
Unsteady Propulsion of a Two-Dimensional Flapping
Thin Airfoil in a Pulsating Stream

Ernesto Sanchez-Laulhe∗ and Ramon Fernandez-Feria†

University of Málaga, 29071 Málaga, Spain

and

Anibal Ollero‡

University of Seville, 41092 Seville, Spain

https://doi.org/10.2514/1.J062925

The cruising velocity of animals, or robotic vehicles, that use flapping wings or fins to propel themselves is not

constant but oscillates around amean value with an amplitude usually much smaller than themean, and a frequency

that typically doubles the flapping frequency. Quantifying the effect that these velocity fluctuations may have on

the propulsion of a flapping and oscillating airfoil is of great relevance to properly modeling the self-propelled

performance of these animals or robotic vehicles. This is the objective of the present work, where the force and

moment that an oscillating stream exerts on a two-dimensional pitching and heaving airfoil are obtained analytically

using the vortical impulse theory in the linear potential flow limit. The thrust force of the flapping airfoil in a pulsating

stream in this limit is obtained here for the first time. The lift force and moment derived here contain new terms in

relation to the pioneering work by Greenberg (1947), which are shown quantitatively unimportant. The theoretical

results obtained here are compared with existing computational data for flapping foils immersed in a stream with

velocity oscillating sinusoidally about a mean value.

I. Introduction

A RENEWED interest in more precise models of the aerody-
namic forces on oscillating foils, considering all the unsteady

processes intervening in the fluid–foil interaction, has been moti-
vated by the growing interest in developing biologically inspired
aerial and aquatic vehicles self-propelled by flapping wings or fins
[1–6].Most aerodynamicmodels come from studies that consider the
oscillating foil in a flow with constant freestream velocity. However,
the cruising velocity of animals, or robotic vehicles, that use flapping
wings or fins to propel themselves is not constant [3,7–11]. It oscillates
around a mean value with an amplitude usually much smaller than the
mean, and a frequency that typically doubles the flapping frequency.
For instance, for a small flapping amplitude (airfoil chord length
ratio, say, ϵ ≪ 1), the cruising velocity oscillations amplitude has been

found to be of the order of ϵ2∕3 times the mean velocity for a simple

aquatic locomotion model [11], and of the order of ϵ2 for a simple
ornithopter flight model [10]. The frequency doubling is nicely illus-
trated by the ability of a sinusoidally plunging airfoil to produce thrust
by the Knoller–Betz effect [12]. Although it has been argued that the
oscillations in the flow speed have little impact on the time-averaged
aerodynamic force [13], and therefore on the time-averaged cruising
velocity generated by an oscillating foil, results obtained in the pre-
sent work that are comparedwith previous numerical results show that
these oscillations may modify substantially not only the instantane-
ous aerodynamic forces, but also their time-averaged values. Thus, the
oscillations in the cruising velocity may be relevant for the unsteady
dynamics of the robotic vehicle propelled by the flapping foil, and
therefore for its guidance and control. The objective of the present
work is to include and quantify this effect of a periodic streamwise
velocity about a mean value on the time-dependent thrust force gen-
erated by a pitching and heaving foil in the limit of small flapping
amplitudes and high Reynolds numbers, so that linear potential flow

theory can be applied, a limit of interest for the cruising regime of
vehicles self-propelled by flapping wings or fins.
The effect of a pulsating stream on the airfoil aerodynamic forces

in the linear potential and two-dimensional (2D) flow limit was
considered by Isaacs [14] and Greenberg [15], partially inspired by
unsteady problems related to helicopter aerodynamics. Isaacs [14]
analyzed the general problem of an airfoil at constant angle of attack
with a variable streamvelocity, deriving an explicit formula for the lift
in the particular case of a pulsating stream, consisting of a constant
velocity plus a sinusoidal variation of any amplitude and frequency.
The work by Greenberg [15] extended that of Theodorsen [16] for
the unsteady lift force and moment on a pitching and heaving foil
in a uniform current by considering a pulsating stream, adding new
terms to Theodorsen’s lift and moment containing time derivatives
of the streamwise velocity. However, Greenberg did not consider the
thrust force, and, as we shall be see below, an additional frequency
term was missing in Greenberg’s lift and moment. Here we shall use
the linearized vortical impulse theory, already used in the pioneering
work by von Kármán and Sears [17], who reproduced Theodorsen’s
lift force and moment for a pitching and heaving foil in a uniform
stream. The impulse theory was generalized for an incompressible
flow byWu [18], and recently applied to obtain the thrust force gene-
rated by a pitching and heaving foil in a uniform stream in the linear
limit [19]. This vortical impulse theory is used here to obtain the two
components of the force and the moment exerted by a 2D sinusoidal
head-on stream on a pitching and heaving foil, recovering Green-
berg’s expressions for the lift and moment, but with additional terms,
and obtaining a new expression for the thrust force.We also include a
nonvanishing mean angle of attack in the formulation, to cover the
case of a steady foil in a streamwise pulsating freestream, and also
the effect of that mean angle of attack in the expressions for the
lift, moment, and thrust of a flapping foil, not included in previous
theoretical formulations.
The aerodynamic performance of a 2D airfoil in a streamwise

sinusoidal flow has been analyzed numerically by Lian and Shyy
[20,21] as a simple model to investigate the performance of stationary
and flapping wings under this particular class of gusty environments.
These authors found that flapping wings can alleviate the undesirable
gust effect on the lift force better than an otherwise identical stationary
foil for certain flapping kinematics. These numerical results are used
here to comparewith the theoretical results derived in the presentwork.
In summary, the novelty of the present work is to use the linearized

vortical impulse theory to derive general analytical expressions for
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the lift, thrust, and moment of a pitching and heaving thin airfoil with
a fluctuating cruising velocity. The lift and moment expressions
recover previous ones, but with new terms that are shown to be
quantitatively of small relevance in relation to all the other additional
terms relating to the freestream fluctuations. The main result is a new
general analytical expression for the thrust force, which is essential to
model properly the propulsive performance of animals or robotic
vehicles that use flappingwings or fins to propel themselves. Another
novelty of the present work not included in previous theoretical
formulations is the effect of a nonvanishing mean angle of attack in
the derived general expressions for the lift, thrust, and moment, thus
increasing their ranges of applicability. The problem is formulated in
the next section. General expressions for the lift, thrust, and moment
are derived in Sec. III, and their corresponding time averages are
given in Sec. IV. Comparison with published numerical results is
presented in Sec. V, concluding in Sec. VI with a brief summary and
scope of the results.

