (2009).

The fact that the radiation temperature is the same independently of the direction of

observation shows that all the Universe was in a highly homogeneous state, with all its

points having the same energy density. But if that was the case no structure could have

been formed, as It was stated previously, as the net gravitational force applied over the

matter particles would have been zero. In 1970, James Peebles and J.T Yu determined,

using perturbation theory to the FLRW metric, that the CMB must present temperature

anisotropies of the order of δT/T ≈ 1.5 · 10−4 with a resolution of 1 minute of arc to form

the galaxy clusters observed today (Peebles and Yu, 1970). The temperatures anisotropies

of the CMB are closely related to the matter density fluctuations.

In 1989, NASA launched the COBE satellite, which was destined to study the CMB

and search for the predicted anisotropies among other objectives. It proved the presence of

anisotropies in the CMB compatible with the estimates of Peebles and Yu and, therefore,

with the large-scale structure formation. Since the launch of COBE, there have been two

other major probes destined to study the CMB: WMAP, launched in 2001, and the most

recent was the Planck satellite, launched in 2009. Planck’s data build the most detailed
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image of the CMB anisotropies up to date, with a resolution of 10 minutes of arch.

Figure 3: Full-sky map of the temperature fluctuations in the CMB from Planck’s data.
Image from Planck Collab., Akrami, Y., et al. (2020).

Figure 4: Power spectrum of the primordial density field obtained from CMB data taken
from multiple sources. Image from Norman (2010).

The most detailed image of the temperature fluctuations of the CMB was taken by the

Planck satellite from ESA which was launched in 2009. Its results are shown in figure 3.

The temperature fluctuations of the CMB are related to the density fluctuations present

in the Universe at that moment. A higher temperature of the CMB indicates that that

region presented a density higher than the mean, while the colder regions correspond to

zones less dense than average. When the CMB fluctuations are observed, it is equivalent
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to observe a spherical cut of the 3D density field. Then, analysing the CMB fluctuations

and applying the principles of homogeneity and isometry, the primordial density field can

be obtained. Specifically, the Fourier transform of the primordial density field can be

obtained from the multipole expansion in spherical harmonics of the CMB temperature

fluctuations. The power spectrum of the primordial density field is shown in figure 4. This

power spectrum is usually simplified to a power law function of the form P (k) = A · k−ns

where the parameter ns defines the power law and A fixes the normalisation of the power

law. Observations from Planck show that ns = 0.965± 0.004 (Planck Collab., Aghanim,

et al., 2020). The power law normalization is usually given through the parameter σ8

which corresponds to the amplitude of the matter fluctuations inside a sphere of radius

8 Mpc h−1. The value of this parameter given by the Planck satellite is σ8 = 0.811± 0.006

(Planck Collab., Aghanim, et al., 2020).

2.3.1 Dark matter halos

The collapse dynamic of matter into halos can be simplified by taking into account only

the dark matter within the fluid. Dark matter only interacts with itself and other particles

through gravity, which simplifies the collapse dynamic. During the formation of halos it is

the dark matter the one to create the gravity well, within which ordinary matter will fall

to form a galaxy.

Under these circumstances, the formation of dark matter halos (DMH) will be studied.

As stated before, a halo is a self-gravitating structure that has decoupled from the expansion

of the Universe. As DM must be stable structures, they must follow the virial theorem

(Planelles et al., 2014)

⟨V ⟩ = −2⟨K⟩ (20)

where ⟨V ⟩ is the temporal mean of the gravitational potential energy of the particles and

⟨K⟩ is the temporal mean of their kinetic energies. Through the application of the virial

theorem, the virial mass Mvir and the virial radius rvir of a halo can be defined. rvir is

defined as the radius of a sphere within which the mean density is m times the background

density, while Mvir is defined as the mass inside the sphere of radius rvir (Roos, 2012).

The value chosen for m varies between studies as it depends on the approximations taken

to study the collapse of an overdensity. During this work, m = 360 will be used.

The interaction between halos will be through mergers, where two or more halos collide
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and form a single bigger halo. The interaction between a halo and the matter around it

is driven by accretion. In the intergalactic medium, there is matter that does not form

part of any halo and moves freely through space. If this matter is near a halo, it will fall

towards it due to the gravitational pull that the halo exerts over it. Mergers and accretion

are the two main interactions that drive the growth and formation of a large-scale structure

(Genel et al., 2010).

To study the evolution of halos through time, the halo mass function (HMF) will be

used. This function is defined as

ϕhalo(Mh) =
dn

d log(Mh)
(21)

where n is the number density, i.e. number of halos per volume. This function is expected

to decrease at high redshift, as there has not passed enough time for larger halos to form,

following the hierarchical structure formation model. An evolution through redshift of the

HMF obtained from simulations can be found in Behroozi, Loeb, et al. (2013)

Once a halo is formed in the early Universe, it creates a gravitational well around it

due to its mass distribution. Baryonic matter in the form of gas will be attracted towards

the center of the halo through accretion. Gas will start to pile up inside it and, eventually,

stars will be formed inside it, if enough gas is accreted, and a galaxy will appear. In

the early Universe, halos become the seeds of future galaxies, creating a region of space

where the gas can decouple from the expansion of the Universe and be able to collapse

into stars. As said before, dark matter does not interact with light or matter other than

gravitationally. Then, in order to study the properties of the halos, it will be necessary to

study the baryonic matter inside of them, i.e. the galaxy hosted inside the halo.

2.3.2 Luminosity-stellar mass relation

As said above, a halo is formed of dark and baryonic matter. The baryonic matter inside

the halo will condense inside of it to form a galaxy and will remain in form of dust, gas

and stars. All those contribute to the total mass of the galaxy, understood as the baryonic

matter component of the halo) and each one of them has to be observed differently..

One of the most direct ways to determine the stellar mass of a galaxy is by studying the

light that the galaxy emits. The light spectrum emitted from a galaxy will depend mainly

on the stars that form it. Stars can be grouped in stellar populations, which will contain
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stars of similar age. Different stellar populations will have different light spectra which

will depend on the population. Knowing the spectrum emitted by the chosen populations,

it will be possible to adjust a given light spectrum from a galaxy to the number of stars

in each population that are present in it. This method is called the Stellar population

synthesis (SPS) technique, and is widely used in extragalactic astrophysics. An example

of this technique can be found in Tamm et al. (2012), where the SPS method is used to

obtain the stellar mass distribution of the Andromeda galaxy.

We are interested in obtaining the galaxy stellar mass function (GSMF), which is

defined as the number density of galaxies with a given stellar mass. A detailed derivation

of the GSMF using the SPS technique over a large number of galaxies is given in Bell

et al. (2003). The GSMF can be fitted to a Schechter single function (McLeod et al.,

2021)(Bhatawdekar et al., 2019):

Φ(M) = Φ⋆ · ln 10 ·
[
10(M−M̄⋆

](1+α)

· exp
(
−10M−M̄⋆

)
(22)

where M = log(M⋆) with M⋆ being the galaxy stellar mass, M̄⋆ = log
(
M̄⋆

)
with M̄⋆

being the characteristic stellar mass in solar masses, α the low-mass slope of the GSMF.

3 Methodology

This study of the formation of large-structure in the Universe will rely on cosmological

simulations.

During this study, two different codes will be used. First, the simulations are run on

GIZMO and the results are analyzed by Rockstar to find halos and determine their masses.

The operation of these codes will be explained below.

3.1 Cosmological simulations. GIZMO

In this study, the GIZMO code will be used to run the simulations. More information

on its operation and capabilities can be found in Springel (2005) It is a multi-physics

simulation code able to calculate the evolution of a system under different conditions.

Parting of a basic N-body gravitational simulation, other effects such as hydrodynamical

behaviour (viscous fluids), radiative cooling, primordial black holes, etc. can be added.
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GIZMO code also allows to include different types of particles in a simulation, allowing to

study the evolution of multiple fluids with different behaviours on the same simulation.

In addition to it’s flexibility, GIZMO also stands out due to its massive parallelisation

which, together with its TreePM algorithm which will be explained later, allows to run

simulations faster and with a more efficient use of computing resources.

This study will focus on N-body simulations of dark matter, added as a collisionless

fluid whose particles only interact through gravity. A computer simulation can only work

with a finite amount of data, which restricts the simulation to a finite squared volume

of size L in comoving coordinates. It can be assumed that the finite box is surrounded

by other regions in space with similar properties due to the homogeneity of the Universe.

