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Abstra
tThe optimization of air
raft traje
tories using the theory of singular optimal 
ontrol is stud-ied in this thesis. To des
ribe the air
raft motion, a general nonlinear 3-degree-of-freedompoint-mass model is adopted, along with realisti
 aerodynami
 and propulsion models. The
ontrolled motion of an air
raft is modeled as a 
ontrol system whose performan
e 
an beoptimized a

ording to some performan
e index. This 
ontrol system exhibits di�erent dy-nami
s, 
onstraints and performan
e indi
es depending on the �ight phase 
onsidered, whi
hleads to a multiphase 
ontrol system formulation.An indire
t optimization method is applied, in whi
h ne
essary 
onditions for optimalityare expli
itly involved into the problem resolution. The method proposed in this thesisexploits the singular 
hara
ter of the problem in order to provide analyti
al state-feedba
k
ontrol laws. With this approa
h, assuming a pres
ribed solution stru
ture in terms of phasesequen
e and sequen
e of singular and bang ar
s within ea
h phase, the problem of �ndingthe optimal 
ontrol is transformed into the problem of �nding the values of some unknownssu
h that the ne
essary 
onditions for optimality as well as the initial and �nal 
onditionsare satis�ed, that is, the problem of solving a nonlinear system of equations.Optimizing global traje
tories implies not only addressing ea
h �ight phase, but alsotaking into a

ount the intera
tions among them as well as looking for a global obje
tive.Therefore, an optimal global traje
tory 
annot be obtained by simply pie
ing individuallyoptimized phases together, not even when ea
h phase is optimized with a performan
e indexsuitable for a global obje
tive. However, by 
hoosing appropriate performan
e indi
es, 
on-
lusions regarding the optimal 
ontrol and optimal path stru
ture for a single-phase optimaltraje
tory also apply at ea
h phase of an optimal multiphase traje
tory. As a 
onsequen
e,prior to applying this approa
h to the problem of multiphase traje
tories of 
ommer
ial trans-port air
raft providing minimum fuel 
onsumption, this approa
h is applied to three auxiliarysingle-phase problems.First, the problem of fuel-optimal �xed-rating air
raft 
limb in the presen
e of altitude-dependent winds is analyzed. The 
limb is optimized to give minimum 
ontribution to theglobal-traje
tory fuel 
onsumption. The optimal 
ontrol is of the bang-singular-bang type,and the optimal traje
tories are formed by a singular ar
 and two minimum-path-angle ar
sjoining the singular ar
 with the given initial and �nal points. This analysis is used to assessthe optimality of a standard 
limb pro
edure de�ned by segments with 
onstant 
alibratedair speed and Ma
h number. Linear wind pro�les de�ned by two parameters, the averagewind and the wind shear, are 
onsidered. The e�e
ts of the wind pro�le and of the initialair
raft weight on the results are studied. Comparison with the optimal results shows thatthe performan
e of the optimized standard 
limb, in terms of global variables su
h as fuelxi



Abstra
t
onsumption, �ight time and horizontal distan
e travelled, is very 
lose to optimal.Se
ond, minimum-fuel 
ruise at 
onstant altitude with the 
onstraint of a �xed arrivaltime is analyzed, in
luding the e�e
ts of average horizontal winds. Again, the optimal 
ontrolis of the bang-singular-bang type, and the optimal traje
tories are formed by a singular ar
and two minimum/maximum-thrust ar
s joining the singular ar
 with the given initial and�nal points. The e�e
ts of average horizontal winds on the optimal results are analyzed,both qualitatively and quantitatively. The in�uen
e of the initial air
raft weight and thegiven 
ruise altitude is analyzed as well. Two appli
ations are studied: �rst, the 
ost ofmeeting the given arrival time under mismodeled winds, and se
ond, the 
ost of �ight delaysimposed on a nominal optimal path. The optimal results are used to assess the optimality of
ruising at 
onstant speed; the results show that the standard 
onstant-Ma
h 
ruise is very
lose to optimal.Third, unpowered des
ents of 
ommer
ial transport air
raft are optimized in the presen
eof altitude-dependent winds, with the obje
tive of maximizing range. The optimal problemand an optimized 
onstant-
alibrated-airspeed pro
edure are analyzed. The optimal 
ontrol isof the bang-singular-bang type, and the optimal traje
tories are formed by a singular ar
 andtwo maximum-path-angle ar
s joining the singular ar
 with the given initial and �nal points.Linear wind pro�les de�ned by two parameters, the average wind and the wind shear, are
onsidered. The e�e
ts of both the average wind and the wind shear on the optimal results,as well as the e�e
ts of the air
raft weight, are analyzed. The wind shear is shown to havea 
lear e�e
t on the maximum range. The 
omparison between the two sets of results showsthat the optimized 
onstant-
alibrated-airspeed des
ent is very 
lose to optimal.On
e the auxiliary single-phase problems are solved, the problem of global traje
toriesof 
ommer
ial transport air
raft providing minimum fuel 
onsumption is analyzed. Theglobal traje
tories are 
onsidered to be 
omposed of three types of phases: 
limb, 
ruise,and unpowered des
ent. The optimal 
ontrol in every phase is of the bang-singular-bangtype, and the optimal 
limb, 
ruise and des
ent traje
tories are formed by a singular ar
and two minimum/maximum-
ontrol ar
s joining the singular ar
 with the given initial and�nal points. The optimal traje
tories and 
ontrols, the minimum fuel 
onsumption and someinteresting global results are 
omputed for an air
raft performing a 
limb-
ruise-
limb-
ruise-des
ent traje
tory. Linear wind pro�les de�ned by two parameters, the average wind and thewind shear, are 
onsidered. The in�uen
e of the air
raft weight and the wind pro�le on theresults is analyzed.
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1 Introdu
tion
1.1 MotivationAviation industry plays a key role in the so
ial and e
onomi
 development of Nations, apartfrom being itself an indi
ator of the level of that development. A snapshot of air transportse
tor in 2010 reveals that it supports 56.6 million jobs worldwide and 3.5% of global grossdomesti
 produ
t (GDP) 1. Both �gures take into a

ount dire
t, indire
t, indu
ed andtourism-
atalyti
 impa
ts, but do not in
lude other e
onomi
 bene�ts like the existen
e of
ompanies or industries be
ause air travel makes them possible.Despite the global e
onomi
 
risis, air transport industry has not stopped growing. In2011, more than 2800 million passenger �ew, whi
h 
ompared to 1800 million passengers in2003 implies an average, sustained rate of in
rease of 5.7% per year 2. Also in 2011, airlinesall over the world spent $176000 million in fuel, four times what they spent in 2003 ($44000million)3. Moreover, fuel relative impa
t on airlines operating 
osts has also experien
ed adramati
 in
rease, raising from 14% in 2003 to 28% in 2011. Hen
e, it is in
reasingly impor-tant for airlines to implement measures to improve e�
ien
y in fuel 
onsumption, not only forthe positive impa
t on 
ompanies' in
ome statements but also to redu
e the environmentalimpa
t. In fa
t, air transport industry is 
ommitted to redu
e the environmental impa
t,even though airline operations only a

ounts for the 2% of the total human CO2 emissions.The aviation industry agreed in 2008 upon a set of aggressive targets with the afore-mentioned two in
entives: Redu
ing 
harbon dioxide emissions, and redu
ing operating 
ostsasso
iated to the largest budget line in relative terms4. Thus, in this industry it is broadlya

epted that the following targets have to be sequentially satis�ed:1. To improve �eet fuel e�
ien
y by 1.5% per year between 2009 and 2020.2. To stabilize net CO2 emissions from aviation from 2020 through 
arbon-neutral growth.3. To redu
e net CO2 emissions from aviation by half by 2050, as 
ompared with 2005.1Sour
e: Air Transport A
tion Group (ATAG),http://www.aviationbenefitsbeyondborders.org2Sour
e: International Air Transport Asso
iation (IATA),http://www.iata.org/whatwedo/Do
uments/e
onomi
s/Industry-Outlook-Presentation-De
2012.pdf3Sour
e: International Air Transport Asso
iation (IATA),http://www.iata.org/pressroom/fa
ts_figures/fa
t_sheets/Do
uments/fuel-fa
t-sheet.pdf4Sour
e: Air Transport A
tion Group (ATAG),http://www.atag.org/
omponent/downloads/downloads/201.html 1

http://www.aviationbenefitsbeyondborders.org
http://www.iata.org/whatwedo/Documents/economics/Industry-Outlook-Presentation-Dec2012.pdf
http://www.iata.org/pressroom/facts_figures/fact_sheets/Documents/fuel-fact-sheet.pdf
http://www.atag.org/component/downloads/downloads/201.html


1. Introdu
tionIn order to a
hieve these targets, 
ompanies a
ross the se
tor make use of a four-pillarstrategy: new te
hnology, e�
ient operations, improved infrastru
ture and e
onomi
 mea-sures to �ll the remaining emissions gap. In this 
ontext, air
raft traje
tory optimization aswell as optimality assessment of standard �ight pro
edures are important tools to improvethe e�
ien
y of operations.The parti
ipation of Spain in the modernization of the air navigation systems is mainly
arried out by its parti
ipation in SESAR, but also national proje
ts are promoted as, for ex-ample, the proje
ts CENIT ATLANTIDA (Appli
ation of Leading Te
hnologies to UnmannedAerial Vehi
les for Resear
h and Development in ATM ) and CENIT SINTONIA (SIstemasNo Tripulados Orientados al Nulo Impa
to Ambiental). The �rst develops innovative 
on-
epts for the automation in air-tra�
 management, testing them in high-�delity simulationsand experiments based on the use of UAVs (Unmanned Air Vehi
les); whereas the se
ondtries to in
rease the e�
ien
y and to redu
e the environmental impa
t of UAVs through theintrodu
tion of improvements in the whole life 
y
le, in
luding the generation of optimaltraje
tories.Sin
e 2005, the Department of Aerospa
e Engineering and Fluid Me
hani
s has 
ondu
tedseveral studies in the �elds of traje
tory predi
tion and optimization. In this 
ontext, theAerospa
e Engineering Group has parti
ipated in the following proje
ts: IMPACT (Advan
edMulti-Purpose Infrastru
ture for Traje
tory Computation), funded by Boeing Resear
h andTe
hnology Europe, for the development of traje
tory 
al
ulators; CENIT ATLANTIDA, forthe development of 
on�i
t resolution algorithms in arrival air tra�
 in the terminal ma-neuvering area; CENIT SINTONIA, for the development of an automati
 optimal-traje
torygenerator for UAVs; and, nowadays, the group is the s
ienti�
 leader of the ComplexWorldnetwork established within the framework of SESAR, for the understanding and modeling ofthe behavior and evolution of the air-tra�
 management system.The thesis presented in this do
ument is the result of resear
h in air
raft traje
toryoptimization. In the next se
tion, the main obje
tive of the thesis is des
ribed.1.2 Obje
tiveThe main goal of this thesis is to study the optimization of global multiphase air
raft tra-je
tories 
omposed of 
limb, 
ruise and des
ent phases, by using the singular optimal 
ontroltheory (see Bell and Ja
obson [4℄). With this approa
h, 
ontrol variables do not take a 
on-stant value (as in parametri
 optimization) but vary along time. To solve the singular 
ontrolproblem, an indire
t method is proposed, in whi
h ne
essary 
onditions for optimality (ad-joint dynami
 equations, transversality 
onditions and Hamiltonian minimization 
ondition)are expli
itly used to obtain the optimal traje
tory, i.e., the optimal 
ontrol time fun
tion(or the optimal 
ontrol feedba
k law) and the asso
iate evolution of the states that optimizesome property derived from the traje
tory (e.g., fuel 
onsumption, �ight time, range, et
.).Optimizing global multiphase air
raft traje
tories implies not only addressing ea
h �ightphase, but also taking into a

ount the intera
tions among them as well as looking for aglobal obje
tive. Nevertheless, it is 
onvenient to previously solve some related single-phaseproblems (optimal 
limb, optimal 
ruise and optimal des
ent), not only be
ause they areinteresting per se, but also be
ause their resolution provides some valuable insight into the2



1.2. Obje
tiveoptimization of global multiphase air
raft traje
tories (they a
t as auxiliary problems). Infa
t, as it will be seen latter, the optimal 
ontrol and optimal path stru
ture for an optimalsingle-phase air
raft traje
tory also apply at ea
h phase of an optimal multiphase air
rafttraje
tory.Therefore, some intermediate goals of this thesis 
an be pointed out:� General formulation of multiphase air
raft traje
tory optimization problem as a singularoptimal 
ontrol problem.� Optimization of the �xed-rating air
raft 
limb in the presen
e of altitude-dependentwinds.� Optimization of the 
ruise at 
onstant altitude with the 
onstraint of a �xed arrivaltime and in the presen
e of an average uniform wind.� Optimization of the unpowered des
ent in the presen
e of altitude-dependent winds.� Optimality assessment of standard �ight pro
edures 
ommonly used in pra
ti
e, su
has CAS/Ma
h 
limbs, 
onstant-Ma
h 
ruises and Ma
h/CAS des
ents.� Study of the e�e
ts of some fa
tors, su
h as wind speed distribution or the initial air
raftweight, on the optimal traje
tories.After having solved the three aforementioned auxiliary problems, the optimization ap-proa
h is applied to the study of minimum-fuel global traje
tories in the presen
e of altitude-dependent winds, where the e�e
ts of the wind pro�le and of the initial air
raft weight onthe results are analyzed as well.The employed optimization approa
h features the following advantages:1. It provides analyti
al state-feedba
k 
ontrol laws, allowing for an easy implementation.2. It leads to more a

urate results than those obtained by dire
t traje
tory optimizationmethods.3. It allows for generating traje
tories with the best performan
e whi
h, although thesemay not be �yable a

ording to present-day air-tra�
-
ontrol pro
edures and regula-tions, they 
an be used either as referen
es to the design of improved �ight pro
edures,or to assess the optimality of standard �ight pro
edures 
ommonly used in pra
ti
e,su
h as CAS/Ma
h 
limbs, 
onstant-Ma
h 
ruises and Ma
h/CAS des
ents.To des
ribe the air
raft motion, a general nonlinear 3-degree-of-freedom point-mass model,along with realisti
 aerodynami
 and propulsion models, is adopted. This model is 
ommonlyused for traje
tory predi
tion. Plane Earth, rigid and symmetri
 air
raft, symmetri
 �ight(there is no slip), and thrust parallel to the air
raft aerodynami
 velo
ity are 
onsidered ashypothesis. These assumptions are appropriate for subsoni
, transport air
raft. 3



1. Introdu
tion1.3 OutlineThis thesis is organized as follows.In Chapter 2, after a brief overview of referen
es in optimal 
ontrol theory (in
luding thespe
ial 
ases of singular optimal 
ontrol problems and swit
hed dynami
al systems), a reviewof the state of the art in numeri
al methods for traje
tory optimization as well as in air
rafttraje
tory optimization is presented.In Chapter 3 the formulation of an optimal 
ontrol problem is �rst presented, in
ludingthe ne
essary 
onditions for optimality and analyzing the spe
ial 
ases of singular optimal
ontrol problems and 
ontrol problems of swit
hed 
ontrol systems; se
ond, the equationsgoverning the motion of an air
raft under appropriate assumptions are in
luded; and third,the pro
edure to 
ompute optimal air
raft traje
tories developed in this thesis is explained.In Chapter 4 the optimal 
ontrol formulation is applied to the optimization of a �xed-rating 
limb in the presen
e of altitude-dependent winds, with the obje
tive to give minimum
ontribution to the global-traje
tory fuel 
onsumption.In Chapter 5 the formulation is used to analyze the minimum-fuel 
ruise at 
onstantaltitude with the 
onstraint of a �xed arrival time, in
luding the e�e
ts of average horizontalwinds.In Chapter 6 the formulation is applied to the analysis of the maximum-range unpowereddes
ent in the presen
e of altitude-dependent winds.In Chapter 7 the problem of minimum-fuel global traje
tories in the presen
e of altitude-dependent winds is analyzed by means of the previously developed formulation.Finally, some 
on
lusions are presented in Chapter 8, and the future lines of resear
h aredrawn in Chapter 9.The nomen
lature and the supplementary models used throughout this do
ument arein
luded in Appendi
es A and B, respe
tively. The fun
tions whi
h des
ribe the optimalsingular 
ontrol during 
limb are de�ned in Appendix C. The optimized standard 
limb anddes
ent pro
edures are in
luded in Appendix D.

4



2 Literature ReviewDi�erent 
lassi�
ations of optimization problems 
an be 
onsidered. Biegler and Gross-mann [8℄ propose a possible 
lassi�
ation attending to the nature of the de
ision variables.In this sense, there are parametri
 optimization problems, 
ommonly referred to as program-ming problems (in whi
h ea
h variable 
an only have a single value from a given set), optimal
ontrol problems, 
ommonly referred to as traje
tory optimization problems (whi
h usually
orrespond to dynami
 systems in whi
h the de
ision variables are fun
tions of the inde-pendent variable, for instan
e, time), and sto
hasti
 optimization problems (in whi
h thevariables are de�ned by probability fun
tions). Air
raft traje
tory optimization 
an be 
on-sidered as an optimal 
ontrol problem in whi
h the 
ontrol variables are time varying. Asa 
onsequen
e, the present thesis is not addressing parametri
 nor sto
hasti
 optimizationproblems.In this 
hapter, an overview of referen
es in optimal 
ontrol theory is �rst addressed,in
luding works related to singular optimal 
ontrol problems and optimal 
ontrol for swit
hed
ontrol systems. Then, a review of the state of the art in numeri
al methods for traje
toryoptimization is in
luded. Finally, a review in air
raft traje
tory optimization is presented.2.1 Optimal ControlMany authors agree on 
onsidering the optimal 
ontrol as an extension of the 
al
ulus ofvariations, among whi
h Sussman and Willems [72℄ and Bryson [16℄, both 
iting the work ofGoldstine [35℄, regarding the history of the 
al
ulus of variations from its beginnings to theChi
ago s
hool in the early 20th 
entury.Sussman and Willems [72℄ address the histori
al evolution of the optimal 
ontrol fromwhat they 
onsider its origin: the publi
ation of the solution to the Bra
histo
hrone problemin 1697 by Johann Bernoulli. They defend that the early 
ontributions of Leibniz, Ja
obBernoulli, Ts
hirnhaus, L'H�pital and Newton paved the way for the optimal 
ontrol to beborn. They also remark, �rst, the key role performed by Euler, Lagrange and Legendre insetting up the 
lassi
al theory of the 
al
ulus of variations; se
ond, the advantages behindthe reformulation proposed by Hamilton; third, the important advan
es made by Wierstrass;and �nally, the formal appearan
e of the optimal 
ontrol, thanks to the statement of theMaximum Prin
iple by Pontryagin and his group.Bryson [16℄ addresses optimal 
ontrol developments from 1950 to 1985. He points out thatoptimal 
ontrol has also roots in some other s
ienti�
 �elds (not only 
al
ulus of variations),su
h as 
lassi
al 
ontrol theory, random pro
esses theory and parametri
 optimization theory5



2. Literature Review(linear and nonlinear programming).There exist plenty of books addressing optimal 
ontrol theory, from whi
h one 
an standout those from Athans and Falb [2℄, Bryson and Ho [15℄, Leitmann [41℄, Ben-Asher [6℄, Speyerand Ja
obson [71℄, and Clarke [24℄.2.1.1 Singular Optimal ControlFollowing the de�nition from Ben-Asher [6℄, singular optimal 
ontrol problems are a sub
lassof optimal 
ontrol problems in whi
h the Hamiltonian minimization 
ondition (see Chapter3) does not yield a de�nite value for the 
ontrol. This type of problems arises, in parti
ular,when the Hamiltonian is linear on the 
ontrol variable. Bell and Ja
obson [4℄ give insightinto the theory of singular optimal 
ontrol, addressing ne
essary 
onditions for optimality ofthis type of problems.Singular optimal 
ontrol theory has been used, among other works, to analyze maximum-range 
ruise at 
onstant altitude (Pargett and Ardema [51℄ and Rivas and Valenzuela [55℄),minimum fuel 
ruise at 
onstant altitude with �xed arrival time (Fran
o et al. [30℄ and Fran
oet al. [33℄, the latter in the presen
e of a 
onstant wind), minimum-
ost 
ruise in
luding boththe DOC and the arrival-error 
ost asso
iated to not meeting the s
heduled time of arrival(Fran
o and Rivas [31℄), maximum-range unpowered des
ents in the presen
e of altitudedependent winds (Fran
o et al. [32℄) and fuel-optimal �xed-rating 
limbs in the presen
e ofaltitude dependent winds (Fran
o et al. [34℄).2.1.2 Optimal Control for Swit
hed Dynami
al SystemsIn this work the theory of optimal 
ontrol for swit
hed dynami
al systems is applied. Optimal
ontrol problems of swit
hed dynami
al systems are 
ontained into a broader 
lass of problems
alled hybrid optimal 
ontrol problems. Brani
ky et al. [12℄ propose a very general frameworkthat systematizes the notion of a hybrid system. They introdu
e a mathemati
al modelof hybrid systems as intera
ting 
olle
tions of dynami
al systems, evolving on 
ontinuous-variable state spa
es and subje
t to 
ontinuous 
ontrols and dis
rete transitions. Hybridsystems 
an be seen as a generalization of the 
on
ept of multipro
esses, previously statedby Clarke and Vinter [23℄.Numerous authors (among whi
h Sussmann [73℄, Riedinger et al. [54℄, Caines et al. [19℄,and Shaikh and Caines [62℄), have developed ne
essary 
onditions for optimality, in the formof a maximum prin
iple for hybrid optimal 
ontrol problems. They address di�erent 
asessu
h as �xed and variable time interval problems ([73, 54℄), and with and without pathwisestate 
onstraints ([19℄). Shaikh and Caines [62℄ also present algorithms for hybrid systemsoptimization. Dimitruk and Kaganovi
h [27℄ state that results in Sussmann [73℄ (and, byextension, the maximum prin
iple for hybrid optimal 
ontrol) 
annot be re
ognized as a newindependent result, but as a dire
t appli
ation of the original Pontryagin maximum prin
ipleto an appropriately transformed problem.As Xu and Antsaklis [83℄ pointed out, the feature distinguishing a swit
hed system froma general hybrid system is that its 
ontinuous state does not exhibit jumps at the swit
hinginstants. Su
h a feature makes the 
omputation of 
ontinuous inputs amenable via the6



2.2. Numeri
al Methods for Traje
tory Optimizationusage of 
onventional optimal 
ontrol methods, su
h as those methods developed for singularoptimal 
ontrol problems.2.2 Numeri
al Methods for Traje
tory OptimizationThere exist several te
hniques for numeri
ally solving traje
tory optimization problems. A
-
ording to numerous authors (Von Stryk and Bulirs
h [80℄, Betts [7℄ and Rao [53℄, amongmany others) the methods most widely used today 
an be 
lassi�ed into two broad 
ategories,indire
t methods and dire
t methods depending on whether or not they expli
itly 
onsiderthe ne
essary 
onditions for optimality. Dire
t and indire
t methods 
an also be 
lassi�edinto shooting methods and trans
ription methods (also 
alled 
ollo
ation methods). On onehand, shooting methods are 
hara
terized by performing an initial value problem (IVP) atea
h iteration step and by de�ning, as de
ision variables, those needed to perform that IVP.On the other hand, trans
ription or 
ollo
ation methods de�ne, as de
ision variables, thevalues of 
ontinuous variables (state, 
ontrol and, eventually, adjoints) at some time instants
alled nodes, approximate these 
ontinuous variables by a pie
ewise 
ontinuous interpolantpolynomial and enfor
e the satisfa
tion of the di�erential equations at some points betweenea
h pair of 
ontiguous nodes.Some other methods su
h as those based on dynami
 programming and dire
t sear
hhave been also developed, although these are generally not 
omputationally 
ompetitive withdire
t and indire
t methods. Betts [7℄ provides an ex
ellent survey of numeri
al methodsfor traje
tory optimization, fo
using on dire
t and indire
t methods, and in
luding pra
ti
alexamples and main issues of them. Some remarkable aspe
ts of the resear
h therein arehighlighted in the se
tions below.2.2.1 Dire
t MethodsDire
t methods do not require an analyti
al expression for the ne
essary 
onditions for opti-mality and, hen
e, do not involve de�nitions of adjoint variables as well as initial guesses forthem. Instead, the dynami
 variables (state and 
ontrol) are adjusted to dire
tly optimizethe obje
tive fun
tion. All dire
t methods introdu
e some parametri
 representation for the
ontrol variables (and, possibly, for the sate variables). Hen
e, the original optimal 
ontrolproblem, whi
h 
an be seen as an in�nite dimensional optimization problem, is transformedinto a �nite dimensional optimization problem, whi
h in general is a nonlinear programming(NLP) problem.For simple shooting, the 
ontrol variables are de�ned by a relatively small number ofNLP variables. For dire
t multiple shooting and dire
t trans
ription methods the numberof NLP variables used to des
ribe the 
ontrol in
reases, ultimately in
luding values at ea
hmesh point of the integration interval.Advantages and disadvantages of dire
t methods are the disadvantages and advantages,respe
tively, of the indire
t methods explained in the following se
tion. 7



2. Literature Review2.2.2 Indire
t MethodsIndire
t methods are 
hara
terized by expli
itly 
onsidering the ne
essary 
onditions foroptimality, whi
h are stated in terms of the adjoint di�erential equations, the MaximumPrin
iple, and the transversality 
onditions. Hen
e, the dynami
 variables (state and 
ontrol)are adjusted to satisfy optimality 
onditions instead of to dire
tly optimize the obje
tivefun
tion. In general, and depending on the optimal 
ontrol problem, the indire
t approa
h
an lead to stating a nonlinear two-point or multipoint boundary value problem, whi
h 
an besolved by a simple shooting, a multiple shooting or a trans
ription method. Hen
e, to solvethe original optimal 
ontrol problem it is ne
essary to solve a system of nonlinear equations.On one hand, there are three main disadvantages of using indire
t methods.First, in order to implement an indire
t method it is ne
essary to previously derive analyti
expressions for the ne
essary 
onditions of optimality. This 
an be di�
ult to perform andautomatize, spe
ially when nonlinear systems with 
ompli
ated dynami
s or 
onstraints are
onsidered.Se
ond, when indire
t methods are applied to problems with path inequalities or to singu-lar optimal 
ontrol problems one has to impose the sequen
e of 
onstrained and un
onstrainedsubar
s or the sequen
e of bang and singular ar
s. Spe
ial intuition regarding the parti
ularproblem being solved (for instan
e, based on previous pie
es of resear
h or on the results formapplying a dire
t method) is ne
essary, be
ause the solution stru
ture is a priori unknown,in general.Third, the resolution of optimal 
ontrol problem by means of an indire
t method implies,as previously mentioned, solving a system of nonlinear equations with, in most 
ases, poor
onvergen
e properties. The region of 
onvergen
e is very small, spe
ially when it is ne
-essary to guess values for the adjoints variables, whi
h may not have an obvious physi
alinterpretation and whose dynami
s exhibits an unstable behavior.On the other hand, there is an important advantage of using indire
t methods: thea

ura
y of the solution is higher than with dire
t methods. In fa
t, sin
e the solutionstru
ture is dire
tly involved in the method, dis
ontinuities in the 
ontrol fun
tion at jun
tionpoints (when entering or leaving a path 
onstraint or a singular ar
) 
an be easily taken intoa

ount.2.2.3 Other MethodsMethods based on dynami
 programming, also 
alled extremal �eld methods, rely on a ne
es-sary 
ondition for optimality 
onsisting of a system of �rst-order partial di�erential equationsknown as the Hamilton-Ja
obi-Bellman equation (see Bellman [5℄). Dynami
 programminghas been su

essfully applied to dis
rete optimal 
ontrol problems, as well as to spe
ial 
lassesof 
ontinuous optimal 
ontrol problems for whi
h there is an analyti
al solution of the HJBequation (linear systems with quadrati
 
osts). However, for solving nonlinear 
ontinuousoptimal 
ontrol problems, dynami
 programming 
an hardly be used as the basis for a viablenumeri
al method due to the 
urse of dimensionality. This term means that, as the time,state and 
ontrol have to be sampled, the 
omputational 
omplexity in
reases exponentiallywith the dimensions of the state and 
ontrol.8



2.3. Air
raft Traje
tory OptimizationMethods based on dire
t sear
h 
an be 
onsidered as a spe
ial 
lass of dire
t methodsin whi
h the original optimal 
ontrol problem is transformed into a nonlinear programmingproblem (as in the rest of dire
t methods) but the resolution proposed do not make use ofderivatives. Instead, the basi
 notion of evolutionary algorithms (su
h as geneti
 algorithmand parti
le swarm method), simulated annealing, tabu sear
h and Monte Carlo method is torandomly sele
t values for the unknown variables. When a su�
iently high number of randomsamples have been taken, the best one is 
onsidered the solution. These methods are veryattra
tive be
ause they are very easy to apply. Nevertheless, sin
e less information about thefun
tion being minimized is used (as they do not 
ompute gradients), methods based on dire
tsear
h are not 
omputationally 
ompetitive with respe
t to dire
t and indire
t methods.2.3 Air
raft Traje
tory OptimizationAir
raft traje
tory optimization is, from the operational point of view, a subje
t of greatimportan
e in air tra�
 management (ATM), that aims at de�ning optimal �ight pro
eduresfor the given air
raft mission that lead to energy-e�
ient �ights and enable for optimalityassessment of standard �ight pro
edures.In order to optimize an air
raft traje
tory one must take into a

ount that it is 
omposedof di�erent �ight phases (see Torenbeek [75℄): take o�, 
limb, 
ruise, des
ent, loiter, approa
hand landing. In ea
h one, equations of motion 
an be di�erent from one another. In asu�
iently simple but fairly general model, a global traje
tory is formed by a 
limb phase,a 
ruise phase and a des
ent phase. The next step in 
omplexity 
ould be to split the 
ruisephase into two di�erent ones by adding an intermediate 
limb phase. In that 
ase the globaltraje
tory would be formed by an initial 
limb phase, a �rst 
ruise phase, a 
limb betweenthe two 
ruise levels, a se
ond 
ruise phase and a des
ent. For any given solution stru
ture(i.e., sequen
e of �ight phases), optimizing global traje
tories implies not only addressingea
h �ight phase (as many authors have already done), but also taking into a

ount theintera
tions among them as well as looking for a global obje
tive.In pra
ti
e, the airlines 
onsider a 
ost index (CI) and de�ne the dire
t operating 
ost(DOC) as the 
ombined 
ost of fuel 
onsumed and �ight time weighted by the CI. Their goalis to minimize the DOC of the global traje
tory.2.3.1 Global Traje
tory OptimizationBefore the seventies, there are not many works about global-traje
tory optimization. Aspointed out by S
hultz and Zagalsky [60℄, previous works fo
us on optimizing one traje
toryphase, with the ex
eption of Bryson et al. [14℄, who studied 
limb-des
ent traje
tories byusing the energy-state approximation. This approa
h is 
hara
terized by 
onsidering, on onehand, the spe
i�
 energy as a state variable and the speed as the 
ontrol variable, and, onthe other hand, that kineti
 and potential energy inter
hanges are instantaneous (leading todis
ontinuities in speed and altitude laws).From then on, di�erent authors have addressed minimum-DOC problem for global tra-je
tories. Barman and Erzberger [3℄ and Erzberger and Lee [28℄ analyze minimum-DOCproblem for global traje
tories (
limb-
ruise-des
ent), 
onsidering steady 
ruise and taking9



2. Literature Reviewthe air
raft mass as 
onstant. In parti
ular, Erzberger and Lee [28℄ 
onsider an altitude-dependent horizontal wind, although they do not take into a

ount the a

eleration term inthe dynami
 equation, so that equations of motion are the same as with a 
onstant wind.Burrows [17℄ also analyzes minimum-DOC problem for global-traje
tories, without the as-sumption of 
onstant mass, but with the assumption that the 
ruise phase takes pla
e in thestratosphere.Some other authors have studied minimum-fuel-
onsumption global traje
tories, whi
h
an be thought of as a parti
ular 
ase of minimum-DOC global traje
tories with CI equalszero. For example, S
hultz and Zagalsky [60℄ address minimum-fuel-
onsumption problemfor global traje
tories 
onsidering steady 
ruise and 
onstant mass. Zagalsky et al. [84℄ ana-lyze minimum-fuel-
onsumption problem for global traje
tories 
onsidering the energy-stateapproximation and 
onstant mass. They �nd the velo
ity set to be non
onvex, whi
h implies�rst that optimal 
ontrol solutions only 
ontain full-powered 
limbs and unpowered des
ents,and se
ond, that 
ertain suboptimal solutions 
ontaining a minimum-fuel 
ruise segment at-tain fuel e
onomies superior to any optimal 
ontrol solution. Newman and Kreindler [49℄study minimum-fuel, three-dimensional �ight paths; non-turning paths (in a verti
al plane)are 
onsidered as a parti
ular 
ase. Control variables are the thrust, the path angle and thebank angle. They show that for the most part of the traje
tory the �ight path angle is asingular 
ontrol. The main simpli�
ations are 
onstant air
raft mass and 
onstant thrustfor ea
h power setting. Only short (up to 50 nmi), low-altitude (below 10000 ft) �ights are
onsidered. Final values of altitude and speed are given, whereas the �nal time and the�nal horizontal distan
e travelled are unspe
i�ed. A 
omparison with non-optimal standard
limbs is also performed.Sorensen and Waters [68℄, Burrows [18℄, Chakravarty [21℄ and Williams [81℄ analyzeminimum-fuel-
onsumption traje
tories with �xed arrival time as minimum-DOC traje
torieswith free �nal time (the problem is to �nd the time 
ost for whi
h the 
orresponding free�nal time DOC-optimal traje
tory arrives at the assigned time); the two last authors addressthe problem by 
onsidering a minimum-DOC steady 
ruise as the outer solution of a singularperturbation solution for the global traje
tory. Burrows [18℄ 
onsiders a general point-massmodel and a 
onstant wind throughout the entire traje
tory and, although a variable-massmodel is 
onsidered, only presents results for the 
onstant-mass 
ase. Chakravarty [21℄ 
on-siders a simpler model (by using the energy-state approximation), obtains as a result a quasi-steady 
ruise with altitude and speed varying as mass diminishes, and analyzes the e�e
tsof an altitude-dependent horizontal wind on 
ruise-des
ent traje
tories (although, as in Ref.[28℄, the a

eleration term in the dynami
 equation is negle
ted). Williams [81℄ also addressesthat problem, analyzing the e�e
ts of mismodeled 
onstant winds in a s
enario formed bythe �nal 
ruise and the des
ent phases, although wind e�e
ts on the whole 
ruise phase arenot 
onsidered.Chakravarty [22℄ and Liden [42℄ analyze minimum-
ost global traje
tories (
limb-
ruise-des
ent), 
onsidering not only the DOC but also the arrival-error 
ost whi
h takes into a

ountsome other fa
tors su
h as 
rew overtime 
ost, passenger dissatisfa
tion 
ost and losses dueto missed 
onne
tions. They also des
ribe pro
edures to sele
t the best CI based on whatthey 
all optimal �ight s
hedule, and 
onsider di�erent wind 
onditions.
10



