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Benefits of Open Quantum Systems for Quantum Machine
Learning

María Laura Olivera-Atencio, Lucas Lamata, and Jesús Casado-Pascual*

Quantum machine learning (QML) is a discipline that holds the promise of
revolutionizing data processing and problem-solving. However, dissipation
and noise arising from the coupling with the environment are commonly
perceived as major obstacles to its practical exploitation, as they impact the
coherence and performance of the utilized quantum devices. Significant
efforts have been dedicated to mitigating and controlling their negative effects
on these devices. This perspective takes a different approach, aiming to
harness the potential of noise and dissipation instead of combating them.
Surprisingly, it is shown that these seemingly detrimental factors can provide
substantial advantages in the operation of QML algorithms under certain
circumstances. Exploring and understanding the implications of adapting
QML algorithms to open quantum systems opens up pathways for devising
strategies that effectively leverage noise and dissipation. The recent works
analyzed in this perspective represent only initial steps toward uncovering
other potential hidden benefits that dissipation and noise may offer. As
exploration in this field continues, significant discoveries are anticipated that
could reshape the future of quantum computing.

1. Introduction

Quantum machine learning[1–5] (QML) is a rapidly advancing
field within quantum technologies, aiming to leverage quan-
tum devices to perform machine learning computations more
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efficiently. The main aim in this field
is to accelerate machine learning calcu-
lations via employing the speedups pro-
duced by genuine quantum properties
such as entanglement and superposition.
While a definitive demonstration of this
capability is yet to be achieved, notable
progress is being made in both theoret-
ical and experimental aspects. In partic-
ular, some important theoretical results
and implementations have been achieved,
including, for example, linear solvers of
equations,[6] quantum principal compo-
nent analyses,[7] quantum support vector
machines,[8] quantum annealers,[9] varia-
tional quantum eigensolvers,[10] quantum
Boltzmann machines,[11,12] quantum rein-
forcement learning (QRL),[13–21] quantum
memristors,[22] quantum feature spaces
and kernels,[23] and quantum generative ad-
versarial networks.[24] Some of these have
speedups relying on the quantum phase
estimation algorithm, others are based on

Grover search, and others obtain heuristic gains when resources
are limited. Even if it is hard to rigorously prove a quantum
speedup with respect to any classical machine learning protocol,
there is hope inside the QML community that this may be one
of the areas inside quantum technologies that may have useful
applications in industry and society in the nearer time.
Some of the advantages of using quantum systems for ma-

chine learning tasks arise from the fact that quantummechanics
is well described by linear algebra, which is a common frame-
work in machine learning protocols, at least for some of the
subroutines, such as computing distances. In other cases, the
speedups may come from combining classical and quantum
protocols in a hybrid approach, which can mitigate the expo-
nential explosion characteristic of machine learning calculations
through quantum parallelism. Experimental implementations
have shown speedups in comparison to classical or other quan-
tum algorithms, particularly on noisy intermediate-scale quan-
tum devices.[23–28] These studies often explore the advantages of
quantum technologies over classical machine learning. However,
the effect of dissipation caused by the surrounding environment
on QML has not yet been thoroughly analyzed. Real quantum ex-
periments inevitably operate at non-zero temperatures, resulting
in some degree of dissipation. Initial insights into this issue can
be found in refs. [29–32].
Another critical aspect that affects quantum systems involved

in machine learning protocols is that their interaction with the
external environment leads to decoherence. Decoherence is the
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primary cause of faulty behavior in controllable quantum sys-
tems. AsQMLprotocols are intended to be implemented in quan-
tum devices, which are inherently susceptible to decoherence, a
comprehensive study of QML algorithms should account for the
impact of the quantum environment, resulting in coherence loss
within the system. However, many existing QML algorithms in
the literature are purely mathematical in nature and do not ex-
plore the performance implications of real quantum implemen-
tations, which will inevitably be affected by noise and decoher-
ence. Hence, it is crucial to address the influence of the quantum
environment and incorporate noise considerations when devel-
oping and evaluating QML algorithms.
The field of open quantum systems[33,34] investigates the deco-

herence and dissipation properties of a quantum system when it
interacts with an external quantum system or environment, re-
sulting in entanglement between them. This field has reached a
mature stage, with well-established mathematical formulations
involving concepts like Lindblad master equations and density
matrices. Consequently, it was natural for researchers to investi-
gate the application of this formalism in the context of QML to
understand the impact of decoherence and dissipation on these
quantum algorithms. In this perspective, rather than focusing on
the typical analysis of the negative effects that the interactionwith
the environment can have on QML and exploring ways to miti-
gate or control them, our main emphasis is on studying the po-
tential benefits that can arise from such interaction.
It is worth mentioning that a different approach from the one

considered in this perspective, which has sometimes been re-
ferred to as “QML” by a portion of the community, involves the
use of classical machine learning to gain insights into quan-
tum systems.[35,36] Specifically, the application of neural net-
works to analyze open quantum systems has garnered significant
attention.[37–41]

The structure of the remainder of this work is as follows: In
Section 2, we introduce some basic concepts of open quantum
systems that will be relevant for the rest of the paper. In Section 3,
we analyze three examples where the interaction with the envi-
ronment can lead to improvements in the performance of specific
QML algorithms. Finally, in Section 4, we present a summary and
conclusions of the aspects covered in this work.