This can be modelled by imposing periodic boundary conditions at the limits of the box.

Under these circumstances, the Hamiltonian in comoving coordinates of a system with N

particles which interact between them through gravity and are bound to the expansion of

the Universe is:

H =
∑
i

p⃗ 2
i

2mia(t)2
+

1

2

∑
i

miϕ(x⃗i − x⃗j)

a(t)
(23)

where x⃗i are the comoving coordinates of the particles and p⃗ 2
i = a2mi

˙⃗xi are the canonical

momenta. ϕ(x⃗) is the gravitational potential given by:

∇2ϕ (x⃗) = 4πG

[
−
∑

i mi

L3
+
∑
i n⃗

miδ̃ (x⃗− n⃗L)

]
(24)

where n⃗ reefers to all triplets of integers n⃗ = (n1,n2,n3). Note here that ϕ(x⃗) is not the

common gravitational potential, as in the density distribution the term
∑

i mi

L3 is subtracted.

This term would correspond to the mean density of the box, so the solution to equation

24 is the peculiar gravitational potential

∇2ϕ = 4πG[ρ(x⃗)− ρ̄] (25)

In an analytic problem, the Dirac delta function would appear in equation 24, which

would lead to the gravitational potential of a point particle ϕ ∝ 1/r. But this potential

diverges quickly for small distances, causing very intense forces between two particles that

are close to each other and which can lead to computing errors of the accelerations. To

solve this problem (introduced purely by the limitations of modern computers) a minimal

17



distance of interaction ϵ, called softening length, is introduced. If two particles have a

distance between the smaller than ϵ, they will not interact gravitationally, eliminating the

problem of the divergence of the potential. As it is introduced because of computational,

and not physical, reasons, the dynamic at scales smaller than ϵ will not be valid. This is

important when the simulations are used to study the internal dynamics or density profile

of the halos. As this study will not be of that sort the only concern will be to choose ϵ to

be much smaller than the mean distances between halos in the simulations.

In equation 23 it can be seen that to calculate the Hamiltonian function of the system

it is necessary to calculate a double sum, resulting in a computational cost of N2 just to

calculate the total gravitational force that is applied over each particle. That is why more

complex algorithms are introduced to optimise this process. GIZMO uses an algorithm

called the TreePM method.

3.1.1 TreePM algorithm

The TreePM method consists in a mixture of two different algorithms: the tree and the

particle mesh algorithms. Let us discuss the first one.

The tree algorithm consists of a hierarchical multipole expansion of the box, generating

nodes that group the particles together. The partial force generated from a node can be

approximated as the force generated by a particle in the centre of the node with a mass

equal to all the particles contained inside it. This method can reduce the computational

cost as there is no need to calculate N(N − 1) partial forces to determine the total force

over all the particles, in exchange of obtaining only an approximation of the total forces.

GIZMO code uses an octopole expansion to build the tree. The box of size L (root

node) is divided into 8 daughter nodes, which are, in turn, divided again into 8 nodes. This

process is repeated until each node only contains a single particle. These are called leaf

nodes. To determine the force over a particle, GIZMO walks the tree. Beginning with the

root node, the partial force exerted by the node on a particle is calculated. Then, GIZMO

applies a condition to determine if the approximation of the partial force is accurate

enough. If it is, the process is terminated and GIZMO continues with other nodes. If

not, the node is opened and the same process will be applied to the daughter nodes of

the current cell. The accuracy of the approximation is determined using the following
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condition:
GM

r2

(
l

r

)
≤ α| a⃗ | (26)

where M is the sum of the masses of the particles inside the node, l is the size of the node

and r is the distances to the particle whose acceleration is being determined. a⃗ is the

total acceleration of the particle determined in the last time step and α is the tolerance

parameter. If the condition is fulfilled, the approximation is accurate enough and the

process continues in the other node.

If the box had non-periodic boundary conditions, the tree algorithm would be enough

to obtain an accurate approximation of the total forces, but that is not the case. The

periodicity introduces infinite images of the box located around it. As the number of

images is infinite, the tree algorithm cannot be used. This is where the particle mesh is

applied, which consists of, parting from a grid drawn in the box, calculating approximately

the Fourier transformation of the mass distribution and solve the equation 25 in Fourier

space

ϕ̂(k⃗) =
4π

k2
ρ̂(k⃗) (27)

where ϕ̂ and ρ̂ are the Fourier transforms of the peculiar gravitational potential and the

mass distribution respectively.

To apply the TreePM algorithm, the Fourier transformation of the peculiar gravitational

potential ϕk⃗ is divided into a short and long range components

ϕk⃗ = ϕshort
k⃗

+ ϕlong

k⃗
(28)

with rs being the distance where the potential is split and k⃗ = (kx,ky,kz). The long range

potential can be written as

ϕlong

k⃗
= ϕk⃗e

−k⃗ 2r2s (29)

where the short range component of the total potential is being truncated by the exponential

as high modes are being attenuated. If rs is chosen to be rs ≪ L, equation 24 can be

solved in real space for near particles, where ϕshort(x⃗) is

ϕshort (x⃗) = −G
∑
i

mi

ri
erfc

(
ri
2rs

)
(30)

19



where ri = min (|x⃗− r⃗i − n⃗L|) is defined as the minimal distance from the point x⃗ to any of

the images of the particle i and erfc(x) is the complementary error function (Kschischang,

2017). It can be seen that the potential of a single particle is the same as in the Newtonian

case, but modulated by a complementary error function (erfc(x)) that rapidly attenuates

the potential. A tree algorithm can be applied to approximate the gravitational force from

the neighbours of a particle as the number of particle and images taken into account is

again finite.

To obtain the long range potential ϕlong(x⃗), the Fourier transformation of the mass

distribution needs to be determined. To do that, a cell-in-cloud (CIC) assignment is

used. CIC calculates an approximation to the density field on a grid structure from a

particle distribution. Then, a Fourier transform of the total density distribution ρ̂(k⃗) can

be determined. Using equation 27, applying an inverse Fourier transform to ϕ̂ and using

equation 29, the long range component of the potential ϕlong(x⃗) can be obtained. Once the

potentials ϕshort and ϕlong are determined, the partial force generated by both potentials

can be calculated using the grid

∂ϕ

∂x

∣∣∣∣
ijk

≈ 1

∆x

(
2

3
[ϕi+1,j,k − ϕi−1,j,k]−

1

12
[ϕi+2,j,k − ϕi−2,j,k]

)
(31)

where ∆x = L/Nmesh. The partial force induced by ϕlong(x⃗) is only known in the nodes of

the grid so an interpolation between nodes is calculated to obtain an approximation of the

force introduced by the long range potential.

3.1.2 Time integration in GIZMO

Another important side of the GIZMO code is the time integration. To evolve the simula-

tions over time, it is necessary to implement an efficient procedure to compute the temporal

change of the canonical coordinates of the system. This is achieved through symplectic

transformations over the Hamiltonian. More information about these transformations can

be found in Quinn et al. (1997).

The usual Hamiltonian function of a N-body system can be divided into a kinetic and

potential component: H = Hkin +Hpot. The temporal evolution of each component can
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be determined using the following operators

Dt (∆t) :


p⃗i 7→ p⃗i

x⃗i 7→ x⃗i +
p⃗i
mi

∫ t+∆t

t

dt

a2

(32)

Kt (∆t) :


x⃗i 7→ x⃗i

p⃗i 7→ p⃗i + f⃗i

∫ t+∆t

t

dt

a

(33)

where f⃗i is the force applied over the particle i. The operator Dt(∆t) evolves the kinetic

part of the Hamiltonian changing the position but not the canonical momenta, while

Kt(∆t) evolves the potential part changing the momenta but not the positions. The

first is called the drift operator while the second is the kick operator. Both operators

evolve the corresponding coordinates from their value in time t to t+∆t, where ∆t is the

timestep. These operators are symplectic operators as they are the temporal evolution of

the coordinates under each component of the Hamiltonian separately. An approximation

of the temporal evolution under the original Hamiltonian H can be written in terms of

these two operators:

Ũ(∆t) = K

(
∆t

2

)
D (∆t)K

(
∆t

2

)
(34)

which is the kick-drift-kick (KDK) leapfrog operator. Ũ(∆t) is not the exact temporal

evolution of the original Hamiltonian H, but it is a symplectic transformation of a modified

Hamiltonian H̃. H̃ and H can be related by H̃ = H +Herr, where:

Herr =
∆t

12

{
{Hkin,Hpot},Hkin +

1

2
Hpot

}
+O(∆t4) (35)

where {·,·} denotes a Poisson bracket. If Herr ≪ H, the temporal evolution of H and H̃

will be approximately the same, and all the conserved magnitudes in H, like the energy or

the angular momentum, will also be approximately conserved in H̃. The conservation of

these magnitudes will not be exact. For example, the error Hamiltonian Herr will change

between timesteps and this will introduce a time dependency in H̃. Although H is time

independent and the energy is conserved under it, it will not be conserved under H̃ due to

the time dependency introduced by Herr. As ∆t is chosen for Herr ≪ H and the temporal

evolution of H̃ is similar to that of H, the value of the energy under H̃ will oscillate around
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the value of the energy in H.