2.3. Air
raft Traje
tory OptimizationRe
ently, Soler et al. [67℄ address minimum-fuel-
onsumption traje
tories 
omposed ofseven �ight phases (takeo�, initial 
limb, 
limb, 
ruise, des
ent, approa
h and landing) byusing a hybrid optimal 
ontrol approa
h in whi
h the phase sequen
e is prede�ned but theswit
hing times are in
luded as unknown variables. The resolution method employed isa dire
t 
ollo
ation method or dire
t trans
ription method, whi
h transforms the originaltraje
tory optimization problem into a non-linear programming problem (that is, into aparametri
 optimization problem).Nevertheless, some authors have ex
lusively addressed a single �ight phase in the sensethat they have optimized one phase, not only without taking into a

ount the intera
tionsamong the di�erent phases, but also 
onsidering di�erent performan
e indi
es.2.3.2 Climb Phase OptimizationIn the optimization of the 
limb �ight of 
ommer
ial air
raft, the obje
tive is to minimize thee
onomi
al and environmental impa
ts, by de�ning the best �ight pro
edure for the givenair
raft mission. Depending on the mission, di�erent performan
e indi
es 
an be 
onsidered(su
h as minimum time, minimum fuel 
onsumption or minimum emissions).Minimum-time 
limb deserved great attention in the early works on traje
tory optimiza-tion, espe
ially for supersoni
 air
raft, see for example the works of Bryson and Denham [13℄and Vin
ent et al. [77, 78℄, in whi
h thrust is given and the angle of atta
k (or the lift 
o-e�
ient) is taken as 
ontrol variable, and the work of Bryson et al. [14℄. In this work, theenergy-state approximation is used, with the speed as 
ontrol variable; the solution is formedby a 
entral path and, depending on the initial and �nal 
onditions, by zoom 
limbs or zoomdives with 
onstant energy (performed instantaneously). These works also review the earlywork (made in the 1950's) on traje
tory optimization.Minimum-fuel 
limb in a verti
al plane between two given points (given speed and altitude,
Vi, hi and Vf , hf ) has been analyzed by Miele [47℄ using a method based on Green's theorem, inthe 
ase of given thrust (depending both on speed and altitude), using the limiting 
onstraint
hi ≤ h ≤ hf , and with the simpli�
ation of 
onstant air
raft mass. The solution is formedby a 
entral 
limbing path and two a

elerations at 
onstant altitude (at hi and hf ). Thisproblem is also analyzed by Bryson et al. [14℄ in the 
ase of supersoni
 air
raft, using theenergy-state approximation, with the speed as 
ontrol variable; the solution stru
ture is thesame (zoom-
entral-zoom) as for the minimum-time problem, although the 
entral path isdi�erent.Some authors optimize the 
limb as part of a global 
limb-
ruise-des
ent traje
tory ina verti
al plane (see for example the works of S
hultz and Zagalsky [60℄, Barman andErzberger [3℄, Erzberger and Lee [28℄ and Burrows [17, 18℄), 
onsidering di�erent perfor-man
e indi
es, su
h as minimum dire
t operating 
ost and minimum fuel 
onsumption with�xed arrival time. In all these 
ases the �nal range is �xed, and thrust is used as a 
on-trol variable. In some of these works the formulation is simpli�ed by taking the air
raftmass as 
onstant, or by taking the lift equal to the 
onstant weight in the 
al
ulation of theaerodynami
 drag. More re
ently, 
limb (and des
ent) optimization to redu
e noise at smallaltitudes has been given spe
ial attention (see the works of Visser and Wijnen [79℄, Ho andClarke [37℄, Torres et al. [76℄), with the goal of de�ning noise abatement pro
edures. 11



2. Literature ReviewIn the previous works, wind e�e
ts are not taken into a

ount. Wu and Zhao [82℄ optimize
limb traje
tories 
onsidering di�erent performan
e indi
es and wind e�e
ts; although thenominal wind is zero, sensitivities with respe
t to wind un
ertainties are analyzed. In thisanalysis, lift 
oe�
ient and thrust are taken as 
ontrol variables, and the formulation issimpli�ed by 
onsidering 
onstant spe
i�
 fuel 
onsumption. The optimization is formulatedas a parameter optimal 
ontrol problem, in whi
h a prede�ned traje
tory pro�le (formed bya series of pre-ordered �ight phases) is 
onsidered.2.3.3 Cruise Phase OptimizationSome authors have ex
lusively addressed optimal air
raft 
ruise independently 
onsidered.Minimum-DOC 
ruise has been studied by di�erent authors. Bilimoria et al. [9℄ analyzethe minimum-DOC steady 
ruise as the outer solution when applying a singular perturbationapproa
h. They point out that non-
onvexity in the fuel-�ow vs airspeed graph has theimportant 
onsequen
e of de�ning a velo
ity segment that is nonoptimal, whi
h leads to thesometime o

urren
e of time-shared operation between two altitude-airspeed 
ombinationsfor optimal steady 
ruise. Fran
o and Rivas [31℄ analyze minimum-
ost 
ruise in
luding boththe DOC and the arrival-error 
ost asso
iated to not meeting the s
heduled time of arrival.They obtain that, for some values of the parameters present in the problem, the solutionis obtained by �xing the �nal time to be the s
heduled time of arrival, whereas for someother values of the parameters, the solution is obtained by solving a minimum-DOC problemwith free �nal time and a 
ost index di�erent from the original one. The related problemof �nding the minimum-fuel 
ruise at 
onstant altitude with �xed arrival time is analyzed,among others, by Fran
o et al. [30℄ and Fran
o et al. [33℄ (the latter in the presen
e of a
onstant wind).The parti
ular 
ase of minimum-fuel 
ruise (CI equal to zero) has been 
onsidered byothers. For example, Speyer [69℄, S
hultz [61℄, and Speyer [70℄ analyze the optimality of thesteady-state 
ruise, taking the air
raft mass as 
onstant. For an air
raft model where the
ontrol variables are thrust and �ight path angle, Speyer [69℄ shows that 
ruise 
ondition is adoubly singular ar
 whi
h is non-minimizing be
ause it fails to satisfy a ne
essary 
onditionfor optimality. For an air
raft model where the 
ontrol variables are the thrust and the lift
oe�
ient, S
hultz [61℄ 
onsiders that the 
ruise solution is a thrust-singular ar
 and showsthat, unlike with the energy state equations or with the intermediate model 
onsidered inRef. [69℄, the 
ruise is now a minimizing-ar
. In response to Ref. [61℄, Speyer [70℄ appliesa frequen
y domain version of the Ja
obi test to the Goh's transformation of a point-mass-model, and shows that the steady-state 
ruise is nonoptimal over long ranges be
ause ofthe appearan
e of 
onjugate points. He also points out that a small-amplitude os
illatory
ruise 
an provide slight improvements in fuel 
onsumption with respe
t to steady-sate 
ruise.The equivalent problem of �nding the maximum-range 
ruise at 
onstant altitude for a �xedamount of fuel is analyzed, among others, by Pargett and Ardema [51℄, Rivas and Valenzuela[55℄, and Rivas et al. [56℄.Some authors have explored non
onventional 
ruise, su
h as 
hattering 
ruise, and optimal
y
li
 
ruise with the obje
tive of minimizing fuel 
onsumption per range travelled or per �ighttime. Houlihan et al. [38℄ study the minimum-fuel 
hattering 
ruise as the outer solution of12



2.3. Air
raft Traje
tory Optimizationa singular perturbation solution, 
onsidering the energy-state approximation and a 
onstant-mass model. They obtain that, when the velo
ity set is not 
onvex, a 
hattering 
ruise onlyshows a substantial improvement with respe
t to steady 
ruise at low energy levels; therefore,from a pra
ti
al point of view, 
hattering 
ruise implies at best only a small advantage over
onventional 
ruise. Sa
hs and Christodoulou [59℄ analyze the problem of �nding periodi
�ight paths that maximize either the ratio of the horizontal 
y
le range to the fuel 
onsumedin a 
y
le, or the ratio of the 
y
le time to the fuel 
onsumed in a 
y
le. They 
onsidera 
onstant-mass model with the throttle parameter and the lift 
oe�
ient as 
ontrols anda maximum altitude 
onstraint. Optimal 
y
li
 paths are obtained, whi
h are bang-bangin the thrust and 
an be de
omposed into two �ight segments, a maximum thrust segmentand a minimum thrust segment. For range maximization per fuel 
onsumed, importantimprovements with respe
t to steady-state 
ruise 
an be a
hieved for low maximum altitudesand without 
onsidering 
ompressibility e�e
ts, whereas negligible improvements are obtainedif the admissible altitude is high enough and 
ompressible e�e
ts are taken into a

ount.Finally, Menon [46℄ performs an interesting survey of air
raft 
ruise optimization and providesfurther insight into minimum-fuel os
illatory 
ruise.2.3.4 Des
ent Phase OptimizationIn the optimization of the des
ent �ight of 
ommer
ial air
raft, the obje
tive is to des
end andde
elerate 
ontinuously, so that the e
onomi
al and environmental impa
ts are minimized,keeping thrust as low as possible for as long as possible. An example is the 
ontinuous des
entapproa
h (CDA) pro
edure (see for instan
e Clarke et al. [25℄ where the design and �ighttest of a CDA as a noise abatement pro
edure is presented).Maximum-range glide between two given points (given speed and altitude, Vi, hi and
Vf , hf ) has been analyzed by di�erent authors using di�erent pro
edures. For instan
e,Miele [47℄ analyzes the problem using a method based on Green's theorem, using the limiting
onstraint hf ≤ h ≤ hi; the solution is formed by a 
entral pattern and two de
elerations at
onstant altitude (hi and hf ). Bryson et al. [14℄ present an analysis using the energy-stateapproximation, with speed as 
ontrol variable; the solution stru
ture is the same (zoom-
entral-zoom) as for the 
limb problems. More re
ently, Shapira and Ben-Asher [64, 65℄use singular perturbation theory, 
onsidering two and three times
ales, and obtain the innerand outer solutions using optimal 
ontrol theory; the inner (boundary layer) solution is
hara
terized by an in
rease in altitude, a de
rease in speed, and large values of �ight-pathangle; the outer (slow) solution is a steady-state glide; these analyses are made for the simplein
ompressible 
ase of a paraboli
 drag polar of 
onstant 
oe�
ients. In all these works winde�e
ts are not taken into a

ount; however, some other authors have taken into a

ountwind e�e
ts when addressing des
ent traje
tories within the 
ontext of global traje
toryoptimization (see Refs. [28, 18, 21℄).
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3 Formulation of the Optimal ControlProblemIn this 
hapter, the singular optimal approa
h is applied to optimize air
raft traje
tories.For that purpose, the formulation of an optimal 
ontrol problem is �rst presented, in
ludingthe ne
essary 
onditions for optimality and analyzing the spe
ial 
ases of singular optimal
ontrol problems and optimal 
ontrol problems of swit
hed systems. The expli
it statementof the ne
essary 
onditions for optimality is needed be
ause an indire
t numeri
al methodis 
onsidered. Then, the equations governing the motion of an air
raft under appropriateassumptions are in
luded. Finally, the pro
edure to 
ompute optimal air
raft traje
toriesdeveloped in this thesis is explained.3.1 Optimal Control TheoryThe outline of this se
tion is as follows. First, a general formulation of an optimal 
ontrolproblem is presented, pre
eded by the de�nition of some standard terminology based on theworks of Bryson and Ho [15℄ and Clarke [24℄. Se
ond, ne
essary 
onditions for a solution
andidate to be optimal are in
luded, with a formulation based on the works of Ross [58℄ andClarke [24℄. Third, parti
ular 
onsiderations regarding singular optimal 
ontrol problems areaddressed, in
luding additional ne
essary 
onditions for su
h a type of problems. Finally, anextension of the formulation of an optimal 
ontrol problem to swit
hed dynami
al systems isperformed in
luding, as well, additional ne
essary 
onditions for su
h a type of problems.3.1.1 Optimal Control ProblemLet 
onsider a time interval [t0, tf ], the dynami
s fun
tion f : [t0, tf ] × R
n × R

m 7→ R
n, andthe 
ontrol set U ⊂ R

m. A 
ontrol is an m-ve
tor fun
tion on [t0, tf ] with values in U ,whereas the state, or state traje
tory, 
orresponding to the 
ontrol u refers to a solution y ofthe initial-value problem (IVP) given byẏ = f [t,y (t) ,u (t)] , ∀t ∈ [t0, tf ]y(t0) = y0 (3.1)where y0 ∈ R
n is a pres
ribed initial 
ondition, t is the time, and the dot denotes derivationwith respe
t to t (i.e., ẏ =

dy
dt

). Hen
e, y : [t0, tf ] 7→ R
n is an n-ve
tor fun
tion with
ontinuous 
omponents. The ordinary di�erential equation (ODE) system (3.1) linking the15



3. Formulation of the Optimal Control Problem
ontrol u and the state y is referred to as the state equation. The 
ouple (f, U) is referred toas the 
ontrol system. A pro
ess of the 
ontrol system (f, U) is the 
ouple (y,u) 
onsistingof an n-ve
tor fun
tion with 
ontinuous 
omponents y and an m-ve
tor fun
tion u whi
hsatisfy the state equation (3.1). The 
ost fun
tional J(y,u) is de�ned by
J(y,u) = φ [tf ,y(tf )] + ∫ tf

t0

l [t,y (t) ,u (t)] dt (3.2)were the running 
ost l and the terminal 
ost φ are given fun
tions. In some 
ases, one maybe interested in 
onstraining fun
tions of the terminal state to have pres
ribed values, whi
h
an be expressed as
ψ [tf ,y (tf )] = 0 (3.3)where the k-ve
tor fun
tion ψ : R × R

n 7→ R
k is the �nal-state-
onstraint fun
tion. Theparti
ular 
ase in whi
h some state variables are pres
ribed at the �nal time is subsumed inthe more general 
ase addressed by Eq. (3.3).In summary, the optimal 
ontrol problem 
an be stated as follows:Minimize J(y,u) = φ [tf ,y(tf )] + ∫ tf

t0

l [t,y (t) ,u (t)] dtsubje
t to ẏ = f [t,y (t) ,u (t)] , ∀t ∈ [t0, tf ]u(t) ∈ U, ∀t ∈ [t0, tf ]y(t0) = y0
ψ [tf ,y (tf )] = 0

(3.4)
An optimal pro
ess, also 
alled an extremal, is a pro
ess (y∗,u∗) de�ned on the interval

[t0, tf ] satisfying the 
onstraints of Eq. (3.4) and verifying J(y∗,u∗) ≤ J(y,u), for any otherpro
ess (y,u) satisfying the aforementioned 
onstraints, as well as ‖y − y∗‖ ≤ ǫ, for some
ǫ > 0. In this de�nition, ‖z‖ means the relevant supremum norm, that is, sup

t∈[t0,tf ]
|z(t)|.Although an optimal 
ontrol problem stated as in Eq. (3.4) is quite general, additional
onsiderations 
an be made.First, the �nal time tf 
an be either spe
i�ed, that is, a given parameter, or unspe
i�ed,that is, an unknown parameter whose optimal value will result from solving the optimal
ontrol problem. Although it does not imply any 
hange in the problem formulation, it hasa dire
t impa
t in the statement of the ne
essary 
onditions for optimality. Moreover, inthe 
ase of tf unspe
i�ed, the de�nition of an optimal pro
ess has to be slightly modi�edas follows. An optimal pro
ess (equivalently, an extremal), is a pro
ess (y∗,u∗) de�ned onthe interval [t0, tf ], satisfying the 
onstraints of Eq. (3.4) and verifying J(y∗,u∗) ≤ J(y,u),for any other pro
ess (y,u) de�ned on the interval [t0, τf ] and satisfying the aforementioned
onstraints, as well as |tf − τf | ≤ ǫ and ‖y− y∗‖ ≤ ǫ, for some ǫ > 0.Se
ond, 
onstraints that apply at intermediate points or over the whole path t ∈ [t0, tf ],rather than just at the end points, may also be 
onsidered. In parti
ular, one may haveintegral 
onstraints, equality or inequality 
onstraints of fun
tions of the 
ontrol and statevariables, interior point 
onstraints, and dis
ontinuities in the dynami
s fun
tion or variablesat interior points.16



3.1. Optimal Control Theory3.1.2 Ne
essary Conditions for OptimalityIn this se
tion, ne
essary 
onditions for a pro
ess (y,u) to be the solution of the optimal
ontrol problem (3.4) are presented, with a formulation based on the works of Ross [58℄and Clarke [24℄. These 
onditions are known as Pontryagin Maximum Prin
iple, or simplyMaximum Prin
iple. In these thesis, su�
ient 
onditions for optimality are not 
onsidered.The Maximum Prin
iple is a set of ne
essary 
onditions for optimality whi
h, as Hestenes[36℄ pointed out, is equivalent to the 
onditions of Euler-Lagrange, Weierstrass and Legendre-Clebs
h in the 
lassi
al theory of the 
al
ulus of variations. Nevertheless, the MaximumPrin
iple extends those 
onditions in a twofold way, to optimal 
ontrol problems, and toproblems in whi
h the 
ontrol is 
onstrained to be in a spe
i�ed 
ontrol set (i.e., in thepresen
e of 
ontrol variable inequality 
onstraints).Let �rst de�ne the Hamiltonian and the endpoint Lagrangian of the problem (3.4) asfun
tions Hη : [t0, tf ] × R
n × R

m × R
n 7→ R, and Eη : [t0, tf ] × R

n × R
k 7→ R, respe
tively,given by

Hη(t,y,u, λ) = ηl (t,y,u) + λT f (t,y,u) (3.5)and
Eη [tf ,y(tf ), ν] = ηφ [tf ,y(tf )] + νTψ [tf ,y (tf )] (3.6)Then, assuming 
lassi
al regularity of the fun
tions involved (see Clarke [24℄), the MaximumPrin
iple 
an be stated as follows:Let (y∗,u∗) be an optimal pro
ess of the problem (3.4), where U is bounded. Then thereexist an n-ve
tor fun
tion with 
ontinuous 
omponents λ : [t0, tf ] 7→ R

n, a s
alar η ≥ 0, anda multipliers ve
tor ν ∈ R
k satisfying the following 
onditions:1) The non-triviality 
ondition, that is, (η, λ(t), ν) 6= 0, ∀t ∈ [t0, tf ].2) The adjoint dynami
s equation, given by

λ̇(t) = −∂H
η

∂y [t,y∗(t),u∗(t), λ(t)] , ∀t ∈ [t0, tf ] (3.7)3) The Hamiltonian minimization 
ondition, whi
h states that for the 
ontrol to be opti-mal it must globally minimize the Hamiltonian, and hen
eu∗ [t,y∗(t), λ(t)] = argminu∈UHη [t,y∗(t),u, λ(t)] , ∀t ∈ [t0, tf ] (3.8)4) The transversality 
onditions, stated as
λ(tf ) =

∂Eη

∂y(tf ) [tf ,y∗(tf ), ν] (3.9)to whi
h one has to add, if the �nal time is unspe
i�ed, another transversality 
ondition
alled the Hamiltonian value 
ondition and given by
Hη [tf ,y∗(tf ),u∗(tf ), λ(tf )] = −∂E

η

∂tf
[tf ,y∗(tf ), ν] (3.10)Furthermore, the minimized Hamiltonian Hη : [t0, tf ]× R

n × R
n 7→ R, de�ned as

Hη(t,y, λ) = minu∈UHη(t,y,u, λ) (3.11)17



3. Formulation of the Optimal Control Problemevolves a

ording to the Hamiltonian evolution equation, given by
Ḣη [t,y∗(t), λ(t)] = ∂Hη

∂t
[t,y∗(t),u∗(t), λ(t)] , ∀t ∈ [t0, tf ] (3.12)If the problem is autonomous, Eq. (3.12) redu
es to the Hamiltonian 
onstan
y 
onditionstating that, for some 
onstant H, one has

Hη [t,y∗(t),u∗(t), λ(t)] = H, ∀t ∈ [t0, tf ] (3.13)Moreover, if the �nal time is unspe
i�ed, the Hamiltonian value 
ondition provides H = 0.In these ne
essary 
onditions, λ is known as adjoint or 
ostate, whereas the 
omponentsof the 
onstant ve
tor ν are referred to as the �nal-state Lagrange multipliers. The 
ostmultiplier η is introdu
ed to in
lude the abnormal 
ase, in whi
h η = 0. The abnormal 
asearises when the 
onstraints are so restri
tive as to identify the optimal solution regardless ofthe running 
ost l [t,y (t) ,u (t)] and the terminal 
ost φ [y(tf ), tf ]. For the normal 
ase, the
onstan
y and non-negativity of η leads to 
onsider η = 1 without loss of generality, as ηsimply s
ales the Hamiltonian; this is 
alled the normality 
ondition.The Hamiltonian minimization 
ondition, whose solution is symboli
ally stated in theform of Eq. (3.8), 
an be posed as a problem in itself, given by (see Ross [58℄)Minimize Hη (t,y,u, λ)subje
t to u ∈ U
(3.14)for every t ∈ [t0, tf ].The 
onvexity 
ondition for problem (3.14) is given by

∂2Hη

∂u2
[t,y∗(t),u∗(t), λ(t)] ≥ 0, ∀t ∈ [t0, tf ] (3.15)whi
h is known as the Legendre-Clebs
h 
ondition.Furthermore, when the optimal 
ontrol is interior to the set U (i.e. u∗(t) ∈ intU , ∀t ∈

[t0, tf ]), the stationarity 
ondition for problem (3.14) is given by
∂Hη

∂u [t,y∗(t),u∗(t), λ(t)] = 0, ∀t ∈ [t0, tf ] (3.16)whi
h is known as the Euler-Lagrange 
ondition. This equation allows for the determinationof u∗, provided that the Hessian of the Hamiltonian Hηuu (t,y,u, λ) is not singular. In a moregeneral 
ase in whi
h the 
ontrol 
onstraints may be a
tive in some portions of the optimalpro
ess, (3.14) is a nonlinear programming problem. In parti
ular, when u is s
alar (namely
u) and the set U is given by U = {u ∈ R : umin ≤ u ≤ umax}, the Karush-Kuhn-Tu
ker
onditions applied to the problem (3.14) provide:



























u∗(t) = umax if ∂Hη

∂u
[t,y∗(t), u∗(t), λ(t)] ≤ 0

∂Hη

∂u
[t,y∗(t), u∗(t), λ(t)] = 0 if umin < u∗ < umax

u∗(t) = umin if ∂Hη

∂u
[t,y∗(t), u∗(t), λ(t)] ≥ 0

(3.17)
18



3.1. Optimal Control Theoryfor every t ∈ [t0, tf ].A

ording to the Maximum Prin
iple, on
e the optimal 
ontrol is obtained, then it 
an besubstituted into the state and adjoint di�erential equations, leading to a 2n system of ordinarydi�erential equations with boundary 
onditions given by the 
ombination of pres
ribed initialstate, �nal-state 
onstraint and transversality 
onditions. Boundary 
onditions add up to
2n+k equations, but with k additional unknown �nal-state multipliers that 
an be eliminated(in prin
iple) form these, leading to 2n boundary 
onditions for a 2n system that, hen
e, 
anbe solved (again, in prin
iple) in order to obtain an extremal. Note that if the �nal time isunspe
i�ed one has an additional unknown tf and an additional transversality 
ondition (theHamiltonian value 
ondition), whi
h lead to 2n+1 boundary 
onditions for a 2n system with
1 unknown parameter.In the subsequent se
tions, only the normal 
ase is 
onsidered, and H and E are writtenfor H1 and E1, respe
tively.3.1.3 Singular Optimal ControlA

ording to Bell and Ja
obson [4℄, a singular optimal pro
ess is one for whi
h the Legendre-Clebs
h ne
essary 
ondition (3.15) is not satis�ed with stri
t inequality, or equivalently, the
m×m determinant |Huu| vanishes at any point along it. In this thesis only the 
ase in whi
hthe Hamiltonian is a linear fun
tion on u is 
onsidered, as it is the most 
ommon 
ase in whi
hsingular optimal problems arise in appli
ations (see Bryson [15℄). In that 
ase, the derivative
Hu (t,y, λ), 
ommonly known as the swit
hing fun
tion S (t,y, λ), does not depend on u andrepresents the ve
tor of 
oe�
ients of these linear terms. In this se
tion, a s
alar 
ontrol is
onsidered (m = 1, u = u) and the set U is given by U = {u ∈ R : umin ≤ u ≤ umax}.In singular optimal 
ontrol problems, the swit
hing fun
tion may vanish over a �nitetime interval, that is, S (t,y, λ) = 0 for t ∈ [τ1, τ2] ⊆ [t0, tf ], de�ning a portion of theoptimal pro
ess referred to as a singular ar
. If that happens, the optimal 
ontrol along thesingular ar
, known as singular 
ontrol using (t,y, λ), is not determined by the Hamiltonianminimization 
ondition. This 
an be understood by parti
ularizing Eq. (3.14) for a singularoptimal problem with a s
alar 
ontrol, whi
h gives
u∗ =











umax if S [t,y∗(t), λ(t)] < 0

using [t,y∗(t), λ(t)] if S [t,y∗(t), λ(t)] = 0 over a �nite time interval
umin if S [t,y∗(t), λ(t)] > 0

(3.18)for every t ∈ [t0, tf ]. The singular 
ontrol is determined, instead, by the requirement thatthe swit
hing fun
tion remains zero on the singular ar
, whi
h implies that also the timederivatives of the swit
hing fun
tion must vanish.Thus, on one hand, there is one equation de�ning the singular 
ontrol
d2ξS

dt2ξ
(t,y, using, λ) = 0 (3.19)where ξ is the order of the singular ar
. Note that, in general, the order of the singular ar
is ξ when the lowest-order time derivative in whi
h u appears expli
itly is of order 2ξ, asde�ned in Ref. [4℄. Kelley et al. [40℄ demonstrate that u 
annot �rst appear in an odd-orderderivative; hen
e the order ξ is an integer number. 19



3. Formulation of the Optimal Control ProblemOn the other hand, 2ξ equations have to be satis�ed along the singular ar

S [t,y∗(t), λ(t)] = 0

djS

dtj
[t,y∗(t), λ(t)] = 0 for j = 1, ..., 2ξ − 1

(3.20)for every t ∈ [τ1, τ2]. As a 
onsequen
e, singular ar
s are not possible at any point of the
(t,y, λ) spa
e of dimension 2n + 1, but they are restri
ted to a manifold, referred to as asingular surfa
e (see Bryson and Ho [15℄). The singular surfa
e is in fa
t the lo
us of possiblepoints in the aforementioned spa
e on whi
h optimal paths 
an lie, as well as a swit
hingboundary for the optimal 
ontrol (see Ben-Asher [6℄).For singular optimal problems of autonomous systems, a remark regarding the dimensionof the singular surfa
e 
an be made. The Hamiltonian 
onstan
y 
ondition adds, in general,an extra equation (whi
h makes 2ξ + 1 equations de�ning the singular ar
) and an extraunknown parameter H. Thus, the singular surfa
e 
an be seen to belong to a uniparametri
family of surfa
es of dimension 2(n − ξ) − 1. If the �nal time is unspe
i�ed, there is nounknown, sin
e H = 0, so that one simply has a singular surfa
e of dimension 2(n − ξ)− 1.Hen
e, for n = 3 and ξ = 1, the previous analysis shows that, in general, the singular ar
is de�ned by three equations involving an unknown parameter, whi
h de�ne a uniparametri
family of singular surfa
es of dimension 3. As a 
onsequen
e, it may not be possible to de�nea singular surfa
e ex
lusively 
ontained in the state spa
e, but those three equations areenough to de�ne the three adjoints along the singular ar
 in terms of the state variables, andthus, in 
ombination with Eq. (3.19), one obtains a feedba
k 
ontrol law (
ontrol variableas fun
tion of the state variables) that 
an be dire
tly used to guide the air
raft along theoptimal path.3.1.3.1 Additional Ne
essary Conditions for OptimalityA remarkable 
onsequen
e of the singularity of Huu is that additional ne
essary 
onditionsfor optimality must be satis�ed in order both, for a singular extremal to be minimizing, andfor the jun
tions between singular and nonsingular ar
s to be optimal.On one hand, the generalized Legendre-Clebs
h 
ondition (see Kelley et al. [40℄), alsoknown as Kelley-Contensou test, establishes that for the singular 
ontrol to be optimal onemust have

(−1)ξ
∂

∂u

(

d2ξS

dt2ξ

)

≥ 0 (3.21)In parti
ular, when ξ = 1, this ne
essary 
ondition for the optimality of the singular 
ontrolredu
es to
− ∂S̈

∂u
≥ 0 (3.22)On the other hand, M
Danell and Powers [45℄ prove that, for the optimality of jun
tionsbetween singular and nonsingular ar
s, the following ne
essary 
ondition must be satis�ed:the sum of the order of the singular ar
 (ξ) and the lowest-order time derivative of the 
ontrolwhi
h is dis
ontinuous at the jun
tion (ζ) must be an odd integer if the strengthened gener-alized Legendre-Clebs
h 
ondition is satis�ed at the jun
tion and if the 
ontrol is pie
ewiseanalyti
 in a neighborhood of the jun
tion. In parti
ular, this ne
essary 
ondition is satis�ed20



3.1. Optimal Control Theorywhen the order of the singular ar
 is ξ = 1, and the lowest-order time derivative of the 
ontrolwhi
h is dis
ontinuous at the jun
tion is ζ = 0 (that is, the 
ontrol itself is dis
ontinuous atthe jun
tion).Moreover, one has that at the jun
tions where the 
ontrol variable were dis
ontinuous,the adjoint variables, the Hamiltonian and the swit
hing fun
tion should all be 
ontinuousin order for the Weierstrass-Erdman 
orner 
onditions to be satis�ed (see Ref. [15℄).3.1.4 Optimal Control for Swit
hed SystemsSwit
hed systems usually refer to the 
lass of hybrid systems in whi
h there are no dis
on-tinuities (jumps) in the state at the swit
hing times (see Xu and Antsaklis [83℄). Therefore,a swit
hed 
ontrol system 
onsists of an indexed set of dynami
al 
ontrol subsystems, whoseelements are formed by the 
ouple (fq, Uq), and a set of 
onstraints in the endpoints of thestate traje
tories (state 
ontinuity).In the previous de�nition, fq : [t0, tf ]×R
n × R

mq 7→ R
n and Uq ⊂ R

mq are the dynami
sfun
tion and the 
ontrol set, respe
tively, in the phase q ∈ Q, where Q is the set of possibledis
rete phases.The input for a swit
hed 
ontrol system 
omprises the three following elements: thephase sequen
e (also referred to as the swit
hing sequen
e) σ = (q1, ..., qN ), where qj ∈ Qfor j = 1, ..., N and N is the number of phases 
onsidered; the sequen
e of swit
hing times
τ = (t0, ..., tN ), where tN = tf and the number of swit
hings is N − 1; and the sequen
eof 
ontrol fun
tions at ea
h phase, uqj . If the phase sequen
e is σ = (q1, ..., qN ) and thesequen
e of swit
hing times is τ = (t0, ..., tN ), the dynami
al 
ontrol subsystem qj is a
tiveduring the time interval [tj−1, tj ) ([tN−1, tN ] if j = N).A

ording to Brani
ky et al. [12℄, the nature of the dis
rete phenomenon underlying theswit
hing law leads to de�ne di�erent types of swit
hings for hybrid systems: autonomousswit
hing, autonomous impulse, 
ontrolled swit
hing and 
ontrolled impulse. For swit
hedsystems, in whi
h state dis
ontinuities are not allowed, only autonomous swit
hing and 
on-trolled swit
hing 
an happen. A swit
hing is said to be autonomous if it takes pla
e whenthe state enters a pres
ribed manifold in the state spa
e, whereas it is said to be 
ontrolledif it takes pla
e in response to a 
ontrol 
ommand. In this thesis, only the 
ase in whi
hone is allow to pi
k among the set of 
ontrol subsystems is 
onsidered; hen
e, the subsequentformulation is restri
ted to 
ontrolled swit
hings.The 
ontrol in the phase qj is an mqj -ve
tor fun
tion on [tj−1, tj ) with values in Uqj ,whereas the state in the phase qj 
orresponding to the 
ontrol uqj refers to a solution yqj ofthe IVP given by ẏqj = fqj [t,yqj (t) ,uqj (t)], ∀t ∈ [tj−1, tj )yqj(tj−1) = yqj ,j−1

(3.23)The initial value yqj ,j−1 is given by yq1,0=̇y0 for j = 1, where y0 is the pres
ribed initialvalue, and by yqj ,j−1 = lim
t→tj−1

yqj−1
(t) (3.24)for j = 2, ..., N . As a 
onsequen
e, the state y : [t0, tf ] 7→ R

n, de�ned as y(t) = yqj (t),21



3. Formulation of the Optimal Control Problem
∀t ∈ [tj−1, tj ) ([tN−1, tN ] if j = N) for j = 1, ..., N , is an n-ve
tor fun
tion with 
ontinuous
omponents.The 
ost fun
tional J(y,u1, ...,uN ) is de�ned by

J(y,u1, ...,uN ) = φ [tf ,y(tf )] + N
∑

j=1

∫ tj

tj−1

lqj
[

t,y (t) ,uqj (t)
]

dt (3.25)were the running 
ost in the phase qj , lqj , and the terminal 
ost φ are given fun
tions. Notethat no swit
hing 
ost is 
onsidered in this thesis. A �nal-state 
onstraint as Eq. (3.3) 
analso be taken into a

ount.In this thesis, only multiphase optimal 
ontrol problems in the sense of Soler et al. [67℄are 
onsidered. These are optimal 
ontrol problems of swit
hed dynami
al 
ontrol systemsin whi
h the number of swit
hings (equivalently the number of phases N) and the phasesequen
e σ (the sequen
e of a
tive dynami
al subsystems) are prede�ned.In summary, the multiphase optimal 
ontrol problem 
an be stated as follows:Minimize J(y,u1, ...,uN ) = φ [tf ,y(tf )] + N
∑

j=1

∫ tj

tj−1

lqj
[

t,y (t) ,uqj (t)
]

dtsubje
t to ẏ = fqj [t,yqj (t) ,uqj (t)], ∀t ∈ [tj−1, tj ) , j = 1, ..., Nuqj(t) ∈ Uqj , ∀t ∈ [tj−1, tj ) , j = 1, ..., Ny(t0) = y0
ψ [tf ,y (tf )] = 0for a given σ = (q1, ..., qN ), qj ∈ Q, j = 1, ..., N

(3.26)
The 
on
ept of optimal pro
ess or extremal 
an be readily extended to multiphase opti-mal 
ontrol problems. An optimal multipro
ess is a multipro
ess (y∗,u∗

1, ...,u∗

N ) de�ned onthe interval [t0, tf ] satisfying the 
onstraints of Eq. (3.26) and verifying J(y∗,u∗

1, ...,u∗

N ) ≤
J(y,u1, ...,uN ), for any other multipro
ess (y,u1, ...,uN ) satisfying the aforementioned 
on-straints, as well as ‖y− y∗‖ ≤ ǫ, for some ǫ > 0.3.1.5 Ne
essary Conditions for Optimality in Swit
hed SystemsIn this se
tion, ne
essary 
onditions for a multipro
ess (y,u1, ...,uN ) to be the solution ofthe multiphase optimal 
ontrol problem (3.26) are presented, with a formulation based onthe previous one in 3.1.1. These 
onditions are known as Hybrid Maximum Prin
iple. In thisthesis, su�
ient 
onditions for optimality are not 
onsidered.The Hybrid Maximum Prin
iple is a set of �rst order ne
essary 
onditions for optimalityrelating to how to sele
t 
ontinuous variables in a hybrid optimal 
ontrol problem in su
ha way that optimizes the 
ost fun
tion for a �xed 
hoi
e of the swit
hing sequen
e. Severalformulations of the Hybrid Maximum Prin
iple 
an be found in works of Sussmann [73℄,Riedinger [54℄, Caines [19℄ and Shaikh and Caines [62℄), among others. In this thesis, theHybrid Maximum Prin
iple is both, rewritten in terms of the formulation in Se
tion 3.1.1,and parti
ularized to multiphase optimal 
ontrol problems introdu
ed in Se
tion 3.1.4, inorder to obtain a Multiphase Maximum Prin
iple.22



3.1. Optimal Control TheoryLet �rst de�ne the Hamiltonian at the phase qj ∈ Q of the problem (3.26) as a fun
tion
Hqj : [tj−1, tj )× R

n × R
mqj × R

n 7→ R, ([tN−1, tN ] if j = N) given by
Hqj(t,y,uqj , λ) = lqj

(

t,y,uqj

)

+ λT fqj (t,y,uqj

) (3.27)and se
ond, the end endpoint Lagrangian of the problem (3.26) as a fun
tion E : [t0, tf ] ×
R
n × R

k 7→ R given by
E [tf ,y(tf ), ν] = φ [tf ,y(tf )] + νTψ [tf ,y (tf )] (3.28)Note that the supers
ript η is no longer used be
ause only the normal 
ase is 
onsidered.Then, assuming 
lassi
al regularity of the fun
tions involved, the Multiphase Maximum Prin-
iple 
an be stated as follows.Let (y∗,u∗

1, ...,u∗

N ) be an optimal multipro
ess of the problem (3.26), where Uq is boundedfor any q ∈ Q, the phase sequen
e is de�ned as σ = (q1, ..., qN ), with qj ∈ Q for j = 1, ..., N ,and N is the number of phases 
onsidered. Then there exist a pie
ewise 
ontinuous fun
tion
λ : [t0, tf ] 7→ R

n and a multipliers ve
tor ν ∈ R
k satisfying the following 
onditions:1) The non-triviality 
ondition, that is, (λ(t), ν) 6= 0, ∀t ∈ [t0, tf ].2) The adjoint dynami
s equation, given by

λ̇(t) = −
∂Hqj

∂y [

t,y∗(t),u∗

qj(t), λ(t)
]