2. Some Basic Notions about Open Quantum
Systems

Traditionally, the time evolution of quantum systems has been
described through a unitary transformation that connects the
states of the system at two points in time. If the state of the sys-
tem at time t0 is represented by the density operator 𝜌(t0), then
the state at time t is described by the density operator

𝜌(t) = U(t, t0)𝜌(t0)U
†(t, t0) (1)

where U(t, t0) is a unitary operator known as the time evolution
operator from time t0 to time t (see, e.g., ref. [42]). However, this
description becomes excessively restrictive when attempting to
analyzing the time evolution of an open quantum system, that is,
a subsystem within a composite quantum system. Nevertheless,
this scenario is themost common in practical terms, as it is nearly

impossible experimentally to maintain complete isolation of the
quantum system of interest from its surrounding environment.
A common approach to analyze the time evolution of an open

quantum system (see, e.g., ref. [33]), which will be followed here,
is to consider that the system of interest, S, along with its envi-
ronment, E, constitutes a closed composite quantum system, C,
which evolves according to the unitary time evolution operator
UC(t, t0). Therefore, if the density operator of the composite sys-
temC at an initial time t0 is 𝜌C(t0), the density operator at time t is
given by 𝜌C(t) = UC(t, t0)𝜌C(t0)U

†
C(t, t0). The quantum states of the

subsystems S and E at time t are represented by their respective
reduced density operators, denoted by 𝜌S(t) and 𝜌E(t). These oper-
ators contain all the relevant statistical information for potential
measurements performed on each subsystem. To obtain 𝜌S(t) and
𝜌E(t), one simply needs to calculate the partial trace of 𝜌C(t) with
respect to the degrees of freedom of E and S, respectively, that is,
𝜌S(t) = TrE[𝜌C(t)] and 𝜌E(t) = TrS[𝜌C(t)]. Furthermore, assuming,
as is customary, that at the initial time the density operator of C
is separable, that is, that 𝜌C(t0) = 𝜌S(t0)⊗ 𝜌E(t0), it follows that

𝜌S(t) = TrE[UC(t, t0)𝜌S(t0)⊗ 𝜌E(t0)U
†
C(t, t0)] (2)

If the reduced density operator 𝜌E(t0) is taken to be equal to a
certain fixed value 𝜌E,0 regardless of the value of t0, the above ex-
pression establishes amapping t,t0 [𝜌S(t0)] := TrE[UC(t, t0)𝜌S(t0)⊗
𝜌E,0U

†
C(t, t0)] that assigns to each reduced density operator of S at

t0 the corresponding density operator at time t. From the defini-
tion of partial trace, it can be easily proven that the mapping t,t0
can be expressed in the form[33,43]

t,t0

[
𝜌S(t0)

]
=
∑
𝛼,𝛽

K𝛼,𝛽 (t, t0)𝜌S(t0)K
†
𝛼,𝛽 (t, t0) (3)

where K𝛼,𝛽 (t, t0) are operators acting on the Hilbert space of S,
known as Kraus operators.[44] The explicit form of these operators
is

K𝛼,𝛽 (t, t0) = 𝜆
1∕2
𝛽

∑
l,m

⟨ul,𝜓𝛼|UC(t, t0)|um,𝜓𝛽⟩|ul⟩⟨um| (4)

where {|ul⟩} is an arbitrary orthonormal basis of theHilbert space
of S, 𝜆𝛼 and |𝜓𝛼⟩ are, respectively, the eigenvalues and corre-
sponding eigenvectors of 𝜌E,0, and we have introduced the short-
hand notation |ul,𝜓𝛼⟩ := |ul⟩⊗ |𝜓𝛼⟩. FromEquation (4), it is easy
to verify that the Kraus operators satisfy the condition

∑
𝛼,𝛽

K†
𝛼,𝛽 (t, t0)K𝛼,𝛽 (t, t0) = IS (5)

where IS is the identity operator of the Hilbert space of S. Note
that unitary evolution is a particular case of the previous scenario
in which only one Kraus operator is present. This case would oc-
cur, for example, if there were no interaction between the sys-
tem S and the environment E, such that UC(t, t0) = US(t, t0)⊗
UE(t, t0), where US(t, t0) and UE(t, t0) are the time evolution op-
erators from time t0 to t for the isolated systems S and E, respec-
tively.
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The equation governing the temporal evolution of the density
operator of a closed quantum system is the Liouville-von Neu-
mann equation