II. Formulation

We consider a 2D and slender rigid foil of chord length c under-
going harmonic pitching and heaving motions with circular fre-
quency ω and advancing in a fluid of density ρ with a horizontal
velocity that also oscillates harmonically, but now with a frequency
ω1, around a constant value Us. We use nondimensional quantities
scaledwith the half-chord length c∕2, the velocityUs, and the density
ρ. The nondimensional heaving and pitching motions, and the non-
dimensional velocity in the −x direction (see Fig. 1) are written,
respectively, as

h�t� � h0R
�
eikt

�
; α�t� � αs � α0R

�
ei�kt�ϕ��;

U�t� � 1� σR
�
ei�k1t�ϕ1�� (1)

whereR means real part;

k � ωc

2Us

and k1 �
ω1c

2Us

(2)

are the nondimensional, or reduced, frequencies; t is the nondimen-
sional time, scaled with c∕�2Us�; h0, α0, and σ are the nondimen-
sional amplitudes of the harmonic heaving, pitching, and horizontal
motions, respectively; and ϕ and ϕ1 are the phase shifts of these two
last motions in relation to the foil’s heave. Also added to the formu-
lation is a constant mean angle of attack αs.
We assume that the Reynolds number based on Us and c is large

enough and that h0 ≪ 1, jαsj ≪ 1, and α0 ≪ 1, so that the 2D linear,
potential flow theory can be applied. With the last assumptions, i.e.,
for jα�t�j ≪ 1, the foil approximately lies in the interval of the x axis
−1 ≤ x ≤ 1 in a reference framemovingwith it along the x direction.
The pivot axis is located at an arbitrary point x � a (see Fig. 1). The
amplitude σ ≡Uσ∕Us of the horizontal velocity oscillations will also
be assumed small (see Sec. III.C below for the exact assumption on
σ). In this reference frame, the nondimensional vertical displacement
and velocity of the foil are

zs�x; t� � h�t� − �x − a�α�t�; −1 ≤ x ≤ 1 (3)

v0�x; t� � −U�t�α�t� � _h�t� − �x − a� _α�t� (4)

respectively, where a dot denotes differentiation with respect to t.
Note that h and v0 are both positive upwards, while α is positive
clockwise.

III. Unsteady Lift, Thrust, and Moment

The vortical impulse theory of an incompressible and unbounded
flow [18,22,23] is used to obtain the forces andmoment on the foil. In
the linearized potential flow limit, the vorticity is concentrated at the
foil interface and the trailing wake, both considered as vortex sheets
along the plane z � 0. The expressions for the lift force and moment
from this formulation were first derived by von Kármán and Sears
[17], who reproduced previous results by Theodorsen [16] using a
more standard linear potential flow theory, while the thrust (or minus
the drag) force was derived using the vortical impulse theory in [19].
In dimensionless form they can be written as

CL�t� �
L�t�

�1∕2�ρU2
sc

� −
d

dt

�Z
1

−1
xϖs dx�

Z
∞

1

xϖe dx

�
(5)

CT�t� �
T�t�

�1∕2�ρU2
sc

� −
d

dt

�Z
1

−1
zsϖs dx�

Z
∞

1

zeϖe dx

�
(6)

CM�t� �
M�t�

�1∕2�ρU2
sc

2

� 1

4

d

dt

�Z
1

−1
�x − a�2ϖs dx�

Z
∞

1

�x − a�2ϖe dx

�
(7)

where L�t� and T�t� are the forces components (per unit span) in the
directions z and −x, respectively, and M�t� is the moment (per unit
span and positive when clockwise) in relation to the pitching axis
x � a. In the last expression it must be taken into account that
da∕dt � U�t� in a stationary reference frame with the fluid at rest
far from the foil. In these expressions, ϖs�x; t�, −1 ≤ x ≤ 1, is the
nondimensional vorticity density distribution on the foil; ϖe�x; t� is
the nondimensional vorticity density distribution in the trailingwake,
both scaled withUs; and ze�x; t� is the vertical position of each point
of the vortex wake. We consider the long-time behavior in which the
vortex wake sheet extends many chord lengths downstream of the
airfoil, so that, in first approximation, 1 ≤ x ≤ ∞ for both ϖe�x; t�
and ze�x; t�. As aforementioned, jzsj ≪ 1 and jzej ≪ 1.
Following von Kármán and Sears [17], the contribution from the

vortex-sheet wake to ϖs�x; t�, denoted by ϖ1, is separated from the
bound circulation ϖ0 that would produce the motion of the foil as if
the wake had no effect:

ϖs�x; t� � ϖ0�x; t� �ϖ1�x; t�; −1 ≤ x ≤ 1 (8)

with

Γ0�t� �
Z

1

−1
ϖ0�x; t� dx (9)

being the nondimensional circulation (scaledwithUsc∕2) that would
be obtained from the quasi-steady foil theory,without unsteadywake.
The details of the derivation of the vorticity distributionsϖ0,ϖ1, and
ϖe can be found in Ref. [17] (see also Refs. [19,24]). Just a summary
is given here to better appreciate the differences introduced by the
unsteady stream velocity U�t�.