, ∀t ∈ [tj−1, tj ) (3.29)([tN−1, tN ] if j = N) for j = 1, ..., N .3) The swit
hing 
onditions regarding the adjoint variables, whi
h state that sin
e thestates are 
ontinuous at the swit
hing points tj , and only 
ontrolled swit
hings are 
onsidered,the adjoint fun
tion veri�es
λ(t−j ) = λ(t+j ) (3.30)for j = 1, ..., N − 1. Hen
e, λ is a 
ontinuous fun
tions for all t ∈ [0, tf ]. Note that someauthors 
lassify these 
onditions as transversality 
onditions at the swit
hing instants, be
ausethey are asso
iated to the 
onstraints ensuring the state 
ontinuity at the swit
hing points.4) The Hamiltonian 
ontinuity 
ondition, whi
h states that, sin
e the transition times tjare not spe
i�ed, the Hamiltonian is 
ontinuous at the swit
hing instants tj :

Hqj

[

tj ,y∗ (tj) ,u∗

qj (tj) , λ (tj)
]

= Hqj+1

[

tj,y∗ (tj) ,u∗

qj+1
(tj) , λ (tj)

] (3.31)for j = 1, ..., N − 1, where the left-hand side is de�ned as
Hqj

[

tj ,y∗ (tj) ,u∗

qj (tj) , λ (tj)
]

= lim
t→tj

Hqj

[

t,y∗ (t) ,u∗

qj (t) , λ (t)
] (3.32)be
ause, with the formulation 
onsidered, Hqj is not de�ned for t = tj and j = 1, ..., N − 1.5) The Hamiltonian minimization 
ondition, whi
h states that for the 
ontrol to be opti-mal it must globally minimize the Hamiltonian, and hen
eu∗

qj [t,y∗(t), λ(t)] = arg minuqj
∈Uqj

Hqj

[

t,y∗(t),uqj , λ(t)
] (3.33)for j = 1, ..., N − 1. 23



3. Formulation of the Optimal Control Problem6) The transversality 
onditions, stated as Eq. (3.9)
λ(tf ) =

∂E

∂y(tf ) [tf ,y∗(tf ), ν] (3.34)to whi
h one has to add, if the �nal time is unspe
i�ed, the so 
alled Hamiltonian value
ondition, given by
HqN

[

tf ,y∗(tf ),u∗

qN (tf ), λ(tf )
]

= −∂E
∂tf

[tf ,y∗(tf ), ν] (3.35)Furthermore, the minimized Hamiltonian at the phase qj ∈ Q,Hqj : [t0, tf ]×R
n×R

n 7→ R,de�ned as
Hqj(t,y, λ) = minuqj

∈Uqj

Hqj(t,y,uqj , λ) (3.36)evolves a

ording to the Hamiltonian evolution equation, given by
Ḣqj [t,y∗(t), λ(t)] = ∂Hqj

∂t

[

t,y∗(t),u∗

qj(t), λ(t)
]

, ∀t ∈ [tj−1, tj ) (3.37)([tN−1, tN ] if j = N). If the problem is autonomous, Eq. (3.37) redu
es to the Hamiltonianpie
ewise-
onstan
y 
ondition stating that, for some 
onstant Hj , one has
Hqj

[

t,y∗(t),u∗

qj(t), λ(t)
]

= Hj , ∀t ∈ [tj−1, tj ) (3.38)([tN−1, tN ] if j = N) for j = 1, ..., N . Moreover, if the �nal time as well as the transitiontimes tj are unspe
i�ed, the Hamiltonian value 
ondition provides Hj = 0 for j = 1, ..., N .3.2 Equations of MotionTo des
ribe the air
raft motion, the model adopted 
onsiders the air
raft as a point-mass withthree degrees of freedom, 
ommonly used for traje
tory predi
tion, as indi
ated by Slatteryand Zhao [66℄. The equations des
ribe the movement of the air
raft 
enter of mass, 
onsideredas a mass-varying body, and are un
oupled from the rotational equations by assuming thatthe air
raft rotational rates are small and the 
ontrol surfa
e de�e
tions do not a�e
t for
es.The s
alar equations of motion are formulated based on the following general assumptions:1. The Earth is 
onsidered plane, non-rotating and an approximate inertial referen
eframe. The a

eleration of gravity is 
onstant and a
ting perpendi
ular to the sur-fa
e of the Earth. (Flat Earth model.)2. The air
raft is a symmetri
 rigid body.3. The �ight takes pla
e in a verti
al plane.4. The air
raft performs a symmetri
 �ight (no sideslip) with all for
es (thrust, aero-dynami
 for
e and weight) a
ting at the 
enter of gravity and lying in the plane ofsymmetry.5. The wind velo
ity �eld is steady and 
ontained in the �ight plane.24



3.2. Equations of MotionThese assumptions are appropriate for subsoni
, transport air
raft. Under all these assump-tions the s
alar equations of motion are (see Miele et al. [48℄ and Ja
kson et al. [39℄):
V̇ =

T cos ǫ−D −mg sin γ

m
− (ẇx cos γ + ẇh sin γ)

γ̇ =
T sin ǫ+ L−mg

mV
+

1

V
(ẇx sin γ − ẇh cos γ)

ṁ = −cT
ḣ = V sin γ + wh

ẋ = V cos γ + wx

(3.39)
where

ẇx =
∂wx

∂x
(V cos γ + wx) +

∂wx

∂h
(V sin γ + wh)

ẇh =
∂wh

∂x
(V cos γ + wx) +

∂wh

∂h
(V sin γ + wh)

(3.40)In these equations, V is the aerodynami
 speed; γ is the aerodynami
 path angle (or velo
itypit
h angle); m is the air
raft mass; h is the altitude; x is the horizontal distan
e travelled;
g is the gravity a

eleration; wx and wh are the horizontal and verti
al wind velo
ities,respe
tively; D is the aerodynami
 drag; L is the aerodynami
 lift; T is the thrust; ǫ is thethrust angle-of-atta
k; c is the spe
i�
 fuel 
onsumption; and t is the time.In addition to the previous assumptions, some supplementary hypotheses are 
onsideredin the appli
ations of this thesis:1. The thrust is parallel to the aerodynami
 velo
ity, that is, ǫ = 0.2. An altitude-dependent, horizontal wind is 
onsidered, that is, wh = 0 and w = wx(h).3. The aerodynami
 path angle is very small, that is, γ ≪ 1, whi
h leads to sin γ ≈

γ, cos γ ≈ 1, sin2 γ ≈ 0.4. The normal a

eleration V γ̇

g
is negligible.Under these supplementary assumptions, the s
alar equations of motion (3.39) be
ome

V̇ =
T −D

m
− gγ − V

dw

dh
γ

ṁ = −cT
ḣ = V γ

ẋ = V + w

(3.41)In these equations, the drag is a general known fun
tion D(V,m, h), whi
h takes into a

ountthe remaining equation of motion L = mg; the thrust T (V, h) is given by T (V, h) = πTM (V, h)where π models the throttle setting and TM (V, h) is a general known fun
tion; and the spe
i�
fuel 
onsumption is also a general known fun
tion c(V, h). The aerodynami
 and propulsionmodels 
onsidered in this thesis, whi
h provide D(V,m, h), T (V, h) and c(V, h), are des
ribedin Appendix B, along with the Earth model providing gravity and atmosphere models. In25



3. Formulation of the Optimal Control Problemparti
ular, a general air
raft performan
e model 
orresponding to a Boeing 767-300ER (atypi
al twin-engine, wide-body, transport air
raft) is 
onsidered. In these equations, there isan independent variable, t; four states, V , m, h and x; and two 
ontrols, γ and π, both ofwhi
h are bounded (γmin ≤ γ ≤ γmax and 0 ≤ πmin ≤ π ≤ πmax = 1, respe
tively).Additional 
onstraints 
an be imposed to the air
raft motion in order to model the exis-ten
e of di�erent �ight phases. A �ight phase is de�ned by one additional �ight 
onstraint.A 
hange from one �ight phase to another implies a swit
h in the stru
ture of the dynami
s,
onstraints sets, et
., governing the evolution of the 
ontinuous variables (states and 
on-trols). In parti
ular, three types of �ight phases are 
onsidered in this thesis: 
limb, 
ruise,and unpowered des
ent. During 
limb, one has the additional 
onstraint that π is a knownparameter π = πcl; hen
e, in this phase there are four states, V , m, h and x, and one 
ontrol,
γ. During 
ruise, one has the additional 
onstraint of �ying at 
onstant altitude (γ = 0),that is, the altitude is a parameter; thus, in this phase there are three states, V , m and x,and one 
ontrol, π. During unpowered des
ent, one has the additional 
onstraint that π = 0,that is, the mass is a parameter; hen
e, in this phase there are three states, V , h and x, andone 
ontrol, γ.Parti
ularization of the equations of motion for ea
h �ight phase (by taking into a

ountthe additional 
onstraint) leads to di�erent equations of motion and 
ontrol de�nition. How-ever, when 
hanging from one �ight phase to another the state remains 
ontinuous. These
hara
teristi
s indi
ate that the 
ontrolled air
raft motion in a traje
tory 
omposed of 
limb,
ruise and des
ent phases is a swit
hed 
ontrol system. Moreover, the optimization of the
ontrolled air
raft motion in a traje
tory 
omposed of a pres
ribed series of 
limb, 
ruise anddes
ent phases is a multiphase optimal 
ontrol problem.3.3 Computation of Optimal Air
raft Traje
toriesIn all the phases 
orresponding to a multiphase traje
tory to be optimized, there is one 
ontrolvariable whi
h appears linearly in the equations of motion as well as in the performan
e indi
esto be optimized (this is shown in the following 
hapters). As a 
onsequen
e, the Hamiltonianof the problem is also linear on the 
ontrol variable, whi
h leads to a singular optimal 
ontrolproblem.When addressing a �ight phase, it is assumed that the initial and �nal points of the pathare given. In that 
ase, the optimal path is expe
ted to be of the bang-singular-bang type,that is, formed by three ar
s: one initial bang ar
 (with the 
ontrol being at its maximum orminimum value) to go from the initial point to the singular ar
, the singular ar
, and a �nalbang ar
 (again, with the 
ontrol being at its maximum or minimum value) to go from thesingular ar
 to the �nal point.The remark regarding the dimension of the singular surfa
e with n = 3 and ξ = 1 appliesto all the problems to be solved, even to the optimization of a 
limb phase (in whi
h n = 4)be
ause neither the dynami
s fun
tion nor the performan
e index depend on x, and the�nal value of x is not spe
i�ed. Therefore, in order to solve the singular optimal 
ontrolproblems 
onsidered in this thesis, an indire
t numeri
al method is implemented, be
auseit has the great advantage of providing feedba
k 
ontrol laws, that 
an be dire
tly used toguide the air
raft along the optimal path. This feedba
k 
ontrol law and the expression of26



3.3. Computation of Optimal Air
raft Traje
toriesthe singular surfa
e (in whi
h singular ar
s must lie) are obtained thanks to the appli
ationof the ne
essary 
onditions for optimality (as seen in Se
tion 3.1).As already mentioned, optimizing global traje
tories implies not only addressing ea
h�ight phase, but also taking into a

ount the intera
tions among them as well as lookingfor a global obje
tive. The aim for a global obje
tive is a
hieved by 
onsidering a globalperforman
e index, whi
h is split into the 
ontributions of ea
h phase and parti
ularized tothe additional 
onstraint imposed at ea
h phase. The intera
tions are taken into a

ountby appropriately imposing the transversality 
onditions and by enfor
ing state and adjoint
ontinuity at the swit
hing points.Therefore, an optimal global traje
tory 
annot be obtained by simply pie
ing individuallyoptimized phases together, not even when ea
h phase is optimized with a performan
e indexsuitable for a global obje
tive, be
ause the transversality 
onditions do not provide the sameresults for the evolution of the adjoints. However, 
on
lusions regarding the optimal 
ontroland optimal path stru
ture for a single-phase optimal traje
tory also apply at ea
h phase ofan optimal multiphase traje
tory. As a 
onsequen
e, besides traje
tories involving a series of�ight phases, traje
tories involving only one �ight phase are also optimized. These are theauxiliary problems analyzed in Chapters 4, 5 and 6.In order to explain the numeri
al method developed in this thesis to 
ompute optimalair
raft traje
tories, the general 
ase in whi
h the traje
tory is 
omposed of a prede�nedsequen
e of phases is 
onsidered throughout this se
tion. Note that the general 
ase in
ludesappli
ations in whi
h the traje
tory only 
ontains one phase.3.3.1 Indire
t Numeri
al MethodAssuming the 
ontrol law has already been obtained the optimization problem be
omes a mul-tipoint boundary-value problem for whi
h a numeri
al resolution pro
edure must be de�ned.Knowing the stru
ture of the solution allows one to de�ne an e�
ient numeri
al pro
edure(see Maurer [44℄). In this thesis, an indire
t multiple shooting method is implemented, whi
hin
ludes:1. The de�nition of some unknown parameters.2. A pro
edure to 
ompute the 
andidates for optimal traje
tory phases for given valuesof that unknown parameters.3. An iterative pro
edure to �nd the value of the unknown parameters that satisfy some
losing equations.On one hand, the pro
edure to 
ompute the 
andidates for optimal traje
tory phasesin
ludes, for ea
h phase, integration of the state equations with either u = umin or u = umaxfrom the initial point (with known initial values) until the singular ar
 is rea
hed (whi
hde�nes the �rst jun
tion point), integration of the state equations with u = using from the�rst jun
tion point until the se
ond one is rea
hed, and integration of the state equationswith either u = umin or u = umax from the se
ond jun
tion point until the �nal point(with known �nal values) is rea
hed (see Fran
o and Rivas [31℄). This pro
edure may alsoin
lude integration of the adjoint equations along the traje
tory phases in order to apply27



3. Formulation of the Optimal Control Problemsome ne
essary 
onditions for optimality (transversality 
onditions and 
ontinuity of theadjoints at the swit
hing instants). The 
omputation of the adjoints also allows, on
e theiterative method has 
onverged, to 
he
k both, whether the assumed stru
ture for the 
ontrolis 
orre
t, and whether the generalized Legendre-Clebs
h 
ondition for the singular ar
 to beminimizing is satis�ed.To solve the IVP posed at any traje
tory segment, the ODE systems are solved by usingMATLAB's ode45 (see Shampine and Rei
helt [63℄), whi
h is a method based on a pair ofexpli
it Runge-Kutta formulae, the Dormand-Prin
e pair. This method is suitable for non-sti� problems with medium to quite stringent integration toleran
es, and is therefore themethod of 
hoi
e. The other 
odes for non-sti� problems in MATLAB's ODE suite, ode23and ode113, are not preferred in this thesis.On the other hand, to �nd the values of the unknown parameters, a set of nonlinear equa-tions must be solved, whi
h in
ludes those ne
essary 
onditions for optimality and terminal
onstraints not expli
itly imposed to obtain the 
andidates for optimal traje
tory phases. Inthis thesis, the systems of nonlinear equations are solved by using MATLAB's fsolve, start-ing the iteration with appropriate initial values sele
ted spe
i�
ally for ea
h appli
ation. Bydefault, MATLAB's fsolve applies a trust-region dogleg algorithm, whose implementation isbased on the dogleg method des
ribed by Powell [52℄.In summary, this thesis proposes a methodology for air
raft traje
tory optimization thatexploits the singular 
hara
ter of the problem. With this approa
h, assuming a pres
ribedsolution stru
ture in terms of phase sequen
e and sequen
e of singular and bang ar
s withinea
h phase, the problem of �nding the optimal 
ontrol is transformed into the problem of�nding the values of some unknowns su
h that the ne
essary 
onditions for optimality as wellas the initial and �nal 
onditions are satis�ed, that is, the problem of solving a nonlinearsystem of equations.
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4 Fuel-Optimal Climb
4.1 Introdu
tionFor 
ommer
ial transport air
raft, minimizing fuel 
onsumption is of prime importan
e, bothe
onomi
ally and environmentally (be
ause CO2 emissions are dire
tly related to fuel burnt).In the 
ontext of minimum-fuel global traje
tories (from take-o� to landing) the horizontaldistan
e travelled during the 
limb a�e
ts the 
ruise distan
e. Thus, to be able to 
omparedi�erent 
limb traje
tories whi
h in general 
over di�erent horizontal distan
es, the fuel
onsumption up to a 
ommon referen
e distan
e 
ould be 
onsidered, for example by in
ludinga horizontal segment at the �nal altitude (as done in Ref. [82℄). However, in this 
hapter totake this point into 
onsideration, a di�erent approa
h is followed: only the 
limb segment is
onsidered, and a performan
e index is de�ned in whi
h fuel 
onsumption is minimized, butpenalizing small values of the 
limb distan
e, so that the a
tual obje
tive is to minimize the
ontribution of the 
limb to the global-traje
tory fuel 
onsumption (as done in Ref. [49℄).In this 
hapter this fuel-optimal 
limb problem is addressed in the 
ase of �xed enginerating and in the presen
e of altitude-dependent horizontal winds, so that wind-shear e�e
ts
an be analyzed. The air
raft mass is not taken as 
onstant but 
onsidered as a state variable,and a general air
raft performan
e model is 
onsidered (general 
ompressible drag polar, andgeneral thrust and spe
i�
 fuel 
onsumption models dependent on speed and altitude). Thetwo main obje
tives of this 
hapter are: 1) to optimize the 
limb in the presen
e of altitude-dependent winds; and 2) to assess the optimality of the 
limb pro
edure, 
ommonly used inpra
ti
e, de�ned by segments with 
onstant 
alibrated air speed (CAS) and 
onstant Ma
hnumber (CAS/Ma
h 
limb).The optimization analysis is made using the theory of singular optimal 
ontrol, whi
h hasthe great advantage of providing feedba
k 
ontrol laws (
ontrol variables as fun
tions of thestate variables), that 
an be dire
tly used to guide the air
raft along the optimal path. The
ontrol variable is the aerodynami
 path angle (γ). The initial and �nal speeds and altitudesare given, so that the stru
ture 
hosen for the optimal 
ontrol is of the bang-singular-bangtype, with the optimal paths formed by a singular ar
 and two minimum-γ ar
s joining thesingular ar
 with the given initial and �nal points. In the analysis of the 
limb made inthis 
hapter the singular ar
 
annot be obtained in terms of the state variables alone, whi
hmakes the numeri
al pro
edure to solve the singular optimal 
ontrol problem more involvedthan in another appli
ations, su
h as maximum-range or minimum-
ost 
ruise at 
onstantaltitude and maximum-range unpowered des
ents.
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4. Fuel-Optimal ClimbDespite their theoreti
al interest, optimal solutions may not be �yable a

ording topresent-day air tra�
 pro
edures and regulations. However, they represent best performan
eand 
an be used either as referen
es to design improved �ight pro
edures or to assess theoptimality of �ight pro
edures 
ommonly used in pra
ti
e, as for example the CAS/Ma
hpro
edure. In Fran
o et al. [34℄, a CAS/Ma
h pro
edure, 
omposed of four segments (ini-tial and �nal horizontal a

elerations, 
onstant-CAS 
limb and 
onstant-Ma
h 
limb), isoptimized using parametri
 optimization theory (see Flet
her [29℄), with the same obje
tiveof minimizing the 
ontribution of the 
limb to the global-traje
tory fuel 
onsumption; theoptimization parameters are the 
limb CAS and Ma
h. In this 
hapter the optimality ofCAS/Ma
h 
limbs is analyzed by 
omparing results from Ref. [34℄ with the optimal ones.The 
omparison of the results with the optimal ones shows that the integral performan
e ofthe optimized CAS/Ma
h pro
edure is very 
lose to optimal, that is, the fuel 
onsumption,the �ight time, the horizontal distan
e travelled and, espe
ially, the minimum performan
eindex are very 
lose to the optimum values.Results are presented for a model of a Boeing 767-300ER, for linear wind pro�les, 
hara
-terized by two parameters: the average wind speed and the speed-pro�le slope or wind shear,and for γmin = 0 so that the initial and �nal ar
s are horizontal segments, as in the optimizedCAS/Ma
h pro
edure, with whi
h the optimum results are to be 
ompared. The in�uen
eof the two wind parameters and of the initial air
raft weight on the results is analyzed. Thestrong e�e
t of the wind shear is des
ribed.The outline of the 
hapter is as follows: the problem is formulated in Se
tion 4.2, in
ludingequations of motion, performan
e index, appli
ation of the ne
essary 
onditions for optimalityand obtention of the singular surfa
e and the singular 
ontrol; the numeri
al pro
edure isexplained in Se
tion 4.3; some results are presented in Se
tion 4.4, both for the optimal andthe optimized CAS/Ma
h pro
edure, along with the 
omparison between the two pro
edures;and �nally, a summary of the main results and 
on
lusions is in
luded in Se
tion 4.5.4.2 Problem FormulationIn this se
tion, the fuel-optimal 
limb problem is formulated. First, the optimal 
ontrolproblem is stated by de�ning the equations of motion (along with the initial and �nal 
ondi-tions) and the performan
e index 
onsidered. Se
ond, be
ause an indire
t numeri
al methodis 
onsidered for the resolution of the problem, the ne
essary 
onditions for optimality arein
luded. Then, the optimal traje
tories are des
ribed, in
luding the equations de�ning thesingular ar
 and the singular 
ontrol (whi
h is a feedba
k 
ontrol law).4.2.1 Equations of MotionThe equations of motion (3.41) parti
ularized to a 
limb phase, in whi
h one has the additional
onstraint that π is a known parameter π = πcl, redu
e to
V̇ =

T −D

m
− gγ − V

dw

dh
γ

ṁ = −cT
ḣ = V γ

ẋ = V + w

(4.1)
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4.2. Problem FormulationIn this problem there are four states, V , m, h and x, and one 
ontrol, γ. The initial values ofspeed, mass, altitude and distan
e (Vi,mi, hi, xi), and the �nal values of speed and altitude(Vf , hf ) are given. The �nal value of mass (mf ), distan
e (xf ), and �ight time (tf ) areunspe
i�ed.4.2.2 Performan
e IndexIn the study of minimum-fuel 
limbs in the 
ontext of the analysis of global traje
tories (fromtake o� to landing), one must take into a

ount that the horizontal distan
e travelled duringthe 
limb a�e
ts the 
ruise distan
e and the asso
iated fuel 
onsumption. If one 
ompares aminimum-fuel 
limb traje
tory with another one less steep, in whi
h the horizontal distan
eis larger, even though the fuel 
onsumption during the 
limb in the former 
ase is smaller,to have a fair 
omparison of fuel 
onsumption one should 
onsider the extra fuel 
onsumedto 
over the same distan
e as in the latter 
ase. To take this point into 
onsideration in theanalysis of 
limb performan
e, it is 
ommon in the literature (see for example Ref. [82℄) tode�ne a pro
edure in whi
h the 
limb to the given �nal altitude is followed by a horizontalsegment whi
h ends when an arbitrarily given horizontal distan
e is travelled.In this thesis a di�erent approa
h is followed. Only the 
limb phase is 
onsidered, andthe fuel 
onsumption during the 
limb is minimized but penalizing small values of the 
limbdistan
e. Hen
e the following performan
e index is 
onsidered
J=̇mF −Kxf = −

∫ mf

mi

dm−K

∫ xf

0
dx, (4.2)whi
h 
an be also written as follows, using the equations of motion (4.1),

J =

∫ tf

0
[cT −K(V + w)] dt, (4.3)where mF =̇mi −mf is the fuel 
onsumed during the 
limb, xf is the 
limb horizontal dis-tan
e, and the positive parameter K is a 
ost fa
tor that de�nes the tradeo� between fuel
onsumption and horizontal distan
e. Obviously, K = 0 
orresponds to the minimum-fuelproblem, and K > 0 leads to optimal 
limbs with larger horizontal distan
e, but at theexpense of a larger fuel 
onsumption. One 
an see that this 
ost fa
tor plays a role similarto the one played by the well-known 
ost index used by airlines, whi
h de�nes the tradeo�between fuel 
onsumption and �ight time.Although one 
ould 
onsider K just as a penalty fa
tor and �x its value arbitrarily, inthis 
ahpter to 
hoose a value for K the following physi
al interpretation given in Ref. [49℄ is
onsidered: if K is de�ned as an average fuel 
onsumption per unit distan
e in 
ruise �ight,and if two di�erent 
limbs with horizontal distan
es xf1 and xf2 > xf1 are 
onsidered, then

K(xf2 − xf1) 
an be seen as an estimation of the de
rease in fuel 
onsumption during the
ruise due to the redu
tion in 
ruise distan
e. Therefore, K is de�ned as follows
K=̇−

(

dm

dx

)

cr

(4.4)expression that must be evaluated at the start of the 
ruise phase, under some given referen
e
onditions.The optimal 
limb problem redu
es to minimize the performan
e index given by Eq. (4.3)subje
t to the 
onstraints de�ned by the equations of motion (4.1). 31



4. Fuel-Optimal Climb4.2.3 Ne
essary Conditions for OptimalityThe Hamiltonian of this problem is given by
H = cT + λV

(

T −D

m
− gγ − V w′γ

)

− λmcT + λhV γ + (λx −K) (V + w) (4.5)where ()′ denotes derivative with respe
t to h, and λV , λm, λh and λx are the adjoint variables.Assuming that the normality and non-triviality 
onditions are satis�ed, the ne
essary
onditions for optimality are summarized next (see Chapter 3):1) The equations de�ning the adjoints:
λ̇V = −∂H

∂V
=− λV

m

(

∂T

∂V
− ∂D

∂V
−mγw′

)

− (1− λm)

(

T
∂c

∂V
+ c

∂T

∂V

)

− λhγ

+K − λx

λ̇m = −∂H
∂m

=
λV
m

(

T −D

m
+
∂D

∂m

)

λ̇h = −∂H
∂h

=− λV
m

(

∂T

∂h
− ∂D

∂h
− V mγw′′

)

− (1− λm)

(

T
∂c

∂h
+ c

∂T

∂h

)

+ w′ (K − λx)

λ̇x = −∂H
∂x

=0

(4.6)
The last equation leads to 
onstant λx.2) The transversality 
onditions: First, be
ause the �nal distan
e xf is not spe
i�ed, onehas

λx(tf ) = 0 (4.7)whi
h leads to
λx(t) = 0 (4.8)Se
ond, be
ause the �nal mass m(tf ) is not spe
i�ed,
λm(tf ) = 0 (4.9)Third, be
ause the �nal time is not spe
i�ed,
H(tf ) = 0 (4.10)3) The Hamiltonian minimization 
ondition: For the 
ontrol to be optimal it is ne
essarythat it globally minimize the Hamiltonian. The Hamiltonian is linear in γ, so that it 
an bewritten as
H = H + Sγ (4.11)with

H =
λV
m

(T −D) + (1− λm) cT −K(V +w)

S = λhV − λV (g + V w′)
(4.12)32



4.2. Problem Formulationwhere Eq. (4.8) has been taken into a

ount, and S is the swit
hing fun
tion. As a 
onse-quen
e, this is a singular optimal 
ontrol problem. The Hamiltonian minimization 
onditionfor singular optimal 
ontrol problems has a spe
ial form given by Eq. (3.18), whi
h in this
ase de�nes the optimal 
ontrol as follows
γ =











γmax if S < 0

γmin if S > 0

γsing if S = 0 over a �nite time interval (4.13)where γsing is the singular 
ontrol (yet to be determined), whi
h satis�es γmin < γsing < γmax.Traje
tory segments de�ned by γsing are singular ar
s.As indi
ated in Chapter 3, in singular optimal 
ontrol problems there arise additional
onditions that must be satis�ed in order both, for a singular ar
 to be minimizing, andfor the jun
tions between singular and nonsingular ar
s to be optimal. These additionalne
essary 
ondition for optimality are analyzed below in Se
tion 4.2.4.2.Finally, be
ause the Hamiltonian is not an expli
it fun
tion of time (as the problem isautonomous), the Hamiltonian 
onstan
y 
ondition applies, and using Eq. (4.10) one gets
H(t) = 0 (4.14)along the optimal traje
tory.4.2.4 Optimal Traje
toriesIn general the optimal traje
tory will be 
omposed of singular ar
s (with γsing) and ar
s with

γmin or γmax, 
ommonly referred to as bangs; whether one has γmin or γmax is de�ned bythe sign of the swit
hing fun
tion S. In this problem the solution is expe
ted to be of thebang-singular-bang type, that is, a singular ar
 and two minimum/maximum-γ ar
s joiningthe singular ar
 with the given initial and �nal points. This bang-singular-bang stru
tureis suggested by the results in Miele [47℄, where it is shown that the minimum-fuel 
limb isde�ned by a 
entral path and two initial and �nal bran
hes to join that path with the initialand �nal 
onditions. Although the underlying aerodynami
 and propulsive models mighta�e
t the stru
ture of the solution, for the smooth models 
onsidered in this thesis, the bang-singular-bang stru
ture is plausible, and hen
e it is the one analyzed in this 
hapter. Sin
ethe initial and �nal speeds are given, there is a physi
al 
riterium to de
ide whether one has
γmin or γmax, just by 
omparing those speeds with the speeds that 
orrespond to the singularar
 for the initial and �nal altitudes and masses.Although 
alled optimal traje
tories, they are in fa
t extremals, that is, traje
tories thatsatisfy the ne
essary 
onditions for optimality.4.2.4.1 Singular Ar
The singular ar
 is de�ned by the following three equations

H = 0, S = 0, Ṡ = 0 (4.15)33



4. Fuel-Optimal Climbwhere the fun
tion Ṡ is given by
Ṡ =

λV g

m

[

(1 +
V w′

g
)
∂T

∂V
− V

g

∂T

∂h
− (1 +

V w′

g
)
∂D

∂V
+
V

g

∂D

∂h
− w′

g
(T −D)

]

+ (1− λm) gcT

[

(1 +
V w′

g
)
1

T

∂T

∂V
− V

gT

∂T

∂h
+ (1 +

V w′

g
)
1

c

∂c

∂V
− V

gc

∂c

∂h

]

+
λh
m

(T −D)− gK

(4.16)(note that the terms in the 
ontrol variable γ have 
an
elled out of this equation). Moreover,be
ause H = 0 one also has H = 0.Hen
e, the three equations that de�ne the singular ar
 (H = S = Ṡ = 0) lead to
λV
m

(T −D) + (1− λm) cT − (V +w)K = 0

λhV − λV g(1 +
V w′

g
) = 0

λV g

m

[

(1 +
V w′

g
)
∂T

∂V
− V

g

∂T

∂h
− (1 +

V w′

g
)
∂D

∂V
+
V

g

∂D

∂h
− w′

g
(T −D)

]

+(1− λm) gcT

[

(1 +
V w′

g
)
1

T

∂T

∂V
− V

gT

∂T

∂h
+ (1 +

V w′

g
)
1

c

∂c

∂V
− V

gc

∂c

∂h

]

+
λh
m

(T −D)− gK = 0

(4.17)
whi
h de�ne the three adjoints λV , λm and λh along the singular ar
 in terms of the statevariables, namely

λV = fV (V,m, h)

λm = fm(V,m, h)

λh = fh(V,m, h)

(4.18)Contrary to other 
ases (su
h as 
ruise and des
ent problems), in this 
limb problem itis not possible to obtain an expression for the singular ar
 in terms of the state variablesalone. However, in the 
ase K = 0 it is possible, be
ause the system of equations (4.17) ishomogeneous, and, therefore, to have a nontrivial solution one must have
(

1 +
V w′

g

)(

V

T

∂T

∂V
− V

D

∂D

∂V

)

− V 2

g

(

1

T

∂T

∂h
− 1

D

∂D

∂h

)

+

(

T

D
− 1

)[

1−
(

1 +
V w′

g

)

V

c

∂c

∂V
+
V 2

gc

∂c

∂h

]

= 0

(4.19)whi
h de�nes a singular surfa
e in the (V,m, h) spa
e, namely f(V,m, h) = 0.In the 
ase of no wind (w = 0), even in the 
ase of 
onstant wind (w′ = 0), Eq. (4.19)redu
es to
(

V

T

∂T

∂V
− V

D

∂D

∂V

)

− V 2

g

(

1

T

∂T

∂h
− 1

D

∂D

∂h

)

+

(

T

D
− 1

)(

1− V

c

∂c

∂V
+
V 2

gc

∂c

∂h

)

= 0 (4.20)whi
h is the same result obtained by Miele [47℄ for the 
ental pattern of his solution, eventhough it is obtained under the assumption of 
onstant air
raft mass.34



4.3. Numeri
al Pro
edure4.2.4.2 Optimal Singular ControlBe
ause the fun
tion S̈ depends linearly on the 
ontrol variable γ (note that Ṡ does notdepend on γ), the order of the singular ar
 is ξ = 1. Let S̈ = A(V,m, h)+B(V,m, h)γ, where
A =

λV g

m2V 2
A1(V,m, h) +

λh
m2V

A2(V,m, h) +
(1− λm) gc

mV 2
A3(V,m, h)

+
Kg

mV
A4(V,m, h)

B =
λV g

2

mV 2
B1(V,m, h) +

λhg

mV
B2(V,m, h) +

(1− λm) g2c

V 2
B3(V,m, h)

(4.21)with known fun
tions A1, A2, A3, A4, B1, B2, and B3 (these fun
tions are in
luded inAppendix C), and with the adjoints λV , λm, λh given by Eqs. (4.18). Therefore, be
ause onealso has S̈ = 0 (where S = Ṡ = 0), the singular 
ontrol is given by
γsing = −A(V,m, h)

B(V,m, h)
(4.22)The generalized Legendre-Clebs
h 
ondition for the optimality of the singular 
ontrol,Eq. (3.21), redu
es in this 
ase (ξ = 1 and u = γ) to −∂S̈

∂γ
≥ 0, whi
h leads to

B(V,m, h) ≤ 0 (4.23)It 
an be shown numeri
ally that B < 0 for all the 
ases 
onsidered in this Chapter, so thatthe strengthened generalized Legendre-Clebs
h 
ondition (−∂S̈
∂γ

> 0) is satis�ed.The M
Danell-Powers ne
essary 
ondition for the optimality of jun
tions between singularand nonsingular ar
s (see Chapter 3) is shown to be satis�ed, be
ause the order of the singularar
 is ξ = 1 and the lowest-order time derivative of the 
ontrol whi
h is dis
ontinuous atthe jun
tion is ζ = 0 (that is, the 
ontrol itself is dis
ontinuous at the jun
tion). Moreover,although the 
ontrol variable is dis
ontinuous at the jun
tions, the Weierstrass-Erdman 
orner
onditions are satis�ed be
ause the adjoint variables, the Hamiltonian and the swit
hingfun
tion are all 
ontinuous.4.3 Numeri
al Pro
edureIn this se
tion the numeri
al pro
edure used to solve the optimal 
limb is des
ribed. In Fig. 4.1a sket
h of the expe
ted optimal path (bang-singular-bang) is presented (the parti
ular 
aseof two γmin ar
s is depi
ted). Knowing the stru
ture of the solution allows one to de�ne ane�
ient numeri
al pro
edure (see Maurer [44℄), as follows.The �rst bang starts with the initial values Vi, mi, hi and xi. Let λV,1 be the value ofthe adjoint λV at the beginning of the singular ar
 (point 1 in Fig. 4.1). If λV,1 were known,the state equations (4.1) 
ould be integrated until the singular ar
 were rea
hed, that is until
λV,1 = fV (V1,m1, h1) were satis�ed. Also, if the altitude at the end of the singular ar
 h2were known, the state equations 
ould be integrated along the singular ar
 (from point 1 topoint 2 in Fig. 4.1), and then, using Eqs. (4.18), λV , λm and λh 
ould be obtained at point35



4. Fuel-Optimal Climb2. Finally, the state equations and the adjoint equations (4.6) 
ould be integrated along these
ond bang, whi
h starts at the singular ar
 (point 2) and ends when the value V = Vf isrea
hed. At the �nal point one has two additional 
onditions, h(tf ) = hf and λm(tf ) = 0,whi
h are to be used to de�ne λV,1 and h2; this task is performed by means of an iterativepro
edure.

h
m

V

i

f

21

Figure 4.1: Sket
h of the optimal 
limb path.The iterative pro
edure must be started with an initial guess for the two unknowns.First, the initial guess for h2 is h[0]2 = hf , be
ause the se
ond bang ar
 has very small length.Se
ond, an initial guess for λV,1 
an be obtained by 
onsidering λm,1 ≈ 0 in H = 0, whi
hgives λV,1 ≈ − m [cT −K (V +w)]

T −D

∣

∣

∣

∣

1

. As the state variables at 1 are unknown, the previousexpression 
an be approximated by evaluating the variables at i, so that the initial guessis λ[0]V,1 = − m [cT −K (V + w)]