�̇�(t) = − i
ℏ
[H(t), 𝜌(t)] (6)

where an overdot symbolizes a derivative with respect to time,
H(t) represents the Hamiltonian of the system, and the square
brackets denote the commutator of the operators enclosed
within. This equation, which is equivalent to the Schrödinger
equation when the system’s state is pure, is a direct conse-
quence of the fact that the time evolution operator satisfies the
property U(t, t0) = U(t, t1)U(t1, t0) for all t, t1, t0 ∈ ℝ. In fact, if
we formally define the system’s Hamiltonian through the limit
H(t) = iℏ limt1→t 𝜕U(t, t1)∕𝜕t, it is straightforward to see that the
Liouville-von Neumann equation (Equation (6)) follows directly
from the aforementioned property and Equation (1).
In the case of open quantum systems, it is easy to verify that the

property t,t0 = t,t1t1 ,t0 is generally not valid. Indeed, considering
that UC(t, t0) = UC(t, t1)UC(t1, t0), it can be shown that

t,t0

[
𝜌S(t0)

]
= TrE[UC(t, t1)𝜌S(t1)⊗ 𝜌E(t1)U

†
C(t, t1)]

+TrE[UC(t, t1)𝛿𝜌C(t1)U
†
C(t, t1)] (7)

where 𝛿𝜌C(t1) = 𝜌C(t1) − 𝜌S(t1)⊗ 𝜌E(t1) quantifies how different
𝜌C(t1) is from a separate state. Since 𝜌S(t1) = t1 ,t0 [𝜌S(t0)], Equa-
tion (7) shows that in general, t,t0 [𝜌S(t0)] ≠ t,t1t1 ,t0 [𝜌S(t0)]. For
t,t0 [𝜌S(t0)] and t,t1t1 ,t0 [𝜌S(t0)] to be at least approximately equal,
two conditions must be met. First, the second term on the right-
hand side of Equation (7)must be negligible compared to the first
term. This implies that the density operator of C should remain
approximately separable over time, which in turn implies that the
interaction between S and E must be sufficiently weak. Second,
the operator 𝜌E(t1) appearing in the first term on the right-hand
side of Equation (7) must be approximately equal to 𝜌E,0. This, in
turn, implies that Emust hardly be affected by S andmust be in a
time-independent steady state. This can be achieved, for example,
if E acts as a thermal bath for S in a thermodynamic equilibrium
state at a certain temperature T .
Using Equation (3) and assuming that the condition t,t0 =

t,t1t1 ,t0 is satisfied, at least approximately, it can be shown (see,
e.g., ref. [33]) that the reduced density operator of S fulfills the
evolution equation

�̇�S(t) = − i
ℏ

[
HS(t), 𝜌S(t)

]

+
N2−1∑
j=1
𝛾j(t)

[
Lj(t)𝜌S(t)L

†
j (t) −

1
2

{
L†j (t)Lj(t), 𝜌S(t)

}]
(8)

where HS(t) is an operator playing the role of the Hamil-
tonian for S but which can also contain information about
the environment E, N is the dimension of the Hilbert space
of S, {𝛾j(t)}j=1,…,N2−1 is a set of nonnegative functions with
dimensions of frequency, {Lj(t)}j=1,…,N2−1 is a set of dimen-
sionless operators known as Lindblad operators or quantum
jump operators, and the braces denote the anticommutator of
the operators enclosed within. Equation (8) is known as the

Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) equation or
simply as the Lindblad master equation.[45,46] The first term on
the right-hand side of Equation (8) accounts for the unitary
or coherent evolution of the system, whereas the second term
describes the dissipative aspect of the dynamics. In the typi-
cal case where the time evolution operator UC(t, t0) is invariant
under temporal translations, that is, UC(t + 𝜏, t0 + 𝜏) = UC(t, t0)
∀t, t0, 𝜏 ∈ ℝ, the Kraus operators K𝛼,𝛽 (t, t0) depend solely on the
time difference t − t0, andH(t), Lj(t), and 𝛾j(t) become constants,
resulting in a time-independent Lindbladmaster equation. To ob-
tain explicit expressions forH(t), Lj(t), and 𝛾j(t), it is necessary to
start from a specific microscopic model in which the Hamilto-
nian of the composite system C is provided. The usual meth-
ods used to derive Lindblad-type equations from microscopic
models, as well as the required approximations, can be found
in refs. [33, 34].

3. Dissipative Quantum Machine Learning

Decoherence, arising from the interaction between a quan-
tum system and its environment, is often considered the most
formidable obstacle in quantum information science. The result-
ing dissipation tends to erode the intriguing quantum phenom-
ena that underlie the potential of quantum computation. To mit-
igate these adverse effects, various approaches have been devel-
oped, including schemes that are robust against them or con-
trol mechanisms to counteract their impact (see, e.g., refs. [29,
47]). Although the common perception is that dissipation’s ef-
fect is negative, it has been demonstrated that in certain cases,
dissipation can be leveraged as a valuable resource for univer-
sal quantum computation, giving rise to the concept of dissipa-
tive quantum computing.[48–50] The beneficial effects of noise and
dissipation have also been observed in other classical and quan-
tum phenomena, such as stochastic resonance[51–53] and stochas-
tic synchronization.[54–57]

Drawing an analogy, one might ponder the possibility of har-
nessing dissipation and noise to improve the performance of
specific QML algorithms. In this section, we will explore this
potential and present a series of illustrative examples. Our fo-
cus will be specifically on noise and dissipation effects from the
surrounding environment, while excluding other works that pri-
marily address stochasticity introduced to the algorithm through
factors such as a finite number of measurements or zero-
average fluctuations encountered in real experiments (see, e.g.,
ref. [58]). It is important to note that the investigation of noise
and dissipation benefits for QML is still in its early stages, and
the number of published papers exploring this area remains
limited.