A. Vorticity Distribution

The contribution ϖ1 from the unsteady planar wake ϖe, after
applying Kutta’s condition at the trailing edge x � 1, is (using the
dummy variable ξ for the integration [17])

ϖ1�x; t� �
1

π

Z
∞

1

������������
ξ� 1

ξ − 1

s ������������
1 − x

1� x

r
ϖe�ξ; t�
�ξ − x� dξ (10)Fig. 1 Schematic of the pitching and heaving foil (nondimensional

quantities).
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Kelvin’s total-circulation conservation theorem requires that

Γ0�t��Γ1�t��
Z

∞

1

ϖe�x; t�dx� 0; with

Γ1�t� �
Z

1

−1
ϖ1�x; t�dx�

Z
∞

1

0
@

�����������
ξ� 1

ξ− 1

s
− 1

1
Aϖe�ξ; t�dξ (11)

so that it constitutes a general relation between Γ0�t� and ϖe�x; t�:

Γ0�t� �
Z

∞

1

������������
ξ� 1

ξ − 1

s
ϖe�ξ; t� dξ � 0 (12)

The vorticity ϖ0 is obtained writing the velocity field induced by
the whole vorticity distribution, and imposing that the normal veloc-
ity on the foil (i.e., at z � 0, −1 ≤ x ≤ 1, in the present linear
approximation) is the vertical velocity (4). After applying Kutta’s
condition at the trailing edge to fix Γ0�t�, we obtain

ϖ0�x; t� �
1�������������

1 − x2
p

�
Γ0

π
� 2� _h� a _α −Uα�x� _α�1–2x2�

�
(13)

Γ0�t� � 2π

�
Uα − _h −

�
a −

1

2

�
_α

�
(14)

Once the vorticity distribution is known in terms of the foil motion
and ϖe�x; t�, which is related to Γ0�t� (and therefore to the foil
motion) through Eq. (12), general expressions can be obtained for
Eqs. (5–7), taking into account that the wake is convected down-
stream with velocity U�t� [17]:

ϖe�ξ; t� � ϖe�X�; ze�ξ; t� � ze�X�; with

X � ξ −
Z

t

ti

U�t� dt (15)

so that bothϖe and ze remain constant in a reference framewhere the
foil moves with velocityU�t�; i.e., the fluid at infinity is at rest. Thus,
for any function f�ξ� satisfying f�1� � 0,

d

dt

Z
∞

1

f�ξ�ϖe�X� dξ � U�t�
Z

∞

1

df�ξ�
dξ

ϖe�X� dξ (16)

This property is valid even for the present case where U depends
on time.

B. General Expressions for CL, CM, and CT

Starting with the lift coefficient, after substituting the above vor-
ticity distributions into Eq. (5), it can be written as a sum of three
terms:

CL�t� � CL0�t� � CL1�t� � CL2�t� (17)

with

CL0�t� � −U�t�
Z

∞

1

������������
ξ� 1

p �����������
ξ − 1

p ϖe�ξ; t� dξ � U�t�Γ0�t� (18)

CL1�t� � −
d

dt

Z
1

−1
xϖ0�x; t� dx � π� _Uα�U _α − �h − a �α� (19)

CL2�t� � U�t�
Z

∞

1

ϖe�ξ; t��������������
ξ2 − 1

p dξ (20)

It is observed that, in addition to the fact that now the velocityU�t� is
not constant (is not unity in dimensionless form), an additional term
related to its temporal derivative appears in the addedmass lift (19) in

relation to Theodorsen’s (or von Kármán and Sears’) lift coefficient.

This new term was already obtained by Greenberg [15] using Theo-

dorsen’s approach instead of von Kármán and Sears’ one used here.

Additional terms related to the temporal variation of U will appear

once thewakevorticityϖe is resolved below for the harmonicmotion

(1). But before that it is instructive to write down the general expres-

sions of CT�t� and CM�t� in terms ofϖe�x; t�, as just done for CL�t�.
FollowingwithCM�t�, substituting Eqs. (8), (10), and (12–14) into

Eq. (7), it can be written as

CM�t� � CM0�t� � CM1�t� � CM2�t� �
a

2
CL�t� (21)

where

CM0�t� �
1

2
U�t�

Z
1

−1
xϖ0�x; t� dx � 1

4
�UΓ0 − πU _α�

� π

2
U�Uα − _h − a_α� (22)

CM1�t� � −
1

4

d

dt

Z
1

−1

�
x2 −

1

2

�
ϖ0�x; t� dx � π

16
�α (23)

CM2�t� � −
1

4
U�t�

Z
∞

1

ϖe�ξ; t��������������
ξ2 − 1

p dξ � −
1

4
CL2�t� (24)

This expression is formally the same as that derived by Theodorsen,

except that now U depends on time (and, of course, the additional

term proportional to _U appearing in CL commented on above).
The derivation of the thrust CT�t� is a bit more complex because it

involves the vertical position of thewake ze [19]. Taking into account
the property (15), the position of the wake follows the successive

locations of the foil’s trailing edge in a reference framewhere the fluid

at infinity is at rest. Thus, on using Eq. (16),

d

dt

Z
∞

1

ze�x; t�ϖe�x; t� dx � U�t��h�t� − �1 − a�α�t��ϖe�x � 1; t�
(25)

whereϖe�x � 1; t� is thewakevorticity evaluated at the trailing edge
(x � 1) at any instant of time t. The other term in Eq. (6) can be

written as (for simplicity we do not write explicitly the dependencies

on t and/or x of the different variables)

d

dt

Z
1

−1
zsϖs dx � d

dt

�
�h� aα�

Z
1

−1
ϖ0 dx − α

Z
1

−1
xϖ0 dx

�

� d

dt

�
�h� aα�

Z
1

−1
ϖ1 dx − α

Z
1

−1
xϖ1 dx

�

� 	
_h� a _α



Γ0 � �h� aα� dΓ0

dt
− _α

Z
1

−1
xϖ0 dx

� αCL1 �
	
_h� a _α



Γ1 � �h� aα� dΓ1

dt

− _α

Z
1

−1
xϖ1 dx − α

d

dt

Z
1

−1
xϖ1 dx (26)