T −D

∣

∣

∣

∣

i

. These initial guesses lead to 
onvergen
e in all 
ases
onsidered in this 
hapter.4.3.1 Iterative Pro
edureThe following iterative pro
edure is used in the numeri
al resolution.Step 0. Guess values λ[n]V,1 and h[n]2 .Step 1. Integrate the state equations (4.1) with either γ = γmin or γ = γmax from theinitial point (with known initial values Vi,mi, hi, xi) until the singular ar
 is rea
hed (point1), that is, until V1, m1, h1 and λ[n]V,1 satisfy λ[n]V,1 = fV (V1,m1, h1); at that point one also has
x1. The value γmin or γmax is 
hosen depending on whether one has Vi < Va or Vi > Va, where
Va is de�ned by λ[n]V,1 = fV (Va,mi, hi), that is, the speed that 
orresponds in the singular ar
to the initial mass mi and altitude hi.Step 2. Integrate the state equations (4.1) with γ = γsing from point 1 (with knownstarting values V1,m1, h1, x1) until the altitude h[n]2 is rea
hed. At the end of the integration36



4.4. Resultsalong the singular ar
 one also has V2, m2 and x2; λV,2, λm,2 and λh,2 are obtained from Eqs.(4.18).Step 3. Integrate the state equations (4.1) and the adjoint equations (4.6) with either γ =

γmin or γ = γmax from point 2 (with known starting values V2,m2, h
[n]
2 , x2, λV,2, λm,2, λh,2)until the speed Vf is rea
hed. The value γmin or γmax is 
hosen depending on whether onehas Vf > V2 or Vf < V2. At the �nal point one also obtains the �nal values h[n]f and λ[n]m,f ,whi
h in general are di�erent from hf and 0, respe
tively; in su
h 
ase, one must iterate onthe guessed values h[n]2 and λ[n]V,1, whi
h is done as des
ribed next.The pro
edure de�ned by steps 1 to 3 de�nes a fun
tion g : R2 7→ R

2, (h[n]2 , λ
[n]
V,1

)

7→
(

h
[n]
f , λ

[n]
m,f

), so that one sear
hes for the values h2 and λV,1 that satisfy g (h2, λV,1) = (hf , 0).If one de�nes the fun
tion G = g (h2, λV,1)− (hf , 0) one sear
hes for the zero of G (h2, λV,1).The resolution of this system of equations is performed using MATLAB's fsolve, startingthe iteration with the values h[0]2 and λ[0]V,1 de�ned above, and stopping when h[n]f = hf and
λ
[n]
m,f = 0 to within some pres
ribed toleran
e.On
e the problem is integrated, one has the �nal optimum values of the distan
e travelled
xf , the �ight time tf and the air
raft mass mf whi
h de�nes the fuel 
onsumption mF =

mi −mf .4.3.2 Control Stru
ture OptimalityIt still remains to 
he
k whether the assumed stru
ture for the 
ontrol (bang-singular-bang)is 
orre
t. That is, one must 
he
k that S > 0 for γ = γmin and that S < 0 for γ =

γmax. This requires the 
omputation of S along the extremal path just 
omputed. Sin
e
S = λhV − λV (g + V w′), one must 
ompute λV and λh.Be
ause of the resolution pro
edure previously explained, λV and λh have already been
omputed along the �nal bang. To 
ompute them along the initial bang, one 
an integrateba
kwards the state equations (4.1) and the adjoint equations (4.6) from point 1 (with knownstarting values V1,m1, h1, x1, λV,1, λm,1, λh,1) until the initial point is rea
hed. Note that λV,1,
λm,1 and λh,1 are obtained from Eqs. (4.18).The numeri
al results show that the 
ontrol stru
ture is 
orre
t in all 
ases presented inSe
tion 4.4.4.4 ResultsThe air
raft model 
onsidered in this thesis for the numeri
al appli
ations (
orresponding toa Boeing 767-300ER) is des
ribed in Appendix B, and the atmosphere model is the Interna-tional Standard Atmosphere (ISA).For the wind model, linear pro�les are 
onsidered, with the absolute value of the windspeed in
reasing with altitude (see Ref. [50℄). The pro�les are de�ned as follows

w(h) = w̄ +∆w
h− h̄

hf − h̄
(4.24)where w̄ is the average wind, ∆w is the wind-shear parameter and h̄ = (hi + hf )/2 is the37



4. Fuel-Optimal Climbaverage altitude. For given values of hi and hf , ∆w de�nes the wind shear dw

dh
, and, inparti
ular, ∆w = 0 de�nes a uniform wind pro�le. Note that the average wind speed w̄satis�es

w̄ =
1

hf − hi

∫ hf

hi

w(h)dh (4.25)and, also, sin
e the wind pro�les are linear, w̄ is the wind speed at the average altitude, thatis, w̄ = w(h̄). In the following, both tailwinds (TW) and headwinds (HW) are 
onsidered,with the linear pro�les de�ned as follows: for TW one has w̄ > 0 and ∆w ≥ 0, and for HW
w̄ < 0 and ∆w ≤ 0.Results are presented for the 
ase of initial and �nal γmin-ar
s, whi
h require that theinitial and �nal speeds be su�
iently low and high, respe
tively. In parti
ular, γmin = 0 hasbeen 
onsidered so that the initial and �nal ar
s are horizontal segments, as in the optimizedCAS/Ma
h pro
edure, with whi
h the optimum results are 
ompared.The initial 
onditions (
orresponding to a hypotheti
al departure �x) are CASi = 250 kt,
hi = 10000 ft, and the �nal 
onditions (
orresponding to the initial 
ruise 
onditions) are
Mf = 0.80, hf = 33000 ft. The average altitude is h̄ = 21500 ft. The value of K followsfrom Eq. (4.4) evaluated at the �nal 
limb 
onditions (start of the 
ruise) Mf and hf ,for Wf = 1670 kN, without wind, and using a quasi-steady 
ruise formulation; the valueobtained is K = 6.27 kg/km. The throttle setting has been �xed to π = 0.75, so that typi
alperforman
e is obtained for the range of parameters 
onsidered in the appli
ation.To analyze the wind e�e
ts on the optimal traje
tories, the initial air
raft weight is
Wi = 1700 kN, the average wind ranges from −30 kt to 30 kt, and the absolute value ofthe wind-shear parameter ranges from 0 to 20 kt. In the analysis of the e�e
t of the initialair
raft weight on the results, no wind is 
onsidered, andWi ranges from 1650 kN to 1750 kN.Results from Fran
o et al. [34℄ 
orresponding to optimized CAS/Ma
h 
limbs for the sameperforman
e index, air
raft and atmosphere models, wind model, as well as initial and �nal
onditions are reprodu
ed here. For 
ompleteness, a detailed des
ription of this CAS/Ma
h
limb pro
edure is in
luded in Appendix D.The outline of this se
tion is as follows: the e�e
ts of the average wind speed (Se
tion4.4.1), the wind-shear parameter (Se
tion 4.4.2), and the air
raft weight (Se
tion 4.4.3) onthe optimal and optimized traje
tories as well as on the optimal 
ontrol and the aerodynami
path angle are analyzed; then, the optimal and optimized 
limbs are 
ompared in terms ofglobal variables, whi
h are also analyzed in Se
tion 6.4.2.4.4.1 E�e
t of the Average Wind SpeedThe optimal and optimized CAS/Ma
h speed pro�les V (h) are represented in Fig. 4.2, fordi�erent values of the average wind speed (w̄ ranging from −30 kt to 30 kt) and for a wind-shear parameter ∆w = 0. The 
limb traje
tories start and end with horizontal a

elerations.In the optimal 
limbs, these horizontal segments 
orrespond to the γmin-ar
s, from the giveninitial point to the singular ar
, and from the singular ar
 to the given �nal point; and in theoptimized CAS/Ma
h 
limbs, they 
orrespond to the initial and �nal horizontal a

elerationsfrom the given initial speed to the optimum CASc, and from the optimum Mc to the �nalspeed. In the optimal 
limbs, along the singular ar
 the speed in
reases, rea
hes a maximum38



4.4. Resultsand then slowly de
reases; and in the optimized CAS/Ma
h 
limbs, the speed in
reases duringthe CAS segment and de
reases during the Ma
h segment, as expe
ted. Qualitatively onehas the same behavior in both 
ases. The in�uen
e of w̄ is 
lear: as w̄ in
reases, the speedde
reases, so that for TW one has speeds smaller than for HW.
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(b)Figure 4.2: Speed pro�les for w̄ = −30, −20, −10, 0, 10, 20, 30 kt and ∆w = 0. (a) Optimal
limbs, (b) Optimized CAS/Ma
h 
limbs.The CAS and Ma
h pro�les, CAS(h) and M(h), are represented in Figs. 4.3 and 4.4.One 
an see that the �rst part of the optimal traje
tory is not at 
onstant CAS, but ratherthe CAS de
reases, and as a 
onsequen
e the in
rease of the aerodynami
 speed during the
onstant-CAS segment is stronger than during the �rst part of the optimal traje
tory (seeFig. 4.2). On the other hand, during the last part of the optimal traje
tory the variationof the Ma
h number is small, so that the 
onstant-Ma
h segment is somewhat 
lose to theoptimal traje
tory (
loser than the 
onstant-CAS segment).

2000 4000 6000 8000 10000 12000
120

130

140

150

160

170

180

190

200

h [m]

C
A

S
[m

/
s]

w̄

(a) 2000 4000 6000 8000 10000 12000
120

130

140

150

160

170

180

190

200

h [m]

C
A

S
[m

/
s]

w̄

(b)Figure 4.3: CAS pro�les for w̄ = −30, −20, −10, 0, 10, 20, 30 kt and ∆w = 0. (a) Optimal
limbs, (b) Optimized CAS/Ma
h 
limbs. 39



4. Fuel-Optimal Climb
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(b)Figure 4.4: Ma
h-number pro�les for w̄ = −30, −20, −10, 0, 10, 20, 30 kt and ∆w = 0. (a)Optimal 
limbs, (b) Optimized CAS/Ma
h 
limbs.The optimal 
ontrol and the aerodynami
 path angle in the CAS/Ma
h 
limbs γ(h) arerepresented in Fig. 4.5 for the same values of w̄ as before and ∆w = 0. It is dis
ontinuous: forthe optimal traje
tories, one has the two ar
s with γmin = 0 (hardly seen in the �gure) andthe singular ar
, and for the optimized CAS/Ma
h traje
tories, one has the four 
onstitutivesegments (the initial and �nal ones hardly seen). Note that in the CAS/Ma
h 
limbs thereis an in
rease in γ at the transition altitude between the segments with 
onstant CAS and
onstant Ma
h, as required to de
elerate the air
raft. As one 
an see, the average wind speedhas very little in�uen
e both on the singular optimal 
ontrol (ex
ept near the �nal bang) andon the path angle of the optimized CAS/Ma
h 
limbs.
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(b)Figure 4.5: Path-angle pro�les for w̄ = −30, −20, −10, 0, 10, 20, 30 kt and ∆w = 0. (a)Optimal 
limbs, (b) Optimized CAS/Ma
h 
limbs.
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4.4. Results
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(b)Figure 4.6: Flight paths for w̄ = −30, −20, −10, 0, 10, 20, 30 kt and ∆w = 0. (a) Optimal
limbs, (b) Optimized CAS/Ma
h 
limbs.The �ight paths h(x) are represented in Fig. 4.6, where one 
an see that there is abig qualitative agreement between the optimal and optimized CAS/Ma
h 
limbs. Note theslope dis
ontinuity at the transition altitude between the 
onstant-CAS and 
onstant-Ma
hsegments.4.4.2 E�e
t of the Wind ShearThe optimal and optimized CAS/Ma
h speed pro�les V (h) are represented in Fig. 4.7, fordi�erent values of the wind-shear parameter (|∆w| ranging from 0 kt to 20 kt), and for twovalues of the average wind (w̄ = 30 kt TW and w̄ = −30 kt HW).
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(b)Figure 4.7: Speed pro�les for TW (w̄ = 30 kt, ∆w = 0, 5, 10, 15, 20 kt) and HW (w̄ = −30 kt,
∆w = 0, −5, −10, −15, −20 kt). (a) Optimal 
limbs, (b) Optimized CAS/Ma
h 
limbs.
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4. Fuel-Optimal ClimbAs before, the speed in
reases, rea
hes a maximum and then slowly de
reases; in theoptimal traje
tories the speed de
rease is very weak for HW and quite strong for TW. Thein�uen
e of ∆w on the pro�les is relatively small, ex
ept with TW at higher altitudes, whenthe speed de
reases. The e�e
t of ∆w 
an be seen as a reinfor
ement of the average winde�e
ts: as ∆w in
reases, the speed de
reases (note that, for HW, when ∆w in
reases |∆w|de
reases). The behavior of the CAS and Ma
h pro�les in this 
ase follows the same trendsalready shown in Figs. 4.3 and 4.4, and are not represented for that reason.The optimal 
ontrol and the aerodynami
 path angle in the CAS/Ma
h 
limbs γ(h) arerepresented in Fig. 4.8 for the same values of w̄ and ∆w as before. They show the samedis
ontinuities as before. The wind shear has a small in�uen
e on γ, although somewhatlarger than the in�uen
e of the average wind speed.
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(b)Figure 4.8: Path-angle pro�les for TW (w̄ = 30 kt, ∆w = 0, 5, 10, 15, 20 kt) and HW(w̄ = −30 kt,∆w = 0, −5, −10, −15, −20 kt). (a) Optimal 
limbs, (b) Optimized CAS/Ma
h
limbs.The 
orresponding �ight paths are shown in Fig. 4.9, where again there is a big qualitativeagreement between the optimal and optimized CAS/Ma
h 
limbs, ex
ept in the 
ase of TWat high altitudes.4.4.3 E�e
t of the Initial Air
raft WeightThe optimal and optimized CAS/Ma
h speed pro�les V (h) are represented in Fig. 4.10, fordi�erent values of the initial air
raft weight (Wi ranging from 1650 kN to 1750 kN) and forno wind (w̄ = 0 and ∆w = 0). The optimal and optimized CAS/Ma
h pro�les have the samestru
ture as before: the speed in
reases, rea
hes a maximum and then slowly de
reases. Thein�uen
e ofWi on the pro�les is 
lear: as the initial air
raft weight in
reases, the speed alongthe singular ar
 and the 
onstant-CAS and 
onstant-Ma
h segments slightly in
reases. Asbefore, the CAS and Ma
h pro�les in this 
ase are not represented.42



4.4. Results
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(b)Figure 4.9: Flight paths for TW (w̄ = 30 kt, ∆w = 0, 5, 10, 15, 20 kt) and HW (w̄ = −30 kt,
∆w = 0, −5, −10, −15, −20 kt). (a) Optimal 
limbs, (b) Optimized CAS/Ma
h 
limbs.
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(b)Figure 4.10: Speed pro�les forWi = 1650, 1675, 1700, 1725 and 1750 kN. (a) Optimal 
limbs,(b) Optimized CAS/Ma
h 
limbs.
The optimal 
ontrol and the aerodynami
 path angle in the CAS/Ma
h 
limbs γ(h) arerepresented in Fig. 4.11 for the same values of the initial air
raft weight as before and nowind, showing the same dis
ontinuities as before. The initial air
raft weight has a 
learin�uen
e on γ: as Wi in
reases, the 
ontrol slightly de
reases.The 
orresponding �ight paths are shown in Fig. 4.12, where again there is a big qualita-tive agreement between the optimal and optimized CAS/Ma
h 
limbs.
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4. Fuel-Optimal Climb
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(b)Figure 4.11: Path-angle pro�les for Wi = 1650, 1675, 1700, 1725 and 1750 kN. (a) Optimal
limbs, (b) Optimized CAS/Ma
h 
limbs.

0 50 100 150 200 250 300 350
2000

4000

6000

8000

10000

12000

x [km]

h
[m

]

Wi

(a) 0 50 100 150 200 250 300 350
2000

4000

6000

8000

10000

12000

x [km]

h
[m

]

Wi

(b)Figure 4.12: Flight paths for Wi = 1650, 1675, 1700, 1725 and 1750 kN. (a) Optimal 
limbs,(b) Optimized CAS/Ma
h 
limbs.4.4.4 Comparison and Analysis of Global VariablesBesides the 
omparison made between the �ight pro�les in the previous se
tions, now theoptimized CAS/Ma
h 
limbs are 
ompared with the optimal 
limbs in terms of fuel 
onsump-tion, �ight time and range, global variables whi
h are also analyzed in this se
tion, along withthe minimum performan
e index.In Figs. 4.13, 4.14, 4.15 and 4.16, the fuel 
onsumption, the �ight time, the range andthe minimum performan
e index for both problems are represented, �rst, as fun
tions of thewind-shear parameter for two values of the average wind (w̄ = 30 kt TW and w̄ = −30 ktHW) and Wi = 1700 kN, and, se
ond, as fun
tions of the average wind for di�erent values ofthe initial air
raft weight (Wi ranging from 1675 to 1750 kN) and ∆w = 0. One 
an see thatthe di�eren
es between both sets of results are very small in all 
ases (less than 88 kg in fuel
onsumption, less than 1.1 min in �ight time, less than 15 km in range and less than 3.1 kgin performan
e index). Hen
e, it 
an be 
on
luded that the performan
e of the CAS/Ma
h44



4.4. Resultspro
edure is very 
lose to optimal, provided that the optimum values of CASc and Mc areused in the 
limb.Next the global variables are analyzed. Some numeri
al values are given in Table 4.1.The results show the following: 1) the stronger the wind shear for TW, the larger the fuel
onsumption, the �ight time, the range and the minimum performan
e index, although thisindex is roughly 
onstant; 2) the stronger the wind shear for HW (in absolute value), thesmaller the fuel 
onsumption, the �ight time, the range and the minimum performan
e index;3) the higher the average wind speed, the higher the fuel 
onsumption, the �ight time andthe range, and the lower the minimum performan
e index; and 4) the heavier the air
raft,the larger the fuel 
onsumption, the �ight time, the range and the minimum performan
eindex. These trends are now quanti�ed (using the values given in Table 4.1).Table 4.1: Flight variables for di�erent winds and initial air
raft weights (optimum values)
Wi = 1700 kN

w̄ = −30 kt (HW) w̄ = 30 kt (TW)
∆w = −20 kt ∆w = 0 kt ∆w = 0 kt ∆w = 20 kt

mF [kg℄ 2650.6 2825.3 2992.9 3433.3
tf [min℄ 19.06 20.63 23.18 28.12
xf [km℄ 243.82 264.59 331.08 399.97
J [kg℄ 1121.8 1166.3 917.0 925.5

∆w = 0 kt
w̄ = −30 kt (HW) w̄ = 30 kt (TW)

Wi = 1650 kN Wi = 1750 kN Wi = 1650 kN Wi = 1750 kN
mF [kg℄ 2576.7 3165.9 2735.8 3338.4
tf [min℄ 18.70 23.43 21.20 25.99
xf [km℄ 237.97 302.83 299.57 375.25
J [kg℄ 1084.7 1267.2 857.5 985.6

The e�e
t of the average wind speed on the fuel 
onsumption, the �ight time, the rangeand the minimum performan
e index is quite large, espe
ially the e�e
t on xf . When w̄in
reases from −30 kt to 30 kt, the in
reases inmF , tf and xf (for∆w = 0 andWi = 1700 kN)are 167.6 kg, 2.55 min and 66.49 km, respe
tively, that is 5.93%, 12.4%, 25.1%, and thede
rease in J is 249.3 kg, that is 21.4%.The e�e
t of the wind shear onmF , tf and xf in the 
ase of TW (w̄ = 30 kt) is quite large,although its e�e
t on J is quite small; when ∆w in
reases from 0 to 20 kt, the in
reases in
mF , tf and xf are 440.4 kg, 4.94 min and 68.89 km, respe
tively, that is 14.7%, 21.3%, 20.8%,whereas the in
rease in J is of just 8.5 kg, that is 0.93%. In the 
ase of HW (w̄ = −30 kt) thee�e
t on mF , tf and xf is not so large, and the e�e
t on J is also small although larger thanfor TW; when ∆w in
reases from −20 kt to 0, the in
reases in mF , tf and xf are 174.7 kg,1.57 min and 20.77 km, respe
tively, that is 6.59%, 8.24%, 8.52%, whereas the in
rease in Jis of 44.5 kg, that is 3.97%. 45



4. Fuel-Optimal ClimbThe e�e
t of the initial air
raft weight, 
an be quanti�ed as follows: for w̄ = −30 kt HW,when Wi in
reases from 1650 kN to 1750 kN, the in
reases in mF , tf , xf and J are 589.2 kg,4.73 min, 64.86 km and 182.5 kg, respe
tively, that is 22.9%, 25.3%, 27.3%, 16.8%; and for
w̄ = 30 kt TW, the in
reases are 602.6 kg, 4.79 min, 75.68 km and 128.1 kg, respe
tively,that is 22.0%, 22.6%, 25.3%, 14.9%.In summary, the in�uen
e of the wind pro�le and of the initial air
raft weight is in generalquite large.
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(b)Figure 4.13: Fuel 
onsumption: (a) vs. wind-shear parameter for TW (w̄ = 30 kt) and HW(w̄ = −30 kt), forWi = 1700 kN; (b) vs. average wind speed forWi = 1650, 1675, 1700, 1725and 1750 kN, for ∆w = 0. Solid lines: optimal 
limbs. Dashed lines: optimized CAS/Ma
h
limbs.
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(b)Figure 4.14: Flight time: (a) vs. wind-shear parameter for TW (w̄ = 30 kt) and HW(w̄ = −30 kt), for Wi = 1700 kN; (b) vs. average wind speed for Wi = 1650, 1675, 1700,
1725 and 1750 kN, for ∆w = 0. Solid lines: optimal 
limbs. Dashed lines: optimizedCAS/Ma
h 
limbs.46



4.4. Results
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(b)Figure 4.15: Range: (a) vs. wind-shear parameter for TW (w̄ = 30 kt) and HW (w̄ = −30 kt),for Wi = 1700 kN; (b) vs. average wind speed for Wi = 1650, 1675, 1700, 1725 and 1750 kN,for ∆w = 0. Solid lines: optimal 
limbs. Dashed lines: optimized CAS/Ma
h 
limbs.
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(b)Figure 4.16: Minimum performan
e index: (a) vs. wind-shear parameter for TW (w̄ = 30 kt)and HW (w̄ = −30 kt), for Wi = 1700 kN; (b) vs. average wind speed for Wi = 1650, 1675,
1700, 1725 and 1750 kN, for ∆w = 0. Solid lines: optimal 
limbs. Dashed lines: optimizedCAS/Ma
h 
limbs.
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4. Fuel-Optimal Climb4.5 SummaryAn analysis of fuel-optimal, �xed-rating 
limb in the presen
e of altitude-dependent windshas been made, using the theory of singular optimal 
ontrol. The 
limb has been optimized togive minimum 
ontribution to the global-traje
tory fuel 
onsumption, by means of penalizingsmall values of the 
limb distan
e. The optimal 
ontrol is of the bang-singular-bang type, andthe optimal paths are formed by a singular ar
 and two minimum/maximum-γ ar
s joiningthe singular ar
 with the given initial and �nal points. Results have been presented for the
ase of initial and �nal γmin-ar
s, in the parti
ular 
ase of γmin = 0, whi
h lead to two shorthorizontal a

eleration segments at the beginning and end of the optimal traje
tory. Thisanalysis has been used to assess the optimality of a CAS/Ma
h 
limb pro
edure 
omposed byfour segments (
limbs with 
onstant CAS and 
onstant Ma
h, and initial and �nal horizontala

elerations), whi
h is de�ned and optimized in Ref. [34℄.This study has been quite general, in the sense that it has been made for a general air
raftmodel and a general horizontal wind pro�le, although results have been presented for linearpro�les. In the numeri
al appli
ations, the linear wind pro�les have been de�ned by twoparameters: the average wind and the wind shear. The in�uen
e of these two parameters onthe results and the in�uen
e of the initial air
raft weight have been analyzed.The results have shown that as the average wind in
reases, the fuel 
onsumption, the �ighttime and the range in
rease, being the in
rease of range quite strong. The result that tailwindslead to values of fuel 
onsumption and �ight time larger than the values for headwinds is notwhat one usually has, but note that in this 
hapter the obje
tive has been to minimize the
ontribution of the 
limb to the global-traje
tory fuel 
onsumption, and that is obtained by�ying large horizontal distan
es (with the 
orresponding in
rease in fuel 
onsumption and�ight time). The performan
e index does de
rease as the average wind in
reases, and, hen
e,one has that tailwinds lead to fuel 
ontributions to the global traje
tory smaller than thoseof headwinds, as one would expe
t.Of parti
ular importan
e in this 
hapter has been the analysis of the in�uen
e of thewind shear on the 
limb performan
e. The in�uen
e of the wind shear on fuel 
onsumption,�ight time and horizontal distan
e is quite large, espe
ially in the 
ase of tailwinds, in�uen
e
omparable to that of the average wind, and even larger in the 
ases of fuel 
onsumptionand �ight time; in these 
ases the wind shear reinfor
es the e�e
ts of the average wind. Theoverall e�e
t of the wind shear on the performan
e index is however not so large.The 
omparison between both sets of results leads to the 
on
lusion that the performan
eof the optimized CAS/Ma
h pro
edure, in terms of global variables su
h as fuel 
onsumption,�ight time and range, is very 
lose to optimal, although the 
onstant-CAS segment is not 
loseto optimal. Clearly, the optimum CAS value represents an average speed that approximatesvery well, in global terms, the optimal speed law during the �rst part of the 
limb. Moreover,the �ight paths (altitude vs horizontal distan
e) also show a very good agreement. Fromthe operational point of view, one 
an 
on
lude that the use of the CAS/Ma
h 
limb inoperational pra
ti
e is justi�ed by the very 
lose 
omparison with the optimal results.
48



5 Minimum-Fuel Cruise with FixedArrival Time
5.1 Introdu
tionAn important problem in air tra�
 management (ATM) is the design of air
raft traje
toriesthat meet 
ertain arrival time 
onstraints at given waypoints, for instan
e at the top ofdes
ent, at the initial approa
h �x, or at the runway threshold (estimated time of arrival). The�nal-time 
onstraint may be de�ned, for example, by a �ight delay imposed on the nominal(preferred) traje
tory. These are four-dimensional (4D) traje
tories, whi
h are a key elementin the traje
tory-based-operations (TBO) 
on
ept proposed by SESAR and NextGen for thefuture ATM system (for example, Bilimoria and Lee [11℄ analyze air
raft 
on�i
t resolutionwith an arrival time 
onstraint at a downstream waypoint). Also important in ATM is thedesign of optimal �ight pro
edures that lead to energy-e�
ient �ights. In pra
ti
e, the airlines
onsider a 
ost index (CI) and de�ne the dire
t operating 
ost (DOC) as the 
ombined 
ostof fuel 
onsumed and �ight time, weighted by the CI; their goal is to minimize the DOC.When the �ight time is �xed, the obje
tive is to minimize fuel 
onsumption.In the analysis of air
raft traje
tories with �xed �ight time, wind e�e
ts are of primaryimportan
e, be
ause 
hanges in wind speed modify the �ight time (over a given range), andtherefore lead to 
hanges in the speed pro�les required to keep the �nal-time 
onstraint. Inthis 
hapter, an analysis of mimimum-fuel 
ruise with �xed arrival time, at 
onstant altitude,in the presen
e of horizontal winds, is presented. The problem is unsteady, with variableair
raft mass.The optimization analysis is made using the theory of singular optimal 
ontrol, whi
h hasthe great advantage of providing feedba
k 
ontrol laws (
ontrol variables as fun
tions of thestate variables), that 
an be dire
tly used to guide the air
raft along the optimal path. Theinitial and �nal speeds are given, so that the stru
ture 
hosen for the optimal 
ontrol is bang-singular-bang, with the optimal paths formed by a singular ar
 and two minimum/maximum-thrust ar
s joining the singular ar
 with the given initial and �nal points. The singular ar
in the 
ase of no winds is studied in Fran
o et al. [30℄.The main obje
tive of this 
hapter is to present a quantitative analysis of the e�e
ts ofaverage horizontal winds on the optimal traje
tories and 
ontrol laws that lead to minimumfuel 
onsumption while meeting the �nal-time 
onstraint. The in�uen
e of the initial air
raftweight and the given 
ruise altitude on the optimal results is also analyzed. From the op-erational point of view, two appli
ations are studied: �rst, the fuel penalties asso
iated to49



5. Minimum-Fuel Cruise with Fixed Arrival Timemismodeled winds are estimated, that is, the 
ost of meeting the given time of arrival undermismodeled winds is quanti�ed; and, se
ond, the 
ost of �ight delays imposed on a nominaloptimal path is quanti�ed as well.The optimal traje
tories de�ne speed laws in whi
h the Ma
h number varies along thesingular ar
. These optimal solutions, whi
h are a referen
e for optimal performan
e, are usedto assess the optimality of the standard 
onstant-Ma
h 
ruise pro
edure 
ommonly used inpra
ti
e (a

ording to air tra�
 regulations). The 
omparison with optimal results showsthat the performan
e of the 
onstant-Ma
h 
ruise is very 
lose to optimal.Results are presented for a model of a Boeing 767-300ER, with a general air
raft per-forman
e model (general 
ompressible drag polar, and general thrust and spe
i�
 fuel 
on-sumption models dependent on speed and altitude), and for 
onstant winds, whi
h representaverage winds along the 
ruise.The outline of the 
hapter is as follows: the problem is formulated in Se
tion 5.2, in
ludingoptimal 
ontrol problem statement, appli
ation of the ne
essary 
onditions for optimalityand obtention of the singular surfa
e and the singular 
ontrol; the numeri
al pro
edure isexplained in Se
tion 5.3; some results are presented in Se
tion 5.4, both for the optimal andthe 
onstant-Ma
h problems, along with the 
omparison between the two pro
edures; and�nally, a summary of the main results and 
on
lusions is in
luded in Se
tion 5.5.5.2 Problem FormulationIn this se
tion, the problem of minimum-fuel 
ruise with �xed arrival time is formulated.First, the optimal 
ontrol problem is stated by de�ning the equations of motion (along withthe initial and �nal 
onditions) and the performan
e index 
onsidered. Se
ond, be
ause anindire
t numeri
al method is 
onsidered for the resolution of the problem, the ne
essary
onditions for optimality are in
luded. Then, the optimal traje
tories are des
ribe, in
ludingequations de�ning the singular ar
 (a uniparametri
 family of surfa
es in the state spa
e) andthe singular 
ontrol (whi
h is a feedba
k 
ontrol law).5.2.1 Optimal Control ProblemThe equations of motion (3.41) parti
ularized to a 
ruise phase, in whi
h one has the addi-tional 
onstraint of �ying at 
onstant altitude (γ = 0), redu
es to
V̇ =

T −D

m

ṁ = −cT
ẋ = V + w

(5.1)In this problem there are three states, V , m and x, and one 
ontrol, π. The initial valuesof speed, mass and distan
e (Vi,mi, xi), and the �nal values of speed and distan
e (Vf , xf )are given. The �nal value of air
raft mass (mf ) is unspe
i�ed, whereas the �ight time (tf ) is�xed. The altitude h, whi
h plays the role of a parameter, is a given 
onstant.The obje
tive is to minimize the fuel 
onsumption for a given range, that is, to minimize50



5.2. Problem Formulationthe following performan
e index
J =

∫ tf

0
cT dt (5.2)The optimal 
ruise problem 
onsidered redu
es to minimize the performan
e index givenby Eq. (5.2) subje
t to the 
onstraints de�ned by the equations of motion (5.1).5.2.2 Ne
essary Conditions for OptimalityThe Hamiltonian of this problem is given by

H = cπTM +
λV
m

(πTM −D)− λmcπTM + λx(V + w) (5.3)where λV , λm and λx are the adjoint variables. Note that H is linear in the 
ontrol variable,so that it 
an be written as
H = H + Sπ (5.4)where H and the swit
hing fun
tion S are given by

H = −λV
D

m
+ λx(V +w)

S =

[

λV
m

− (λm − 1)c

]

TM

(5.5)As a 
onsequen
e, this is a singular optimal 
ontrol problem.Assuming that the normality and non-triviality 
onditions are satis�ed, the ne
essary
onditions for optimality are summarized next (see Chapter 3):1) The equations de�ning the adjoints:
λ̇V = −∂H

∂V
= −λx +

λV
m

∂D

∂V
−
[

λV
m

− (λm − 1)c

]

π
dTM
dV

+ (λm − 1)
dc

dV
πTM

λ̇m = −∂H
∂m

=
λV
m

[

πTM −D

m
+
∂D

∂m

]

λ̇x = −∂H
∂x

= 0

(5.6)Note that the last equation leads to 
onstant λx.2) The transversality 
ondition (asso
iated to mf being unspe
i�ed):
λm(tf ) = 0 (5.7)3) The Hamiltonian minimization 
ondition: For the 
ontrol to be optimal it is ne
essarythat it globally minimize the Hamiltonian. The Hamiltonian minimization 
ondition forsingular optimal 
ontrol problems has a spe
ial form given by Eq. (3.18), whi
h in this 
asede�nes the optimal 
ontrol as follows

π =











πmax if S < 0

πmin if S > 0

πsing if S = 0 over a �nite time interval (5.8)51



5. Minimum-Fuel Cruise with Fixed Arrival Timewhere πsing is the singular 
ontrol (yet to be determined), whi
h satis�es πmin < πsing <

πmax. Traje
tory segments de�ned by πsing are singular ar
s.As indi
ated in Chapter 3, in singular optimal 
ontrol problems there arise additional
onditions that must be satis�ed in order both, for a singular ar
 to be minimizing, andfor the jun
tions between singular and nonsingular ar
s to be optimal. These additionalne
essary 
ondition for optimality are analyzed below in Se
tion 5.2.3.2.Finally, be
ause the Hamiltonian is not an expli
it fun
tion of time (as the problem isautonomous), the Hamiltonian 
onstan
y 
ondition applies
H(t) = H (5.9)where the 
onstant H is unknown.5.2.3 Optimal Traje
toriesIn general the optimal traje
tory will be 
omposed of singular ar
s (with πsing) and ar
swith πmin or πmax; whether one has πmin or πmax is de�ned by the sign of the swit
hingfun
tion S. In this problem the solution is expe
ted to be of the bang-singular-bang type,as suggested by the results obtained by Bilimoria and Cli� [10℄, where, using a redu
ed-order model with di�erent time s
ales, the traje
tory is de
omposed into 3 parts: an initialtransient, the 
ruise-dash ar
 and a terminal transient. Although the underlying aerodynami
and propulsive models might a�e
t the stru
ture of the solution, for the smooth models
onsidered in this thesis, the bang-singular-bang stru
ture is plausible, and hen
e it is theone analyzed in this 
hapter. Sin
e the initial and �nal speeds are �xed, there is a physi
al
riterium to de
ide whether one has πmin or πmax, just by 
omparing those speeds with thespeeds that 
orrespond to the singular ar
.Although 
alled optimal traje
tories, they are in fa
t extremals, that is, traje
tories thatsatisfy the ne
essary 
onditions for optimality.5.2.3.1 Singular Ar
The singular ar
 is de�ned by the following three equations

H = H, S = 0, Ṡ = 0 (5.10)where the fun
tion Ṡ is given by
Ṡ =−

[

λV
m

− (λm − 1)c

]

D

m

dTM
dV

+

[

λV
m

(

∂D

∂V
+ cD −mc

∂D

∂m

)

− λx + (λm − 1)D
dc

dV

]

TM
m

(5.11)(note that the terms in the 
ontrol variable π have 
an
elled out of this equation).52



5.2. Problem FormulationHen
e, the three equations that de�ne the singular ar
 (5.10) lead to
−λV

D

m
+ λx(V + w) = H

λV
m

− (λm − 1)c = 0

λV
m

(

∂D

∂V
+ cD −mc

∂D

∂m

)

− λx + (λm − 1)D
dc

dV
= 0

(5.12)The singular ar
 is obtained after eliminating the adjoints, λV and λm, from these equations.One obtains the following expression
D

(

1

Ω + V
− c− 1

c

dc

dV

)

− ∂D

∂V
+ cm

∂D

∂m
= 0 (5.13)whi
h is a family of singular ar
s de�ned by the family parameter

Ω = w − H
λx

(5.14)This family 
an be written as f(m,V,Ω) = 0. This is the same family obtained by Fran
oet al. [30℄ in the 
ase of no wind, but for a di�erent family parameter. The value of Ωis determined by imposing the �nal time to be tf (the numeri
al pro
edure is des
ribed inSe
tion 5.3). On
e Ω is determined, Eq. (5.13) de�nes a singular line in the (V,m) spa
e.5.2.3.2 Optimal Singular ControlBe
ause the fun
tion S̈ depends linearly on the 
ontrol variable π (note that Ṡ does notdepend on γ), the order of the singular ar
 is ξ = 1. Let S̈ = A(V,m) +B(V,m)π, therefore,be
ause one also has S̈ = 0 (where S = Ṡ = 0), the singular 
ontrol is obtained from
A(V,m) +B(V,m)π = 0; one gets the following