3.1. Applications of Dissipative Two-Qubit Systems in Quantum
Machine Learning

Several studies[59–61] have explored the possibility of employing
a system consisting of two non-interacting qubits coupled to a
common thermal bath as a fundamental unit for QML tasks. The
evolution of the reduced density operator for the two-qubit sys-
tem, denoted as 𝜌(t) (hereafter, we will drop the subscript S to
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refer to this operator), can be described by the Lindblad master
equation[59–62]

�̇�(t) = Γ
2∑
j=1

[
Lj𝜌(t)L

†
j −

1
2
{ L†j Lj, 𝜌(t)}

]
(9)

with the Lindblad operators L1 =
√
n̄ + 1(𝜎1 + 𝜎2) and L2 =√

n̄(𝜎1 + 𝜎2)†, where 𝜎1 and 𝜎2 are the lowering operators of qubit
1 and 2, respectively, n̄ represents the mean number of thermal
excitations corresponding to the global environment, and Γ is
the spontaneous emission rate. Further information about the
derivation of these types of equations can be found in ref. [63].
In ref. [61], the case in which the two-qubit system interacts with
a squeezed vacuum field reservoir[64] has also been considered.
In this case, the Lindblad master equation that describes the evo-
lution of the density operator of the two qubits is

�̇�(t) = Γ
[
L𝜌(t)L† − 1

2
{ L†L, 𝜌(t)}

]
(10)

with the Lindblad operator L = cosh(r)(𝜎1 + 𝜎2) − sinh(r)ei𝜓 (𝜎1 +
𝜎2)

†, where r is the squeezing parameter and 𝜓 the squeezing
angle.[64]

From a mathematical perspective, the Lindblad master equa-
tions (Equations (9) and (10)) are nothing but a system of first-
order linear differential equations with constant coefficients.
Given a certain initial condition, 𝜌(0), this system of differential
equations can be solved using standard methods to obtain the
value of the density operator of the two-qubit system at any time t.
By taking the long-time limit of this solution, one can establish a
mapping that assigns to each initial condition 𝜌(0) its correspond-
ing steady state 𝜌(∞). The quantum operation or noisy quantum
channel corresponding to this mapping can be expressed in the
form[43]

𝜌(∞) =
4∑
j=1

Kj𝜌(0)K
†
j (11)

where Kj are certain Kraus operators that can be determined by
explicitly solving Equations (9) or (10). Explicit expressions for
these Kraus operators in the case of a thermal bath at zero tem-
perature (i.e., for n̄ = 0) can be found in refs. [59, 60].
A detailed analysis of the results obtained from the noisy quan-

tum channel (Equation (11)) for the case of a thermal bath (Equa-
tion (9)) reveals[59] that the system retains residual coherence
even in the long-time limit and that it is possible to generate
steady entangled states, includingWerner-like states[65] andmax-
imally entangled mixed states.[66] Additionally, since the steady
states obtained depend on the chosen initial state, one can ma-
nipulate the initial state to construct robust Bell-like states.[59]

In the case of the squeezed vacuum field reservoir, the solu-
tion of Equation (10) in the small squeezing regime gives rise
to the so-called two-qubit X-states,[61,67] which generalize many
families of entangled two-qubit states, such as Bell states,[43]

Werner states, isotropic states,[68] and maximally entangled
mixed states.
In the literature, several practical applications of the previously

described dissipative two-qubit systems to the field of QML have

been proposed. One such application involves using the noisy
quantum channel (Equation (11)) to address binary classification
problems.[69] The matrix elements of the initial density operator
𝜌(0) in a specific basis encode the input attributes, while those
of the steady-state 𝜌(∞) encode the target attributes. To optimize
the classification task, the parameters of the reservoir, such as
the temperature or the mean number of thermal excitations n̄,
for a thermal bath, and the squeezing parameters r and 𝜓 , for
a squeezed vacuum field reservoir, can be tuned. To establish
the classification model, a training set with records containing
known class labels and a test set with records containing un-
known class labels are required. The training set is used to con-
struct the classification model, which is then applied to the test
set for evaluation. This possibility has been explored in ref. [59],
where a two-qubit system coupled to a common thermal bath was
utilized to classify vertebrates into two distinct groups: mammals
and non-mammals. Despite its simplicity, the proposed method
demonstrated high accuracy in solving this binary classification
problem without requiring any iterative procedures. Moreover,
the quantum classifier based on the dissipative two-qubit system
outperformed classical algorithms, including the decision tree
classifier. As another application, dissipative two-qubit quantum
systems have also been proposed as building blocks for the de-
velopment of quantum neural networks capable of performing
classification tasks.[60,61] These results suggest the promising po-
tential of these dissipative systems for efficient and effective clas-
sification tasks in the realm of QML.