Taking into account that

dΓ1

dt
� −

dΓ0

dt
− Uϖe�x � 1; t�;Z

1

−1
xϖ1 dx �

Z
∞

1

� �������������
ξ2 − 1

p
− ξ

�
ϖe dξ (27)

d

dt

Z
1

−1
xϖ1 dx�U

Z
∞

1

ξ������������
ξ2−1

p ϖe dξ−U

Z
∞

1

ϖe dξ−Uϖe�x� 1; t�

(28)
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and the above expressions for Γ0, Γ1, and CL, the general expression

for CT can be written as

CT�t� � −α�t�CL�t� � CT1�t� � CT2�t� (29)

with

CT1�t� � _α

Z
1

−1
xϖ0 dx � π _α� _h� a_α −Uα� (30)

CT2�t� �
Z

∞

1

h
_h� a _α − αU� _α

� �������������
ξ2 − 1

p
− ξ

�i
ϖe dξ (31)

This expression formally coincides with that derived in Ref. [19], but

nowU depends on t, with an additional term proportional to _U inCL

mentioned above and with new terms in ϖe associated to the time

dependence ofU�t�, as discussed next for the harmonicmotion (1). It

is worth mentioning here that the expression for the added-mass term

CT1 in the right-hand side of Eq. (30), derived in Ref. [19], coincides

with that recently obtained by Limacher [25] for a thin airfoil, being

absent in the classical thrust expression by Garrick [26].

C. Expressions of CL, CM, and CT for the Harmonic Motion (1)

Substituting Eq. (1) into Eq. (14), Γ0�t� can be written as

Γ0�t� � 2πR

�
αs �

�
−ikh0 � α0e

iϕ −
�
a −

1

2

�
ikα0e

iϕ

�
eikt

� αsσe
iϕ1eik1t � 1

2
α0σe

i�ϕ�ϕ1�eik2t � 1

2
α0σe

i�ϕ−ϕ1�eik3t
�
;

k2 � k� k1; k3 � k − k1 (32)

where, in addition to the frequencies k and k1, two new frequencies k2
and k3 appear associated to the product term Uα. With this circu-

lation, Kelvin’s theorem (12) and the property (15) yield the wake

vorticity ϖe. It depends on the variable

X � ξ −
Z

t

ti

U�t� dt � ξ −
Z

t

ti

�1� σ cos�k1t� ϕ1�� dt

� ξ − t −
σ

k1
sin�k1t� ϕ1� � constant (33)

Since σ is assumed small, following Greenberg [15] we also assume

that

σ

k1
� 2Uσ

ω1c
≡ k−1σ ≪ 1 (34)

i.e., the reduced frequency associated to the frequency and amplitude

of the pulsating stream velocity, kσ , is very large, so that the wake’s

phase velocity in relation to the foil is basically that of the uniform

flow, X ≃ ξ − t� constant. Therefore, the wake vorticity can be

written as the sum of five terms, corresponding to the five different

dependencies with t of Γ0�t� in Eq. (32):

ϖe�ξ; t� � −2παsδ�ξ −∞� � geik�t−ξ� � g1e
ik1�t−ξ�

� g2e
ik2�t−ξ� � g3e

ik3�t−ξ� (35)

where the first term corresponds to the starting point vortex far from

the foil, δ being Dirac’s delta function, and the constants of the

following terms are given, according to Eqs. (12) and (32), by

g � −
2πf−ikh0 � α0e

iϕ − �a − �1∕2��ikα0eiϕgR∞
1

������������������������������ξ� 1∕ξ − 1�p
e−ikξ dξ

� 4f−ikh0 � α0e
iϕ − �a − �1∕2��ikα0eiϕg

iH�2�
0 �k� �H�2�

1 �k�
(36)

g1 � −
2παsσe

iϕR∞
1

������������������������������ξ� 1∕ξ − 1�p
e−ik1ξ dξ

� 4αsσe
iϕ

iH�2�
0 �k1� �H�2�

1 �k1�
(37)

g2 � −
πα0σe

i�ϕ�ϕ1�R
∞
1

������������������������������ξ� 1∕ξ − 1�p
e−ik2ξ dξ

� 2α0σe
i�ϕ�ϕ1�

iH�2�
0 �k2� �H�2�

1 �k2�
(38)

g3 � −
πα0σe

i�ϕ−ϕ1�R∞
1

������������������������������ξ� 1∕ξ − 1�p
e−ik3ξ dξ

� 2α0σe
i�ϕ−ϕ1�

iH�2�
0 �k3� �H�2�

1 �k3�
(39)

One has to take the real part of these expressions, where H�2�
n �z� �

Jn�z� − iYn�z�, n � 0; 1, are the Hankel functions of the second

kind, related to the Bessel functions of the first and second kind Jn
and Yn, respectively [27]. It must be noticed that in the Hankel

functions in g3 we actually use jk3j instead of k3, with ϕ − ϕ1 when

k3 > 0, and ϕ1 − ϕ when k3 < 0, in accordance with Eq. (32).
Substituting this wake vorticity into the general expressions for

CL�t�, CT�t�, and CM�t� of the above Sec. III.B, the following

expressions are obtained:

CL�t� � π� _Uα�U _α − �h − a �α� � 2πUαs

�UR�G0C�k�eikt �G01C�k1�eik1t �G02C�k2�eik2t
�G03C�k3�eik3t� (40)

CM�t��
π

2

�
a _Uα�

�
a−

1

2

�
U _α−

�
1

8
�a2

�
�α−a �h

�
�π

�
a�1

2

�
Uαs

�
�
a�1

2

�
U

2
R�G0C�k�eikt�G01C�k1�eik1t�G02C�k2�eik2t

�G03C�k3�eik3t� (41)