An alternate form of the approximate temporal evolution operator can be obtained as

Ũ(∆t) = D

(
∆t

2

)
K (∆t)D

(
∆t

2

)
(36)

called the drift-kick-drift (DKD) leapfrog operator. It may seem equivalent to the KDK

operator, but its performance in cosmological simulations is lower (Springel, 2005).

The timestep ∆t plays a fundamental role in the performance of a cosmological

simulation. For a particle that is near a high density region, the acceleration suffered by it

will be intense, and for an accurate computation of its trajectory a low timestep will be

needed. On the other hand, when a particle is far away from any high density region, its

acceleration will not be as intense as before, so the timestep can be larger in order to save

computational efforts. A similar argument can be built about the short and long range

gravitational forces. Short range forces tend to be more intense and rapidly changing than

long range ones, so it is natural to think that short range forces need to be computed

more often than long range forces. These two arguments lead us to introduce a variable

and adaptive timestep for each particle and type of force.

In a cosmological simulation, the gravitational potential can be separated into two

components as shown in equation 28. This leads to the separation of the potential part of

the Hamiltonian Hpol = Hsr +Hlr. These two new components induces a separation of the

kick leapfrog operator into a long-range kick Klr and a short-range kick Ksr. With these

new operators and having into account the previous arguments, the temporal evolution

operator of the simulation can be written as

Ũ(∆t) = Klr

(
∆t

2

)[
Ksr

(
∆t

2m

)
D

(
∆t

m

)
Ksr

(
∆t

2m

)]m
Klr

(
∆t

2

)
(37)

where ∆t is a global timestep and m is a positive integer. It can be seen that all

possibles timesteps are divisions of the global timestep by powers of 2. That is because a

synchronization between particles needs to be maintained. If not, it would add additional

temporal asymmetries and it would result in in a worsening of the energy conservation

and the result’s accuracy.

The time evolution operator in equation 37 is efficient in terms of computational cost.

Long range forces need more computational effort than short range ones. The reason is
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that to determine long range forces all the particles and its images need to be taken into

account and complex mathematical operations take place, while determining short range

forces only need to take into account masses in a small region around the particle and is

“simpler” mathematically speaking. In the temporal evolution operator, long range forces

are only evaluated twice for every particle, while short range ones are evaluated 2m times.

At the beginning of each iteration, GIZMO applies an acceleration criterion to select

the proper timestep for each particle. This is done by assigning the first integer value of

m that fulfills
∆t

2m
≤

√
ηϵ

| a⃗ |
(38)

where η is a tolerance parameter, ϵ has dimensions of length that corresponds to the

softening length and a⃗ is the acceleration of the particle in the previous iteration. The

parameter ∆t is the maximum timestep and its value is chosen by the user. More

information on the timestep criteria used in GIZMO can be found in Grudic et al. (2020).

The simulations that will be performed at this study will only contain dark matter

particles that will emulate a collisionless dark matter fluid. Even though additional physics

can be added to the simulations, in this work they will be limited to pure gravitational

N-body simulations. The output of a GIZMO simulation consists of files that contain

the coordinates and velocities of each individual particle inside the simulation at a given

redshift. Each snapshot also includes critical information about the simulation, value of

the cosmological parameters, particle masses, etc.

3.2 Simulation results analysis. Rockstar

Once the simulation results from GIZMO are obtained, they must be analysed as the raw

data of the particles positions has no use in this study. The main goal is to study the

formation of dark matter halos and their evolution through time, so the interest will be

the halos’ position and masses. Following the definition of halos given in the theoretical

framework, halos will appear as density peaks over a much lower density distribution.

Then, obtaining a position of an halo becomes a problem of identifying density peaks.

To obtain density peaks from particle positions, a friend-of-friends (FOF) algorithm

is commonly used. In a FOF algorithm, a linking length is fixed. Two particles are linked

(are friends) if the distance between them is less than the linking length. To this another
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rule is added: if particle A is linked to particle B, and B is linked to particle C too, then

A and C are also linked. Expanding this to a group of particles, groups of linked particles

will be obtained. If the linking length of the particles is adjusted correctly, these groups

will correspond to density peaks in the distribution. The linking length is typically chosen

to be a fraction of the mean density between particles

lmean = α
3

√
V

N
, α < 1 (39)

The, fixing the linking length to a value corresponds to finding density peaks of a certain

overdensity value. It is important to note that FOF algorithms will ignore groups with

less than a established threshold of for halo particles. This is usually introduced to avoid

detecting background noise as a linked group.

The simplicity of the FOF algorithm facilitates its implementation in computer codes,

but it is easily seen that it is not enough for a comprehensive study of halos. Its major

flaw is the impossibility of studying the internal structure of a halo. For example, the

merging of two halos is not an instant process as, during a large part of that process, both

halos are well differentiated structures. But, as the density peaks corresponding to both

halos are close, the FOF algorithm will count them as one single halo. Another issue is

the subhalos, which are halos inside a bigger host. They can be observed in the density

distribution as a smaller peak inside a larger one. Again, as FOF algorithm cannot study

their internal structure, subhalo masses will be added to the mass of the host halo. This

limitation directly affects the results of this study as it artificially modifies the statistic of

low mass halos due to a part of them not being accounted for. That is the reason why a

more complex code will be used to study, but based upon the FOF algorithm, to analyse

the simulation results. This code is Rockstar. A complete description of the code can be

found in Behroozi, Wechsler, et al. (2012).

Rockstar is an algorithm based on hierarchical FOF groups with an adaptive linking

length. Rockstar uses a FOF algorithm in normal space, but also introduces a 6D FOF

algorithm in phase space to find overdensities located inside a bigger density peak. By

reducing and adapting the phase-space linking length, Rockstar is able to study completely

the totality of the overdensity. A shallow description of the code will be shown now.

The first step Rockstar code performs is a FOF algorithm over the particle positions.

The linking length used in this phase is defined by the equation 39 with predetermined
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value of α = 0.28, but it can be modified by the user. The results of this FOF are mainly

used for parallelization as the analysis of each individual group can be done by different

processors.

In the next stage, a 6D FOF algorithm is run for each FOF group. The phase space is

constructed by vectors of the form
(

x⃗i

σx
, v⃗i
σv

)
where x⃗i and v⃗i are the position and velocity

of the particle i and σx and σv are the position and velocity dispersions of the group to

which the particle belongs. The distance between two given particles pi and pj is defined

as

d(pi,pj) =

√
|x⃗i − x⃗j|2

σ2
x

+
|v⃗i − v⃗j|2

σ2
v

(40)

During this phase the linking length is selected following a different criterion: its value

is selected so that a fraction f of all the particles in the group is linked with another

particle. To achieve that, the 6D distance between every particle and its closest neighbour

is calculated and llink is chosen accordingly. In large groups with more than 10,000 particles,

in order not to waste computational effort in determining the linking length, the distances

to the closest neighbour are calculated only for 10,000 random particles of the group.

Rockstar uses the fraction f = 0.7 with a minimum particle threshold of 20. When the 6D

FOF algorithm is terminated, Rockstar obtains a 6D FOF group that it’s smaller than

the original 3D group. This 6D group not only has particles that are relatively close, but

also that move similarly. This algorithm is repeated with the new 6D FOF group. The

linking length is re-evaluated and adapted to the new group following the same criterion.

This process is repeated until the final 6D FOF group contains only 10 particles.

Each run of the 6D FOF algorithm creates a hierarchy between the different subgroups:

the deepest levels correspond to the last runs of the 6D FOF algorithm with the closest

subgroups to the maximum of the peak, while the shallower levels are the first runs of the

algorithm.