3.2. Dissipative Quantum Reinforcement Learning

The possibility of harnessing dissipation to perform QML tasks
more efficiently has also been explored in the context of QRL.
Specifically, in ref. [31] the effect of thermal dissipation on a QRL
algorithm has been analyzed, and it has been found that, under
certain circumstances, the algorithm can perform better in the
presence of dissipation. To understand the implications of these
results, we will proceed to briefly describe the studied dissipative
quantum algorithm as well as the benefits that dissipation can
bring to its operation.
The QRL algorithm considered in ref. [31] is an adaptation to

the presence of dissipation of a non-dissipative quantum algo-
rithm analyzed in ref. [21]. The latter algorithm is, in turn, in-
spired by a previous algorithm,[20] where a quantum agent at-
tempts to learn an unknown quantum state provided by an ar-
tificial intelligence (AI) environment (not to be confused with
the quantum environment producing decoherence), which sup-
plies several copies of it. The agent couples with the unknown
state and performs measurements on each copy. Depending on
the measurement outcome, it either takes no action (exploita-
tion) or applies a random unitary operation (exploration). As
the agent approaches the unknown state, the random unitary
operations gradually approximate the actual unitary operation.
Consequently, the exploration regime diminishes, while the ex-
ploitation regime becomes more prominent. The system even-
tually converges to the unknown state with high fidelity, as ex-
perimentally demonstrated in ref. [25]. In ref. [21], the protocol
presented in ref. [20] was expanded to address the eigenstates of
an unknown operator rather than unknown states. Additionally,
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in ref. [31], the protocol from ref. [21] was analyzed under the in-
fluence of a dissipative bath, using a master equation formalism.
In the dissipative algorithm of ref. [31], the agent A is a ma-

nipulable qubit that interacts with an AI environment E as well
as with a thermal bath B at a finite temperature T . The environ-
ment E is characterized by an unknown Hamiltonian

H = ℏ𝜔

2
(|+⟩⟨+| − |−⟩⟨−|) (12)

where 𝜔 is a positive constant with frequency dimensions and
{|+⟩ , |−⟩} are the eigenvectors of H. The combined action of E
and B on A is described by the Lindblad master equation

�̇�(t) = − i
ℏ
[H, 𝜌(t)] +

∑
j=±

Γj

[
�̃�
†
j 𝜌(t)�̃�j −

1
2
{ �̃�j�̃�

†
j , 𝜌(t)}

]
(13)

where 𝜌(t) is the density operator representing the state of A at
time t, �̃�− = |−⟩⟨+| = �̃�

†
+ is a Lindblad operator that induces dissi-

pative decay from the excited state |+⟩ to the ground state |−⟩, and
Γ± = Γ0e±ℏ𝜔∕(2kBT)csch[ℏ𝜔∕(2kBT)]∕2, with Γ0 the decay rate from
the excited state to the ground state at zero temperature. Given a
certain initial condition 𝜌(0) , the solution of Equation (13) at an
arbitrary time 𝜏 can be expressed as

𝜌(𝜏) =  [𝜌(0)] ≡
3∑
j=0

UEj𝜌(0)E
†
j U

† (14)

whereU = e−i𝜏H∕ℏ and {E0, E1, E2, E3} are the Kraus operators for
the generalized amplitude damping channel.[43]

The goal of the algorithm is to extract information or learn
from the AI environment E to obtain near-optimal knowledge of
the eigenstates {|+⟩ , |−⟩}. The procedure involves performing a
large number of iterations, which will be labeled with a natural
number k. The state of A in the k -th iteration is denoted by |𝜙k⟩.
Furthermore, to facilitate future operations, we also introduce an
exploration parameter denoted as wk, which takes on real values
between 0 and 1. To construct the state |𝜙k+1⟩ from the state |𝜙k⟩
and update the value of wk+1 from wk, the following steps are fol-
lowed:

i) The state of A, represented by the density operator |𝜙k⟩⟨𝜙k|,
is allowed to evolve for a time 𝜏 according to the Lindblad
master equation (Equation (13)). After this evolution, the
state of A becomes (|𝜙k⟩⟨𝜙k|).

ii) Information is extracted from the state (|𝜙k⟩⟨𝜙k|) by per-
forming a measurement of the observableMk = |𝜙⟂,k⟩⟨𝜙⟂,k|,
where |𝜙⟂,k⟩ is the state orthogonal to |𝜙k⟩. In ref. [31], a
method is proposed to achieve measuring the same observ-
ableM1 in all iterations.

iii) If the measurement outcome is mk = 0, the state of A after
the measurement is |𝜙k⟩. In this case, the state of A remains
unchanged for the next iteration, that is, |𝜙k+1⟩ = |𝜙k⟩. Fur-
thermore, the value of the exploration parameter is updated
to wk+1 = rwk, where 0 < r < 1 is a real parameter known as
the reward rate.