CT�t� � −αCL � π _α� _h� a _α −Uα� − � _h� a _α −Uα�2παs
− � _h� a _α −Uα�R

�
2i

π
G0C1�k�eikt �

2i

π
G01C1�k1�eik1t

� 2i

π
G02C1�k2�eik2t �

2i

π
G03C1�k3�eik3t

�

− _αR

�
G0

�
−

2

πk
�1� ik�C1�k� −

i

k
C�k�

�
eikt

�G01

�
−

2

πk1
�1� ik1�C1k1 −

i

k1
C�k1�

�
eik1t

�G02

�
−

2

πk2
�1� ik2�C1k2 −

i

k2
C�k2�

�
eik2t

�G03

�
−

2

πk3
�1� ik3�C1k3 −

i

k3
C�k3�

�
eik3t

�
(42)

where

C�z� ≡ F �z� � iG�z� � H�2�
1 �z�

iH�2�
0 �z� �H�2�

1 �z�
;

C1�z� ≡ F 1�z� � iG1�z� �
�1∕k�e−iz

iH�2�
0 �z� �H�2�

1 �z�
(43)

with C�z� the well-known Theodorsen function [16,26], now applied

to different reduced frequencies (z � k; k1; k2 or k3), and

G0 � 2π

�
−ikh0 � α0e

iϕ − ikα0e
iϕ

�
a −

1

2

��
(44)
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G01 � 2πσαse
iϕ1 ; G02 � πσα0e

i�ϕ�ϕ1�;

G03 � πσα0e
i�ϕ−ϕ1� (45)

taking into account the above comment on the signs of k3 andϕ − ϕ1

in C�k3� and G03. Clearly, expressions (40–42) coincide with the
previously known ones for a constant stream velocity [16,17,19] by
setting σ � 0 (i.e., U � 1 and G01 � G02 � G03 � 0), except for
the fact that we have also included the contributions from a nonzero
mean angle of attack αs, which appear in the above expressions just
after the corresponding added-mass terms. For a steady airfoil
(h0 � α0 � 0) in a uniform current (σ � 0) one obviously recovers
the classical expressions CL � 2παs, CM � �a� 1∕2�CL∕2, and
CT � 0.
The expressions for the lift and moment (40) and (41) basically

coincide with those obtained by Greenberg [15] from a different
approach within the linearized potential flow theory (following the
work by Theodorsen [16]), except for the terms with k3 in Eqs. (40)
and (41), i.e., the terms multiplied by G03, which are missing in
Greenberg’s expressions for the lift and moment. Probably, when
considering the products of pitching and pulsating-stream terms, this
author only considered the sumof frequencies, missing the frequency
difference terms. However, as shown in Fig. 2 for a representative
case of a pitching and heaving airfoil in a pulsating stream with σ �
0.2 that will be used below in the validation section, the differences in
the results when these k3 terms are neglected are quite small. On the
other hand, Greenberg did not obtain the thrust force, derived here
together with the lift andmoment, though the present work has single
frequency for pitching and heaving, whereas Greenberg had separate
frequencies for each.
The results for a uniform freestream (σ � 0), i.e., Theodorsen’s lift

and moment for the same pitching and heaving motion, are also
plotted in Fig. 2 (as well as in many figures in Sec. V below) to
emphasize the substantial effect that the oscillating freestream may
have on the aerodynamic forces and moment, not only on their
instantaneous values but also on their time averages. The contribu-
tions of the new k3 terms in CL and CM are negligible in comparison
in all the cases we have considered. In particular, in the example
plotted in Fig. 2, the maximum relative error in the instantaneous
values is about 9% forCL, with an average relative error of just 5% for
CL and slightly smaller for CM.
Another quantity of interest is the input power, or energy trans-

ferred from the fluid to the foil per unit time and unit span, which in
dimensionless form can be written as

CPi�t� � −CL�t� _h − 2CM�t� _α (46)

D. Stationary Airfoil in a Pulsating Stream

A relevant particular case of the above expressions is that of a
stationary airfoil with a (small) angle of attack αs immersed in the

pulsating stream U�t� defined in Eq. (1) (but now with ϕ1 � 0 since
there is no other harmonic motion). Remember that the present linear

potential flow theory is approximately valid for jαj ≪ 1, implying

that the results are approximately valid for jαsj ≪ 1, in the same sense

that 2παs is the approximate lift coefficient of a stationary airfoil in a

uniform freestream for small angle of attack αs. Setting α � αs,
h0 � 0, and α0 � 0 in Eqs. (40–42) and rearranging some terms,

the coefficients for a stationary airfoil in a pulsating stream can be

written as

CL�t� � π _Uαs � 2πUαs�1� σRfC�k1�eik1tg� (47)

CM�t� � πa
_U

2
αs � π

�
a� 1

2

�
Uαs�1� σRfC�k1�ek1tg� (48)

CT�t� � −π _Uα2s − 2σUα2sRf�πC�k1� − 2iC1�k1��eik1tg (49)

This problem was also considered by Isaacs [14] from the

linearized potential flow theory, but without assuming small var-

iations of the stream velocity, i.e., without the assumption (34),

and evaluating only the lift. In fact, Isaacs compared his general lift

expression with the simplest, quasi-steady one where the lift is

assumed proportional to the square of the unsteady stream veloc-

ity, showing with a particular example of interest in rotary wing

aircraft that the results are not very different. This case, which

corresponds to k1 � 0.0424 and σ � 0.4, is considered in Fig. 3,

comparing the present result (47) for CL (divided by the mean

0 0.2 0.4 0.6 0.8 1
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0.6

0.8
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1.4
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Present
Greenberg ([15])

=0

a)

0 0.2 0.4 0.6 0.8 1
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0.04
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0.1

0.12

0.14

0.16
Present
Greenberg ([15])

=0

b)

Fig. 2 CL�t� (a) and CM�t� (b) from Eqs. (40) and (41) compared with the same expressions without the k3 terms (Greenberg): h0 � 0.5, α0 � 8.42°,
ϕ � 90°, k � 0.25, αs � 8°, σ � 0.2, k1 � k∕10, and ϕ1 � −90°. Also plotted results for a uniform stream (σ � 0).