To reconstruct an halo from the 6D FOF subgroups, a halo seed is generated at the

deepest levels of the hierarchy. As the deepest level corresponds to the closest particles to

the maximum of the peak, noise can duplicate a seed halo, which could lead to identification

of a duplicate as a substructure when it is not the case. To avoid this, two halo seed will

be merged if √
|x⃗1 − x⃗2|2

µ2
x

+
|v⃗1 − v⃗2|2

µ2
v

< 10
√
2 (41)
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where µi = σi/
√
n. Once all the halo seeds are determined, Rockstar assigns each particle

to a halo seed. Starting from the lower subgroups, each particle is assigned to the closest

seed in the phase space, defining the distance between a seed and a particle as

d(h,p) =

√
|x⃗h − x⃗p|2
r2dyn,vir

+
|v⃗h − v⃗p|2

σ2
v

(42)

rdyn,vir =
vmax√
4
3
πGρvir

(43)

where vmax is the current maximum circular velocity and ρvir = 360ρ0m with ρ0m the

simulation background density at z = 0 (Bryan et al., 1998). Note that here the virial

radius of the halo is used instead of σx to ensure that particles assigned to subhalos are

close to the main density peak.

Once all halos are reconstructed, Rockstar starts to determine the substructure. This

is not a trivial problem as the definition of a host halo and satellite and sub halo can be

ambiguous. Given a halo, Rockstar calculates the distance in phase space from it to the

more massive halos inside its FOF group. The halo is then assigned to be a satellite halo

to the closest more massive halo in phase space.

Before determining the properties of the halo such as its mass or maximum radial

velocity, Rockstar runs an algorithm to eliminate unbound particles from the halo. More

information about this algorithm can be found in Behroozi, Loeb, et al. (2013), but this is

of little interest to this study as, due to the high performance of the 6D FOF algorithm

around 98% of particles assigned to a halo are found to be bounded.

Once the halos have been identified and their substructure reconstructed, Rockstar

proceeds to calculate the halo properties such as its mass, velocity, maximum rotation

velocity, angular momentum, etc. During this study, the property of interests will be halo

masses. To determine the mass, the code calculates spherical overdensities using all of

the particles contained in the halo. This means that a halo mass will include all the mass

assigned to its substructure. Thanks to equation 43 it is well known where a subhalo ends

and the host halo begins using its virial radius, so subhalo particles can be adequately

isolated from the host halo and the same procedure to determine masses can be used with

subhalos. A more detailed description of the approximations done by Rockstar concerning

the virial theorem can be found in Bryan et al. (1998).
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When Rockstar code is fully terminated, an output is provided. Inside it is contained

a list with all found halos and subhalos and their properties (positions, velocities, angular

momentum, masses, etc.). All halos are identified with an index number, which is useful,

as Rockstar can build merger trees where the halos are identified and can be followed

through different snapshots of the simulation. The merger trees will not be used in this

study.

3.3 Obtaining the HMF and stellar-to-halo mass fraction

All simulations will be done under the Λ-CDM cosmology, with the density parameters

Ωm = 0.285 and ΩΛ = 0.715, with h = 0.695. These simulations will consist in a box with

size L filled with N3 particles. In order to obtain the HMF over a wide range of masses,

different box sizes and number of particles will be used. If the lengths and number of

particles are chosen correctly, the obtained HMF from a simulation will overlap with other

in a certain range of masses, thus enlarging the region where the HMF is obtained. The

parameters of each simulation are shown in table 1

L ( Mpc h−1) N Nbin

10 1024 10

100
256 20
2048 35

1600 2048 60

Table 1: Box size and number of particles for all simulations used. The number of bins
Nbin used to construct the HMF from the results is also included.

The simulation with L = 100 Mpc h−1, N = 256 will only be used at z = 0 to

obtain the resolution effects, which will be explained later. The other simulations will be

evaluated at redshifts z = 0,3,6,9 to study the temporal evolution. The simulation with

L = 100 Mpc h−1, N = 2048 will also be evaluated at z = 10. From the simulation results,

the density distribution of halos as a function of their mass, ϕhalo(M), will be obtained.

In order to do so, a histogram of the logarithm of halo masses is done and each bin is

divided by L3∆ log (Mhalo) where L is the box size for each simulation and ∆ log (Mhalo)

is the size of each bin. If the bins are sufficiently small

∆N/L3

∆ log (Mhalo)
≈ dn

d log (Mhalo)
= ϕhalo(Mhalo) (44)
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But if bin size is too small, poor statistic effects will accentuate at large masses where the

number of halos is small. The number of bins Nbin has been chosen for each simulation

following these two indications to reduce the effects of poor statistic. The chosen Nbin for

each simulation is shown in table 1.

All simulations will present a minimum mass resolution fixed by the volume of the

box, the number of particles and the cosmological model used. Under a certain mass, the

simulations are not able to correctly simulate the halo dynamics due to the approximations

taken during the computation of the gravitational forces. Although each simulation has a

different minimum mass resolution, that mass corresponds to a fixed number of particles,

and a global minimum particle resolution can be found. To determine it, simulations

with the same box size but different number of particles will be compared. Changing

the number of particles will change the minimum mass resolution, while maintaining

the size of the box will assure that both simulations will overlap. The simulations with

L = 100 Mpc h−1, N = 2048 and L = 100 Mpc h−1, N = 256 will be used. The percentage

difference between both simulations will be calculated as:

diff(%) =
|log(ϕ2048)− log(ϕ256)|

log(ϕ2048)
· 100 (45)

Establishing a tolerance tol ≤ 1, the mass at which the divergence starts can be

determined as diff(Mres) > 100·tol, and the minimum particle resolution can be determined

as

Nres =
Mres

mp

(46)

where mp is particle mass in the simulation.

To compare the simulation results with the observational data, the number density of

halos is transformed into into the stellar-to-halo mass fraction as a function of Mhalo. This

is done by taking the GSMF ϕgal(M⋆) fittings from McLeod et al. (2021) and Bhatawdekar

et al. (2019) at the corresponding redshifts and making an abundance matching. This

method consists in assuming that most massive halos host the most massive galaxies,

which is done analytically by assuming the equivalence between both number density

distributions

ϕhalo(Mhalo) = ϕgal(M⋆) (47)
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At very high redshift, fittings from the JWST data from Bouwens et al. (2023) will

be used. This study doe not give a fitting of the GSMF, but rather of the luminosity

function. The LF represents the number density of galaxies distribution as a function

of their absolute magnitude in a certain wavelength band, in the case of Bouwens et al.

(2023) the UV band is chosen. The LF is then defined as

ϕgal(MUV ) =
dn

dMUV

(48)

where MUV is the absolute magnitude in the UV band. A relation between M⋆ and MUV

will be used in order to obtain the GSMF from the LF. In Stefanon et al. (2021) a linear

fitting of the M⋆-MUV is given in the form

log(M⋆) = a · MUV + b (49)

where a and b are the fitting parameters. Using this linear relationship between M⋆ and

MUV , ϕgal/M⋆ can be obtained from ϕgal(MUV ) as:

ϕgal(M⋆) =
1

a2
ϕgal(MUV ) (50)

where a is the slope of the linear fitting.

4 Results

In this section, the HMF and stellar-to-halo mass at different redshifts obtained from the

different simulations are shown. The first will be calculated using equation 44 while the

second will be obtained from the HMF and the GSMF through an abundance matching

as explained in section 3. But, before discussing the physics in the results, a previous

analysis is needed in order to identify the effects produced by the simulation resolution

and own limitations.

4.1 Halo mass functions and their evolution through redshift

In figure 5 the halo mass functions obtained from all available simulations are shown at

z = 0. It can be seen that, for each simulation, the HMF is obtained in a certain range

which depends on the cosmological model used, the size of the box and the number of
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Figure 5: All simulation results at z = 0. The convergence between the simulations
is broken by the limited resolution of the simulations. This effect will be removed in
further analysis. The gap between L = 100 Mpc h−1 and L = 10 Mpc h−1 simulations is
introduced by the too small size of the simulation with L = 10 Mpc h−1.

particles. It is important to note how the error bands grow with the mass within the range

of each simulation as the number of halos decrease.