πsing =
D

TM

(

1 + V c
A1(V,m)

B1(V,m)

) (5.15)where A1(V,m) and B1(V,m) are given by
A1(V,m) = m

∂2D

∂m∂V
−m2c

∂2D

∂m2
− m

D

∂D

∂m

(

cD +
∂D

∂V
−mc

∂D

∂m

)

B1(V,m) = DV

(

c2 + 3
dc

dV
+

1

c

d2c

dV 2

)

+ 2
∂D

∂V

(

V c+
V

c

dc

dV

)

−mV

(

c2 + 3
dc

dV

)

∂D

∂m
+ V

∂2D

∂V 2
+m2c2V

∂2D

∂m2
− 2V cm

∂2D

∂m∂V

(5.16)This expression for the optimal singular 
ontrol depends impli
itly on the parameter of thefamily of singular ar
s, be
ause V and m are related by the singular ar
 equation (5.13) whi
hin
ludes the dependen
e on Ω.The generalized Legendre-Clebs
h 
ondition for the optimality of the singular 
ontrol,Eq. (3.21), redu
es in this 
ase (ξ = 1 and u = π) to −∂S̈
∂π

≥ 0, whi
h leads to
B(V,m) ≤ 0 (5.17)53



5. Minimum-Fuel Cruise with Fixed Arrival TimeIt 
an be shown numeri
ally that the strengthened generalized Legendre-Clebs
h 
ondition(−∂S̈
∂π

> 0) is satis�ed for all the 
ases 
onsidered in this Chapter.The M
Danell-Powers ne
essary 
ondition for the optimality of jun
tions between singularand nonsingular ar
s (see Chapter 3) is shown to be satis�ed, be
ause the order of the singularar
 is ξ = 1 and the lowest-order time derivative of the 
ontrol whi
h is dis
ontinuous atthe jun
tion is ζ = 0 (that is, the 
ontrol itself is dis
ontinuous at the jun
tion). Moreover,although the 
ontrol variable is dis
ontinuous at the jun
tions, the Weierstrass-Erdman 
orner
onditions are satis�ed be
ause the adjoint variables, the Hamiltonian and the swit
hingfun
tion are all 
ontinuous.5.3 Numeri
al Pro
edureThe de�nition of an e�
ient numeri
al pro
edure to obtain the optimal path is fa
ilitated bythe knowledge of the stru
ture of the solution (see Maurer [44℄). In this 
ase the expe
tedoptimal path is of the bang-singular-bang type, as sket
hed in Fig. 5.1. Based on this typeof path, a pro
edure is de�ned to obtain the optimal traje
tory.

m

V

mi

Vi

Vf

i

0
1

2

f

Figure 5.1: Sket
h of the optimal 
ruise path.The �rst bang starts with the initial values Vi, mi, and xi. Let x12 be the distan
etraveled along the singular ar
 (between points 1 and 2 in Fig. 5.1). If Ω were known,the state equations (5.1) 
ould be integrated until the singular ar
 were rea
hed, that isuntil f(m1, V1, Ω) = 0 were satis�ed. Also, if x12 were known, the state equations 
ould beintegrated along the singular ar
 until the distan
e x[n]12 is traveled (from point 1 to point 2in Fig. 5.1). Finally, the state equations 
ould be integrated along the se
ond bang, whi
hstarts at the singular ar
 (point 2) and ends when the value V = Vf is rea
hed. At the �nalpoint one has two additional 
onditions, x = xf and t = tf , whi
h are to be used to de�ne
Ω and x12; this task is performed by means of an iterative pro
edure.54



5.3. Numeri
al Pro
edureThe iterative pro
edure must be started with an initial guess for the two unknowns. First,the initial guess for Ω is Ω[0] = w, be
ause for tf unspe
i�ed one has H = 0. Se
ond, aninitial guess for x12 is x[0]12 = xf , be
ause the two bang ar
s have very small length. Theseinitial guesses lead to 
onvergen
e in all 
ases 
onsidered in this 
hapter.5.3.1 Iterative Pro
edureThe following iterative pro
edure is used in the numeri
al resolution.Step 0. Guess values Ω[n] and x[n]12 .Step 1. Integrate the state equations (5.1) with either π = πmin or π = πmax from theinitial point (with known initial values Vi,mi, xi) until the singular ar
 is rea
hed (point 1),that is, until V1 and m1 satisfy f(m1, V1, Ω
[n]) = 0; at that point one also has x1. The value

πmin or πmax is 
hosen depending on whether one has Vi > V0 or Vi < V0, where V0 is de�nedby f(mi, V0, Ω
[n]) = 0, that is, the speed that 
orresponds in the singular ar
 to the initialmass mi (point 0 in Fig. 5.1).Step 2. Integrate the state equations (5.1) with π = πsing from point 1 (with known initialvalues V1,m1, x1) until the distan
e x[n]12 is traveled. At the end of the integration along thesingular ar
 one has V2, m2, and x2 (point 2).Step 3. Integrate the state equations (5.1) with either π = πmin or π = πmax from point2 (with known initial values V2,m2, x2) until V = Vf . The value πmin or πmax is 
hosendepending on whether one has Vf < V2 or Vf > V2. At the �nal point one obtains the �nalvalues x[n]f and t[n]f , whi
h in general are di�erent from xf and tf ; in su
h a 
ase, one mustiterate on the guessed values x[n]12 and Ω[n], whi
h is done as des
ribed next.The pro
edure de�ned by steps 1 to 3 de�nes a fun
tion g : R2 7→ R

2, (x[n]12 , Ω
[n]) 7→

(x
[n]
f , t

[n]
f ), so that one sear
hes for the values x12 and Ω that satisfy g (x12, Ω) = (xf , tf ).If one de�nes the fun
tion G = g(x12, Ω) − (xf , tf ), one sear
hes for the zero of G. Theresolution of G(x12, Ω) = 0 is performed using MATLAB's fsolve, starting the iteration withthe values (x

[0]
12 , Ω

[0]) de�ned above, and stopping when x
[n]
f = xf and t

[n]
f = tf to withinsome pres
ribed toleran
e.On
e the problem is integrated, one has the �nal optimal value of air
raft mass, mf ,whi
h de�nes the minimum fuel 
onsumption mF = mi −mf , for the given values of rangeand �ight time. Note that this pro
edure for the 
omputation of the optimal path does notrequire the integration of the adjoint equations.5.3.2 Control Stru
ture OptimalityIt still remains to 
he
k whether the assumed stru
ture for the 
ontrol (bang-singular-bang) is
orre
t. That is, one must 
he
k that S > 0 for π = πmin and that S < 0 for π = πmax. Thisrequires the 
omputation of S along the extremal path. Sin
e S =

[

λV
m

− (λm − 1)c

]

TM ,one must 
ompute λV and λm.First, to obtain λV and λm along the �nal bang it is ne
essary to solve a two-pointboundary value problem de�ned by the 
orresponding adjoint equations (5.6), in whi
h λxis a parametri
 unknown, with boundary 
onditions H(t2) = H, S(t2) = 0 and λm(tf ) = 0.55



5. Minimum-Fuel Cruise with Fixed Arrival TimeThese boundary 
onditions 
an be rewritten in terms of λV and λm, as follows
λV (t2) =

m2λx
D2

(V2 +Ω)

λm(t2) = 1 +
λx
c2D2

(V2 +Ω)

λm(tf ) = 0

(5.18)where Ω has been already 
omputed. The resolution of this two-point boundary value prob-lem is performed using MATLAB's bvp4
, starting the iteration with the parameter λx andthe 
onstant distributions of λV and λm that satisfy Eqs. (5.18), namely
(λm)0 = 0

(λx)
0 = − c2D2

V2 +Ω

(λV )
0 = −c2m2

(5.19)On
e the �nal bang is integrated, λV and λm at any point of the singular ar
 follow from
H = H and S = 0, that is,

λV (t) =
mλx
D

(V +Ω)

λm(t) = 1 +
λx
cD

(V +Ω)

(5.20)Finally, λV and λm along the initial bang are obtained integrating ba
kwards the �rst twoEqs. (5.6) from point 1 to point i, with initial 
onditions λV (t1), λm(t1) de�ned by Eqs.(5.20).The numeri
al results show that the 
ontrol stru
ture is 
orre
t in all 
ases presented inSe
tion 5.4.5.4 ResultsThe aerodynami
 model 
onsidered in this thesis for the numeri
al appli
ations (
orrespond-ing to a Boeing 767-300ER) is des
ribed in Appendix B, and the atmosphere model is theInternational Standard Atmosphere.Results are presented for a 
ruise �ight de�ned by a range xf = 8000 km, and by initialand �nal speeds Vi = 240 m/s and Vf = 180 m/s, 
orresponding to hypotheti
al 
onditions atthe end of the 
limb and the start of the des
ent (the same values in all 
ases studied below).Di�erent values of headwind (HW) and tailwind (TW) are 
onsidered, 
orresponding tonegative and positive values of w respe
tively, ranging from −15 to +15 m/s; the 
ase of nowind (NW) is in
luded. The �ight times range from 8.67 to 10.50 h. The nominal initialair
raft weight is taken to be Wi = 1600 kN. In the analysis of the e�e
ts of Wi, results arepresented for a referen
e 
ase de�ned by w = 0, tf = 9.5 h and h = 10000 m. The nominal
ruise altitude is taken to be h = 10000 m. In the analysis of the e�e
ts of h, results arepresented now for a referen
e 
ase de�ned by w = 0, tf = 9.5 h and Wi = 1600 kN.In the analysis of the e�e
ts of 
ruise altitude on the optimal results, one 
an take intoa

ount the altitude dependen
e of the wind. For example, in Ref. [21℄ a linear wind pro�le56



5.4. Resultsis 
onsidered. The theoreti
al analysis made in this 
hapter is general and valid for any windpro�le, so that results 
ould be presented for any 
hoi
e of pro�le. For simpli
ity, a 
onstantpro�le is 
onsidered (as in Ref. [81℄).The outline of this se
tion is as follows: the optimal traje
tories are analyzed in Se
tion5.4.1 and the minimum fuel 
onsumption in Se
tion 5.4.2; then, two appli
ations are 
onsid-ered: the 
ost of mismodeled winds is studied in Se
tion 5.4.3, and the 
ost of �ight delays inSe
tion 5.4.4; and, �nally, the optimality of the 
onstant-Ma
h 
ruise pro
edure is assessedin Se
tion 5.4.5. Besides the analysis of the wind e�e
ts on the optimal results, whi
h is themain obje
tive of this 
hapter, as already indi
ated, the e�e
ts of the initial air
raft weightand of the 
ruise altitude are analyzed as well.5.4.1 Optimal Traje
tories and Optimal ControlThe optimal traje
tories (Ma
h number as a fun
tion of �own distan
e) are shown in Fig. 5.2afor tf = 9.5 h, h = 10000 m, Wi = 1600 kN and di�erent values of wind speed (rangingfrom −15 to 15 m/s). The 
orresponding optimal 
ontrols are shown in Fig. 5.2b. Thestru
ture is minimum-thrust ar
, singular ar
, minimum-thrust ar
, in all 
ases shown ex
eptfor w = −10,−15 m/s, in whi
h 
ases the optimal traje
tory start with a maximum-thrustar
, required to a

elerate the air
raft to the high initial singular-ar
 speed.
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(b)Figure 5.2: Optimal traje
tories and optimal 
ontrol for w = −15, −10, −5, 0, 5, 10, 15 m/s(tf = 9.5 h, h = 10000 m, Wi = 1600 kN). (a) Optimal traje
tories, (b) Optimal 
ontrol.The results show that, to meet the given arrival time, the optimal Ma
h number de
reasesas the wind speed in
reases (the optimal 
ruise speed is larger for HWs than for TWs, asexpe
ted); for example, for a HW w = −10 m/s the optimal Ma
h number is M ≈ 0.815,whereas for a TW w = 10 m/s it ranges from 0.756 to 0.732. In general, the optimaltraje
tory 
alls for a variation of the Ma
h number along the 
ruise (for a given tf , one hasthe largest variations of M along the singular ar
 for the strongest TWs). However, for agiven �ight time, there is always a range of wind speeds for whi
h the optimal traje
tory57



5. Minimum-Fuel Cruise with Fixed Arrival Timealong the singular ar
 is M ≈ const; for example, as shown in Fig. 5.2a, for tf = 9.5 h and
w = −5 m/s one has M ≈ 0.798. The singular 
ontrol de
reases along the singular ar
, andits variation with the wind speed is weak.To analyze the in�uen
e of the arrival time, the optimal traje
tories for HW w = −10 m/sand TW w = 10 m/s, and di�erent arrival times (ranging from 9.17 to 10 h) are shown inFig. 5.3 for h = 10000 m and Wi = 1600 kN. The 
orresponding optimal 
ontrols are shownin Fig. 5.4.
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(b)Figure 5.3: Optimal traje
tories for tf = 9.17, 9.33, 9.5, 9.67, 9.83, 10 h (h = 10000 m,
Wi = 1600 kN). (a) HW w = −10 m/s, (b) TW w = 10 m/s.
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(b)Figure 5.4: Optimal 
ontrol for tf = 9.17, 9.33, 9.5, 9.67, 9.83, 10 h (h = 10000 m, Wi =

1600 kN). (a) HW w = −10 m/s, (b) TW w = 10 m/s.
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5.4. ResultsAs expe
ted, the optimal Ma
h number de
reases as the arrival time in
reases; and, forthe same arrival time, the optimal Ma
h number is larger in the 
ase of HW. The resultsalso show that the variation of the singular 
ontrol with the �ight time is very small inthe 
ase of TW, and somewhat larger in the 
ase of HW. In fa
t, the results show that forlarge speeds (say, Ma
h numbers larger than 0.8) the dependen
e of the singular 
ontrolon speed is large, in
reasing as M in
reases, whereas for smaller speeds the dependen
e isvery week (this behavior 
an be seen also in Fig. 5.2b). The reason for this behavior isthat the variation of π with M is very shallow at low M (say 0.7< M <0.8) and in
reasesstrongly for M >0.8, following the same trend as the aerodynami
 drag; note that, as a �rstapproximation, π ≈ D/TM (as given by Eq. 5.15), and that the variation of TM with M athigh M is not as strong as the variation of D.Now, to study the in�uen
e of the initial air
raft weight, the optimal traje
tories fordi�erent values of Wi (ranging from 1500 to 1700 kN) are shown in Fig. 5.5a, for tf = 9.5 h,
w = 0 and h = 10000 m. The 
orresponding optimal 
ontrols are shown in Fig. 5.5b. Inthis problem in whi
h the �nal distan
e and �nal time are �xed, the speed is so 
onstrainedthat the in�uen
e of the initial air
raft weight on the speed pro�les is very small (almostnegligible). However, the singular 
ontrol in
reases as Wi in
reases.
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(b)Figure 5.5: Optimal traje
tories and optimal 
ontrol for Wi = 1500, 1550, 1600, 1650,
1700 kN (tf = 9.5 h, w = 0, h = 10000 m). (a) Optimal traje
tories, (b) Optimal 
ontrol.

Finally, to analyze the in�uen
e of the 
ruise altitude, the optimal traje
tories for di�erentvalues of h (h = 9000, 10000, 11000 m) are shown in Fig. 5.6a, for tf = 9.5 h, w = 0 and
Wi = 1600 kN. The 
orresponding optimal 
ontrols are shown in Fig. 5.6b. One 
an see that,as the 
ruise altitude in
reases, the optimal Ma
h number in
reases (result that is related tothe 
orresponding de
rease of the speed of sound). The results also show that the singular
ontrol in
reases signi�
antly as the 
ruise altitude in
reases.

59



5. Minimum-Fuel Cruise with Fixed Arrival Time
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(b)Figure 5.6: Optimal traje
tories and optimal 
ontrol for h = 9000, 10000, 11000m (tf = 9.5 h,
w = 0, Wi = 1600 kN). (a) Optimal traje
tories, (b) Optimal 
ontrol.5.4.2 Minimum Fuel ConsumptionThe minimum fuel 
onsumption as a fun
tion of the �ight time is shown in Fig. 5.7 for
h = 10000 m, Wi = 1600 kN and di�erent wind speeds (ranging from −15 to 15 m/s).For 
on
retion, some numeri
al values are given in Table 5.1. As expe
ted, HWs requirelarger values of fuel 
onsumption, as 
ompared to TWs. This e�e
t 
an be quanti�ed now,for example, for a �ight time of 9.5 h, in the nominal 
ase of no wind the minimum fuel
onsumption is 39838 kg (see Table 5.1), whereas for a HW w = −10 m/s it is 43029 kg andfor a TW w = 10 m/s it is 38265 kg; hen
e, one has a di�eren
e of 4764 kg between HW andTW, that is an in
rease of about 12%.
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wFigure 5.7: Minimum fuel 
onsumption vs �ight time for w = −15, −10, −5, 0, 5, 10, 15 m/s(h = 10000 m, Wi = 1600 kN).
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5.4. ResultsTable 5.1: Minimum fuel 
onsumption for di�erent �ight times and wind speeds (h =

10000 m, Wi = 1600 kN).
mF [kg℄

w [m/s℄ −15 −10 −5 0 5 10 15

tf [h℄
8.67 - - - - - - 38727

8.83 - - - - - 39438 37955

9.00 - - - - 40217 38669 37613

9.17 - - - 41068 39430 38318 37520

9.33 - - 42001 40243 39058 38212 37587

9.50 - 43029 41115 39838 38933 38265 37761

9.67 44172 42056 40664 39684 38966 38424 -
9.83 43080 41543 40473 39693 39108 - -

10.00 42486 41305 40452 39813 - - -
10.17 42189 41246 40546 - - - -
10.33 42084 41309 - - - - -
10.50 42110 - - - - - -

All 
urves in Fig. 5.7 present a minimum. These minima are the solutions of the minimum-fuel problem with free �nal time, that 
orresponds to H = 0, i.e., Ω = w (in this 
ase onehas H(t) = 0, be
ause there is an additional ne
essary 
ondition for optimality that statesthat H(tf ) = 0, see Ref. [15℄). The numeri
al values are given in Table 5.2 (where mF,0 is theminimum fuel and tf,0 the 
orresponding optimal �ight time). As before, HWs give largervalues of minimum fuel 
onsumption, and larger values of �ight time, as 
ompared to TWs.For example, for this 
ase of free �nal time, the di�eren
e in minimum fuel 
onsumptionbetween a HW w = −10 m/s and a TW w = 10 m/s is 3034 kg, and the 
orrespondingdi�eren
e in �ight time is 48 min.Table 5.2: Minimum fuel 
onsumption and optimal �ight time for the free-�nal-time problem,for di�erent wind speeds (h = 10000 m, Wi = 1600 kN).
w [m/s℄ −15 −10 −5 0 5 10 15

mF,0 [kg℄ 42080 41246 40444 39672 38928 38212 37520

tf,0 [h℄ 10.38 10.15 9.94 9.74 9.54 9.35 9.17

The e�e
t of the initial air
raft weight on the minimum fuel 
onsumption is shown inFig. 5.8, for di�erent pairs of �ight time and wind speeds. In parti
ular three 
ases are
onsidered: TW (tf = 9.17 h and w = 10 m/s), NW (tf = 9.5 h and w = 0), and HW(tf = 10 h and w = −10 m/s). Even though the in�uen
e of the initial air
raft weight onthe speed pro�les is almost negligible (as shown in Fig. 5.5a), for the fuel 
onsumption the61



5. Minimum-Fuel Cruise with Fixed Arrival Timebehaviour is di�erent: one has larger fuel 
onsumption for larger values of Wi, as expe
ted.The minimum fuel 
onsumption in
reases almost linearly when Wi in
reases: going from
38781 to 44040 kg for HW, from 37399 to 42489 kg for NW, and from 35942 to 40894 kg forTW, when Wi in
reases from 1500 to 1700 kN, that is, in
reases of 5259, 5090, and 4952 kg,respe
tively (13.56%, 13.61%, and 13.77%); the results give an approximately 
onstant rateof in
rease of about 2500 kg for ea
h 100 kN.
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Figure 5.8: Minimum fuel 
onsumption vs initial air
raft weight, for TW (tf = 9.17 h and
w = 10 m/s), NW (tf = 9.5 h and w = 0) and HW (tf = 10 h and w = −10 m/s).(h = 10000 m.)
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5.4. ResultsNow, the e�e
t of the 
ruise altitude on the minimum fuel 
onsumption is shown inFig. 5.9, for the same pairs of �ight time and wind speeds as before: TW (tf = 9.17 h and
w = 10 m/s), NW (tf = 9.5 h and w = 0), and HW (tf = 10 h and w = −10 m/s). Inea
h 
ase there is a best altitude that provides lowest minimum fuel 
onsumption. Hen
e,appropriate sele
tion of 
ruise altitude implies a redu
tion in minimum fuel 
onsumptionduring 
ruise. For example, in the three 
ases represented in Fig. 5.9 (HW, NW, TW),
ruising at h = 11000 m instead of at the best altitudes (9784, 9721 and 9705 m) givesin
reases in minimum fuel 
onsumption of 996, 1141 and 1064 kg, respe
tively (2.4%, 2.8%,and 2.7%).5.4.3 Cost of Mismodeled WindsIn the presen
e of mismodeled winds, the optimal results are useful in giving an estimation ofthe fuel penalty that one might have, that is, an estimation of the 
ost of meeting the giventime of arrival under mismodeled winds. The fuel penalty is de�ned as the di�eren
e in fuel
onsumption between the 
ases 
orresponding to the real wind w + δw and the mismodeledwind w, that is, ∆mF,w = mF (w + δw) − mF (w). The 
ase of negative values of δw is
onsidered, whi
h means HWs stronger (larger in modulus) than expe
ted, and TWs smallerthan expe
ted. In the following, the nominal path is that of minimum fuel 
onsumption inthe 
ase of free �nal time: namely, mF,0, with �ight time tf,0 (see Table 5.2); this �ight timeis to be maintained under the mismodeled wind. The fuel penalty is represented in Fig. 5.10as a fun
tion of δw for di�erent values of wind speed. One has that mismodeled HWs havefuel penalties larger than mismodeled TWs for the same wind speed error (it 
an be as largeas ∆mF,w ≈ 2400 kg for w = −15 m/s and δw = −10 m/s); this same result is obtained inRef. [81℄, whi
h is explained by the 
ompressible drag in
rease at the high Ma
h numbersrequired to meet the arrival-time 
onstraint in the 
ase of strong HWs.
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5. Minimum-Fuel Cruise with Fixed Arrival Time5.4.4 Cost of Flight DelaysThe optimal results are also useful in quantifying the 
ost of a �ight delay ∆tf > 0 imposedon a nominal optimal path with a nominal average wind. Again, the nominal path is that ofminimum fuel 
onsumption in the 
ase of free �nal time: namely, mF,0, with �ight time tf,0.Note that mF,0 and tf,0 depend on the wind speed (see Table 5.2). The 
ost of the �ight delayis de�ned as the di�eren
e in minimum fuel 
onsumption between the 
ases 
orresponding tothe path for tf = tf,0 +∆tf and the nominal path, that is, ∆mF,t = mF (tf,0 +∆tf )−mF,0.The delay 
ost is represented in Fig. 5.11 as a fun
tion of ∆tf for diferent values of windspeed. Obviously, the larger the delay, the larger the 
ost; for instan
e, the 
ost of absorbinga �ight delay of 30 minutes in the presen
e of a TW w = 15 m/s is around 500 kg. Moreover,the 
ost of absorbing a given �ight delay is larger in the presen
e of TWs than in the presen
eof HWs (the 
ost in
reases as w in
reases); this same result is obtained in Ref. [21℄, whereit is explained by the larger per
entage of the nominal �ight time that the �ight delay ∆tfrepresents in the 
ase of tailwinds (be
ause in this 
ase the �ight times are smaller).
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Figure 5.11: In
rease in minimum fuel 
onsumption vs �ight delay for w = −15, −10, −5, 0,
5, 10, 15 m/s (h = 10000 m, Wi = 1600 kN).
5.4.5 Optimality of Constant-Ma
h CruiseIn Se
tion 5.4.1 it is shown that the optimal solutions de�ne variable-Ma
h 
ruise pro
edures.Even though these pro
edures may not be �yable (a

ording to 
ommon air tra�
 
ontrolpra
ti
e), they are a referen
e for optimum performan
e, and, therefore, 
an be used toanalyze the optimality of standard �ight pro
edures.In this se
tion, the optimality of the 
onstant-Ma
h 
ruise pro
edure is analyzed, pro-
edure whi
h is des
ribed next. Let Mc be the 
ruise Ma
h, hen
e the 
ruise speed is
Vc = Mca(h) where a(h) is the speed of sound at the given altitude h. The pro
edure64



5.4. Results
onsidered is formed by three segments, all of them at 
onstant altitude: 1) an initial a
-
eleration/de
eleration segment from the given initial speed Vi to the 
ruise speed Vc, withmaximum 
ruise/idle engine rating, 2) a main 
ruise segment with 
onstant speed Vc, and 3)a �nal a

eleration/de
eleration segment from Vc to the given �nal speed Vf , with maximum
ruise/idle engine rating.For the initial segment, the equations of motion (5.1) are integrated with initial 
onditions
Vi, mi and xi until V = Vc; at the end of the segment one has m1 and x1. For the 
ruisesegment, be
ause the speed is 
onstant, the equations of motion (5.1) redu
e to

ṁ = −c(Vc, h)D(Vc,m, h)

ẋ = Vc + w(h)
(5.21)whi
h are integrated with initial 
onditions m1 and x1 until the distan
e x12 is �own; at theend of the segment one has m2 and x2. For the �nal segment, Eqs. (5.1) are integrated withinitial 
onditions Vc, m2 and x2 until V = Vf ; at the end of the segment one has the �nalvalues of air
raft mass, horizontal distan
e and time, m3, x3 and t3.The �ight distan
e and the �ight time are in general di�erent from xf and tf . Hen
e,one must iterate on the two free variables Vc and x12 until x3 = xf and t3 = tf to withinsome pres
ribed toleran
e. The iteration is started with the initial guess Vc =

xf
tf

− w and
x12 = xf . Finally, the fuel 
onsumption is mF = mi −m3.The 
omparison between the optimal and the 
onstant-Ma
h pro
edure in the 
ase TW
w = 15 m/s, tf = 9.5 h, h = 10000 m and Wi = 1600 kN, is represented in Fig. 5.12, wherethe initial and �nal de
elerations are not 
ompletely represented in order to better 
ompareboth traje
tories. The 
onstant Ma
h number obtained in this 
ase is Mc = 0.7311, and the
orresponding fuel 
onsumption is (mF )c = 37784 kg, value that one 
an see is very 
lose tothe optimal value mF = 37761 kg.
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Figure 5.12: Optimal path (solid line) and 
onstant-Ma
h path (dashed line) for w = 15 m/s,
tf = 9.5 h, h = 10000 m, and Wi = 1600 kN.
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5. Minimum-Fuel Cruise with Fixed Arrival TimeThe 
onstant Ma
h numberMc is represented in Fig. 5.13 as a fun
tion of the wind speedfor di�erent values of �ight time (ranging from 9.17 to 10 h). One has that Mc de
reases as
w in
reases and as tf in
reases. The in�uen
e of the initial air
raft weight on Mc is foundto be negligible, as distan
e �own and �ight time are given. And the in�uen
e of the 
ruisealtitude is shown in Fig. 5.14, where Mc is represented as a fun
tion of 
ruise altitude forthe same pairs of �ight time and wind speeds as above: TW (tf = 9.17 h and w = 10 m/s),NW (tf = 9.5 h and w = 0), and HW (tf = 10 h and w = −10 m/s); one has that Mcin
reases as h in
reases (result that is related to the 
orresponding de
rease of the speed ofsound). Note that if the initial and �nal de
elerations are not 
onsidered, Mc is given by thefollowing relation

Mc =
1

a(h)

(

xf
tf

− w

) (5.22)whi
h gives a very good approximation, be
ause the e�e
t of those de
elerations in the globalproblem is small.
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Figure 5.13: Mc vs wind speed for tf = 9.17, 9.33, 9.5, 9.67, 9.83, 10 h (h = 10000 m,
Wi = 1600 kN).The di�eren
e in fuel 
onsumption ∆mF,c = (mF )c −mF between the optimal and the
onstant-Ma
h pro
edures is represented in Fig. 5.15 as a fun
tion of wind speed, for di�erentvalues of �ight time (ranging from 9.17 to 10 h). For 
on
retion, some numeri
al values aregiven in Table 5.3. One 
an see that the di�eren
es are always very small (almost negligiblein some 
ases, 
learly in those in whi
h the optimal M is almost 
onstant). Hen
e, one 
an
on
lude that the performan
e of the 
onstant-Ma
h 
ruise is always very 
lose to optimal,giving fuel 
onsumptions larger than the optimum by less than 25 kg in all 
ases 
onsidered.As already indi
ated, for a given tf (or for a given w) there is always a range of values of w(or tf ) in whi
h the optimal traje
tory is M ≈ const; in these 
ases the di�eren
e betweenboth pro
edures is negligible (∆mF,c < 1 kg). The same trends are obtained for di�erentvalues of Wi and h.66



5.4. Results
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5. Minimum-Fuel Cruise with Fixed Arrival TimeTable 5.3: In
rease in minimum fuel 
onsumption for di�erent �ight times and wind speeds(h = 10000 m, Wi = 1600 kN).
∆mF,c [kg℄

w [m/s℄ −15 −10 −5 0 5 10 15

tf [h℄
8.67 - - - - - - 1.7

8.83 - - - - - 1.9 0.2

9.00 - - - - 2.1 0.3 2.3

9.17 - - - 2.6 0.3 2.2 7.3

9.33 - - 3.2 0.3 1.9 7.1 14.5

9.50 - 4.1 0.5 1.5 6.5 14.1 23.4

9.67 5.3 0.9 1.1 5.8 13.4 22.9 -
9.83 1.5 0.7 4.9 12.4 22.0 - -
10.00 0.5 3.9 11.1 20.7 - - -
10.17 2.7 9.5 19.1 - - - -
10.33 7.8 17.1 - - - - -
10.50 14.8 - - - - - -5.5 SummaryThe problem of minimum-fuel 
ruise with �xed arrival time have been analyzed, for 
onstant-altitude �ight. The analysis of this four-dimensional problem has been made using the theoryof singular optimal 
ontrol. The stru
ture of the optimal 
ontrol 
onsidered has been bang-singular-bang, whi
h is what one expe
ts in this 
ase in whi
h the initial and �nal valuesof the speed are given; the optimal traje
tories then are formed by a singular ar
 and twominimum/maximum-thrust ar
s that join the singular ar
 with the given initial and �nalpoints. This study has been quite general, in the sense that it has been made for a generalair
raft model and a general horizontal wind pro�le, although results have been presentedfor 
onstant pro�les.The main obje
tive of this 
hapter has been the analysis of the e�e
ts of average horizontalwinds on the optimal problem, both qualitative and quantitatively. The analysis has given,�rst, the optimal 
ruise speed and the optimal 
ontrol required to meet the given �ighttime in the presen
e of a given average wind, and se
ond, the 
orresponding minimum fuel
onsumption. The in�uen
e of the initial air
raft weight and the given 
ruise altitude on theoptimal results has been analyzed as well.From the operational point of view, if one 
onsiders a referen
e s
enario with a given�ight time and a nominal average wind, the analysis has allowed to quantify, �rst, the 
hangein 
ruise speed required in the 
ase of having a di�erent wind, and se
ond, the fuel penaltyasso
iated, that is, the 
ost of meeting the given �ight time under the mismodeled wind. Theresults have shown that mismodeled headwinds have fuel penalties larger than mismodeledtailwinds for the same wind speed error.As a se
ond appli
ation, the 
ost of absorbing a �ight delay imposed on a nominal optimalpath with a nominal average wind has been also quanti�ed: it has been shown that, for a68



5.5. Summarygiven delay, the 
ost in the presen
e of tailwinds is larger than in the presen
e of headwinds.Although results have been presented for uniform wind pro�les, the analysis has been general,and any other altitude-dependent wind pro�le 
ould be 
onsidered as well.Despite their theoreti
al interest, the optimal variable-Ma
h solutions may not be �yable(a

ording to 
ommon air tra�
 
ontrol pra
ti
e), however, they are a referen
e for optimalperforman
e and, hen
e, have been used to assess the optimality of the standard pro
edureof 
ruising at 
onstant speed. The results have shown that the performan
e of this standard
onstant-Ma
h pro
edure is very 
lose to optimal for all values of �ight time, wind, air
raftweight and altitude 
onsidered in the analysis (in fa
t, it has been shown that in some 
asesoptimality is obtained by �ying at Ma
h approximately 
onstant).
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6 Maximum-Range UnpoweredDes
ent
6.1 Introdu
tionAs indi
ated in Chapter 2, in the optimization of the des
ent �ight of 
ommer
ial air
raft, theobje
tive is to des
end and de
elerate 
ontinuously, so that the e
onomi
al and environmentalimpa
ts are minimized, keeping thrust as low as possible for as long as possible.In this 
hapter, an optimization analysis of the des
ent �ight in the presen
e of altitude-dependent winds, in the 
ase of zero thrust, is presented. The obje
tive is to maximizethe air
raft range, so that the unpowered des
ent 
an be initiated as far in advan
e aspossible. In this problem the initial and �nal values of altitude and speed are given; the initialvalues 
orrespond to 
ruise 
onditions, and the �nal values 
orrespond to the 
onditions at ahypotheti
al approa
h �x within the terminal maneuvering area (TMA). Horizontal altitude-dependent winds are 
onsidered, with the a

eleration term in
luded in the formulation, sothat wind-shear e�e
ts 
an be analyzed. A general 
ompressible drag polar is 
onsidered, andno limiting 
onstraint on altitude is imposed. The two main obje
tives of this 
hapter are:1) to optimize the des
ent in the presen
e of altitude-dependent winds; and 2) to assess theoptimality of a des
ent pro
edure, 
ommonly used in pra
ti
e (a 
onstant-
alibrated-airspeeddes
ent).The analysis is made using the theory of singular optimal 
ontrol, whi
h has the greatadvantage of providing feedba
k 
ontrol laws (
ontrol variables as fun
tions of the statevariables), that 
an be dire
tly used to guide the air
raft along the optimal path. The
ontrol variable is the aerodynami
 path angle (γ). The initial and �nal speeds and altitudesare given, so that the stru
ture 
hosen for the optimal 
ontrol is of the bang-singular-bangtype, with the optimal paths formed by a singular ar
 and two minimum-γ ar
s joining thesingular ar
 with the given initial and �nal points. For typi
al 
ruise and TMA 
onditionsand for γmax > 0, the initial and �nal bang ar
s 
orrespond to two short 
limbs, as reportedby Rivas et al. [57℄ in the 
ase of no wind, whi
h is in a

ordan
e with the results presentedby Bryson et al. [14℄, and Shapira and Ben-Asher [64, 65℄.Despite their theoreti
al interest, optimal solutions may not be �yable a

ording topresent-day air tra�
 pro
edures and regulations. However, they represent best performan
eand 
an be used either as referen
es to design improved �ight pro
edures or to assess the opti-mality of �ight pro
edures 
ommonly used in pra
ti
e, as for example the 
ase of idle-thrust,
onstant-
alibrated-airspeed (CAS) des
ents 
onsidered by Oseguera and Williams [50℄. In71