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
Present
Isaacs ([14]; exact)
Isaacs ([14]; approx.)

Fig. 3 CL�t� fromEq. (47) normalizedwith 2παs comparedwith Isaac’s

exact and approximate (U2) solutions [14] for σ � 0.4 and k1 � 0.0424.
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2παs) with both the exact and the approximate solutions given in
Isaacs’s final numerical example in Ref. [14]. Note that 2π∕k1 is
the nondimensional period of the pulsating stream. It is observed
that CL�t� from Eq. (47) is very close to Isaacs’s exact solution,
despite the fact that σ∕k1 is not small, significantly closer than
Isaacs’s approximate solution, which in the present notation is

just U2�t�.

IV. Time-Averaged Quantities

In many situations one is more interested in the above expressions
time-averaged. Since there are different frequencies involved, one
cannot average over just one of the periods. An alternative is to retain
only the nonperiodic terms in the expressions, which will coincide
with the time average over a cycle in pitching and heaving foils
in a uniform stream. The quantities thus obtained are denoted in
the expressions belowwith an overbar. Only the terms containing σ
and/or αs are written explicitly, using a subscript 0 to denote the
corresponding values in a uniform stream with αs � 0 (notice that
�CL0 � �CM0 � 0) [16,19,28].

�CL � 2παs

�
1� σ2

F �k1�
2

�
(50)

�CM � 1

2

�
a� 1

2

�
2παs

�
1� σ2

F �k1�
2

�
(51)

�CT � �CT0 − �σαs�2�πF�k1� � 2G1�k1��

−
�σα0�2

4
�πF �k2� � 2G1�k2� � πF�k3� � 2G1�k3�� (52)

�CPi � �CPi0 −
πkσ2h0α0

4
fsin�ϕ��F �k2� � F �k3�� � cos�ϕ��G�k2�

� G�k3��g −
�
a� 1

2

�
πkσ2α20

4
�G�k2� � G�k3�� (53)

Another quantity of interest is the (Froude) efficiency,

η �
�CPo

�CPi

(54)

where the nondimensional, time-averaged power output coeffi-

cient is (notice that �CPo0 � �CT0)

�CPo � �UCT

� �CT − πσ2α2sF�k1� − πσ2α20

�
F�k�
2

� F �k2�
4

� F �k3�
4

� kG�k�
2

�
a −

1

2

��
− 2σ2α2sG1�k1� − σ2α20G1�k�

−
πkσ2h0α0

2
�G�k� cosϕ − F�k� sinϕ� − kσ2h0α0

2
��F 1�k2�

� F 1�k3�� cosϕ − �G1�k2� � G1�k3�� sinϕ�

−
akσ2α20

2
�F 1�k2� � F 1�k3�� −

σ2α20
2

�G1�k2� � G1�k3��
� kσ2h0α0�F 1�k� cosϕ� G1�k� sinϕ�

� kσ2α20F 1�k�
�
a −

1

2

�
� kσ2α20

4

�
2F 1�k2� � 2F 1�k3�

� 2G1�k2�
k2

� 2G1�k3�
k3

� πF �k2�
k2

� πF �k3�
k3

�
(55)

It is remarkable that the pulsating flow has no effect on the time-
averaged coefficients for pure heave (α0 � 0) with αs � 0.

Some of the above time-averaged expressions are not valid when
k � k1, k1 � 2k, and k � 2k1. These special cases are summarized
in the Appendix.

V. Validation

As a validation of the above theoretical results we compare them
with the numerical results by Lian and Shyy [20,21]. These authors
considered the effect of a sinusoidal head-on gust U�t� like that
in Eq. (1) (with fluctuation amplitudes σ � 0.2 and 0.5 and seve-
ral values of k1 and ϕ1) on the aerodynamic performance of a

NACA0012 airfoil at Reynolds number 4 × 104, both for a stationary
airfoil with a given angle of attack αs [20] and for plunging and
pitching airfoils with several values of h0, α0, αs, k, and ϕ, and the
pitch axis located at quarter chord (a � −1∕2) [21]. The numerical
code and results were validated with experimental data by Anderson
et al. [29] for the case of a uniform flow. The main aim of the
numerical study by Lian [21] was to investigate the gust effect on
the aerodynamic performance of the flapping airfoil, with the objec-
tive of finding out the best kinematics conditions to alleviate this
effect and ensure a stable flight. Here, we use some of these numerical
results, both for a stationary and for a flapping airfoil with the
smallest pitch and heave amplitudes, to compare with the present
theoretical results for CL and CT . No comparison to Navier–Stokes
calculations of Lian and Shy corresponding to the highest ampli-
tudes reported by these authors are shown because in these cases
the leading and/or trailing edge separation, not considered in the
present potential flow method, becomes very important and, con-
sequently, the theory ceases to be valid and the agreement becomes
poorer.
Figure 4 shows the comparison of the present theoretical expres-

sions for CL and CT with Lian and Shyy’s numerical results for a
stationary NACA0012 airfoil [20], with and angle of attack αs � 4°

in a pulsating streamwith σ � 0.2, and k1 � 0.085.U2�t� is included
with a dashed red line in this figure and in the following ones because
it is a relevant reference for two reasons: it relates the plotted results to
the velocity magnitude of the pulsating oncoming flow, and it corre-
sponds to the quasi-static lift coefficient normalized with its time-
averaged value for a given αs. In the case of CT , we subtract a quasi-
static dragCD0 � 0.05 from the theoretical expression, as previously
done in some related comparisons of potential flow theory results
with numerical and experimental data [30,31]. This value is selected
from the numerical results by Senturk and Smits [32] for a Reynolds