Comparing the curves of the two simulations with L = 100 Mpc h−1 it is observed that

both have the same maximum mass but the simulation with a larger number of particles,

N = 2048, reaches lower values of Mhalo. On the other hand, increasing the size of the

box L while maintaining constant the number of particles will increase both minimum

and maximum masses, as seen comparing the simulations with L = 100 Mpc h−1 and

L = 1600 Mpc h−1 both with N = 2048. This is caused because the particle mass mp

increases, allowing the formation of larger halos, but increasing the mass of the smallest

halos that can be resolved. Understanding this behaviour is important to determine the

best parameters to observe the desired halo mass range and not waste computational

effort.

The different curves in figure 5 show an overlap between different simulations over a

wide range of masses. The simulation with L = 10 Mpc h−1 shows the worst agreement

towards the rest. This may be due to the box being too small to offer a good approximation

to a real portion of space. Modes larger than 10 Mpc h−1 of the primordial mass density

distribution power spectrum cannot fit inside the box. so the evolution of the matter
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fluctuations will be driven by the modes smaller than 10 Mpc h−1. At high and very high

redshift the behaviour of the modes is linear and the absence of larger modes will not

affect the evolution of the smaller ones. But, at low redshift, the nonlinear behaviour will

arise and the absence of larger modes will cause the divergence between L = 10 Mpc h−1

with the rest of simulations. Its convergence will improve at high redshifts, when smaller

modes are still linear without being affected by the larger modes.

In figure 5, the HMF from each simulation overlaps with the others until one of them

reaches a maximum and suddenly drops at a different mass for each simulation. The

point at which the drop occurs is the minimum mass resolution of the simulation. These

drops are introduced by the limitations of the simulations to describe halos with a low

number of particles. This limitations are introduced by the approximations made during

the calculation of the force, such as the softening length of the gravitational potential.

These drops will be eliminated in order to keep the mass ranges where the simulations

are physically accurate. To characterise this divergences between the simulations, two

simulations with the same L but different number of particles N will be used to ensure

that both overlap over a large range of masses. The simulations used will both have

L = 100 Mpc h−1, one will have N = 2048 and the other N = 256. The percentage

difference between both simulations is calculated using equation 45. The minimum mass

resolution of the simulation with N = 256 will be the mass at which diff(%) > tol · 100,

where tol is an arbitrary tolerance parameter.

As shown in figure 6, the percentage difference between the HMF from both simulations

is relatively low at medium masses and increases at low masses. The parameter tol is

chosen such that it is not so large that the divergence is still significant, but not so small

as to cut off too much of the range where the HMF is physically acceptable. The tolerance

was chosen to be tol = 0.35, obtaining a minimum particle resolution of Nres = 52.9. Even

though this resolution has been obtained for one simulation, as the other simulations have

the same parameters and use the same cosmological model, they will have approximately

the same minimum particle resolution. It should also be noted that this result cannot be

taken as exact, but as an estimation. To avoid having problems with resolution in larger

simulations, the minimum particle resolution for all simulations will be fixed at Nres = 70

The percentage difference between simulations also increases at large masses, as seen in

figure 6. The reason is that all simulations are found to have a low number of large halos,
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Figure 6: Closer comparison to the halo mass function obtained from simulations with
N = 256 and N = 2048, both with L = 100 Mpc h−1. For these results, the percentage
difference is represented below. The vertical line marks the first point at which the
percentage difference is bigger than tol · 100. An increase in the percentage difference can
be seen at high masses due to the effects of low statistic.

resulting in a low statistic that will increase statistical errors, reducing the convergence

between simulations. This behaviour is expected in the simulations as they are run in a

finite box and an infinite number of halos cannot be formed.

In figure 7, it is shown that following the convergence criterion the range within each

simulation overlaps with the rest has been obtained. Through this method, the halos

below the minimum particle resolution have been removed, obtaining a good agreement

between the simulations.

The simulation with L = 10 Mpc h−1 still presents the gap between it and the rest

of simulations. As explained above, the gap is caused by modes larger than 10 Mpc h−1

not fitting inside the box and affecting the evolution of smaller modes. To eliminate this

gap, a correction was added to the HMF with the form ϕ∗
L=10 = ϕL=10 + ϕerr, where ϕerr

is chosen to minimise the percentage difference, calculated using equation 45, between

L = 10 Mpc h−1 and L = 100 Mpc h−1. The result can be seen in figure 8 at z = 0. At

redshifts z = 3, 6, 9 the same procedure has been done, obtaining similar results.

Once all the HMF have been obtained from all the simulations and redshift, the

evolution through redshift of each individual simulation will be studied next.

Beginning with the simulation with L = 1600 Mpc h−1, N = 2048, which reaches the
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Figure 7: All simulations results at z = 0 deleting the masses under the minimum particle
resolution Nres = 70.

highest masses, approximately 1016 M⊙, its evolution is shown in figure 9. At redshift

z = 0 and z = 3 the HMF obtained from this simulation presented good statistic, allowing

the statistical errors to be small over a large part of the mass interval. But, at z = 6 the

statistic is not well enough and the convergence worsens. At z = 9 no halos containing

more than 70 particles were detected in the simulation and the HMF could not be obtained.

This shows that, even though the simulation offered a good statistic of massive halos

at z = 0 due to its large size and the high number of particles, its minimum particle

resolution is too high to be able to accurately represent the halos that existed at z = 9.

This is again in accordance with the hierarchical structure formation, as it shows that no

massive halo was present at high redshift, and once they formed, they must have done it

from smaller structures. Due to the poor statistic at z = 6, the HMF obtained from that

simulation presented wide error bars throughout its range so it was decided not to use

that simulation at z > 3.

Next,the evolution of the HMF At the lowest masses available will be studied using

the simulation with L = 10 Mpc h−1, N = 1024. In figure 10 the HMF obtained from

the simulation with L = 10 Mpc h−1, N = 1024 is shown at redshifts z = 0, 3, 6, 9. The

number of halos with masses less than 1010 M⊙ continuously grows from redshift 9 to 3.

But it is seen that the HMF at z = 0 has a lower slope, intersecting the HMF at z = 3

and z = 6. This would mean that the number density of the halos below 1010 M⊙ has
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Figure 8: All simulations results at z = 0 with a correction of the form ϕ10′ = ϕ10 + δ to
the simulation with L = 10 Mpc h−1 in order to reduce the gap. The correction δ is chosen
to minimize the total percentage difference with the simulation with L = 100 Mpc h−1.

decreased. Over 1010 M⊙, the HMF at z = 0 is larger than the HMF at z = 3, 6, 9, so

apparently the number density of halos masses larger than 1010 M⊙ keeps growing.

The decrease in the number of halos below 1010 M⊙ could be a result of numerical

limitations of the simulations. As was said before, the HMF from L = 10 Mpc h−1, N =

1024 gave a higher halo density than the rest of the simulations due to its small size.

This bigger number of halos could introduce a new dynamical behaviour between halos

which would result in a decrease of the number of halos below 1010 M⊙, which would

not be shown in other simulations if it was only introduced by the small size of the box.

To determine if this is a numerical or physical problem, the HMF obtained from the

simulation with L = 100 Mpc h−1, N = 2048 will be analysed, as it is capable of holding

bigger modes of the power spectrum of the primordial density distribution. The HMF

obtained from this simulation at redshift z = 0, 3, 6, 9 is represented in figure 11, where

an intersection between the HMF at z = 0 and z = 3. The fact that this evolution still

appears in this simulation and again around 108.5 M⊙ reduces the possibilities that this is

caused by the limitations of the simulation with L = 10 Mpc h−1, N = 1024.

As said in the theoretical framework, dark matter halos have two ways of growing:

accretion and merging. The accretion, as is the absorption of free particles from the

intergalactic medium, will favour the growth of halos at all masses. On the other hand,
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Figure 9: HMF obtained from the simulation with L = 1600 Mpc h−1, N = 2048 at
redshift z = 0, 3, 6, 9. It is shown how the convergence towards the HMF is lost at high
redshift due to the low number of halos presents in the simulation. Redshift z = 9 could
not be shown as no halos where found.

mergers are the fastest way for halos to grow. These two process are the two main forces

that drive the HMF evolution. At redshifts z = 9 − 3, accretion and mergers were the

principal mechanism for halos to grow. While mergers led to the rapid growth of halos,

accretion allowed for smaller halos to also grow and replace the ones involved in the

mergers, allowing for the HMF to increase at all masses. As time passes, the intergalactic

medium becomes less dense, diminishing the intensity of accretion, which stopped the

replacement of the halos that were involved in mergers. The frequency of mergers also

decreased, as the mean distances between halos grew, but were frequent enough to allow

the formation of halos above 1010 M⊙. As those smaller halos involved in the mergers

were not replaced by other halos as the accretion process was negligible, it resulted in a

decrease of the number of halos below 1010 M⊙.