6. Maximum-Range Unpowered Des
entFran
o et al. [32℄, a 
onstant-CAS unpowered-des
ent pro
edure, 
omposed of three segments(initial and �nal horizontal de
elerations, and des
ent with 
onstant CAS), is optimized togive maximum range in the presen
e of altitude-dependent winds using parametri
 optimiza-tion theory (see Flet
her [29℄); the optimization parameter is the des
ent CAS. In this 
hapterthe optimality of 
onstant-CAS unpowered-des
ents is analyzed by 
omparing results fromRef. [32℄ with the optimal ones. The 
omparison shows that the optimized 
onstant-CASdes
ent is very 
lose to optimal for all wind pro�les 
onsidered (this result was shown to holdin the 
ase of no wind by Rivas et al. [57℄).Results are presented for a model of a Boeing 767-300ER, for linear wind pro�les (
har-a
terized by two parameters, namely, the average wind speed and the pro�le slope or windshear), and for γmax = 0 (so that the initial and �nal short 
limbs reported by Rivas et al [57℄be
ome horizontal �ight segments, as in the 
onstant-CAS pro
edure with whi
h the optimalresults are 
ompared). The in�uen
e of the two wind parameters and of the initial air
raftweight on the results is analyzed. For the wind pro�les 
onsidered, it is shown that the windshear has a 
lear e�e
t on the optimal performan
e, modifying the maximum range in about4%: in
reasing for tailwinds and de
reasing for headwinds.The outline of the 
hapter is as follows: in Se
tion 6.2 the optimal problem is formulated,in
luding equations of motion, performan
e index, appli
ation of the ne
essary 
onditionsfor optimality and obtention of the singular surfa
e and the singular 
ontrol; the numeri
alpro
edure to solve the optimal problem is des
ribed in Se
tion 6.3; some results are presentedin Se
tion 6.4, both for the optimal and the optimized 
onstant-CAS problems, along withthe 
omparison between the two pro
edures and the analysis of the e�e
t of the air
raftweight on the results; and �nally, a summary of the main results and 
on
lusions is in
ludedin Se
tion 6.5.6.2 Problem FormulationIn this se
tion, the problem of maximum-range unpowered des
ent is formulated. First, theoptimal 
ontrol problem is stated by de�ning the equations of motion (along with the initialand �nal 
onditions) and the performan
e index 
onsidered. Se
ond, be
ause an indire
tnumeri
al method is 
onsidered for the resolution of the problem, the ne
essary 
onditionsfor optimality are in
luded. Then, the optimal traje
tories are des
ribe, in
luding equationsde�ning the singular ar
 (a surfa
e in the state spa
e) and the singular 
ontrol (whi
h is afeedba
k 
ontrol law).6.2.1 Optimal Control ProblemThe equations of motion (3.41) parti
ularized to a des
ent phase, in whi
h one has theadditional 
onstraint that π = 0, redu
es to
V̇ = −D

m
− gγ − V

dw

dh
γ

ḣ = V γ

ẋ = V + w

(6.1)72



6.2. Problem FormulationIn this problem there are three states, V , h and x, and one 
ontrol, γ. The initial values ofspeed, altitude and distan
e (Vi, hi, xi), and the �nal values of speed and altitude (Vf , hf ) aregiven. The �nal value of distan
e (xf ) and the �ight time (tf ) are unspe
i�ed. The air
raftmass m, whi
h plays the role of a parameter, is a given 
onstant.The obje
tive in this problem is to maximize range, that is, to minimize the followingperforman
e index
J = −

∫ tf

0
(V + w) dt (6.2)The optimal des
ent problem 
onsidered redu
es to minimize the performan
e index givenby Eq. (6.2) subje
t to the 
onstraints de�ned by the equations of motion (6.1).6.2.2 Ne
essary Conditions for OptimalityThe Hamiltonian of this problem is given by

H = −(V + w)− λV

(

D

m
+ gγ + V w′γ

)

+ λhV γ + λx(V + w) (6.3)where ()′ denotes derivative with respe
t to h; and λV , λh and λx are the adjoint variables.Assuming that the normality and non-triviality 
onditions are satis�ed, the ne
essary
onditions for optimality are summarized next (see Chapter 3):1) The equations de�ning the adjoints:
λ̇V = −∂H

∂V
= 1 + λV

(

1

m

∂D

∂V
+ w′γ

)

− λhγ − λx

λ̇h = −∂H
∂h

= w′ + λV

(

1

m

∂D

∂h
+ V w′′γ

)

− λxw
′

λ̇x = −∂H
∂x

= 0

(6.4)The last equation leads to 
onstant λx.2) The transversality 
onditions: First, be
ause the �nal distan
e xf is not spe
i�ed, onehas
λx(tf ) = 0 (6.5)whi
h leads, together with the last Eq. (6.4), to
λx(t) = 0 (6.6)Se
ond, be
ause the �nal time is not spe
i�ed, one has
H(tf ) = 0 (6.7)3) The Hamiltonian minimization 
ondition: For the 
ontrol to be optimal, it is ne
essarythat it globally minimize the Hamiltonian. The Hamiltonian is linear in γ, so that it 
an bewritten as
H = H + Sγ (6.8)73



6. Maximum-Range Unpowered Des
entwith
H = −

(

V + w + λV
D

m

)

S = λhV − λV (g + V w′)

(6.9)where equation (6.6) has been taken into a

ount. S is the swit
hing fun
tion. As a 
onse-quen
e, this is a singular optimal 
ontrol problem. The Hamiltonian minimization 
onditionfor singular optimal 
ontrol problems has a spe
ial form given by equation (3.18), whi
h inthis 
ase de�nes the optimal 
ontrol as follows
γ =











γmax if S < 0

γmin if S > 0

γsing if S = 0 over a �nite time interval (6.10)where γsing is the singular 
ontrol (yet to be determined), whi
h satis�es γmin < γsing < γmax.The traje
tory segments de�ned by γsing are singular ar
s.As indi
ated in Chapter 3, in singular optimal 
ontrol problems there arise additional
onditions that must be satis�ed in order both, for a singular ar
 to be minimizing, andfor the jun
tions between singular and nonsingular ar
s to be optimal. These additionalne
essary 
ondition for optimality are analyzed below in Se
tion 6.2.3.2.Finally, be
ause the Hamiltonian is not an expli
it fun
tion of time (as the problem isautonomous), the Hamiltonian 
onstan
y 
ondition applies, and using Eq. (6.7) one gets
H(t) = 0 (6.11)along the optimal traje
tory.6.2.3 Optimal Traje
toriesIn general the optimal traje
tory will be 
omposed of singular ar
s (with γsing) and ar
s with

γmin or γmax; whether one has γmin or γmax is de�ned by the sign of the swit
hing fun
tion
S. In this problem the solution is expe
ted to be of the bang-singular-bang type, as suggestedby the results obtained by Miele [47℄, Bryson et al. [14℄, and Shapira and Ben-Asher [64, 65℄,where it is shown that the maximum-range glide is de�ned by a 
entral path and two initialand �nal bran
hes joining that path with the initial and �nal 
onditions. Although theunderlying aerodynami
 and propulsive models might a�e
t the stru
ture of the solution, forthe smooth models 
onsidered in this thesis, the bang-singular-bang stru
ture is plausible,and hen
e it is the one analyzed in this 
hapter. Sin
e the initial and �nal speeds are given,there is a physi
al 
riterium to de
ide whether one has γmin or γmax, just by 
omparing thosespeeds with the speeds that 
orrespond to the singular ar
 for the initial and �nal altitudes.Although 
alled optimal traje
tories, they are in fa
t extremals, that is, traje
tories thatsatisfy the ne
essary 
onditions for optimality.6.2.3.1 Singular Ar
The singular ar
 is de�ned by the following three equations

H = 0, S = 0, Ṡ = 0 (6.12)74



6.2. Problem Formulationwhere the fun
tion Ṡ is given by
Ṡ =

λV
m

[

V
∂D

∂h
− g

∂D

∂V
+ w′

(

D − V
∂D

∂V

)]

− λh
D

m
− g (6.13)(note that the terms in the 
ontrol variable γ have 
an
elled out of this equation). Moreover,be
ause H = 0 one also has H = 0.Hen
e, the three equations (6.12) that de�ne the singular ar
 lead to

V + w + λV
D

m
= 0

λhV − λV (g + V w′) = 0

λV
m

[

V
∂D

∂h
− g

∂D

∂V
+ w′

(

D − V
∂D

∂V

)]

− λh
D

m
− g = 0

(6.14)The singular ar
 is obtained after eliminating the adjoints, λV and λh, from these equations.One obtains the following expression
V
∂D

∂h
− (g + V w′)

∂D

∂V
− g

w

V + w

D

V
= 0 (6.15)whi
h de�nes a singular line in the (V, h) spa
e, namely f(V, h) = 0.Miele [47℄ obtains, for the 
ase of no wind (w = 0), the same expression in equation (6.15)for the 
entral pattern of his solution. Note that, for w = 0, if one 
onsiders the spe
i�
 energy

E = gh+ 1
2V

2, and makes a 
hange of variables in the problem (V, h) → (V,E), then one has
∂D

∂V
|
E
=
∂D

∂V
− V

g

∂D

∂h
(6.16)so that one 
an write the expression for the singular ar
, given in equation (6.15), as

∂D

∂V
|
E
= 0 (6.17)as shown by Rivas et al. [57℄, whi
h is the result obtained by Bryson et al. [14℄ for the 
entralpart of the maximum-range glide path.6.2.3.2 Optimal Singular ControlBe
ause the fun
tion S̈ depends linearly on the 
ontrol variable γ, the order of the singularar
 is ξ = 1. Let S̈ = A(V,m, h) +B(V,m, h)γ, where

A(V, h) = A1(V, h) + wA2(V, h) +w′A3(V, h)

B(V, h) = B1(V, h) + wB2(V, h) + w′B3(V, h) + (w′)2B4(V, h) + w′′B5(V, h)
(6.18)75



6. Maximum-Range Unpowered Des
entwith
A1(V, h) =

V

m

(

∂D

∂h
+ V

∂2D

∂V ∂h
− g

∂2D

∂V 2

)

A2(V, h) =
1

m

(

2g
D

V 2
+ V

∂2D

∂V ∂h
− g

∂2D

∂V 2

)

A3(V, h) = −V
m

[

∂D

∂V
+ (V + w)

∂2D

∂V 2

]

B1(V, h) = −V
D

(

V 2∂
2D

∂h2
− 2gV

∂2D

∂V ∂h
− g

∂D

∂h
+ g2

∂2D

∂V 2

)

B2(V, h) =
1

D

(

2g2
D

V 2
+ g

∂D

∂h
+ 2gV

∂2D

∂V ∂h
− g2

∂2D

∂V 2
− V 2 ∂

2D

∂h2

)

B3(V, h) =
V +w

D

[

g

V

(

D − V
∂D

∂V

)

+ V

(

∂D

∂h
− 2g

∂2D

∂V 2
+ 2V

∂2D

∂V ∂h

)]

B4(V, h) = −V + w

D
V

(

∂D

∂V
+ V

∂2D

∂V 2

)

B5(V, h) =
V +w

D
V 2 ∂D

∂V

(6.19)
Therefore, be
ause one also has S̈ = 0 (where S = Ṡ = 0), the singular 
ontrol is given by

γsing = −A(V, h)
B(V, h)

(6.20)The generalized Legendre-Clebs
h 
ondition for the optimality of the singular 
ontrol,equation (3.21), redu
es in this 
ase (ξ = 1 and u = γ) to −∂S̈
∂γ

≥ 0, whi
h leads to
B(V, h) ≤ 0 (6.21)It 
an be shown numeri
ally that B < 0 for all the 
ases 
onsidered in this 
hapter, so thatthe strengthened generalized Legendre-Clebs
h 
ondition (−∂S̈

∂γ
> 0) is satis�ed.For the 
ase of no wind (w = 0), the singular 
ontrol is given by

γsing = −A1(V, h)

B1(V, h)
(6.22)and the generalized Legendre-Clebs
h 
ondition by

B1(V, h) ≤ 0 (6.23)and, in terms of the variables (V,E), it redu
es to
∂2D

∂V 2
|
E
≥ 0 (6.24)as shown by Rivas et al. [57℄.The M
Danell-Powers ne
essary 
ondition for the optimality of jun
tions between singularand nonsingular ar
s (see Chapter 3) is shown to be satis�ed, be
ause the order of the singularar
 is ξ = 1 and the lowest-order time derivative of the 
ontrol whi
h is dis
ontinuous atthe jun
tion is ζ = 0 (that is, the 
ontrol itself is dis
ontinuous at the jun
tion). Moreover,although the 
ontrol variable is dis
ontinuous at the jun
tions, the Weierstrass-Erdman 
orner
onditions are satis�ed be
ause the adjoint variables, the Hamiltonian and the swit
hingfun
tion are all 
ontinuous.76



6.3. Numeri
al Pro
edure6.3 Numeri
al Pro
edureIn this se
tion the numeri
al pro
edure used to solve the optimal problem is des
ribed. In Fig.6.1 a sket
h of the expe
ted optimal path (bang-singular-bang) is presented (the parti
ular
ase of two γmax ar
s is depi
ted). Knowing the stru
ture of the solution allows one to de�nean e�
ient numeri
al pro
edure (see Maurer [44℄).

h

V

Vi

i

1

2

Vf

hf hi

f

a

b

Figure 6.1: Sket
h of the optimal des
ent path.The following pro
edure is used in the numeri
al resolution:Step 1. Integrate the state equations (6.1) with either γ = γmin or γ = γmax from theinitial point (with known initial values Vi, hi, and xi) until the singular ar
 is rea
hed (point1 in Fig. 6.1), that is, until V1 and h1 satisfy the singular-ar
 equation f(V1, h1) = 0; atthat point one also has x1. The value γmin or γmax is 
hosen depending on whether one has
Vi < Va or Vi > Va, where Va is de�ned by f(Va, hi) = 0, that is, the speed that 
orrespondsin the singular ar
 to the initial altitude hi (point a in Fig. 6.1).Step 2. Integrate ba
kwards the state equations (6.1) with either γ = γmin or γ = γmaxfrom the �nal point (with known starting values Vf , hf and an arbitrary value of x, whi
h
an be taken as zero), until the singular ar
 is rea
hed (point 2 in Fig. 6.1), that is, until
V2 and h2 satisfy f(V2, h2) = 0; at that point one also has the distan
e travelled ∆x. Thevalue γmin or γmax is 
hosen depending on whether one has Vf > Vb or Vf < Vb, where Vb isde�ned by f(Vb, hf ) = 0, that is, the speed that 
orresponds in the singular ar
 to the �nalaltitude hf (point b in Fig. 6.1).Step 3. Integrate the state equations (6.1) with γ = γsing from point 1 (with knownstarting values V1, h1, and x1) until the altitude h2 is rea
hed. At the end of the integrationalong the singular ar
 one also has x2.On
e the problem is integrated, one has the �nal optimum value of distan
e xf = x2+∆x,that is, the maximum range. Note that this pro
edure for the 
omputation of the optimalpath does not require the integration of the adjoint equations. 77



6. Maximum-Range Unpowered Des
ent6.3.1 Control Stru
ture OptimalityIt still remains to 
he
k whether the assumed stru
ture for the 
ontrol (bang-singular-bang)is 
orre
t. That is, one must 
he
k that S > 0 for γ = γmin and that S < 0 for γ =

γmax. This requires the 
omputation of S along the extremal path just 
omputed. Sin
e
S = λhV − λV (g + V w′), one must 
ompute λV and λh. From Eqs. (6.3), (6.6), and (6.11)one has

λV
m

=
λhV γ − (V + w)

D +m(g + V w′)γ
(6.25)and therefore, from Eqs. (6.4), and (6.6)

λ̇h = w′ +
λhV γ − (V + w)

D +m(g + V w′)γ

(

∂D

∂h
+mV w′′γ

) (6.26)Along the �rst and �nal bangs, λh is obtained integrating Eq. (6.26) ba
kwards frompoint 1 and forward from point 2, respe
tively, starting with the known values, obtainedfrom the �rst and the se
ond Eqs. (6.14)
λh1

= −m
[

1 +
w(h1)

V1

]

g + V1w
′(h1)

D(V1, h1)

λh2
= −m

[

1 +
w(h2)

V2

]

g + V2w
′(h2)

D(V2, h2)

(6.27)On
e λh is obtained, λV follows from Eq. (6.25).The numeri
al results show that the 
ontrol stru
ture is 
orre
t in all 
ases presented inSe
tion 6.4.6.4 ResultsThe aerodynami
 model 
onsidered in this thesis for the numeri
al appli
ations (
orrespond-ing to a Boeing 767-300ER) is des
ribed in Appendix B, and the atmosphere model is theInternational Standard Atmosphere.For the wind model, linear pro�les are 
onsidered, with the absolute value of the windspeed in
reasing with altitude (see Ref. [50℄). The pro�les are de�ned as follows
w(h) = w̄ +∆w

h− h̄

hi − h̄
(6.28)where w̄ is the average wind, ∆w is the wind-shear parameter and h̄ = (hi + hf )/2 is theaverage altitude. For given values of hi and hf , ∆w de�nes the wind shear dw

dh
, and, inparti
ular, ∆w = 0 de�nes a uniform wind pro�le. Note that the average wind speed w̄satis�es

w̄ =
1

hi − hf

∫ hi

hf

w(h)dh (6.29)and, also, sin
e the wind pro�les are linear, w̄ is the wind speed at the average altitude, thatis, w̄ = w(h̄). In the following, both tailwinds (TW) and headwinds (HW) are 
onsidered,with the linear pro�les de�ned as follows: for TW one has w̄ > 0 and ∆w ≥ 0, and for HW
w̄ < 0 and ∆w ≤ 0.78



6.4. ResultsIn this se
tion, besides the state and 
ontrol variables, the ground path angle γg is alsoanalyzed, whi
h is de�ned (for γ, γg ≪ 1) by
γg = γ

V

V + w
(6.30)Results are presented for the 
ase of initial and �nal γmax-ar
s, whi
h require that theinitial and �nal speeds be su�
iently high and low respe
tively, as it is the 
ase in 
ommonpra
ti
e. In parti
ular, γmax = 0 is 
onsidered, so that the initial and �nal ar
s are horizontalde
elerations, as in the optimized 
onstant-CAS pro
edure, with whi
h the optimum resultsare to be 
ompared. (Results for γmax > 0 are reported in Ref. [57℄ in the 
ase of no wind.)The initial 
onditions (
orresponding to the �nal 
ruise 
onditions) are Mi = 0.8, hi =

33000 ft, and the �nal 
onditions (
orresponding to a hypotheti
al approa
h �x within theTMA) are CASf = 210 kt, hf = 9000 ft. The average altitude is then h̄ = 21000 ft. Toanalyze the wind e�e
ts on the optimal traje
tories, the average wind ranges from −30 kt to
30 kt, and the wind-shear parameter ranges from 0 to 20 kt. In the analysis of the e�e
t ofthe air
raft weight on the results, W ranges from 1100 kN to 1300 kN.Results from Fran
o et al. [32℄ 
orresponding to optimized 
onstant-CAS des
ents forthe same performan
e index, air
raft and atmosphere models, wind model, as well as initialand �nal 
onditions are reprodu
ed here. For 
ompleteness, a detailed des
ription of this
onstant-CAS des
ent pro
edure is in
luded in Appendix D.The outline of this se
tion is as follows. The e�e
ts of the average wind speed and thewind-shear parameter on the optimal traje
tories as well as on the optimal 
ontrol is �rstanalyzed in Se
tion 6.4.1; then, the optimal and optimized des
ent are 
ompared in termsof global variables, whi
h are also analyzed in Se
tion 6.4.2; �nally, the e�e
ts of the initialair
raft weight on the optimal and optimized results are studied in Se
tion 6.4.3.6.4.1 Optimal Traje
tories and Optimal ControlIn this se
tion, the e�e
ts of the wind pro�le on the optimal traje
tories are analyzed; �rst,the e�e
t of the average wind speed, and se
ond, the e�e
t of the wind shear. In all 
asesthe air
raft weight is W = 1200 kN.6.4.1.1 E�e
t of the Average WindThe optimal speed and altitude pro�les V (x) and h(x) are represented in Fig. 6.2 for di�erentvalues of the average wind (w̄ ranging from −30 to 30 kt) and for a wind-shear parameter
∆w = 0. The speed 
ontinuously de
reases. Note that for the di�erent values of w̄, thesepro�les end at di�erent values of x; the large in�uen
e of w̄ on the horizontal distan
e �ownis analyzed in more detail in Se
tion 6.4.2.The optimal 
ontrol γ(x) and the ground path angle γg(x) are represented in Fig. 6.3for the same values of the average wind as before and for ∆w = 0. They are dis
ontinuous(one has the two ar
s with γmax = 0, and the singular ar
). The results show that both theoptimal 
ontrol and the ground path angle slightly de
rease (|γ| and |γg| in
rease) along thesingular ar
. The average wind w̄ has very little in�uen
e on the singular optimal 
ontrol,ex
ept that it importantly a�e
ts the bang-singular and singular-bang swit
hing times. On79



6. Maximum-Range Unpowered Des
entthe 
ontrary, the in�uen
e on the ground path angle is larger; as w̄ in
reases, the groundpath angle signi�
antly in
reases (|γg| de
reases, 
orresponding to �atter pro�les), whi
h isalso seen in Fig. 6.2b.
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(b)Figure 6.2: Optimal speed and altitude pro�les for w̄ = −30, −20, −10, 0, 10, 20, 30 kt, and
∆w = 0 (W = 1200 kN). (a) V (x), (b) h(x).
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(b)Figure 6.3: Optimal 
ontrol γ(x) and ground path angle γg(x) for w̄ = −30, −20, −10, 0,
10, 20, 30 kt, and ∆w = 0 (W = 1200 kN). (a)γ(x), (b)γg(x).
6.4.1.2 E�e
t of the Wind ShearThe optimal speed and altitude pro�les V (x) and h(x) are represented in Fig. 6.4 now fordi�erent values of the wind-shear parameter (|∆w| ranging from 0 to 20 kt) and for twovalues of the average wind (w̄ = 30 kt, TW, and w̄ = −30 kt, HW). The in�uen
e of ∆w onthe optimal pro�les is relatively small.80



6.4. Results
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(b)Figure 6.4: Optimal speed and altitude pro�les for TW (w̄ = 30 kt, ∆w = 0, 5, 10, 15, 20 kt)and HW (w̄ = −30 kt, ∆w = 0, −5, −10, −15, −20 kt) (W = 1200 kN). (a) V (x), (b) h(x).
The optimal 
ontrol γ(x) and the ground path angle γg(x) are represented in Fig. 6.5 forthe same values of ∆w and w̄ (TW and HW) as before. The results show again that both theoptimal 
ontrol and the ground path angle slightly de
rease (|γ| and |γg| in
rease) along thesingular ar
. As the wind-shear parameter in
reases, both γ(x) and γg(x) slightly in
rease(|γ| and |γg| de
rease). The in�uen
e of ∆w on γ is somewhat larger than the in�uen
e of

w̄. On the 
ontrary, the in�uen
e on γg is smaller. The in�uen
e of ∆w on the bang-singularand singular-bang swit
hing times is also smaller than the in�uen
e of w̄.
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(b)Figure 6.5: Optimal 
ontrol γ(x) and ground path angle γg(x) for TW (w̄ = 30 kt, ∆w = 0,
5, 10, 15, 20 kt) and HW (w̄ = −30 kt, ∆w = 0, −5, −10, −15, −20 kt) (W = 1200 kN).(a)γ(x), (b)γg(x).
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6. Maximum-Range Unpowered Des
ent6.4.2 Comparison of Optimal and Optimized Constant-Calibrated-AirspeedDes
entsIn this se
tion the optimized 
onstant-CAS unpowered des
ents are 
ompared with the opti-mal des
ents. The 
omparison is made in terms of the maximum range and the 
orresponding�ight time, global variables whi
h are also analyzed in this se
tion. In all 
ases the air
raftweight is W = 1200 kN.The maximum range and the �ight time for both problems are represented as fun
tionsof the average wind for a wind-shear parameter ∆w = 0 in Fig. 6.6, and as fun
tions of thewind-shear parameter for two values of the average wind (w̄ = 30 kt, TW, and w̄ = −30 kt,HW) in Fig. 6.7. One 
an see that the di�eren
es between both sets of results are almostnegligible in all 
ases (less than 45 m in maximum range and less than 0.5 s in �ight time).In the following se
tion, where the e�e
t of the air
raft weight is analyzed, results forspeed, altitude, and aerodynami
 path angle pro�les are presented for optimal and optimized
onstant-CAS des
ents, so that the 
omparison between both sets of results is pursued further.Again the di�eren
es are almost negligible. Hen
e, it 
an be 
on
luded that the 
onstant-CAS pro
edure is very 
lose to optimal, provided that the optimum value of CASd is usedin the des
ent.The results (Fig. 6.6) show that the maximum range in
reases as the average wind speedin
reases, as expe
ted, going from 167.79 km for w̄ = −30 kt (HW) to 201.70 km for w̄ = 30 kt(TW); that is, an in
rease of 33.91 km (20.2%) when the average wind 
hanges from HWto TW at |w̄| = 30 kt. One 
an also see that the rate of in
rease of the maximum rangeis approximately 
onstant: about 0.56 km/kt. On the other hand, the �ight time is lesssensitive than the maximum range to 
hanges in w̄, in
reasing from 18.03 min to 18.54 minfor the same in
rease in average wind speed as before; that is, an in
rease of just 0.51 min(2.8%).
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(b)Figure 6.6: Maximum range and �ight time vs. average wind for ∆w = 0 (W = 1200 kN).Solid lines: optimal des
ents. Dashed lines: optimized 
onstant-CAS des
ents.
82



6.4. ResultsThe in�uen
e of the wind shear on the maximum range is analyzed next (see Fig. 6.7a).For w̄ = 30 kt (TW), the maximum range in
reases when ∆w in
reases: going from 201.70 kmto 209.10 km when ∆w in
reases from 0 to 20 kt (an in
rease of 7.40 km, that is 3.67%),with an approximately 
onstant rate of in
rease of about 0.37 km/kt. On the other hand,for w̄ = −30 kt (HW), the maximum range de
reases when ∆w de
reases (that is, when
|∆w| in
reases): going from 167.79 km to 161.67 km when ∆w de
reases from 0 to −20 kt(a de
rease of 6.12 km, that is 3.65%), with an approximately 
onstant rate of de
rease ofabout 0.31 km/kt.
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(b)Figure 6.7: Maximum range and �ight time vs. wind-shear parameter for TW (w̄ = 30 kt) andHW (w̄ = −30 kt) (W = 1200 kN). Solid lines: optimal des
ents. Dashed lines: optimized
onstant-CAS des
ents.
Now the in�uen
e of the wind shear on the �ight time is studied (see Fig. 6.7b). Thetrends are analogous to the 
ase of the maximum range. For w̄ = 30 kt (TW), the �ight timein
reases as ∆w in
reases: going from 18.54 min for ∆w = 0 to 19.20 min for ∆w = 20 kt(an in
rease of 0.66 min, that is 3.56%), with an approximately 
onstant rate of in
rease ofabout 1.99 s/kt. On the other hand, for w̄ = −30 kt (HW), the �ight time de
reases when

∆w de
reases (that is, when |∆w| in
reases): going from 18.03 min for ∆w = 0 to 17.35 minfor ∆w = −20 kt (a de
rease of 0.68 min, that is 3.78%), with an approximately 
onstantrate of de
rease of about 2.04 s/kt.Comparatively, the wind shear a�e
ts equally the maximum range and the �ight time.Hen
e, one 
an 
on
lude �rst that the stronger the TW and the wind shear are, the largerthe maximum range and the �ight time are, and se
ond that the stronger the HW and thewind shear are, the smaller the maximum range and the �ight time are. The maximum rangein
reases from 161.67 km for (w̄,∆w) = (−30,−20) kt (HW) to 209.10 km for (w̄,∆w) =

(30, 20) kt (TW); that is, an in
rease of 47.43 km (29.3%). And the �ight time in
reasesfrom 17.35 min to 19.20 min for the same winds as before; that is, an in
rease of 1.85 min(10.7%). 83



6. Maximum-Range Unpowered Des
ent6.4.3 E�e
ts of the Air
raft Weight on the ResultsIn this se
tion, the e�e
ts of the air
raft weight on the results are analyzed, with W rangingfrom 1100 kN to 1300 kN.6.4.3.1 E�e
ts on the State and Control VariablesThe speed, altitude and aerodynami
 path angle pro�les (V (x), h(x), and γ(x)) that 
orre-spond to the optimal and the optimized 
onstant-CAS des
ents are presented in Figs. 6.8,6.9, and 6.10, respe
tively, for di�erent values of W , for two values of the average wind(w̄ = 30 kt, TW, and w̄ = −30 kt, HW), and for ∆w = 0.
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(b)Figure 6.8: Speed pro�les for ∆w = 0 and W = 1100, 1150, 1200, 1250, 1300 kN. Solid lines:optimal des
ents. Dashed lines: optimized 
onstant-CAS des
ents. a) TW (w̄ = 30 kt), b)HW (w̄ = −30 kt).
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(b)Figure 6.9: Altitude pro�les for ∆w = 0 and W = 1100, 1150, 1200, 1250, 1300 kN. Solidlines: optimal des
ents. Dashed lines: optimized 
onstant-CAS des
ents. a) TW (w̄ = 30 kt),b) HW (w̄ = −30 kt).
84



6.4. Results
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(b)Figure 6.10: Path angle γ(x) for ∆w = 0 and W = 1100, 1150, 1200, 1250, 1300 kN. Solidlines: optimal des
ents. Dashed lines: optimized 
onstant-CAS des
ents. a) TW (w̄ = 30 kt),b) HW (w̄ = −30 kt).
One 
an see that as the air
raft weight in
reases, 1) the speed during the singular ar
in
reases, 2) the altitude slightly de
reases, and 3) the air
raft weight has very little in�uen
eon the singular optimal 
ontrol. The in�uen
e on the ground path angle is not representedgraphi
ally be
ause the dependen
e is very small, as 
an be inferred from Fig. 6.9.As it was advan
ed in the previous se
tion, the di�eren
es between the pro�les for the op-timal and the optimized 
onstant-CAS des
ents are almost negligible for all weights, showingagain that the 
onstant-CAS pro
edure is very 
lose to optimal.6.4.3.2 E�e
ts on the Maximum Range and Flight TimeThe maximum range and the 
orresponding �ight time for the optimal and for the optimized
onstant-CAS des
ents are represented as fun
tions of the air
raft weight in Fig. 6.11 forthree values of the average wind (w̄ = 30 kt, TW; no wind, NW; and w̄ = −30 kt, HW) andfor di�erent values of the wind-shear parameter (|∆w| from 0 to 20 kt, in the 
ases of TWand HW).The in�uen
e of W on the maximum range is very small, for all wind pro�les 
onsidered.However, the in�uen
e of W on the �ight time is larger: as the air
raft weight in
reases, the�ight time de
reases in an almost linear way. The rate of de
rease is roughly independent ofthe wind 
ondition: about 75 s when W in
reases from 1100 kN to 1300 kN.Again, the di�eren
es between the optimized 
onstant-CAS results and the optimal resultsare almost negligible for all weights and wind 
onditions (less than 30 m in maximum rangeand less than 0.5 s in �ight time).
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6. Maximum-Range Unpowered Des
ent
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(b)Figure 6.11: Maximum range and �ight time vs. air
raft weight for TW (w̄ = 30 kt, ∆w = 0,
5, 10, 15, 20 kt), NW (w̄ = ∆w = 0), and HW (w̄ = −30 kt, ∆w = 0, −5, −10, −15,
−20 kt). Solid lines: optimal des
ents. Dashed lines: optimized 
onstant-CAS des
ents.6.5 SummaryAn analysis of maximum-range, unpowered des
ent in the presen
e of altitude-dependentwinds has been made, using the theory of singular optimal 
ontrol. The optimal 
ontrol isof the bang-singular-bang type, and the optimal paths are formed by a singular ar
 and twominimum/maximum-γ ar
s joining the singular ar
 with the given initial and �nal points.Results have been presented for the 
ase of initial and �nal γmax-ar
s, in the parti
ular 
aseof γmax = 0, whi
h lead to two short horizontal de
eleration segments at the beginning andat the end of the optimal traje
tory. This analysis has been used to assess the optimalityof a 
onstant-CAS, unpowered des
ent pro
edure de�ned by three segments (des
ent with
onstant CAS and initial and �nal horizontal de
elerations), whi
h is de�ned and optimizedin Ref. [32℄.This study has been quite general, in the sense that it has been made for a general air
raftmodel and a general horizontal wind pro�le, although results have been presented for linearpro�les. In the numeri
al appli
ations, the linear wind pro�les have been de�ned by twoparameters: the average wind and the wind shear. The in�uen
e of these two parameters onthe results and the in�uen
e of the initial air
raft weight have been analyzed.The results have shown that the average wind a�e
ts strongly the maximum range, asexpe
ted, in
reasing for tailwinds and de
reasing for headwinds. Its e�e
t on the �ight timeis mu
h weaker. The in�uen
e of the wind shear has been shown to be moderately large,presenting the same trends as the average wind, that is, in
reasing the maximum rangeand the �ight time in the 
ase of tailwinds and de
reasing them in the 
ase of headwinds.Comparatively, the wind shear a�e
ts the �ight time more strongly than the average wind;on the 
ontrary, its e�e
t on the maximum range is weaker, but nonetheless important.The e�e
t of the air
raft weight on the results has been analyzed as well. Its e�e
t on themaximum range is very small, and on the �ight time is 
onsiderably larger, de
reasing as theair
raft weight in
reases.86



6.5. SummaryFrom the operational point of view, a main 
on
lusion 
an be drawn: the use of the
onstant-CAS des
ent in operational pra
ti
e, when one aims at starting the unpowereddes
ent as far in advan
e as possible, is justi�ed by the very 
lose 
omparison with theoptimal results for all wind pro�les and air
raft weights 
onsidered; that is, the performan
eof the optimized 
onstant-CAS pro
edure is expe
ted to be very 
lose to optimal.
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7 Minimum-Fuel Global Traje
tory
7.1 Introdu
tionAs indi
ated in Chapter 2, traje
tory optimization is a subje
t of great importan
e in air traf-�
 management (ATM). In fa
t, for 
ommer
ial transport air
raft, minimizing fuel 
onsump-tion is of prime importan
e, both e
onomi
ally and environmentally (be
ause CO2 emissionsare dire
tly related to fuel burnt).In this 
hapter, the minimum-fuel global-traje
tory problem is analyzed, taking into a
-
ount altitude-dependent horizontal winds, so that wind-shear e�e
ts 
an be analyzed. Theair
raft mass is not taken as 
onstant but 
onsidered as a state variable, and a general air-
raft performan
e model is 
onsidered (general 
ompressible drag polar, and general thrustand spe
i�
 fuel 
onsumption models dependent on speed and altitude). Traje
tories are
onsidered to be de
omposed into several phases of three di�erent types: 
limb, 
ruise anddes
ent.The analysis is made by applying the theory of singular optimal 
ontrol to a swit
heddynami
al system. This approa
h has the great advantage of providing feedba
k 
ontrol laws(
ontrol variables as fun
tions of the state variables), that 
an be dire
tly used to guide theair
raft along the optimal path. The 
ontrol variable is the aerodynami
 path angle (γ) for
limb and des
ent phases, and the throttle setting (π) for the 
ruise phase. As in Chapters 4,5 and 6, the stru
ture 
hosen for the optimal 
ontrol in every phase is of the bang-singular-bang type, with the optimal paths formed by a singular ar
 and two minimum/maximumar
s joining the singular ar
 with the initial and �nal swit
hing points.Results are presented for a model of a Boeing 767-300ER performing a 
limb-
ruise-
limb-
ruise-des
ent traje
tory, and for linear wind pro�les, 
hara
terized by two parameters: theaverage wind speed and the speed-pro�le slope or wind shear. The in�uen
e of the two windparameters and of the initial air
raft weight on the results is analyzed. The strong e�e
t ofthe wind shear is des
ribed.The outline of the 
hapter is as follows: the problem is formulated in Se
tion 7.2, in
ludingequations of motion, performan
e index, appli
ation of the ne
essary 
onditions for optimalityand des
ription of the optimal traje
tories; the implemented numeri
al method is explainedin Se
tion 7.3; the parti
ular appli
ation 
onsidered is de�ned in Se
tion 7.4; and �nally,some results are presented in Se
tion 7.5.
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7. Minimum-Fuel Global Traje
tory7.2 Problem FormulationIn this se
tion, the problem of minimum-fuel global traje
tory is formulated. First, thetraje
tory optimization problem (
onsisting of the performan
e index, the equations of motionand the initial and �nal 
onditions) is 
ategorized as a multiphase optimal 
ontrol problemwhose phases are also de�ned. Se
ond, be
ause an indire
t numeri
al method is 
onsidered forthe resolution of the swit
hed optimal 
ontrol problem, the ne
essary 
onditions for optimalityare in
luded. Then, the optimal �ight phases are des
ribed, in
luding the equations de�ningthe singular ar
 and the singular 
ontrol at ea
h phase. These equations 
oin
ide with thoseobtained for the previous appli
ations in whi
h a single phase is optimized (although in some
ases additional 
onsiderations must be made).7.2.1 Optimal Control ProblemUnder appropriate assumptions, the equations of motion for a �ight in a verti
al plane subje
tto an altitude-dependent horizontal wind w(h) are Eqs. (3.41), whi
h are reprodu
ed herefor 
ompleteness:
V̇ =