number about 4 × 104. The same drag offset is used in the theoretical
CT in all the subsequent comparisons with the numerical results by
Lian [21] for a flapping foil with the same Reynolds number. It is
observed in Fig. 4 that the agreement between theoretical and
numerical results is quite good for bothCL�t� andCT�t� (the largest
relative errors are about 10% for CL�t� and 15% for CT�t�, and
the average relative errors are approximately 5% for CL and 7%
for CT).
Figure 5 compares the present results for CL�t� and CT�t� with

numerical ones by Lian [21] for a pitching and heaving NACA0012
airfoil with h0 � 0.5, α0 � 8.42°, ϕ � 90°, k � 0.25, and αs � 8°,
in a pulsating stream with σ � 0.2, k1 � k∕10, and ϕ1 � −90°
[notice that Lian uses sin�k1t� in the head-on gust instead of the
cos�k1t� ϕ1� in Eq. (1)]. One cycle of the pulsating stream is shown,
comprising 10 flapping cycles since k is 10 times k1. There is a good
agreement between the patterns of both sets of results, showing the

same undulatory pattern following U2�t� (also shown in the figure).
This pattern is quite different from the purely sinusoidal force histor-
ies in a uniform stream, also shown in Fig. 5 by setting σ � 0 in
Eqs. (40) and (42) with the same pitching and heaving parameters.
The instantaneous largest relative errors are not small [about 58% for
CL�t� and 98% forCT�t�], but the average relative errors over the gust
cycle are much smaller (about 17% forCL and 35% forCT). To better
appreciate this qualitative difference of the force histories for pulsat-
ing and uniform streams, Fig. 6 shows the corresponding time-
averaged histories of the temporal signals plotted in Fig. 5 by
computing the time averages every two flapping cycles, which are
plotted in the figure as five connected symbols for each case. For a
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uniform stream (not shown), all the symbolswould lie on a horizontal
straight line at y � 1 (note that the results are normalized with the
time-averaged over the complete gust cycle). The agreement is
remarkable between the numerical and theoretical time-averaged lift
histories [largest relative errors of about 6% for CL�t� and 22% for
CT�t�, and average relative errors of approximately 4% for CL and
14% for CT]. The agreement is apparently much better than in the

instantaneous results plotted in Fig. 5, probably an effect of dividing
by the overall time-averaged lift and thrust in each case. But this
normalization highlights the effect of the fluctuating velocity on the
aerodynamic forces, as done in the results plotted in Lian’s Fig. 8with
which we compare. Also noticeable is the strong effect of a pulsating
streamwith an amplitude of just σ � 0.2 on both thrust and lift over a
gust cycle, both following the freestream velocity pattern in this case.
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=0
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Fig. 5 CL�t� (a) and CT�t� (b) from Eqs. (40) and (42) compared with numerical results from Fig. 9 of Lian [21] for a NACA0012 airfoil with h0 � 0.5,
α0 � 8.42°,ϕ � 90°, k � 0.25, and αs � 8° in a streamwith σ � 0.2, k1 � k∕10, andϕ1 � −90°. Also plotted results for a uniform stream (σ � 0) andU2

for reference sake.
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Fig. 4 NormalizedCL�t� (a) and−CT�t� (b) fromEqs. (47) and (49) compared with numerical results from Fig. 20 of Lian and Shyy [20] for a stationary
NACA0012 airfoil with αs � 4°, σ � 0.2, and k1 � 0.085.
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Fig. 6 Normalized time-averaged force histories corresponding to the case plotted in Fig. 5. The averages are computed every two flapping cycles, with
circles corresponding to the present theoretical results and squares to Lian’s numerical results (from Fig. 8 in Ref. [21]).
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However, this is not always so, as shown in Fig. 7 for a different
flapping configuration [h0 � 0.75, α0 � 8.42°, ϕ � 75°, k � 0.63,
and αs � 0] in the same pulsating stream. In this case, the pattern of
the time-averaged thrust history shown in Fig. 7b is opposite to that of

U2, with a smaller amplitude of the time-averaged thrust during the
gust cycle than in the previous case, as it is more evident in the thrust
histories shown in Fig. 7a, where the casewith σ � 0 is also included.
The time-averaged thrust shows less variation along the gust cycle
compared to the case considered in Fig. 6, so that the gust effect of the
pulsating stream seems to be alleviated with this particular flapping
kinematics.
To show that the results remain accurate even for higher amplitudes

and frequencies of the pulsating stream, Fig. 8 compares time-
averaged lift and thrust histories for a given flapping kinematics in
a pulsating streamwith two amplitudes, σ � 0.2 and 0.5, and a lower
frequency, k1 � k∕20. The time averages are now computed every
four cycles, so that five points per gust cycle are shown in Fig. 8 in
each case, as in previous figureswith twice k1∕k. It is remarkable that
there is excellent agreement between theoretical and numerical lift,
which practically coincide for both values of σ (for both σ � 0.2 and
σ � 0.5, the largest relative errors are about 2% and themean relative
errors about 1%), undoubtedly due to the smaller heaving amplitude
in this case (h0 � 0.25), thus more according with the present linear
theory. Obviously, the variation along the gust cycle of the time-
averaged force histories increases with the gust amplitude σ, but there
are no significant differences in the comparison between theoretical
and numerical results, with a much better agreement for the lift than
for the thrust (the largest relative error for CT is about 24% for σ �
0.2 and 53% for σ � 0.5, while the mean relative errors are approx-
imately 16 and 39%, respectively). This is probably due to viscous

effects that have a larger influence on the forces in the streamwise
direction (due to the viscous drag) compared to the vertical (lift)
direction. But in both cases, theoretical and numerical results follow
the same pattern during the gust cycle. For σ � 0.5, the peaks of the
time-averaged lift and thrust histories during the gust cycle are about
twice their correspondingmeanvalues (notice that the results in Fig. 8
are normalized with the corresponding mean values along the com-
plete gust cycle).