Once the evolution through redshift of all available simulations has been studied, the

global evolution of the HMF within the entire mass range obtained from simulations will

be studied. In figure 12, the HMF from all the available simulations is shown for different

redshifts. In general, the mass of the largest halo in the simulation decreases as the

redshift increases. This means that, at higher redshifts, the halos in the simulations are

getting smaller and the mass of the biggest halo found decreases. This indicates that at
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Figure 10: Halo mass function obtained from the simulation with L = 10 Mpc h−1, N =
1024 at redshifts z = 0, 3, 6, 9. This behaviour could be caused by the bad divergence of
this simulation.

high redshift there were only low mass halos which, over time, grew through mergers and

accretion to form the more massive halos that are found at z = 0. This is in agreement

with the hierarchical structure formation, which states that smaller halos formed first and

then more massive halos could form from smaller structures.

4.2 Stellar-to-halo mass fraction at low and high redshift

Next, the results for the stellar-to-halo mass fractions will be shown and analysed. In order

to obtain it, I need to relate the obtained HMF with the observational data through an

abundance matching as explained in section 3. Firstly, the stellar-to-halo mass fraction will

be obtained at low and high redshift using data from the HST. The results are shown in

figure 13 where the stellar-to-halo mass fraction as a function of Mhalo appears at redshifts

z = 0. This figure shows that the relation between a halo mass and the mass of the galaxy

it hosts is clearly non-linear At z = 0, the stellar-to-halo mass fraction starts increasing

at masses between 107.5 M⊙ and 1012 M⊙. It then reaches a maximum between 1012 M⊙

and 1013 M⊙ and falls at masses above 1013 M⊙. the maximum values of the fraction is

approximately M⋆/Mhalo ≈ 10−2 which means that, at most, the stellar mass of a galaxy

represents one-hundredth of the mass of the halo where it is hosted.

If the total baryonic mass of the galaxy was known, there would be a direct observation
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Figure 11: HMF obtained from the simulation with L = 100 Mpc h−1, N = 2048 at
redshifts z = 0, 3, 6, 9. At lo masses the intersection between the HMF at z = 0 an z = 3
is still present, noting that this can’t be a behaviour introduced by the simulation with
L = 10 Mpc h−1. This intersection notes a decreasing of the number of low mass halos
introduced by a drop in the accretion rate. at z = 0 HMF evolution is driven by mergers.

of how efficient the star formation is in that galaxy, as it would known how much baryonic

matter has been turned into stars. It can be assumed that the baryonic-to-dark matter

ratio inside a halo is equal to the universal baryonic mass fraction fb = Ωb/Ωm, where Ωb

is the density parameter of baryonic matter. For the cosmology considered in this work

the baryonic fraction has a value of fb = 0.156, in agreement with the observations (Planck

Collab., Aghanim, et al., 2020).

Interpreting the figure 13 in terms of stellar formation efficiencies it is direct to see that

stellar formation is inefficient at high and low halo masses, while it presents a maximum

efficiency between Mhalo ∼ 1012 M⊙ and Mhalo ∼ 1013 M⊙. According to Wechsler et al.

(2018), at low halo masses, the massive stars that are formed during a starburst are hot

enough to heat the gas inside the halo and eject it, preventing the formation of new stars.

At high masses, the supermassive black holes located inside the galaxy create an active

galactic nucleus (AGN) which heats the gas inside the halo preventing the formation of

stars. . At intermediate masses both phenomena decrease their intensities enough to allow

the star formation, resulting in a peak of efficiency. This explanation for the behaviour of

the stellar formation efficiency with halo masses is a fundamental part of the current model

for galaxy formation and evolution and the results follow this behaviour accurately. The
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Figure 12: Halo mass function obtained from all simulations at z = 0, 3, 6, 9. The simulation
with L = 1600 Mpc h−1 was excluded due to the low number of halos at high redshift.
The evolution of the HMF shows how the number of massive halos reduces with redshift,
showing agreement with a hierarchical structure formation model.

maximum of the stellar-to-halo mass ratio is found to be 6% of the baryonic mass fraction.

This means that stellar formation is a inefficient process as most part of the baryonic mass

inside a galaxy remains in the form of gas. A similar work from Behroozi, Conroy, et al.

(2010) showed that the maximum stellar formation efficiency is between 10% and 20%,

obtaining a bigger value than mine. A possible cause is the use of different cosmological

models. Inn the study of Behroozi, Conroy, et al. (2010) the values used for Ωm and σ8

are slightly lower than the values used during this work. Choosing higher values for those

parameters accelerates the formation of large scale structure as there is more available

matter and the fluctuations are more intense. This will result in a higher number density

for halos in the simulations than in Behroozi, Wechsler, et al. (2012). Nevertheless, using

the error bands from this study, the results from Behroozi, Conroy, et al. (2010) are at a

distance of 2σ from these results. Using the error bands from their study, these results

are also at 2σ from theirs. This distance is not statistically significant as, for example, to

determine that a discovery has been made it is needed a distance of 5σ.

The stellar-to-halo mass fraction as a function of Mhalo at redshifts z = 0, 3, 6, 9 is

shown in figure 14. It can be seen that the end of the mass interval approximately

corresponds with the maximum of the stellar formation efficiency, so there is not any
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Figure 13: M⋆/Mhalo fraction as a function of Mhalo obtained from all available simulations
at redshifts z = 0, 3, 6, 9. In this figure is shown how the stellar formation efficiency drops
at low and high masses due to the gas ejection caused by massive stars at low masses
and by the heating of the gas by the AGN at high masses. The peak is reached between
Mhalo ∼ 1012 M⊙ and Mhalo ∼ 1013 M⊙. The maximum efficiency is approximately the
10% of the baryon fraction.

Figure 14: Stellar-to-halo mass as a function of Mhalo obtained from all simulations at
redshifts z = 0, 3, 6, 9. The stellar formation efficiency grows at low masses due to the gas
accretion that is able to replace the gas the is ejected from the smaller halos.
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information of its fall once passed the maximum.

Comparing the stellar-to-halo mass fraction as a function of Mhalo at different redshifts,

it is observed that the stellar-to-halo mass fraction increases with redshift at low masses.

As explained before, at low mass halos, once the first stars are formed, gas is expelled

of the halo due to the radiation emitted from massive stars. Thanks to the accretion

process the expelled gas can be replenished by cold gas from the intergalactic medium

allowing that the halo does not expels all the gas. But the accretion rate decreases with

redshift (Tillson et al., 2011), leading to a progressive reduction of the available gas for

star formation. This, in addition to the fact that stellar formation is an inefficient process,

results in a decrease of the stellar mass at low redshift.

The position of the maximum stellar-to-halo mass fraction also varies with the redshift.

Starting at z = 0, at z = 3 it moves to higher masses reaching 1013 M⊙. At z = 6

and z = 9 the maximum drifts to ever lower masses, reaching 1012 M⊙ and 1011 M⊙

respectively. A similar behaviour with redshift has been observed by Behroozi, Loeb,

et al. (2013) where more sophisticated simulations and analysis are used. The position of

the maximum is related to the star formation rate inside the galaxies, as at high rates

of formation, the factors that blocked star formation are not capable of slowing down

the collapse of gas to form a star, resulting in an increase of the mass at which the

stellar-to-halo mass fraction peak appears. The star formation rate reached a maximum

at redshift z = 1.9 (Madau et al., 2014) and has been decreasing ever since until today.

This is consistent with the simulation results as the peak is located at a higher mass at

z = 3 than at z = 0, 6 and 9. It is to be expected that the peak reaches a maximum mass

around z = 2 but, the behaviour of the efficiency at that redshift will not be studied.

The maximum stellar-to-halo mass fraction appears to have small variations, with the

redshift always around 10% of the baryonic mass fraction. This light variation shows

that star formation is a very inefficient process at all redshifts, leaving the majority of

the baryons in the form of gas at a given moment. Simulations of Behroozi, Loeb, et al.

(2013) showed approximately the same results, with the maximum efficiency at all redshifts

drifting around 10% of the baryonic mass fraction.