iv) If, on the contrary, the measurement outcome ismk = 1, the
state of A after the measurement is |𝜙⟂,k⟩, and it is neces-
sary to apply the unitary transformation 𝜎x,k = |𝜙k⟩⟨𝜙⟂,k| +

|𝜙⟂,k⟩⟨𝜙k| to reconstruct the original state |𝜙k⟩. After this
transformation, the state of A in the next iteration is con-
structed by applying a pseudorandom rotation Rk to the
state |𝜙k⟩, that is, |𝜙k+1⟩ = Rk |𝜙k⟩. To implement the pseu-
dorandom rotation Rk, three uniformly distributed random
angles 𝛼x,k, 𝛼y,k, and 𝛼z,k are first generated within the in-
terval [−wk𝜋, wk𝜋]. Based on these angles, Rk is given by
the expression Rk = e−i𝛼y,k𝜎y,k∕2e−i𝛼z,k𝜎z,k∕2e−i𝛼x,k𝜎x,k∕2, with 𝜎y,k =
i(|𝜙⟂,k⟩⟨𝜙k| − |𝜙k⟩⟨𝜙⟂,k|) and 𝜎z,k = |𝜙k⟩⟨𝜙k| − |𝜙⟂,k⟩⟨𝜙⟂,k|.
In addition, the value of the exploration parameter is updated
to wk+1 = min(1, pwk), where p > 1 is a real parameter called
the punishment rate.

Using the algorithm described above, the values of |𝜙k⟩ and wk
for any iteration k can be calculated from the initial values |𝜙1⟩
(which is arbitrary) andw1 = 1. The protocol is considered to con-
verge if wk approaches zero as k increases, as this indicates that
the pseudorandom rotation Rk is converging toward the identity
operator. Moreover, the faster it approaches zero, the faster the
convergence of the protocol is. Further details about the Markov
decision process[70,71] associated with this protocol can be found
in ref. [31].
The accuracy of the described protocol after performing k iter-

ations can be quantified in two different ways. If the goal is for
the agent to learn a specific eigenstate of the Hamiltonian, either
the ground state |−⟩ or the excited state |+⟩, the accuracy can
be quantified using the corresponding fidelities f−,k = |⟨−|𝜙k⟩|
or f+,k = |⟨+|𝜙k⟩|. On the other hand, if the objective is for the
agent to learn either of the two eigenstates without specifying
which one, the fidelity to the closest eigenstate should be chosen,
that is, fk = max(f−,k, f+,k). Due to the inherently random nature of
the measurement outcomes ofMk, as well as the pseudorandom-
ness of the angles 𝛼x,k, 𝛼y,k, and 𝛼z,k, the quantities wk, f∓,k, and fk
are random variables whose values vary from one realization to
another. For this reason, in ref. [31], their mean values obtained
from a large number of realizations N are analyzed, which are
denoted asWk, F∓,k, and Fk, respectively.
An interesting finding from this analysis is that, at sufficiently

low temperatures, dissipation does not always lead to a negative
impact on the accuracy of the protocol as quantified by the mean
fidelity Fk. In fact, there are parameter ranges for which the pro-
tocol performs better in the presence of dissipation than in its
absence (see, e.g., Figure 6 in ref. [31]). An explanation of this
unexpected phenomenon can be found in ref. [31]. This finding
could be significant for the practical implementation of this pro-
tocol, as in some experimental scenarios, the presence of dissi-
pation may be inevitable.
Another quite common scenario in which dissipation plays a

particularly positive role is when we are interested in calculating
the ground state of the system. In this case, as mentioned earlier,
the mean fidelity that should be maximized is F−,k instead of Fk.
For temperatures not too high, it can be shown that the presence
of dissipation significantly affects the values of F−,k and F+,k, in-
creasing F−,k and decreasing F+,k compared to the nondissipative
case (see, e.g. Figure 5 in ref. [31]). This is because, for certain
values of dissipation and temperature, the state |−⟩ ⟨−| is an ap-
proximate fixed point of the channel  (for more details, see ref.
[31]). As the temperature value increases, this is no longer the
case, and the difference becomes less noticeable.[31] As a result,
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if the goal of a real experiment is to calculate the ground state,
a certain degree of dissipation can be beneficial, as long as the
temperature is not too high.
The example we have just analyzed highlights that dissipation

can also play a beneficial role in QRL. However, further investi-
gation is needed to determine whether this assertion holds true
for the current protocol when increasing the number of qubits or
for other types of QRL protocols.

3.3. Harnessing Noise and Dissipation in Quantum Reservoir
Computing

The potential beneficial effects of noise in quantum reservoir
computing (QRC)[72] have been recently analyzed in ref. [32]. The
concept behindQRC involves employing aHilbert space as an en-
hanced feature space for input data. This enhanced feature space,
generated through quantum entangling operations, is then uti-
lized to provide input to a classical machine learning model,
which performs the desired target prediction.
The problem addressed in ref. [32] involves the prediction of