VI. Conclusions

General expressions for the lift, thrust, and moment of a pitching
and heaving airfoil immersed in a pulsating freestream are derived
from linear potential flow theory using a vortical impulse formu-
lation. The results coincidewith previous ones by Greenberg [15] for
the lift and moment, derived from a more standard linearized poten-
tial flow theory, except for a new circulatory term missing in Green-
berg’s results, which we show is quantitatively unimportant. What is
more relevant is that we add here general expressions for the instanta-
neous and time-averaged thrust force and the corresponding propul-
sive efficiency.
The theoretical results are also compared with previous ones for a

stationary airfoil with a given angle of attack, and validated with
available numerical results by Lian and Shyy [20,21] for Reynolds
number 4 × 104, several pitching and heaving kinematics and differ-
ent amplitudes and frequencies of the pulsating stream, with pulsat-
ing flow frequencies 10 or more times larger than the flapping
frequency. A reasonably good agreement is found with these numeri-
cal results, especially for the smallest values of the pitch and heave
amplitudes considered by these authors, in accordance with the
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Fig. 7 Comparison between the normalizedCT�t� (a) and time-averagedCT (b) with numerical results from Fig. 11 of Lian [21] for a NACA0012 airfoil
with h0 � 0.75, α0 � 8.42°, ϕ � 75°, k � 0.63, and αs � 0 in a stream with σ � 0.2, k1 � k∕10, and ϕ1 � −90°.
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Fig. 8 Comparison between normalized time-averaged histories ofCL (a) andCT (b) (circles) with numerical results from Fig. 8 of Lian [21] (squares) for a

NACA0012 airfoil with h0 � 0.25, α0 � 8.42°, ϕ � 90°, k � 0.25, and αs � 8° in a stream with k1 � k∕20, ϕ1 � −90°, and two values of σ, as indicated.
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linearized character of the present theory. The agreement is much
better for the lift than for the thrust force, particularly for the time-
averaged history. This is a common feature with previous linearized
potential flow theories, for the viscous effects, not considered in these
theories, affects the thrust more than the lift. To palliate this, a
constant offset representing the viscous static drag is usually sub-
tracted from the theoretical thrust to present a more meaningful
comparison with measured or numerically computed data, as done
here, but which never substitutes accurately the actual, time-varying
viscous drag [9]. It is remarkable that the agreement with the numeri-
cal results remains good even for amplitudes of the pulsating stream
as large as 50% of the mean freestream velocity, where peaks of the
time-averaged lift and thrust over a flapping cycle may become about
twice the time-averaged lift and thrust over the complete pulsating
stream cycle. These strong unsteady effects in the aerodynamic forces
associated to the nonstationary freestream velocity, or, equivalently,
to the nonstationary cruising velocity of a self-propelled foil, may
have a large impact on the propulsive performance of a flapping foil.
Hence the convenience of using the expressions derived here, instead
of themore conventional ones obtained for a constant streamvelocity,
to model the self-propulsion by a small-amplitude flapping foil.

Appendix: Time-Averaged Coefficients for Special Cases

The time-averaged coefficients for some special (integer) combi-
nations between k and k1 for which the general expressions in Sec. IV
are not valid are summarized here. Only the coefficients that differ
from those in Sec. IV are written below.

A. k � k1

�CL � 2π

�
αs� σ2

F �k�
2

�
�πσα0 cos�ϕ−ϕ1��πkσh0�G�k�cos�ϕ1�

−F �k�sin�ϕ1���πσα0�F�k�cos�ϕ−ϕ1�−G�k�sin�ϕ−ϕ1��

�πkσα0�G�k�cos�ϕ−ϕ1��F�k�sin�ϕ−ϕ1��
�
a−

1

2

�
(A1)

�CT � �CT0 − �σαs�2�πF �k� � 2G1�k�� � 4kσαsh0G1�k� sin�ϕ1�

−
�σα0�2

2

�
π

2
F �2k� � G1�2k�

�
−
πkσαsα0

2
sin�ϕ1 − ϕ�

− πσαsα0�F�k� cos�ϕ1 − ϕ� � G�k� sin�ϕ1 − ϕ��

− πkσαsα0�G�k� cos�ϕ1 − ϕ� − F �k� sin�ϕ1 − ϕ��
�
a −

1

2

�
� 2σαsα0�F 1�k� sin�ϕ1 − ϕ� − G1�k� cos�ϕ1 − ϕ��
� kσαsα0�F 1�k� cos�ϕ1 − ϕ� � �4a − 3�G1�k� sin�ϕ1 − ϕ��

(A2)

B. k � 2k1

�CL � 2π

�
αs � σ2

F�k�
2

�
� πσ2α0

2
�F�k1� cos�ϕ − 2ϕ1�

− G�k1� sin�ϕ − 2ϕ1�� (A3)

�CT � �CT0 − �σαs�2�2G1�k1� � πF�k1��

−
�σα0�2

2

�
π

2
F �3k1� �

π

2
F �k1� � G1�3k1� � G1�k1�

�

−2σ2αsα0
�
π

2
F �k1� � G�k1�

�
cos�ϕ − 2ϕ1� (A4)

C. 2k � k1

�CT � �CT0 −
�σα0�2

2

�
π

2
F�3k1� �

π

2
F�k1� � G1�3k1� � G1�k1�

�
− �σαs�2�2G1�k1� � πF�k1��

� kσh0α0


�
2F 1�k� −

π

2
G�k�

�
cos�ϕ1 − ϕ�

−
�
π

2
F �k� � 2G1�k�

�
sin�ϕ1 − ϕ�

�

� σα20


�
πk

4
� 3π

2
G�k� − 3F 1�k� −

π

2
kF�k�

�
a −

1

2

�

− kG1�k�
�
2a −

3

2

��
sin�ϕ1 − 2ϕ�

�
�
−
3π

2
F �k� − 3G1�k� −

π

2
kG�k�

�
a −

1

2

�

� kF 1�k�
�
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3

2
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cos�ϕ1 − 2ϕ�

�
(A5)
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