T −D

m
− gγ − V

dw

dh
γ

ṁ = −cT
ḣ = V γ

ẋ = V + w

(7.1)In this problem there are four states, V , m, h and x, and two 
ontrols, γ and π. Theinitial values of speed, mass, altitude and distan
e (Vi, mi, hi, xi), and the �nal values ofspeed, altitude and distan
e (Vf , hf , xf ) are given. The �nal value of mass (mf ), and �ighttime (tf ) are unspe
i�ed. Without loss of generality, ti = 0 and xi = 0 are 
onsidered.In this 
hapter, minimum-fuel global traje
tories with �xed range are analyzed. However,it turns out to be more 
onvenient to 
onsider the equivalent problem of minimizing thefollowing performan
e index
J=̇ (mi −mf )−Kx (tf ) =

∫ tf

0
[cT −K (V + w)] dt, (7.2)with x (tf ) unspe
i�ed. For both problems to be equivalent, one has to �nd the unknownparameter K for whi
h the free-range optimal traje
tory travels the assigned �nal range

xf , as proven next. Let z be a state variable spe
i�ed at an unspe
i�ed �nal time. Thetransversality 
ondition of the asso
iated adjoint λz is given by λz (tf ) = νz, where νz maybe regarded as a 
ontrol parameter that makes the terminal value of z take the spe
i�ed value(see Bryson and Ho [15℄). If now the �nal value of that state, z (tf ), were unspe
i�ed anda linear terminal 
ost fun
tion −Kz (tf ) were 
onsidered, the transversality 
ondition on λzwould be λz (tf ) = −K, and the remaining ne
essary 
onditions for optimality would remainun
hanged. Hen
e, both problems are equivalent if K = −νz is 
hosen, that is, if the 
ostfa
tor K is 
hosen so that the terminal value of z is the spe
i�ed one.Therefore, the problem 
an be written as in Eq. (3.4), where y = (V,m, h, x) is thestate ve
tor, u = (γ, π) is the 
ontrol ve
tor, l(y,u) = cT − K (V +w) is the running90



7.2. Problem Formulation
ost, no terminal 
ost is 
onsidered, U = {(γ, π) ∈ R
2 : γmin ≤ γ ≤ γmax and 0 ≤

πmin ≤ π ≤ πmax = 1} is the 
ontrol set, ti = 0, yi = (Vi,mi, hi, 0), ψ [tf ,y (tf )] =

(V (tf ), h(tf )) − (Vf , hf ) is the �nal-state-
onstraint fun
tion, and tf is unspe
i�ed. Notethat the initial and �nal values of the states are the same as before, ex
ept for the �nal valueof the distan
e x (tf ), whi
h is now unspe
i�ed.The global traje
tory 
onsidered in this 
hapter is 
omposed of 
limb, 
ruise and des
entphases in a prespe
i�ed phase sequen
e σ = (q1, ..., qN ). A

ording to Se
tion 3.2, this allowsfor the optimization of the 
ontrolled air
raft motion to be 
onsidered as a multiphase optimal
ontrol problem. Hen
e, the problem 
an be stated as in Eq. (3.26) with some 
onsiderations:the running 
osts lqj at ea
h phase qj are parti
ularizations of l a

ording to the type of phase
orresponding to qj ; no terminal 
ost is 
onsidered; Q=̇ {cl, cr, d} is the set of types of phases,where cl, cr, and d stand for 
limb, 
ruise and des
ent, respe
tively; and the values of thestates at the swit
hing instants (Vj , mj , hj , xj) and the swit
hing instants themselves (tj)for j = 1, ..., N − 1 are unspe
i�ed. Again, the initial and �nal values of the states are thesame as before, with x (tf ) being unspe
i�ed.In the next subse
tions, the dynami
 state equations ẏ = fq (y, uq), the 
ontrol variable uq,the 
ontrol 
onstraints uqmin
≤ uq ≤ uqmax, the running 
ost lq (y, uq), and the Hamiltonian

Hq (y, uq, λ) = lq (y, uq) + λT fq (y, uq), where λ ∈ R
4 is the adjoint ve
tor, are de�ned forea
h q ∈ Q. The Hamiltonian is needed to apply the ne
essary 
onditions for optimality,whi
h is done in Se
tion 7.2.2.7.2.1.1 Climb PhaseDuring 
limb (q = cl), the additional 
onstraint that π is a known parameter (π = πcl) is
onsidered in this thesis. The equations of motion in this phase are Eqs. (4.1), whi
h arereprodu
ed here for 
ompleteness:

V̇ =
πclTM −D

m
− gγ − V

dw

dh
γ

ṁ = −cπclTM
ḣ = V γ

ẋ = V + w

(7.3)Now, there is only one 
ontrol, the aerodynami
 path angle ucl = γ, whi
h is bounded(γmin,cl ≤ γ ≤ γmax,cl). The running 
ost for the 
limb phase is lcl(y, γ) = cπclTM −
K (V + w), whereas the Hamiltonian is given by
Hcl = λV

(

πclTM −D

m
− gγ − V w′γ

)

+ (1− λm)cπclTM + λhV γ + (λx −K) (V +w) (7.4)where ()′ denotes derivative with respe
t to h, and λV , λm, λh and λx are the adjoint variables.Note that Hcl is linear on the 
ontrol variable, so that it 
an be written as Hcl = Hcl +Sclγ,where Hcl and the 
limb swit
hing fun
tion Scl are given by
Hcl =

λV
m

(πclTM −D) + (1− λm) cπclTM + (λx −K) (V + w)

Scl = λhV − λV (g + V w′)
(7.5)91



7. Minimum-Fuel Global Traje
tory7.2.1.2 Cruise PhaseDuring 
ruise (q = cr), the additional 
onstraint of �ying at 
onstant altitude (γ = 0) is
onsidered in this thesis. The equations of motion in this phase are Eqs. (5.1), whi
h arereprodu
ed here for 
ompleteness:
V̇ =

πTM −D

m

ḣ = 0

ṁ = −cπTM
ẋ = V + w

(7.6)where the dynami
 equation for altitude has been maintained for the sake of 
onsisten
y,although the altitude is now a 
onstant parameter.Again, there is only one 
ontrol, the throttle setting ucr = π, whi
h is bounded (0 <
πmin ≤ π ≤ πmax = 1). The running 
ost for the 
ruise phase is lcr(y, π) = cπTM −
K (V + w), whereas the Hamiltonian is given by

Hcr =
λV
m

(πTM −D) + (1− λm)cπTM + (λx −K) (V + w) (7.7)where λV , λm and λx are the adjoint variables. Note that Hcr is linear on the 
ontrol variable,so that it 
an be written as Hcr = Hcr + Scrπ, where Hcr and the 
ruise swit
hing fun
tion
Scr are given by

Hcr = −λV
D

m
+ (λx −K) (V + w)

Scr =

[

λV
m

+ (1− λm)c

]

TM

(7.8)7.2.1.3 Des
ent PhaseDuring des
ent (q = d), the additional 
onstraint of �ying unpowered (π = 0) is 
onsideredin this thesis. The equations of motion in this phase are Eqs. (6.1):
V̇ = −D

m
− gγ − V

dw

dh
γ

ḣ = V γ

ṁ = 0

ẋ = V + w

(7.9)where dynami
 equation for air
raft mass has been maintained for the sake of 
onsisten
y,although the mass is now a 
onstant parameter.There is only one 
ontrol, the aerodynami
 path angle ud = γ, whi
h is bounded (γmin,d ≤
γ ≤ γmax,d). The running 
ost for the des
ent phase is ld(y, γ) = −K (V + w), whereas theHamiltonian is given by

Hd = −λV
(

D

m
+ gγ + V w′γ

)

+ λhV γ + (λx −K) (V + w) (7.10)92



7.2. Problem Formulationwhere λV , λh and λx are the adjoint variables. Note that Hd is linear on the 
ontrol variable,so that it 
an be written as Hd = Hd + Sdγ, where Hd and the des
ent swit
hing fun
tion
Sd are given by

Hd = −λVD
m

+ (λx −K) (V + w)

Sd = λhV − λV (g + V w′)
(7.11)7.2.2 Ne
essary Conditions for OptimalityAssuming that the normality and non-triviality 
onditions are satis�ed, and for a givenswit
hing sequen
e σ = (q1, ..., qN ), with qj ∈ Q for j = 1, ..., N , the ne
essary 
onditions foroptimality are summarized next (see Chapter 3):1) The adjoints are pie
ewise 
ontinuous fun
tions satisfying the following dynami
 equa-tions:

λ̇V = −
∂Hqj

∂V

λ̇m = −
∂Hqj

∂m

λ̇h = −∂Hqj

∂h

λ̇x = −
∂Hqj

∂x

(7.12)
along ea
h phase of the optimal traje
tory, that is, ∀t ∈ [tj−1, tj ) ([tN−1, tN ] if j = N) for
j = 1, ..., N . Be
ause Hqj does not depend on x (that is, ∂Hqj

∂x
= 0, ∀qj), λx is a pie
ewise
onstant fun
tion.2) Be
ause the states are 
ontinuous at the swit
hing points tj , and only 
ontrolledswit
hings are 
onsidered, the adjoint variables satisfy the following swit
hing 
onditions:

λV (t
−

j ) = λV (t
+
j )

λh(t
−

j ) = λh(t
+
j )

λm(t−j ) = λm(t+j )

λx(t
−

j ) = λx(t
+
j )

(7.13)for j = 1, ..., N − 1. Hen
e, the adjoints are 
ontinuous fun
tions for all t ∈ [0, tf ]. Inparti
ular, the last equation (7.13) implies that λx is 
onstant. Note that some authors
lassify these 
onditions as transversality 
onditions at the swit
hing instants.3) The Hamiltonian 
ontinuity 
ondition states that, sin
e the transition times tj are notspe
i�ed, then the Hamiltonians for the two phases 
ontiguous at tj satisfy the followingequation:
Hqj(tj) = Hqj+1

(tj) (7.14)for j = 1, ..., N −1. Again, some authors 
lassify these 
onditions as transversality 
onditionsat the swit
hing instants. 93



7. Minimum-Fuel Global Traje
tory4) The Hamiltonian minimization 
ondition states that for the 
ontrol to be optimal it isne
essary that it minimize the Hamiltonian. In all �ight phases 
onsidered, the Hamiltonianis linear on the 
ontrol variable and the 
ontrol is bounded, that is, Hqj = Hqj + Sqjuqj and
uqj ,min ≤ uqj ≤ uqj ,max, ∀qj . Hen
e, the minimization of Hqj with respe
t to uqj de�nes theoptimal 
ontrol as follows

uqj =











uqj ,max if Sqj < 0

uqj ,min if Sqj > 0

uqj ,sing if Sqj = 0 over a �nite time interval (7.15)for j = 1, ..., N , where uqj ,sing is the singular 
ontrol (yet to be determined), whi
h satis�es
uqj ,min ≤ uqj ,sing ≤ uqj ,max. Traje
tory segments de�ned by uqj ,sing are 
alled singular ar
s,whereas traje
tory segments de�ned by uqj ,min or uqj ,max are 
alled bangs.6) The transversality 
onditions are the following: First, sin
e the �nal distan
e x(tf ) isnot spe
i�ed, one has

λx(tf ) = 0 (7.16)whi
h, along with the result that λx is a 
onstant, leads to
λx(t) = 0 (7.17)along the entire optimal traje
tory. Se
ond, as the �nal mass m(tf ) is not spe
i�ed, one has
λm(tf ) = 0 (7.18)Third, sin
e the �nal time tf is not spe
i�ed, one has
HqN (tf ) = 0 (7.19)Moreover, sin
e the Hamiltonian is not an expli
it fun
tion of time, one has the �rstintegral that it is 
onstant along ea
h phase of the optimal traje
tory, that is,
Hqj(t) = Hj (7.20)for j = 1, ..., N , where Hj are unknown 
onstant values. This �rst integral, along withEqs. (7.19) and (7.14), leads to
Hqj(t) = 0 (7.21)for j = 1, ..., N .As indi
ated in Chapter 3, in singular optimal 
ontrol problems there arise additional
onditions that must be satis�ed in order both, for a singular ar
 to be minimizing, andfor the jun
tions between singular and nonsingular ar
s to be optimal. These additionalne
essary 
ondition for optimality are analyzed below in Se
tion 7.2.3 for ea
h phase.7.2.3 Optimal Flight PhasesThe optimal global traje
tory is built up by linking the optimized phases together. Although
alled optimal traje
tories, they are in fa
t extremals, that is, traje
tories that satisfy thene
essary 
onditions for optimality.94



7.2. Problem FormulationIn general, ea
h optimal phase q ∈ Q will be 
omposed of singular ar
s (with uq,sing)and ar
s with uq,min or uq,max; whether one has uq,min or uq,max is de�ned by the sign ofthe swit
hing fun
tion Sq. In this problem, ea
h optimal phase is expe
ted to be of thebang-singular-bang type, that is, a singular ar
 and two minimum/maximum-uq ar
s joiningthe singular ar
 with the initial and �nal points. Although the underlying aerodynami
 andpropulsive models might a�e
t the stru
ture of the solution, for the smooth models 
onsideredin this thesis, the bang-singular-bang stru
ture is plausible, and hen
e it is the one analyzedin this 
hapter.In the next subse
tions, the singular ar
 as well as the singular 
ontrol are analyzed forthe three types of optimal phases 
onsidered in this 
hapter.7.2.3.1 Singular Ar
 at a Climb PhaseThe singular 
ontrol is obtained when the swit
hing fun
tion is zero (Scl = 0) on an intervalof time; hen
e, sin
e Hcl = 0, one also has Hcl = 0. On that interval of time one has Ṡcl = 0as well. The singular ar
 is de�ned by the three equations:
Hcl = 0, Scl = 0, Ṡcl = 0 (7.22)In Chapter 4, the optimization problem of a 
limb subje
t to the same equations ofmotion and 
onsidering the same running 
ost cπclTM −K (V + w) is analyzed. Hen
e, theHamiltonian and the adjoints dynami
 equations are also the same and, as a 
onsequen
e,the results in Chapter 4 de�ning the singular ar
 and the singular 
ontrol γsing,cl(V,m, h)apply here.On one hand, it is not possible to obtain an expression for the singular ar
 in terms of thestate variables alone. Instead, the three Eqs. (4.17) de�ne the adjoints λV , λm and λh alongthe singular ar
 in the terms of the state variables. On the other hand, the singular feedba
k
ontrol law γsing,cl(V,m, h) is obtained from S̈cl = 0 after eliminating the three adjoints withthe equations de�ning the singular ar
; its expression is given by Eq. (4.22).The generalized Legendre-Clebs
h 
ondition for the optimality of the singular 
ontrol,Eq. (3.21), redu
es in this 
ase (ξcl = 1 and ucl = γ) to −∂S̈cl

∂γ
≥ 0, whi
h leads to thesame expression as in Chapter 4, that is, Eq. (4.23). It 
an be shown numeri
ally that thestrengthened generalized Legendre-Clebs
h 
ondition (−∂S̈cl

∂γ
> 0) is satis�ed in all the 
ases
onsidered in this 
hapter.The M
Danell-Powers ne
essary 
ondition for the optimality of jun
tions between singularand nonsingular ar
s (see Chapter 3) is shown to be satis�ed, be
ause the order of the singularar
 is ξcl = 1 and the lowest-order time derivative of the 
ontrol whi
h is dis
ontinuous atthe jun
tion is ζcl = 0 (that is, the 
ontrol itself is dis
ontinuous at the jun
tion). Moreover,although the 
ontrol variable is dis
ontinuous at the jun
tions, the Weierstrass-Erdman 
orner
onditions are satis�ed be
ause the adjoint variables, the Hamiltonian and the swit
hingfun
tion are all 
ontinuous. 95



7. Minimum-Fuel Global Traje
tory7.2.3.2 Singular Ar
 at a Cruise PhaseThe singular 
ontrol is obtained when the swit
hing fun
tion is zero (Scr = 0) on an intervalof time; hen
e, sin
e Hcr = 0, one also has Hcr = 0. On that interval of time one has Ṡcr = 0as well. The singular ar
 is de�ned by the three equations:
Hcr = 0, Scr = 0, Ṡcr = 0 (7.23)In Chapter 5, the optimization problem of a 
ruise subje
t to the same equations ofmotion is analyzed, but a di�erent running 
ost is 
onsidered (namely, cπTM ) and the �naldistan
e and �nal time are �xed. However, as it has already been shown, a problem with�xed �nal distan
e is equivalent to a problem with free �nal distan
e and an additional 
ost

−Kx(tf ) just by imposing λx(tf ) = −K. By doing so the Hamiltonian and the adjointsdynami
 equations are the same, just by additionally imposing that the 
onstant value ofthe Hamiltonian equals zero, that is H = 0. With this modi�
ation, the results in Chapter 5de�ning the singular ar
 and the singular 
ontrol πsing(V,m, h) apply here.On one hand, the singular ar
 is de�ned by the Eq. (5.13), with Ω = w, that is,
D

(

1

ω + V
− c− 1

c

dc

dV

)

− ∂D

∂V
+ cm

∂D

∂m
= 0 (7.24)On the other hand, the singular feedba
k 
ontrol law is obtained from S̈cr = 0, after elimi-nating the adjoints with the Eqs. (7.23) de�ning the singular ar
; its expression is given byEq. (5.15).The generalized Legendre-Clebs
h 
ondition for the optimality of the singular 
ontrol,Eq. (3.21), redu
es in this 
ase (ξcl = 1 and ucr = π) to −∂S̈cr

∂π
≥ 0, whi
h leads to thesame expression as in Chapter 5, that is, Eq. (5.17). It 
an be shown numeri
ally that thestrengthened generalized Legendre-Clebs
h 
ondition (−∂S̈cr

∂π
> 0) is satis�ed in all the 
ases
onsidered in this 
hapter.The M
Danell-Powers ne
essary 
ondition for the optimality of jun
tions between singularand nonsingular ar
s (see Chapter 3) is shown to be satis�ed, be
ause the order of the singularar
 is ξcr = 1 and the lowest-order time derivative of the 
ontrol whi
h is dis
ontinuous atthe jun
tion is ζcr = 0 (that is, the 
ontrol itself is dis
ontinuous at the jun
tion). Moreover,although the 
ontrol variable is dis
ontinuous at the jun
tions, the Weierstrass-Erdman 
orner
onditions are satis�ed be
ause the adjoint variables, the Hamiltonian and the swit
hingfun
tion are all 
ontinuous.7.2.3.3 Singular Ar
 at a Des
ent PhaseThe singular 
ontrol is obtained when the swit
hing fun
tion is zero (Sd = 0) on an intervalof time; hen
e, sin
e Hd = 0, one also has Hd = 0. On that interval of time one has Ṡd = 0as well. The singular ar
 is de�ned by the three equations:

Hd = 0, Sd = 0, Ṡd = 0 (7.25)In Chapter 5, the optimization problem of an unpowered des
ent subje
t to the sameequations of motion is analyzed, but a di�erent running 
ost − (V + w) is 
onsidered. That96



7.3. Numeri
al Pro
edurerunning 
ost is similar to ld ex
ept for a s
aling fa
tor K. Therefore, ex
ept for that fa
tor K,the Hamiltonian and the adjoints dynami
 equations are also the same and, as a 
onsequen
e,the results in Chapter 6 de�ning the singular ar
 and the singular 
ontrol γsing,d(V,m, h)apply here.On one hand, the singular ar
 is de�ned by the Eq. (6.15). On the other hand, thesingular feedba
k 
ontrol law is obtained from S̈d = 0 after eliminating the three adjointswith the Eqs. (7.25); its expression is given by Eq. (6.20).The generalized Legendre-Clebs
h 
ondition for the optimality of the singular 
ontrol,Eq. (3.21), redu
es in this 
ase (ξd = 1 and ud = γ) to −∂S̈d
∂γ

≥ 0, whi
h leads to thesame expression as in Chapter 6, that is, Eq. (6.21). It 
an be shown numeri
ally that thestrengthened generalized Legendre-Clebs
h 
ondition (−∂S̈d
∂γ

> 0) is satis�ed in all the 
ases
onsidered in this 
hapter.The M
Danell-Powers ne
essary 
ondition for the optimality of jun
tions between singularand nonsingular ar
s (see Chapter 3) is shown to be satis�ed, be
ause the order of the singularar
 is ξd = 1 and the lowest-order time derivative of the 
ontrol whi
h is dis
ontinuous atthe jun
tion is ζd = 0 (that is, the 
ontrol itself is dis
ontinuous at the jun
tion). Moreover,although the 
ontrol variable is dis
ontinuous at the jun
tions, the Weierstrass-Erdman 
orner
onditions are satis�ed be
ause the adjoint variables, the Hamiltonian and the swit
hingfun
tion are all 
ontinuous.7.3 Numeri
al Pro
edureIn this se
tion the numeri
al pro
edure used to solve the problem is des
ribed. Knowing thestru
ture of the solution allows one to de�ne an e�
ient numeri
al pro
edure (see Maurer[44℄).The numeri
al pro
edure is based on three di�erent phase algorithms intended to obtaina 
andidate for optimal phase. To apply these phase algorithms one has to guess the valuesof some unknown parameters. The phase algorithms 
an be interpreted as blo
ks that haveto be sequentially pie
ed together, a

ording to the given phase sequen
e σ, in order toobtain a 
andidate for optimal traje
tory. Finally, the numeri
al pro
edure has to iterateon the unknown parameters in order for some ne
essary 
onditions for optimality to besatis�ed. Note that the numeri
al pro
edure also has to obtain the value of K for whi
h the
orresponding �nal value of the horizontal distan
e travelled x(tf ) is equal to the spe
i�edone, xf .7.3.1 Algorithm for Optimal ClimbIf the phase 
onsidered is a 
limb (that is, qj = cl), the numeri
al pro
edure is as follows.The �rst bang starts with the following initial values at the point j − 1: V (tj−1) = Vj−1,
m(tj−1) = mj−1, h(tj−1) = hj−1, and x(tj−1) = xj−1. These initial values are known eitherbe
ause the traje
tory at the previous phase has already been obtained (for the general 
ase
j 6= 1), or be
ause they are the given initial values (for the parti
ular 
ase j = 1). Let λV,aj ,97



7. Minimum-Fuel Global Traje
tory
hbj , and Vj be the values of the adjoint λV at the beginning of the singular ar
 (point aj),the altitude at the end of the singular ar
 (point bj), and the speed at the end of the 
limb(point j), respe
tively. If λV,aj were known, the state equations (7.3) 
ould be integrateduntil the singular ar
 were rea
hed, that is, until λV,aj = fV (Vaj ,maj , haj ) were satis�ed (seeEqs. 4.18). Then, using Eqs. (7.22), λm and λh 
ould be obtained at aj , so that the adjointequations (7.12) 
ould be integrated ba
kwards along the �rst bang. Also, if the altitude hbjwere known, the state equations 
ould be integrated along the singular ar
 (from point aj topoint bj), and then, using Eqs. (7.22), λV , λm and λh 
ould be obtained. Finally, if Vj wereknown, the state equations and the adjoint equations 
ould be integrated along the se
ondbang, whi
h starts at the singular ar
 (point bj) and ends when the value V = Vj is rea
hed.At the end (point j) one has the following �nal values: V (tj) = Vj , m(tj) = mj , h(tj) =
hj , x(tj) = xj , λV (t−j ), λh(t−j ), and λm(t−j ). At the beginning (point j−1) one has λV (t+j−1),
λh(t

+
j−1), and λm(t+j−1).The �nal values of the states are used as initial values for the next optimal phase 
al
u-lation (j 6= N in pra
ti
al 
ases). The initial (if j 6= 1) and �nal values of the adjoints areused to impose some ne
essary 
onditions for optimality and, hen
e, to de�ne λV,aj , hbj , and

Vj . This task is performed by means of an iterative pro
edure (des
ribed in Se
tion 7.3.4),when all phases in σ are already 
omputed.7.3.2 Algorithm for Optimal CruiseIf the phase 
onsidered is a 
ruise (that is, qj = cr), the numeri
al pro
edure is as follows.The �rst bang starts with the following initial values at the point j − 1: V (tj−1) = Vj−1,
m(tj−1) = mj−1, and x(tj−1) = xj−1, with h(tj−1) = hj−1 playing the role of a parameterduring this phase (h = const). These initial values are known be
ause the traje
tory at theprevious phase has already been obtained; note that, in pra
ti
al 
ases, the �rst phase fromthe sequen
e σ is not a 
ruise phase (j 6= 1). Let xbj and Vj be the values of the distan
etravelled at the end of the singular ar
 (point bj) and the speed at the end of the 
ruise (point
j), respe
tively. The state equations (7.6) 
an be integrated until the singular ar
 (Eq. 7.24)is rea
hed (point aj). Then, using the �rst two Eqs. (7.23), λV and λm 
ould be obtained at
aj , so that the adjoint equations (7.12) 
ould be integrated ba
kwards along the �rst bang. If
xbj were known, the state equations 
ould be integrated along the singular ar
 (from point ajto point bj), and then, using the �rst two Eqs. (7.23), λV and λm 
ould be obtained. Finally,if Vj were known, the state equations and the adjoint equations 
ould be integrated alongthe se
ond bang, whi
h starts at the singular ar
 (point bj) and ends when the value V = Vjis rea
hed.At the end (point j) one has the following �nal values: V (tj) = Vj , m(tj) = mj , h(tj) =
hj = hj−1, x(tj) = xj , λV (t−j ) and λm(t−j ). At the beginning (point j − 1) one has λV (t+j−1)and λm(t+j−1). On
e the full state as well as the adjoints λV and λm are known, and inorder to obtain the remaining adjoint variable λh, one has to integrate its dynami
 equationalong the entire 
ruise phase (from j − 1 to j), starting from λh(t

+
j−1). Note that λh(t−j−1) isknown from the previous phase (again j 6= 1 in pra
ti
al 
ases), and the ne
essary 
ondition

λh(t
+
j−1) = λh(t

−

j−1) is imposed.
98



7.3. Numeri
al Pro
edureThe �nal values of the state are used as initial values for the next optimal phase 
al
ulation(as j 6= N in pra
ti
al 
ases). The initial (as j 6= 1 in pra
ti
al 
ases) and �nal values ofsome of the adjoints are used to impose some ne
essary 
onditions for optimality and, hen
e,to de�ne xbj and Vj . This task is performed by means of an iterative pro
edure (des
ribedin Se
tion 7.3.4), when all phases in σ are already 
omputed.
7.3.3 Algorithm for Optimal Des
entIf the phase 
onsidered is a des
ent (that is, qj = d), the numeri
al pro
edure is as follows.The �rst bang starts with the following initial values at the point j − 1: V (tj−1) = Vj−1,
h(tj−1) = hj−1, and x(tj−1) = xj−1, with m(tj−1) = mj−1 playing the role of a parameterduring this phase (m = const). These initial values are known be
ause the traje
tory at theprevious phase has already been obtained; note that, in pra
ti
al 
ases, the �rst phase fromthe sequen
e σ is not a des
ent phase (j 6= 1). Let Vj and hj be the values of the speed andthe altitude, respe
tively, at the end of the des
ent (point j). The state equations (7.9) 
anbe integrated until the singular ar
 (Eq. 6.15) is rea
hed (point aj). Then, using the �rst twoEqs. (7.25), λV and λh 
ould be obtained at aj , so that the adjoint equations (7.12) 
ouldbe integrated ba
kwards along the �rst bang. If Vj and hj were known, the state equations
ould be integrated ba
kwards along the se
ond bang, that is, from j until the singular ar
(Eq. 6.15) is rea
hed (point bj). Then, the state equations 
ould be integrated along thesingular ar
 (from point aj to point bj), and then, using the �rst two Eqs. (7.25), λV and λh
ould be obtained. Finally, the adjoint equations 
ould be integrated along the se
ond bang,starting at the singular ar
 (point bj) and ending at j.At the end (point j) one has the following �nal values: V (tj) = Vj , m(tj) = mj = mj−1,
h(tj) = hj , x(tj) = xj , λV (t−j ) and λh(t−j ). At the beginning (point j − 1) one has λV (t+j−1)and λh(t+j−1). On
e the full state as well as the adjoints λV and λh are known, and in orderto obtain the remaining adjoint variable λm, one has to integrate its dynami
 equation alongthe entire des
ent phase (from j − 1 to j), starting from λm(t+j−1). Note that λm(t−j−1) isknown from the previous phase (again j 6= 1 in pra
ti
al 
ases), and the ne
essary 
ondition
λm(t+j−1) = λm(t−j−1) is imposed.The initial (as j 6= 1 in pra
ti
al 
ases) and �nal values of some of the adjoints are used toimpose some ne
essary 
onditions for optimality and, hen
e, to de�ne Vj and hj . This taskis performed by means of an iterative pro
edure, when all phases in σ are already 
omputed(des
ribed in Se
tion 7.3.4).In all pra
ti
al 
ases the des
ent phase is the last phase (j = N); in su
h a 
ase, these
ond bang ends with the known �nal values V (tf ) = Vf and h(tf ) = hf , so that there is nounknown variable needed for the des
ent 
omputation. However, the initial and �nal valuesof some of the adjoints, as well as the �nal value of the distan
e travelled x(tf ), are used toimpose some ne
essary 
onditions for optimality whi
h are added (as 
losing equations) tothe iterative pro
edure. 99



7. Minimum-Fuel Global Traje
tory7.3.4 Closing EquationsAs previously mentioned, given a phase sequen
e σ, the numeri
al pro
edure is built bysequentially pie
ing the 
orresponding phase algorithms together. Ea
h phase algorithm mayadd some unknown parameters: three for 
limb phases and two for 
ruise and des
ent phases.However, those ne
essary 
onditions for optimality not expli
itly taken into a

ount in thephase algorithms allow for the de�nition of the unknown parameters by means of an iterativepro
edure.Let ncl, ncr and nd (with ncl+ncr+nd = N) the number of 
limb phases, 
ruise phases anddes
ent phases, respe
tively, 
onsidered in σ. Then, a

ording to the explained algorithms,the number of total unknown parameters is Nun = 1 + 3ncl + 2ncr + 2(nd − 1) (taking intoa

ount that K is an unknown and that the �nal des
ent has zero unknowns). The numberof 
losing equations 
an be obtained as follows.A swit
hing point j for j = 1, ..., N−1 is the beginning of the phase qj+1. At the beginningof a phase qj+1, one has three adjoint 
ontinuity equations, the �rst three Eqs. (7.13). If thephase qj+1 is a 
ruise or a des
ent, one of these adjoint 
ontinuity equations has alreadybeen used in the 
orresponding phase algorithm (the one involving the adjoint asso
iatedto the state that remains 
onstant). This implies that at the beginning of a phase qj+1 for
j = 1, ..., N − 1 (that is, ex
ept for q1) one has either two (if qj+1 = cr or qj+1 = d) or three(if qj+1 = cl) adjoint 
ontinuity equations that have not been expli
itly taken into a

ount inthe 
orresponding phase algorithm. Hen
e, be
ause the �rst phase is a 
limb in all pra
ti
al
ases, one has 3(ncl − 1) + 2ncr + 2nd 
losing equations stating adjoints 
ontinuity. Besides,one has two additional 
losing equations: x(tf ) = xf and λm(tf ) = 0. As a result, thenumber of total 
losing equations is Nce = 3(ncl − 1) + 2ncr + 2nd + 2, that is, Nce = Nun.The resolution of this system of non-linear equations is performed using MATLAB's fsolve.7.4 Appli
ation to a Climb-Cruise-Climb-Cruise-Des
ent Tra-je
toryAs already seen, by 
onveniently pie
ing the phase algorithms together one 
an establisha numeri
al pro
edure to solve the problem given any possible solution stru
ture. Typi
alsolution stru
tures in
lude 
onsidering an initial 
limb from the given initial state, a �naldes
ent to the given �nal state and several 
ruise phases at di�erent altitudes joined by 
limbphases (sin
e experien
e shows that 
ruise altitudes should in
rease along the traje
tory).Elements form this family of solution stru
tures 
an be identi�ed by the number of 
ruisephases 
onsidered ncr. In this 
hapter, results are presented for a 
limb-
ruise-
limb-
ruise-des
ent stru
ture, σ = (cl, cr, cl, cr, d), whi
h is the element ncr = 2 from the aforementionedfamily of solution stru
tures.In Fig. 7.1 a sket
h of the expe
ted optimal path is presented (the parti
ular 
ase of
γmin,cl = γmax,d = 0 is depi
ted). For this parti
ular 
ase, and with additional assumptions,several simpli�
ations 
an be made in the numeri
al pro
edure, as des
ribed next.
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7.4. Appli
ation to a Climb-Cruise-Climb-Cruise-Des
ent Traje
tory
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a4 b4 a5

b5Figure 7.1: Sket
h of the optimal global path.First, at the swit
hing point j = 2 (swit
hing from the �rst 
ruise to the intermediate
limb) Hcr = Hcl holds, sin
e the numeri
al method expli
itly imposes Hcr = 0 and Hcl = 0to 
ompute the adjoints. Hen
e, from Eqs. (7.4), (7.7) and (7.17), at t = t2 one has
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TMπcl +
[

λh(t
+
2 )V − λV (t

+
2 )
(

g + V w′
)]

γa3(7.26)were πb2 is the value of the 
ontrol variable at the �nal bang of the �rst 
ruise and γa3 isthe value of the 
ontrol variable at the initial bang of the intermediate 
limb. For simpli
ity,the dependen
e with respe
t to time of the state variables has not been in
luded, sin
e thenumeri
al method expli
itly imposes these to be 
ontinuous at the swit
hing points.Combining Eq. (7.26) with 
onditions λV (t−2 ) = λV (t
+
2 ) and λm(t−2 ) = λm(t+2 ), andassuming that the wind w is 
ontinuous at j = 2, one has

{

λV (t
−
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m
+
[
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c
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TM (πb2 − πcl) =
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+
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+
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g + V w′
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γa3 (7.27)The satisfa
tion of this equation along with the 
ontinuity 
ondition for λm ensures satis-fa
tion of the 
ontinuity 
ondition for λV ; hen
e, it is used as a 
losing equation instead of
λV (t

−

2 ) = λV (t
+
2 ).Assuming γa3 = γmin,cl and 
onsidering γmin,cl = 0, Eq. (7.27) be
omes

{

λV (t
−
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m
+
[

1− λm(t−2 )
]

c

}

TM (πb2 − πcl) = 0 (7.28)Taking into a

ount the Hamiltonian minimization 
ondition, and the fa
t that πmin 6= πcl 6=
πmax, one has

λV (t
−

2 )

m
+
[

1− λm(t−2 )
]

c = 0 (7.29)101



7. Minimum-Fuel Global Traje
torywhi
h implies that the swit
hing point 2 belongs to the 
ruise singular ar
 (see Eq. 5.12),and then, 2 ≡ b2. As a 
onsequen
e, the only value for the unknown V2 satisfying the 
losingequation (7.29) is V2 = Vb2 , and therefore, there is one de
ision variable less.Se
ond, at the swit
hing point j = 4 (swit
hing from the se
ond 
ruise to the des
ent)
Hcr = Hd holds, sin
e the numeri
al method expli
itly imposes Hcr = 0 and Hcl = 0 to
ompute the adjoints. Hen
e, from Eqs. (7.7), (7.10) and (7.17), at t = t4 one has
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m
−K(V +w) +
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(
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γa5

(7.30)were πb4 is the value of the 
ontrol variable at the �nal bang of the se
ond 
ruise and γa5 isthe value of the 
ontrol variable at the initial bang of the des
ent. Again, the dependen
ewith respe
t to time of the state variables has not been in
luded, sin
e the numeri
al methodexpli
itly imposes these to be 
ontinuous at the swit
hing points.Combining Eq. (7.30) with 
ondition λV (t−4 ) = λV (t
+
4 ), and assuming that the wind wis 
ontinuous at j = 4, one has

{

λV (t
−

4 )

m
+
[

1− λm(t−4 )
]

c

}

TMπb4 =
[

λh(t
+
4 )V − λV (t

+
4 )
(

g + V w′
)]

γa5 (7.31)The satisfa
tion of this equation ensures satisfa
tion of the 
ontinuity 
ondition for λV ; hen
e,it is used as a 
losing equation instead of λV (t−4 ) = λV (t
+
4 ).Assuming γa5 = γmax,d and 
onsidering γmax,d = 0, Eq. (7.31) be
omes

{
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m
+
[

1− λm(t−4 )
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c

}

TMπb4 = 0 (7.32)Taking into a

ount the Hamiltonian minimization 
ondition, and the fa
t that in 
ruise
πmin 6= 0, one has