the excited electronic energy E1(R) of the LiH molecule at differ-
ent internuclear distances R based on the associated ground state|𝜓0⟩R with energy E0(R). The ground state |𝜓0⟩R, which can be
represented using n = 8 qubits, is obtained for various values of
R through exact diagonalization.[73] The dataset {|𝜓0⟩R ,ΔE(R)},
where ΔE(R) = E1(R) − E0(R) represents the relative excited en-
ergy, is divided into training and test sets, with the test set con-
taining 30% of the data to challenge the algorithm for extrap-
olation to new samples. The training procedure for the algo-
rithm consists of the following steps.[32] Initially, the quantum
circuit is prepared with the molecular ground state |𝜓0⟩R corre-
sponding to a specific configuration R. Then, a noisy quantum
circuit with a fixed number of gates is applied to |𝜓0⟩R. Later,
measurements of the local Pauli operators {X0, Z0,… , Xn, Zn} are
performed, where Xj and Zj denote the Pauli operators X and
Z applied to the j-th qubit. This process results in the vector
X (R) = (⟨X0⟩, ⟨Z0⟩,… , ⟨Xn⟩, ⟨Zn⟩)T , which contains the extracted
information from the ground state. After obtaining the vector
X (R), it is used as input for a classical machine learning algo-
rithm, such as ridge regression, which is a linear model with L2

regularization.[73]

Three types of noisy quantum channels[43] are considered
in ref. [32], namely, the amplitude damping channel (𝜌) =∑1

j=0 Kj𝜌K
†
j , with Kraus operators

K0 = |0⟩⟨0| +√
1 − p|1⟩⟨1| and K1 =

√
p|0⟩⟨1| (15)

the phase damping channel (𝜌) =
∑2

j=0 Kj𝜌K
†
j , with Kraus oper-

ators

K0 =
√
1 − p𝕀, K1 =

√
p|0⟩⟨0|, and K2 =

√
p|1⟩⟨1| (16)

and the depolarizing channel (𝜌) =
∑3

j=0 Kj𝜌K
†
j , with Kraus op-

erators

K0 =
√
1 − p𝕀, K1 =

√
p
3
X, K2 =

√
p
3
Y, and K3 =

√
p
3
Z (17)

where p is the error probability. Thesemodels encompass the vast
majority of noise types that modern hardware is subjected to.
The analysis of the obtained results reveals a surprising find-

ing: under specific conditions, the presence of amplitude damp-
ing noise can enhance the performance of QRC. However, in
contrast, both the depolarizing and phase damping channels re-
sult in poorer outcomes for QRC, with the depolarizing chan-
nel showing even worse performance than the phase damp-
ing channel. As a consequence, to achieve successful QML
tasks with quantum reservoirs, addressing depolarizing noise be-
comes a priority, requiring the implementation of suitable error-
correcting methods. In ref. [32], the authors also propose a pos-
sible explanation for these findings based on the distribution of
resulting density matrices in the Pauli space after experiencing
the different noisy quantum channels. The amplitude damping
channel introduces additional non-zero coefficients in the Pauli
space, effectively simulating the effect of having more quantum
gates in the original circuits, which improves performance. On
the contrary, the depolarizing and phase damping channels sim-
ply reduce the amplitude of coefficients in the Pauli space, re-
sulting in inferior outcomes. Among these channels, the depo-
larizing one exhibits the fastest mitigation of these values, which
is why its performance is worse than that of the phase damp-
ing channel.
The investigation into the role of dissipation in QRC and its

potential as a valuable resource has also been recently explored
in a study by Sannia et al.[74] In their research, the authors in-
troduce tunable local losses into spin network models using an
approach grounded in continuous dissipation, which is modeled
through Lindblad master equations. Specifically, they investigate
a transverse-field Ising model in which a variable magnetic field
is modulated in the x-direction. The model is characterized by
the following Hamiltonian

H =
N∑
i<j

Jij𝜎
x
i 𝜎

x
j + h

N∑
i=1
𝜎zj + h′(t)

N∑
i=1
𝜎xi (18)

In the above Hamiltonian, the indices i and j refer to the sites
within the network, and 𝜎xi , 𝜎

y
i , and 𝜎

z
i represent the Pauli ma-

trices acting on the i -th site. Additionally, Jij denotes the spin-
spin coupling between the i -th and j -th sites, which follows a
uniform distribution within a predefined interval [−Js, Js], h cor-
responds to the magnetic field’s value in the z-direction, and
h′(t) signifies a time-dependent magnetic field oriented in the x-
direction. This time-dependent field encodes the input time se-
ries and coherently modifies the reservoir’s evolution. The au-
thors consider a real input sequence of lengthM, {sk}

M
k=1, rescaled

such that sk ∈ [0, 1] for all k. For each input signal sk, the time-
dependent field remains constant for a certain intervalΔt accord-
ing to the assignment rule h′k = (sk + 1)h. In the absence of time-
dependent field, that is, for h′(t) = 0, the Hamiltonian in Equa-
tion (18) coincides with that introduced by Fuji and Nakajima
in ref. [75].
During each time interval, the evolution of the reservoir is de-

termined by the Lindblad master equation

�̇�(t) =
(
k +L

)
[𝜌(t)] (19)
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with the unitary superoperatork[𝜌(t)] ≡ −i[H(h′k), 𝜌(t)]∕ℏ, which
characterizes the unitary evolution, and the local dissipator

L[𝜌(t)] ≡ 𝛾

N∑
i=1

[
𝜎−
i 𝜌(t)𝜎

+
i − 1

2
{𝜎+

i 𝜎
−
i , 𝜌(t)}

]
(20)

where 𝜎±
i ≡

1
2
(𝜎xi ± i𝜎yi ). This local dissipator represents uniform

losses since 𝛾i = 𝛾 for all nodes within the reservoir. The updating
rule of the reservoir is