In figure 14 a strange behaviour of the stellar-to-halo mass fraction appears at redshift

z = 9 and below 1010 M⊙. It can be seen that there is a change of slope and the fraction

a becomes approximately flat around 108.5 M⊙. This behaviour is mostly introduced by
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the simulation with L = 10 Mpc h−1, N = 1024 and has not been observed in any other

study, but those simulations did not reach masses that low. This could be caused by

the size of the box used in the simulation, which caused a bad convergence of its results

towards the HMF. But the stellar-to-halo mass fraction obtained from the simulation with

L = 100 Mpc h−1, N = 2048 at z = 9, seems to also flatten around 108.9 M⊙, reducing

the possibilities that this is caused by a numerical problem associated with the simulation

with L = 10 Mpc h−1, N = 1024. Similar studies like Behroozi, Loeb, et al. (2013) do

not show a change of slope at masses below 1010 M⊙ at high redshift, showing instead

a constant slope. This behaviour in the results could be introduced by the simulations.

This flattening indicates that the number of galaxies grows more rapidly than the number

of halos as the halo mass is reduced below 1010 M⊙. This could be caused because the

simulations are not capable of adequately simulating the number of halos with masses

below 1010 M⊙.

4.3 Stellar-to-halo mass fraction at very high redshift. JWST

data

Figure 15: HMF from all simulations at z = 0, 3, 6, 9, 10. The HMF that will be used
to obtain the stellar-to-halo mass fraction from the JWST data is shown. The HMF at
z = 10 presents a slight change from the one at z = 9 but following the expected evolution.

Finally, after analysing the stellar-to-halo mass fraction at different redshifts, it is

possible to compare through the simulations the observational data of the Hubble space

41



Figure 16: Stellar-to-halo mass as a function of Mhalo obtained from all simulations at
redshifts z = 0, 3, 6, 9, 10. The function seems equal to the one at z = 9. This could show
that the JWST data shows bigger galaxies than those predicted by the current model,
as the stellar-to-halo mass fraction should drop as redshift approaches the moment of
formation of the first stars.

telescope at z = 0, 3, 6, 9 with the ones of the James Webb space telescope at redshift z = 10.

Firstly, the HMF at z = 10 was obtained from the simulation with L = 100 Mpc h−1, N =

2048. This HMF is shown in figure 15, in comparison with the HMF obtained at redshifts

z = 0, 3, 6, 9. It can be seen that it shows small variation with the one at z = 9. Using

this HMF, the stellar-to-halo mass as a function of Mhalo can be obtained using the data

from the JWST and the procedure described in the methodology section. This is shown

in figure 16, the stellar-to-halo mass fraction is equal to the one at z = 9 showing little

change. This means that the GSMF changed slightly, as did the HMF, between the same

redshifts. This slow change in the GSMF is not what is expected at high redshift, as it is

expected to decrease for redshifts close to the time of formation of the first stars.

The first stars in the Universe formed at the end of what is called the Dark Ages. This

period of evolution of the Universe started with the emission of CMB radiation 300,000

years after the Big Bang, and ended with the formation of the first stars 100 million years

after the Big Bang, at redshift z = 20 (Miralda-Escudé, 2003). This period is called the

reionization epoch, where part of the baryonic matter in the Universe transitioned to a

state of plasma for the first time since the recombination ob the Big Bang. This was a

gradual process as the star formation rate is limited by the gas and dust dynamic inside
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a galaxy. The reionization ended around redshift z = 6 (Miralda-Escudé, 2003), so it is

expected that at a redshift of z = 10, the GSMF decreases as the reionization is still in

process and there has not been enough time for the stellar formation rate to fully populate

the existing galaxies, resulting in a decrease of the stellar-to-halo mass fraction. This is not

what is observed in figure 16, where the stellar-to-halo mass fraction remains unchanged

from z = 9 to z = 10. this indicates that the galaxies observed by the JWST have a bigger

stellar mass that what our knowledge of the evolution of the Universe predicts.

Taking into account the error bands in the results for the JWST data, it is found that

they are wide enough to include a drop in the GSMF and fit within the predictions of

the Λ − CDM cosmological model. The precision of the results for the stellar-to-halo

mass fraction as a function of Mhalo at z = 6, 9 does not help either to the discussion

of these results, as the calculated error bars using linear propagation were much bigger

than the magnitudes in the results, so they were not plotted in the graphics. Most of

the stellar-to-halo mass fraction error bands come from the abundance matching between

the HMF from the simulations and the GSMF from the observational data. Therefore,

the wide error bands at z = 10 come from the fitting of the GSMF at very high redshift.

The observations of galaxies at high redshift are very limited as of this moment, resulting

in wide statistical errors during the fitting of the GSMF. Although this results are very

interesting because they are the first observations of its kind at such a high redshift, they

must be taken cautiously due to the limited observations.

5 Conclusion

The aim of this work was to study the formation an evolution of large scale structure. In

order to do this the HMF was obtained using equation 44, which defined as the number

density of halos as a function of their mass, from 3 main simulations: L = 10 Mpc h−1, N =

1024, L = 100 Mpc h−1, N = 2048 and L = 1600 Mpc h−1, N = 2048. These simulations

have been performed using GIZMO and analysed by Rockstar to locate the halos at

redshifts z = 0, 3, 6, 9, 10. Then, an abundance matching was performed between the HMF

from the simulations and the GSMF obtained from observational data at low, high and

very high redshift.

It was determined that the minimal particle resolution in the simulations was Nres = 70,
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which allowed us to obtain the HMF in a wide range without divergences between

simulations. The effects of poor statistic at the end of the halo mass range of a simulation

were also observed. This statistical errors at large masses in a simulation are usually

reduced by performing multiple simulations with the same characteristics. Another option

is to use a simulations with a larger volume while maintaining constant the minimum

mass resolution. This will allow the formation of larger halos, improving the statistic at

lower masses.

The simulation with L = 10 Mpc h−1, N = 1024 presented a gap with the rest of the

simulations as the modes of the power spectrum of the primordial density field. This gap

was removed through a correction as ϕ′
10(Mhalo) = ϕ10(Mhalo) + δ, where δ is a constant

chosen as to minimize the percentage difference, calculated using equation 45, with the

rest of simulations at each redshift. Using this, it was possible to obtain the HMF as a

smooth curve approximately between 107 and 1016 M⊙ at z = 0.

Comparing it between redshifts it is found that mass of the biggest halo present in

the simulations and the HMF at all masses decrease with redshift, which agrees with

the hierarchical structure formation model where the smaller structure if formed first

and, as time passes, the bigger structure forms through mergers and accretion. This

behaviour causes a drastic decrease of the number of halos found in the simulation

L = 1600 Mpc h−1, N = 2048, resulting in a low statistic with wide error bars at z = 6

and not finding any halo above 1012.4 M⊙ particles at z = 9. An intersection between

the HMF at z = 0 with z = 3 and z = 6 which points to a decrease of the lo mass halo

number caused by a reduction in the accretion rate, which is in agreement with Tillson

et al. (2011). Based on this study, it was determined that between z = 0 and z = 3 the

accretion rate was sufficiently reduced that the HMF evolution was primarily driven by

mergers, which causes the intersection between the HMF at z = 0 with z = 3 and z = 6.

To relate the simulation results with the observations, the stellar-to-halo mass fraction

as a function of Mhalo was obtained at different redshifts. This fraction is related to

the efficiency of the star formation process, which allows to analyse the star formation

within halos of different masses. The stellar-to-halo mass fraction was obtained through

an abundance matching between the HMF from the simulations and a set of fittings of the

GSMF. The fittings used came from observational data at low redshift (z = 0, 3) (McLeod

et al., 2021) and at high redshift (z = 6, 9) (Bhatawdekar et al., 2019), both obtained from
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data of the HST. The results showed a drop of the star formation efficiency at low and

high masses, caused by the ejection of gas by the massive stars at low halo masses and by

the heating of the gas by an active galactic nucleus at high halo masses, in agreement with

Wechsler et al. (2018). The maximum is found between 1012 M⊙ and 1013 M⊙ reaching

6% of the baryon fraction, showing that star formation is not an efficient process. This

maximum efficiency is lower than what was found in a similar study by Behroozi, Wechsler,

et al. (2012) where the maximum efficiency was found to be between 10% and 20% of

the baryon fraction. Nevertheless, the error bars of this study overlap with the ones from

Behroozi, Wechsler, et al. (2012), so both results may be compatible.