𝜌k+1 = e[k+1+L ]Δt𝜌k (21)

By conducting an extensive comparison between the outcomes
achieved through the approach we have just outlined and pre-
vious methodologies, the authors demonstrate that incorporat-
ing tunable local losses in spin network models can significantly
enhance the performance of QRC. Specifically, their approach
based on continuous dissipation not only reproduces the dynam-
ics of previous QRC proposals relying on discontinuous erasing
maps[75] but also improves their overall performance. The paper
underscores the degree of tunability of losses as a potent tool for
adapting the system to specific problems. This tunability posi-
tively impacts various machine learning temporal tasks, includ-
ing both linear[76] and nonlinear[77] processing of input history
and the forecasting of chaotic series.[78–80] Furthermore, the paper
formally establishes that, under non-restrictive conditions, their
dissipative models constitute a universal class for reservoir com-
puting. Consequently, their approach can accurately approximate
any fading memory map with arbitrary precision.[81,82] Addition-
ally, the authors suggest that the achieved universality is a gen-
eral feature of open quantum systems with Markovian dynam-
ics, thus opening avenues for exploring alternative QRC archi-
tectures beyond the Ising model network. Moreover, the paper
posits that the concept of dissipation engineering can be further
expanded by considering non-local losses[83] and non-Markovian
dissipation,[84] thereby offering possibilities for investigating a
wider spectrum of quantum reservoir computers.
It is worth noting that the dynamics of certain open quantum

systems have also been leveraged as a quantum physical reser-
voir to construct a reservoir computing framework. Specifically,
in a recent study by Burgess and Florescu,[85] they explored the
utilization of an open quantum system model consisting of two-
level atomic systems coupled to a Lorentzian photonic cavity as a
potential implementation for a quantum physical reservoir com-
puter. The Hamiltonian governing the composite system in their
study is

H = 𝜔0

N∑
j=1
𝜎+
j 𝜎

−
j +

∑
𝜆

𝜔𝜆a
†
𝜆
a𝜆 + i

∑
j,𝜆

g𝜆(a𝜆𝜎
+
j − a†

𝜆
𝜎−
j )

+Λ
∑
j≠k

𝜎+
j 𝜎

−
k (22)

In this equation 𝜎+
j and 𝜎−

j represent the excitation and de-
excitation operators for the j-th atomic system, respectively, a𝜆
and a†

𝜆
denote the bosonic annihilation and creation operators,

𝜔0 and 𝜔𝜆 are the frequencies of the atomic transitions and
the 𝜆-boson mode, g𝜆 stands for the coupling strength between

the atomic system and the 𝜆-boson mode, and Λ represents the
dipole-dipole coupling strength between atoms. As is customary
for a lossy photonic cavity that is on-resonance with the atomic
transitions, the spectral density is described using a Lorentzian
distribution.[86]

To evaluate the effectiveness of their QRC approach, the au-
thors apply it to the standard machine learning task of image
recognition. They conduct an evaluation by comparing its per-
formance to that of a conventional neural network with a sim-
ilar architecture, albeit without the quantum physical reservoir
computer layer. Notably, as the dataset size increases, their ap-
proach exhibits superior performance in comparison to the con-
ventional neural network. Furthermore, it demonstrates superior
performance in terms of training epochs, surpassing the neu-
ral network at every epoch number considered. The authors also
demonstrate the efficiency of their approach in modeling the dy-
namics of various quantum systems, including atomic systems
coupled to cavities of different qualities, atomic systems in pho-
tonic band gap materials, and other open quantum system chal-
lenges. They show evidence that their QRC approach efficiently
produces accurate representations of the complexities of quan-
tum dynamics, even when faced with restricted training data,
thereby paving the way for the development of scalable QML ap-
plications.

4. Conclusions

This perspective article has shed light on the intriguing intersec-
tion between two well-established domains of quantummechan-
ics: QML and open quantum systems. By investigating the poten-
tial impact of dissipation arising from the interaction between
quantum devices and their physical environment, we have un-
covered the possibility of beneficial effects on the learning tasks
at hand, contrary to the conventional belief of adverse conse-
quences.
The recognition of dissipation as a potentially useful resource

in QML opens up new avenues for the design of strategies that
harness noise and dissipation, thereby driving significant ad-
vancements in quantum computation. These findings challenge
the prevailing notion that dissipation is solely a hindrance and
provide a fresh perspective on leveraging quantum properties to
enhance learning protocols.
The recent works discussed in this perspective represent ini-

tial steps toward understanding the hidden benefits of dissipa-
tion in QML. As we continue to explore this exciting field, we
anticipate the emergence of transformative discoveries that can
reshape the future of quantum computing. The integration of
QML with open quantum systems offers a promising direction
for advancing quantum technologies, with potential applications
across various fields. Further exploration in this rich and un-
charted territory holds the promise of accelerating the develop-
ment and practical integration of quantum technologies into our
daily lives.
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