Comparing the stellar-to-halo mass fraction at different redshifts, it was observed that

the stellar formation efficiency increased at low masses. Based on Tillson et al. (2011),

it was determined that this is caused by the accretion of gas towards the halos being

more intense at high redshift, allowing the falling gas to replace the one that is being

ejected. At low redshift the accretion of gas decreased its intensity (Tillson et al., 2011),

preventing that the ejected gas could be replaced. The location of the peak reaches a

maximum mass at z = 3 and decreases again at z = 6, 9 which is in agreement with the

star formation rate maximum being at z = 2.9, fact observed through direct observation of

the star formation process (Madau et al., 2014). Although it is not possible to resolve the

peak at high redshift, the maximum efficiency of the star formation process doesn’t change

substantially being always around the 6% of the baryonic fraction, a lower result than

what was found in Behroozi, Wechsler, et al. (2012). This difference could be explained by

the use of different cosmological models between this study and theirs. Nevertheless, the

distance between both results is not wide enough to be considered statistically significant.

During the redaction of this work, new data at very high redshift from the JWST was

released. The first studies analysing these new data showed that the observed galaxies

at very high redshift may defy the current cosmological model of galaxy formation and

evolution as they apparently have a bigger stellar mass than they should have. It was

decided to direct this work towards the comparison of the low and high redshifts from HST

with the newer data at very high redshift from JWST. In order to do this, the HMF was

obtained at z = 10, which showed a small variation from the one at z = 9 and following

the expected evolution. A luminosity function at very high redshift, z = 10, from JWST

observational data from Bouwens et al. (2023) was used. To relate the luminosity function
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with the GSMF, a linear fitting between the luminosity and stellar masses of galaxies at

the same redshift from Stefanon et al. (2021) WAS USED to obtain the stellar-to-halo

mass fraction. The resulting function has not changed from the one at z = 9, which is

not the expected evolution. The first stars in the Universe formed at the beginning of an

era called reionization which starter approximately at redshift z = 20 (Miralda-Escudé,

2003). This was a gradual process as the star formation rate is limited by the gas and dust

dynamic inside a galaxy. The reionization ended around redshift z = 6 (Miralda-Escudé,

2003), so it is expected that at a redshift of z = 10, the GSMF decreases as the reionization

is still in process and there has not been enough time for the stellar formation rate to fully

populate the existing galaxies, resulting in a decrease of the stellar-to-halo mass fraction.

This is not what is observed in figure 16, where the stellar-to-halo mass fraction remains

unchanged from z = 9 to z = 10. For this galaxies to have these stellar masses, the star

formation should have started much earlier. Another possibility is that the first stars were

formed when the models predict but the young galaxies had a much bigger star formation

rate than what was thought. Either way, this data from the JWST does not seem to show

what our knowledge of the evolution of the Universe predicts. Nevertheless, this results

must be taken carefully as the luminosity functions introduce large errors due to the low

statistic of observed galaxies. The error bars do not completely discard an agreement

between the data and the current model. This should motivate new studies when more

precise data is released from the JWST.

In order to expand and improve the results of this study it would be necessary to

use a wider set of simulations. Although these simulations were conveniently selected to

approximately sweep the desired range of halo masses, they resulted to be insufficient to

accurately show the maximum of the stellar-to-halo mass fraction. If a simulation with,

for example, L = 600 Mpc h−1, N = 2048, had been available, it would have probably

been possible to obtain information of the drop of the stellar efficiency at higher masses

than the peak.

About the errors in the stellar-to-halo mass fraction, they are introduced mainly by

the fittings of the GSMF and the mass-luminosity relation, so there is nothing that can be

done to reduce them. With the current approach of this study the only option is to wait

for more precise fittings to be available. More complex simulations that include gas, in

order to simulate the baryonic matter distribution and stellar formation, could be used.
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With these new simulations, stellar formation could be studied inside halos, allowing a

more direct comparison with the observational data, and the use of the fittings could be

avoided. But this simulations with stellar formation cannot be simple N-body gravitational

simulations, they must be hydrodynamical simulations in order to accurately simulate the

behaviour of baryonic matter. This kind of simulations are much more expensive and it

would be difficult to use the same volumes and particles that have been used used in this

work. An interesting example of studies that includes stellar formation could be Ocvirk

et al. (2020), which uses a simulation with L = 94 Mpc h−1, N = 4096 to study the galaxy

formation during the reionization epoch. This simulation needed a long computation

time in a supercomputer due to its complexity and size. Because of the high cost of the

simulation, it could only be run up to z = 6, so no data could be obtained at low redshift.
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Miralda-Escudé, J. (2003). “The Dark Age of the Universe”. Science 300.5627, pp. 1904–

1909.

Norman, M. L. (2010). Simulating Galaxy Clusters.

Ocvirk, P. et al. (Aug. 2020). “Cosmic Dawn II (CoDa II): a new radiation-hydrodynamics

simulation of the self-consistent coupling of galaxy formation and reionization”. Monthly

Notices of the Royal Astronomical Society 496.4, pp. 4087–4107.

Peebles, P. J. E. (2020). Cosmology’s Century: An Inside History of Our Modern Under-

standing of the Universe. Princeton University Press.

48



Peebles, P. J. E. and J. T. Yu (Dec. 1970). “Primeval Adiabatic Perturbation in an

Expanding Universe”. The Astrophysical Journal 162, p. 815.

Penzias, A. A. and R. W. Wilson (July 1965). “A Measurement of Excess Antenna

Temperature at 4080 Mc/s.” The Astrophysical Journal 142, pp. 419–421.

Planck Collab., P. A. R. Ade, et al. (Sept. 2016). “Planck 2015 results”. Astronomy &

Astrophysics 594, A13.

Planck Collab., N. Aghanim, et al. (Sept. 2020). “Planck 2018 results”. Astronomy &

Astrophysics 641, A6.

Planck Collab., Akrami, Y., et al. (2020). “Planck 2018 results - IV. Diffuse component

separation”. A&A 641, A4.

Planelles, S., D. R. G. Schleicher, and A. M. Bykov (Apr. 2014). “Large-Scale Structure

Formation: From the First Non-linear Objects to Massive Galaxy Clusters”. Space

Science Reviews 188.1-4, pp. 93–139.

Quinn, T., N. Katz, J. Stadel, and G. Lake (1997). Time stepping N-body simulations.

Roos, M. (2012). “Astrophysical and Cosmological Probes of Dark Matter”. Journal of

Modern Physics 03.09, pp. 1152–1171.

Springel, V. (Dec. 2005). “The cosmological simulation code gadget-2”. Monthly Notices

of the Royal Astronomical Society 364.4, pp. 1105–1134.

Stefanon, M. et al. (Nov. 2021). “Galaxy Stellar Mass Functions from z 10 to z 6 using

the Deepest Spitzer/Infrared Array Camera Data: No Significant Evolution in the

Stellar-to-halo Mass Ratio of Galaxies in the First Gigayear of Cosmic Time”. The

Astrophysical Journal 922.1, 29, p. 29.

Tamm, A., E. Tempel, P. Tenjes, O. Tihhonova, and T. Tuvikene (Sept. 2012). “Stellar

mass map and dark matter distribution in M 31”. Astronomy & Astrophysics 546, A4.

Tillson, H., L. Miller, and J. Devriendt (Aug. 2011). “The environment and redshift

dependence of accretion on to dark matter haloes and subhaloes”. Monthly Notices of

the Royal Astronomical Society 417.1, pp. 666–680.

Velten, H. E. S., R. F. vom Marttens, and W. Zimdahl (Nov. 2014). “Aspects of the

cosmological “coincidence problem””. The European Physical Journal C 74.11.

Wechsler, R. H. and J. L. Tinker (Sept. 2018). “The Connection Between Galaxies and Their

Dark Matter Halos”. Annual Review of Astronomy and Astrophysics 56.1, pp. 435–487.

Weinberg, S. (2008). Cosmology. Oxford University Press.

49


	Abstract
	Introduction
	Theoretical framework
	Introduction to Modern Cosmology
	Expanding Universe dynamics. Friedmann equations
	Inhomogeneities in the early Universe. Structure formation
	Dark matter halos
	Luminosity-stellar mass relation


	Methodology
	Cosmological simulations. GIZMO
	TreePM algorithm
	Time integration in GIZMO

	Simulation results analysis. Rockstar
	Obtaining the HMF and stellar-to-halo mass fraction

	Results
	Halo mass functions and their evolution through redshift
	Stellar-to-halo mass fraction at low and high redshift
	Stellar-to-halo mass fraction at very high redshift. JWST data

	Conclusion
	Bibliografía