λV (t
−

4 )

m
+
[

1− λm(t−4 )
]

c = 0 (7.33)whi
h implies that the swit
hing point 4 belongs to the 
ruise singular ar
 (see Eq. 5.12),and then, 4 ≡ b4. As a 
onsequen
e, the only value for the unknown V4 satisfying the 
losingequation (7.33) is V4 = Vb4 , and therefore, there is one de
ision variable less.A

ording to the two previous developments, the optimal 
ruise phase 
onsidered in this
hapter has a bang-singular stru
ture instead of a bang-singular-bang stru
ture. As a 
on-sequen
e, when setting up the global numeri
al pro
edure, the algorithm for optimal 
ruisephase (from j − 1 to j) has one de
ision variable less (Vbj ) and one 
losing equation less(
ontinuity of λV at j) than the algorithm des
ribed in Se
tion 7.3.2.7.5 ResultsThe air
raft model 
onsidered in this thesis for the numeri
al appli
ations (
orresponding toa Boeing 767-300ER) is des
ribed in Appendix B, and the atmosphere model is the Interna-tional Standard Atmosphere (ISA).102



7.5. ResultsFor the wind model, linear pro�les are 
onsidered, with the absolute value of the windspeed in
reasing with altitude (see Ref. [50℄). The pro�les are de�ned as follows
w(h) = w̄ +∆w

h− h̄

hhigh − h̄
(7.34)where w̄ is the average wind; ∆w is the wind-shear parameter; hhigh = 33000 ft and hlow =

10000 ft are referen
e altitudes; and h̄ = (hlow + hhigh)/2 = 21500 ft is the average altitude.Note that, on one hand, the average wind speed w̄ is the wind speed at the average altitude,that is, w̄ = w(h̄); on the other hand, ∆w de�nes the wind shear dw

dh
, and, in parti
ular,

∆w = 0 de�nes a uniform wind pro�le. In the following, both tailwinds (TW) and headwinds(HW) are 
onsidered, with the linear pro�les de�ned as follows: for TW one has w̄ > 0 and
∆w ≥ 0, and for HW w̄ < 0 and ∆w ≤ 0.The initial 
onditions (
orresponding to a hypotheti
al SID �nal �x) are CASi = 250 kt,
hi = 10000 ft, and the �nal 
onditions (
orresponding to a hypotheti
al approa
h �x withinthe TMA) are CASf = 210 kt, hf = 9000 ft. The �nal value of the horizontal distan
etravelled is xf = 6000 km. The throttle setting during 
limb is πcl =0.75, so that typi
alperforman
e is obtained for the range of parameters 
onsidered in the 
hapter. Moreover,the bounds on the 
ontrol are πmin = 0.015, πmax = 1, γmin,cl = 0, γmax,cl = 10 deg,
γmin,de = −10 deg, and γmax,de = 0.To analyze the wind e�e
ts on the optimal traje
tories, the initial air
raft weight is
Wi = 1500 kN, the average wind ranges from −30 kt to 30 kt, and the absolute value ofthe wind-shear parameter ranges from 0 to 20 kt. In the analysis of the e�e
t of the initialair
raft weight on the results, no wind is 
onsidered, andWi ranges from 1450 kN to 1550 kN.The outline of this se
tion is as follows: the e�e
ts of the average wind speed (Se
tion7.5.1), the wind-shear parameter (Se
tion 7.5.2), and the air
raft weight (Se
tion 7.5.3) onthe optimal traje
tories as well as on the optimal 
ontrol are analyzed, and then, the globalvariables su
h as minimum fuel 
onsumption, �ight time and 
ruise altitudes are analyzed inSe
tion 7.5.4.7.5.1 E�e
t of the Average Wind SpeedThe optimal traje
tory V (h), the speed pro�le V (x), and the �ight path h(x) are representedin Figs. 7.2, 7.3a, and 7.3b, respe
tively, for di�erent values of the average wind speed (w̄ranging from −30 kt to 30 kt) and for a wind shear parameter ∆w = 0. In the optimaltraje
tories, the 
limb phases start with a horizontal a

eleration and end with a steep 
limbout; the 
ruise phases start with an initial de
eleration; and the des
ent phase starts andends with horizontal de
elerations. During the initial 
limb, the speed 
ontinuously in
reases,rea
hes a maximum and then slowly de
reases. Along the 
ruise phases, the speed slowlyde
reases. The intermediate 
limb takes pla
e with slightly higher speeds than those of 
ruisephases. During the des
ent phase the speed 
ontinuously de
reases. The in�uen
e of w̄ onthe optimal pro�les is 
lear: As w̄ in
reases, the speed de
reases at all phases, so that forTW one has slower speeds than for HW.
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Figure 7.2: Optimal traje
tory V (h) for w̄ = −30, −20, −10, 0, 10, 20, 30 kt and ∆w = 0.
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(b)Figure 7.3: Optimal speed pro�le and �ight path for w̄ = −30, −20, −10, 0, 10, 20, 30 kt,and ∆w = 0. (a) V (x), (b) h(x).The optimal 
ontrols γ(h) and π(x) are represented in Fig. 7.4 for the same values of w̄as before and ∆w = 0. They are dis
ontinuous, not only at the swit
hings, but also withina phase. For the optimal 
limbs, one has three segments, all of them with π = πcl: theinitial ar
 with γmin,cl = 0, the singular ar
, in whi
h γ de
reases as the altitude in
reases,and the ar
 with γmax,cl. For the optimal 
ruise, one has two segments, all of them with
γ = 0: the initial ar
 with πmin and the singular ar
, in whi
h π de
reases along the �ight.For the optimal des
ent, one has three segments, all of them with π = 0: the initial and�nal ar
s with γmax,d = 0, along with the singular ar
, in whi
h γ remains roughly 
onstantas the altitude de
reases. The stru
ture of the optimal 
ontrol has been 
on�rmed by thenumeri
al results of the swit
hing fun
tion at ea
h phase. The average wind speed has verylittle in�uen
e on the singular optimal 
ontrols and on the bang-singular and singular-bangswit
hing points.104
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(b)Figure 7.4: Optimal 
ontrols γ(h) and π(x) for w̄ = −30, −20, −10, 0, 10, 20, 30 kt, and
∆w = 0. (a) γ(h), (b) π(x).
7.5.2 E�e
t of the Wind ShearThe optimal traje
tory V (h), speed pro�le V (x), and �ight path h(x) are represented in Figs.7.5, 7.6, and 7.7, respe
tively, for di�erent values of the wind-shear parameter (|∆w| rangingfrom 0 kt to 20 kt), and for two values of the average wind (w̄ = 30 kt, TW, and w̄ = −30 kt,HW). The optimal traje
tories have the same stru
ture as mentioned before. The in�uen
e of
∆w on the optimal speed pro�les and on the optimal �ight path 
orresponding to the initial
limb and to the des
ent is very small; on the 
ontrary, the in�uen
e on the 
ruise altitudesis mu
h larger.
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(b)Figure 7.5: Optimal traje
tory V (h). (a) TW (w̄ = 30 kt, ∆w = 0, 5, 10, 15, 20 kt), (b) HW(w̄ = −30 kt, ∆w = 0, −5, −10, −15, −20 kt).
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(b)Figure 7.6: Optimal speed pro�le V (x). (a) TW (w̄ = 30 kt, ∆w = 0, 5, 10, 15, 20 kt), (b)HW (w̄ = −30 kt, ∆w = 0, −5, −10, −15, −20 kt).

0 100 200
2000

4000

6000

8000

10000

12000

h
[m

]

2900 3000 3100
x [km]

5800 5900 6000

∆w

TW

(a) 0 100 200
2000

4000

6000

8000

10000

12000

h
[m

]

2900 3000 3100
x [km]

5800 5900 6000

∆w

HW

(b)Figure 7.7: Optimal �ight path h(x). (a) TW (w̄ = 30 kt, ∆w = 0, 5, 10, 15, 20 kt), (b) HW(w̄ = −30 kt, ∆w = 0, −5, −10, −15, −20 kt).
The optimal 
ontrols γ(h) and π(x) are represented in Figs. 7.8 and 7.9, respe
tively, forthe same values of ∆w and w̄ (TW and HW) as before. They present the same dis
ontinuousstru
ture as mentioned before, whi
h has been again 
on�rmed by the numeri
al results of theswit
hing fun
tion at ea
h phase. During 
limb and des
ent, the wind-shear fa
tor has littlein�uen
e on the singular optimal 
ontrol γ, although somewhat larger than the in�uen
e ofthe average wind speed; however, it importantly a�e
ts the bang-singular and singular-bangswit
hing times. During 
ruise, the wind-shear fa
tor has an important in�uen
e on thesingular optimal 
ontrol π, sin
e it a�e
ts the 
ruise altitudes: As ∆w in
reases, π in
reases(note that, for HW, when ∆w in
reases |∆w| de
reases).106
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(b)Figure 7.8: Optimal 
ontrol γ(h). (a) TW (w̄ = 30 kt, ∆w = 0, 5, 10, 15, 20 kt), (b) HW(w̄ = −30 kt, ∆w = 0, −5, −10, −15, −20 kt).
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(b)Figure 7.9: Optimal 
ontrol π(x). (a) TW (w̄ = 30 kt, ∆w = 0, 5, 10, 15, 20 kt), (b) HW(w̄ = −30 kt, ∆w = 0, −5, −10, −15, −20 kt).
7.5.3 E�e
t of the Initial Air
raft WeightThe optimal traje
tory V (h), speed pro�le V (x), and �ight path h(x) are represented inFigs. 7.10, 7.11a, and 7.11b, respe
tively, for di�erent values of the initial air
raft weight(Wi ranging from 1450 kN to 1550 kN) and for no wind (w̄ = 0 and ∆w = 0). The optimaltraje
tories have the same stru
ture as mentioned before. The in�uen
e ofWi on the optimalpro�les is 
lear: As Wi in
reases, the speed in
reases at all phases.
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Figure 7.10: Optimal traje
tory V (h) for Wi = 1450, 1475, 1500, 1525 and 1550 kN (w̄ =

∆w = 0).
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(b)Figure 7.11: Optimal speed pro�le and �ight path for Wi = 1450, 1475, 1500, 1525 and
1550 kN (w̄ = ∆w = 0).The optimal 
ontrols γ(h) and π(x) are represented in Fig. 7.12 for the same valuesof the initial air
raft weight and no wind. They present the same dis
ontinuous stru
tureas mentioned before, whi
h has been again 
on�rmed by the 
omputation results of theswit
hing fun
tion at ea
h phase. The initial air
raft weight has a 
lear in�uen
e on thesingular optimal 
ontrols during 
limb and 
ruise: As the initial air
raft weight in
reases, γde
reases, whereas π slightly in
reases. During the des
ent phase, the initial air
raft weighthas very little in�uen
e on the singular optimal 
ontrol.
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(b)Figure 7.12: Optimal 
ontrols γ(h) and π(x) for Wi = 1450, 1475, 1500, 1525 and 1550 kN(w̄ = ∆w = 0). (a) γ(h), (b) π(x).7.5.4 Analysis of Global VariablesIn this se
tion, global variables are analyzed along with the minimum fuel 
onsumption.In Figs. 7.13, 7.14, 7.15, 7.16, 7.17, and 7.18 the following variables are represented: theminimum fuel 
onsumption (mF ), the �ight time (tf ), the 
limb range (xc), the �nal distan
eof the �rst 
ruise (or transition distan
e, x2), the des
ent range (xd), and the 
ruise altitudes(h1 and h3). They are depi
ted, �rst, as fun
tions of the wind-shear parameter for two valuesof the average wind (w̄ = 30 kt TW and w̄ = −30 kt HW) and Wi = 1500 kN, and se
ond,as fun
tions of the average wind for di�erent values of the initial air
raft weight (Wi rangingfrom 1450 to 1550 kN) and ∆w = 0. It is interesting to note that, in this 
hapter, the
ruise altitudes are free variables whi
h are obtained as results of the traje
tory optimizationproblem.Some numeri
al values are given in Table 7.1. The results show the following: 1) thestronger the wind shear for TW, the smaller the fuel 
onsumption, the �ight time, and thetransition distan
e, but the larger the 
limb range, the des
ent range and the 
ruise altitudes;2) the stronger the wind shear for HW (in absolute value), the larger the fuel 
onsumption,the �ight time, and the transition distan
e, but the smaller the 
limb range, the des
entrange and the 
ruise altitudes; 3) the higher the average wind speed, the lower the fuel
onsumption, the �ight time, and the 
ruise altitudes, but the higher the 
limb range, thetransition distan
e, and the des
ent range; and 4) the heavier the air
raft, the larger the fuel
onsumption, the 
limb range, and the transition distan
e, but the smaller the �ight time,the des
ent range and the 
ruise altitudes. These trends are now quanti�ed (using the valuesgiven in Table 7.1).
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7. Minimum-Fuel Global Traje
tory
Table 7.1: Flight variables for di�erent winds and initial air
raft weights (optimum values)

Wi = 1500 kN
w̄ = −30 kt (HW) w̄ = 30 kt (TW)

∆w = −20 kt ∆w = 0 kt ∆w = 0 kt ∆w = 20 kt
mF [kg℄ 31926.4 30710.0 27149.0 26198.6
tf [min℄ 491.16 473.36 417.32 401.90
xc [km℄ 133.43 159.19 180.47 213.30
x2 [km℄ 3013.59 2996.99 3001.28 2993.65
xd [km℄ 156.13 169.17 199.37 214.22
h1 [m℄ 9250 9721 9680 10056
h3 [m℄ 10000 10420 10288 10623

∆w = 0 kt
w̄ = −30 kt (HW) w̄ = 30 kt (TW)

Wi = 1450 kN Wi = 1550 kN Wi = 1450 kN Wi = 1550 kN
mF [kg℄ 29696.8 31723.1 26241.7 28056.6
tf [min℄ 475.22 471.58 418.80 415.90
xc [km℄ 158.01 160.30 179.26 181.59
x2 [km℄ 2994.95 2998.96 2998.71 3003.75
xd [km℄ 172.69 165.72 203.96 194.90
h1 [m℄ 9945 9541 9903 9462
h3 [m℄ 10639 10207 10507 10075
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(b)Figure 7.13: Minimum fuel 
onsumption: (a) vs. wind-shear parameter for TW (w̄ = 30 kt)and HW (w̄ = −30 kt), for Wi = 1700 kN; (b) vs. average wind speed for Wi = 1450, 1475,
1500, 1525 and 1550 kN, for ∆w = 0.
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(b)Figure 7.14: Flight time: (a) vs. wind-shear parameter for TW (w̄ = 30 kt) and HW(w̄ = −30 kt), for Wi = 1700 kN; (b) vs. average wind speed for Wi = 1450, 1475, 1500,
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(b)Figure 7.15: Climb distan
e: (a) vs. wind-shear parameter for TW (w̄ = 30 kt) and HW(w̄ = −30 kt), for Wi = 1700 kN; (b) vs. average wind speed for Wi = 1450, 1475, 1500,
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(b)Figure 7.16: Transition distan
e: (a) vs. wind-shear parameter for TW (w̄ = 30 kt) and HW(w̄ = −30 kt), for Wi = 1700 kN; (b) vs. average wind speed for Wi = 1450, 1475, 1500,
1525 and 1550 kN, for ∆w = 0.
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(b)Figure 7.17: Des
ent distan
e: (a) vs. wind-shear parameter for TW (w̄ = 30 kt) and HW(w̄ = −30 kt), for Wi = 1700 kN; (b) vs. average wind speed for Wi = 1450, 1475, 1500,
1525 and 1550 kN, for ∆w = 0.
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Wi(b)Figure 7.18: Cruise altitudes: (a) vs. wind-shear parameter for TW (w̄ = 30 kt) and HW(w̄ = −30 kt), for Wi = 1700 kN; (b) vs. average wind speed for Wi = 1450, 1475, 1500,
1525 and 1550 kN, for ∆w = 0.

The e�e
t of the average wind speed on the minimum fuel 
onsumption, the �ight time,the 
limb range, the des
ent range, and the altitude of the se
ond 
ruise is quite large, whereasits e�e
t on the transition distan
e and the altitude of the �rst 
ruise is quite small. When
w̄ in
reases from −30 kt to 30 kt (for ∆w = 0 and Wi = 1500 kN), the in
reases in xc and
xd are 21.28 km and 30.20 km, respe
tively, that is 12.5%, and 16.4%, and the de
reases in
mF , tf , and h3 are 3561.0 kg, 56.04 min, and 132.1 m, respe
tively, that is 12.4%, 12.6%,and 1.28%, whereas the in
reases in x2 is 4.29 km, that is 0.143%, and the de
rease in h1 is42.0 m, that is 0.433%.The e�e
t of the wind shear on mF , tf , xc, xd, h1, and h3 in the 
ase of TW (w̄ = 30 kt)is quite large, espe
ially its e�e
t on xc, whereas its e�e
t on x2 is quite small; when ∆win
reases from 0 to 20 kt, the de
reases in mF and tf are 950.4 kg and 15.42 min, respe
tively,that is 3.50% and 3.70%, and the in
reases in xc, xd, h1, and h3 are 32.83 km, 14.86 km,376.8 m, and 335.2 m, respe
tively, that is, 18.2%, 7.45%, 3.89%, and 3.26%, whereas thein
rease in x2 is of just 7.63 km, that is 0.254%. In the 
ase of HW (w̄ = −30 kt) similartrends are obtained; when ∆w in
reases from −20 kt to 0, the de
reases in mF and tf are1216.4 kg and 17.80 min, respe
tively, that is 3.96% and 3.76%, and the in
reases in xc, xd,
h1, and h3 are 25.75 km, 13.03 km, 471.4 m, and 420.5 m, respe
tively, that is, 16.2%, 7.70%,4.85%, and 4.04%, whereas the in
rease in x2 is of just 16.60 km, that is 0.551%.The e�e
t of the initial air
raft weight, 
an be quanti�ed as follows. For w̄ = −30 kt HW,when Wi in
reases from 1450 kN to 1550 kN, the in
reases in mF , xc, and x2 are 2026.3 kg,2.30 km, and 4.01 km, respe
tively, that is 6.60%, 1.44%, and 0.134%, and the de
reases in
tf , xd, h1, and h3 are 3.64 min, 6.97 km, 404.1 m, and 431.3 m, respe
tively, that is 0.769%,4.12%, 4.16%, and 4.14%. For w̄ = 30 kt TW, the in
reases in mF , xc, and x2 are 1814.87 kg,2.33 km, and 5.04 km, respe
tively, that is 6.68%, 1.29%, and 0.168%, and the de
reases in
tf , xd, h1, and h3 are 2.90 min, 9.07 km, 440.9 m, and 432.1 m, respe
tively, that is 0.695%,4.55%, 4.55%, and 4.20%. 113



7. Minimum-Fuel Global Traje
tory7.6 SummaryAn analysis of minimum-fuel global traje
tories in the presen
e of altitude-dependent windshas been made, using the theory of singular optimal 
ontrol and swit
hed 
ontrol sys-tems. The optimal traje
tory are 
omposed of several phases, in whi
h optimal 
ontrolis of the bang-singular-bang type, with optimal paths formed by a singular ar
 and twominimum/maximum-
ontrol ar
s joining the singular ar
 with the initial and �nal swit
hingpoints.Results have been presented for the parti
ular 
ase of a 
limb-
ruise-
limb-
ruise-des
enttraje
tory with γmin,cl = γmax,d = 0, πmin 6= πcl 6= πmax, and initial γmin,cl-ar
 and γmax,d-ar
 in the intermediate 
limb phase and in the des
ent phase, respe
tively. In 
ruise phases,these assumptions lead to the optimal 
ontrol being of the bang-singular type instead, withoptimal paths formed by a singular ar
 and a minimum-π ar
 joining the singular ar
 with theinitial swit
hing point, sin
e the �nal swit
hing point belongs to the singular ar
. In 
limband des
ent phases, these assumptions lead to a short horizontal a

eleration segment and asteep 
limb out segment at the beginning and at the end, respe
tively, of both 
limb phases,and two short horizontal de
eleration segments at the beginning and end of the des
ent phase.This study has been quite general, in the sense that it has been made for a general air
raftmodel and a general horizontal wind pro�le, although results have been presented for linearpro�les. In the numeri
al appli
ations, the linear wind pro�les have been de�ned by twoparameters: the average wind and the wind shear. The in�uen
e of these two parameters onthe results and the in�uen
e of the initial air
raft weight have been analyzed.The results have shown that as the average wind in
reases, the fuel 
onsumption andthe �ight time de
rease (as expe
ted). Of parti
ular importan
e in this 
hapter has beenthe analysis of the in�uen
e of the wind shear on the global-traje
tory performan
e. Thein�uen
e of the wind shear on fuel 
onsumption and �ight time is 
omparable to that of theaverage wind, however not so large; in these variables the wind shear reinfor
es the e�e
tsof the average wind. With respe
t to the initial air
raft weight, as it in
reases the fuel
onsumption importantly in
reases whereas the �nal time is barely una�e
ted.An interesting remark is that the approa
h 
onsidered has the advantage of providing thealtitudes at whi
h 
ruise phases should take pla
e in order to minimize the fuel 
onsumptionof the global traje
tory. Therefore, the in�uen
e of the average wind, the wind shear, and theinitial air
raft weight on the 
ruise altitudes have been also analyzed. The average wind hasvery little in�uen
e on the optimal values of the 
ruise altitudes, whereas the wind shear andthe air
raft weight importantly a�e
t them. With tailwinds, the stronger the wind shear,the higher the 
ruise altitudes, whereas with headwinds, the stronger the wind shear (inabsolute value), the lower the 
ruise altitudes. As the initial air
raft weight in
reases, the
ruise altitudes de
rease.
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8 Con
lusionsIn this thesis, an analysis of optimal air
raft traje
tories has been made, using the theory ofsingular optimal 
ontrol. An indire
t method is proposed, in whi
h ne
essary 
onditions foroptimality are expli
itly involved to obtain the optimal traje
tory, i.e., the optimal 
ontrollaw and the asso
iate evolution of the states that optimize some property derived from thetraje
tory.As previously mentioned, the employed optimization approa
h features the following ad-vantages:1. It provides analyti
al state-feedba
k 
ontrol laws that 
an be dire
tly used to guide theair
raft along the optimal path, allowing for an easy implementation.2. It leads to more a

urate results than those obtained by dire
t traje
tory optimizationmethods.3. It allows for generating traje
tories with the best performan
e whi
h, although thesemay not be �yable a

ording to present-day air-tra�
-
ontrol pro
edures and regula-tions, they 
an be used either as referen
es to the design of improved �ight pro
edures,or to assess the optimality of standard �ight pro
edures 
ommonly used in pra
ti
e,su
h as CAS/Ma
h 
limbs, 
onstant-Ma
h 
ruises and Ma
h/CAS des
ents.The proposed approa
h has been applied to optimize multiphase air
raft traje
tories witha pres
ribed phase sequen
e in the presen
e of altitude-dependent winds. It has su

essfullyprovided results for a broad range of 
ases 
onsidered, with 
omputation times for an optimalmultiphase air
raft traje
tory less than 1.5 min, for a relative toleran
e in the unknownvariables of 10−9. This �gures are obtained when MATLAB 7.8.0 (R2009a) is running ina PC with an Intel DH67VR motherboard, an Intel Core i7-2600 mi
ropro
essor (4 
ores,8 MB 
a
he, 3.4 GHz), and a Windows 7 (64 bits) Operating System.In order to simplify as mu
h as possible the formulation 
onsidered, state 
onstraintshave not been expli
itly taken into a

ount. However, all the 
omputed optimal traje
torypresented in this thesis have been 
he
ked to provide suitable state laws in whi
h states donot saturate.The atmosphere model 
onsidered in this thesis do not meet the regularity requirementsassumed in Chapter 3 at the tropopause. However, in all the results presented in this thesis,optimal traje
tories take pla
e within the troposphere, and therefore, it is not ne
essary forthis la
k of regularity to be expli
itly taken into a

ount.Optimizing global traje
tories implies not only addressing ea
h �ight phase, but alsotaking into a

ount the intera
tions among them as well as looking for a global obje
tive. The115



8. Con
lusionsaim for a global obje
tive has been a
hieved by 
onsidering a global performan
e index, whi
his split into the 
ontributions of ea
h phase and parti
ularized to the additional 
onstraintimposed at ea
h phase. The intera
tions have been taken into a

ount by appropriatelyimposing the transversality 
onditions and by enfor
ing state and adjoint 
ontinuity at theswit
hing points.As a 
on
lusion, an optimal global traje
tory 
annot be obtained by simply pie
ing indi-vidually optimized phases together, not even when ea
h phase is optimized with a performan
eindex suitable for a global obje
tive, be
ause the transversality 
onditions do not provide thesame results for the evolution of the adjoints. However, 
on
lusions regarding the optimal
ontrol and optimal path stru
ture for a single-phase optimal traje
tory also apply at ea
hphase of an optimal multiphase traje
tory. This justi�es that, prior to optimizing multiphaseair
raft traje
tories, the proposed approa
h has been applied to some auxiliary problems inwhi
h a single-phase air
raft traje
tory is optimized.
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9 Future WorkIn this thesis, several future resear
h lines 
an be identi�ed. First of all, the results presented
an be extended.On one hand, in this thesis results are presented for linear wind pro�les in 
limb, des
entand global traje
tories, whereas a uniform wind is 
onsidered for 
ruise traje
tories. Astraightforward extension 
an be presenting results for optimal 
ruise in the presen
e of linearwind pro�les. Moreover, for any of the appli
ations 
onsidered, results 
an be presented forother types of wind pro�les. This would allow, for example, to 
ompute 
ruise altitudes fora global traje
tory in the presen
e of a jet stream.On the other hand, in the optimal global traje
tory problem, results are presented for onephase sequen
e, 
limb-
ruise-
limb-
ruise-des
ent. An extension 
an be presenting results forsome other phase sequen
es, su
h as those with only one 
ruise phase and no intermediate
limb, or with three 
ruise phases and two intermediate 
limbs. With these extensions,a 
omparison among the di�erent proposed traje
tories 
ould be performed, whi
h wouldallow, for instan
e, to analyze the e�e
t of the �ight range on the sele
tion of the phasesequen
e.Se
ond, as in the appli
ations involving only one �ight phase, results from optimal globalmultiphase traje
tories 
ould be used to assess the optimality of global traje
tories 
om-posed of segments performing standard pro
edures. As an example, a standard globaltraje
tory 
ould be 
omposed by pie
ing a CAS/Ma
h 
limb, a 
onstant-Ma
h 
ruise, an-other CAS/Ma
h 
limb, another 
onstant-Ma
h 
ruise and a 
onstant-CAS des
ent together.Therefore, the optimized standard global traje
tory 
ould be 
ompared with the optimal
limb-
ruise-
limb-
ruise-des
ent traje
tory, whi
h would provide an optimality assessmentof su
h a standard global traje
tory.Third, the optimization approa
h presented in this thesis 
an be extended to analyzeproblems with other 
ost fun
tions, su
h as global traje
tories minimizing the dire
t operat-ing 
ost. To analyze minimum-DOC global traje
tory 
omposed of 
limb, 
ruise and des
entphases, it is 
onvenient to perform a previous analysis 
onsidering only one phase, be
ause
on
lusions regarding the optimal 
ontrol and optimal path stru
ture for a single-phase op-timal traje
tory also apply at ea
h phase of an optimal multiphase traje
tory, as it has beenalready shown. In this 
ontext, the problem of minimum-
ost 
ruise, 
onsidering not onlythe DOC but also the arrival-error 
ost, has already been analyzed by Fran
o and Rivas[31℄. Therefore, prior to studying minimum-DOC global traje
tories, it just remains to an-alyze minimum-DOC 
limbs penalizing small distan
e travelled, as well as maximum-rangeunpowered des
ents penalizing large �ight time. 117



9. Future WorkFourth, the optimization approa
h presented in this thesis 
an also be extended to a

ountfor tropopause 
rossings during 
limb and des
ent phases. One possible approa
h is basedon regularizing the atmosphere model, that is, adopting an alternative atmosphere modelwhi
h 
oin
ides with the ISA model ex
ept at altitudes in a neighborhood of the tropopause,for whi
h a su�
iently regular model is 
onsidered. Another possible approa
h is based onexpli
itly taking into a

ount the la
k of regularity of the atmosphere model, whi
h may for
eto 
hange the 
onsidered stru
ture of the solution (for instan
e, by introdu
ing an additionalhorizontal segment at the tropopause altitude).
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A Nomen
lature
a speed of sound
c spe
i�
 fuel 
onsumption

CAS 
alibrated airspeed
CAS∗

d optimum des
ent 
alibrated airspeed
CC spe
i�
 fuel 
onsumption 
oe�
ient
CD drag 
oe�
ient
CL lift 
oe�
ient
CT thrust 
oe�
ient
CI 
ost index
D aerodynami
 drag

DOC dire
t operating 
ost
g gravity a

eleration

h, ht, h̄ altitude, CAS/Ma
h transition altitude, average altitude
H Hamiltonian
H 
onstant value of the Hamiltonian
J obje
tive fun
tion
K 
ost fa
tor
l running 
ost
L aerodynami
 lift

m,mF air
raft mass, fuel 
onsumption
M Ma
h number
p pressure

Ra air gas 
onstant
S swit
hing fun
tion

SW referen
e wing surfa
e
t, tf ,∆tf time, �ight time, �ight delay
T, TM thrust, maximum thrustu, u 
ontrol ve
tor, 
ontrol variable

V aerodynami
 speed
w, w̄,∆w, δw wind speed, average wind speed, wind-shear parameter, mismodeled wind

W air
raft weight
x, xf , xmax horizontal distan
e, range, maximum rangey state ve
tor

γ, γg aerodynami
 �ight-path angle, ground path angle
δ pressure ratio 125



A. Nomen
lature
θ temperature ratio
Θ temperature
κ ratio of spe
i�
 heats
λ adjoint variable
π throttle setting
ρ density
σ phase sequen
e
τ sequen
e of swit
hing times
Ω 
ruise singular-ar
 parameterSubindi
es
cl 
limb
cr 
ruise
d des
ent
f �nal
i initial or 
ounter
j 
ounter
q �ight segment

SL sea level (ISA model)
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B Supplementary Models
B.1 Earth ModelThe Earth model adopted has the following 
hara
teristi
s:� �at Earth,� 
onstant gravity g=9.80665 m/s2,� air, a perfe
t gas de�ned by a gas 
onstant Ra =287.053 J/(kgK) and a ratio of spe
i�
heats κ=1.4, and� standard atmosphere ISA (it de�nes temperature, Θ, pressure, p, and density, ρ, asfun
tions of altitude h, with ΘSL, pSL and ρSL as the referen
e sea-level values).B.2 Air
raft Model for Boeing 767-300ERThe air
raft model of the Boeing 767-300ER 
onsidered in this thesis for the numeri
alappli
ations has a wing surfa
e area SW =283.3 m2, a maximum take-o� mass of 186880 kgand a maximum fuel mass of 73635 kg.The aerodynami
 model de�nes the drag polar CD = CD(M,CL), that gives the drag
oe�
ient as a fun
tion of Ma
h number, M , and lift 
oe�
ient, CL. The lift and drag
oe�
ients are de�ned by L = 1

2ρV
2SCL and D = 1

2ρV
2SCD, respe
tively. The drag polarde�ned by Cav
ar and Cav
ar [20℄ is 
onsidered; it is given by

CD =



CD0,i
+

5
∑

j=1

k0jK
j
(M)



+



CD1,i
+

5
∑

j=1

k1jK
j
(M)



CL

+



CD2,i
+

5
∑

j=1

k2jK
j
(M)



C2
L

(B.1)where
K (M) =

(M − 0.4)2√
1−M2

(B.2)The in
ompressible drag polar 
oe�
ients are CD0,i
= 0.01322, CD1,i

= −0.00610, CD2,i
=

0.06000, and the 
ompressible 
oe�
ients are given in table B.1. This polar is valid for
M ≥ 0.4; for M ≤0.4, the in
ompressible drag polar applies (obtained by setting K̄ = 0 inequation B.1). 127



B. Supplementary Models
j 1 2 3 4 5

k0j 0.0067 −0.1861 2.2420 −6.4350 6.3428
k1j 0.0962 −0.7602 −1.2870 3.7925 −2.7672
k2j −0.1317 1.3427 −1.2839 5.0164 0.0000Table B.1: Compressible drag-polar 
oe�
ients for the Boeing 767-300ERThe propulsion model de�nes the thrust available and the spe
i�
 fuel 
onsumption. Forthe available thrust the following general model is 
onsidered (see Torenbeek [74℄)

T =WTOδCT (M,Nc) (B.3)where WTO is the referen
e take-o� weight, δ = p/pSL is the pressure ratio (pSL being thereferen
e sea-level pressure), and CT is the thrust 
oe�
ient, whi
h in general is a fun
tion ofthe Ma
h number and the engine 
ontrol parameter Nc. The 
ontrol parameter is a fun
tionof Ma
h number, altitude and the throttle-setting parameter π (Nc(M,h, π)), therefore one
an also write the model as T = T (M,h, π), that is, thrust dependent on Ma
h number,altitude and throttle-setting parameter.Although di�erent fun
tional dependen
ies should be used for the di�erent values of thethrottle-setting parameter, in this thesis, for simpli
ity, the following single model is 
onsid-ered CT = πCT,max and the maximum thrust 
oe�
ient CT,max is given by (see Mattingly [43℄and Barman and Erzberger [3℄)
CT,max =

TM,SL

WTO

(

1 +
κ− 1

2
M2

) κ
κ−1

(

1− 0.49
√
M
) 1

θ
(B.4)where θ = Θ/ΘSL is the temperature ratio (ΘSL being the referen
e sea-level temperature),and TM,SL is the maximum thrust at sea level and for M = 0.As a 
onsequen
e, the model 
an be rewritten as T = πTM (M,h) where TM satis�es

TM = WTOδCT,max(M,h) with CT,max given by equation (B.4). The values used for thisair
raft are TM,SL =5.00×105 N.For the spe
i�
 fuel 
onsumption the following general model is 
onsidered (see Toren-beek [74℄)
c =

aSL
√
θ

LH
CC(M) (B.5)where aSL =

√
κRaΘSL is the speed of sound at sea level, LH is the fuel latent heat, and CCis the spe
i�
 fuel 
onsumption 
oe�
ient (in general CC depends on CT , but this dependen
eis negle
ted, sin
e it is very weak in pra
ti
e [74℄). For the fuel latent heat, one 
an take

LH = 43 × 106 J/kg. For the spe
i�
 fuel 
onsumption 
oe�
ient, the linear model de�nedby Mattingly [43℄ is 
onsidered; it is given by
CC = cSL

LH

aSL
(1.0 + 1.2M) (B.6)where cSL is the spe
i�
 fuel 
onsumption at sea level and for M = 0. For this air
raft,

cSL =9.0×10−6 kg/(s N) is used.128



C Singular 
ontrol fun
tions at 
limbIn the following, the fun
tions A1, A2, A3, A4, B1, B2, and B3, whi
h de�ne the optimalsingular 
ontrol during 
limb (see Chapter 4, Se
tion 4.2.4.2) are given.
A1 =V

2

(

cT +
∂D

∂V
− ∂T

∂V

)[(

1 +
V w′

g

)(

∂T

∂V
− ∂D

∂V

)

− V

g

(

∂T

∂h
− ∂D

∂h

)

− w′

g
(T −D)

]

+ (T −D)V 2 ∂

∂V

[(

1 +
V w′

g

)(

∂T

∂V
− ∂D

∂V

)

− V

g

(

∂T

∂h
− ∂D

∂h

)

− w′

g
(T −D)

]

+ V 2mcT

[(

1 +
V w′

g

)

∂2D

∂V ∂m
− V

g

∂2D

∂h∂m
− w′

g

∂D

∂m

]

− V 2

g

(

∂T

∂h
− ∂D

∂h

)

(T −D)

− V 2cT

(

T −D +m
∂D
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)[(

1 +
V w′

g

)(

1

T

∂T

∂V
+

1

c

∂c
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− V

g

(

1
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1
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A2 = V cT

(

T −D +m
∂D

∂m

)

+ V

(

∂T

∂V
− ∂D

∂V

)

(T −D) (C.2)
A3 =− V 2T

(

1

T

∂T

∂V
+

1

c

∂c

∂V
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1 +
V w′

g

)(

∂T
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− ∂D
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− V
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V 2
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V w′

g

)(

∂T

∂V
− ∂D
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)

− V 2

g

(

∂T

∂h
− ∂D
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) (C.4)129



C. Singular 
ontrol fun
tions at 
limb
B1 =

V 2w′

g

[(

1 +
V w′

g
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− ∂D

∂h

)

− w′

g
(T −D)
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V 3

g

∂
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V w′
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V w′
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− V w′
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V w′
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V 2

c
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V w′

g
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c
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c
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+
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D Optimized Standard Pro
eduresIn this appendix, the optimized CAS/Ma
h 
limb analyzed by Fran
o et al. [34℄ as well asthe optimized 
onstant-CAS des
ent analyzed by Fran
o et al. [32℄ are reprodu
ed for thesake of 
ompleteness.D.1 Optimized CAS/Ma
h ClimbThe CAS/Ma
h pro
edure 
onsidered in Ref. [34℄ is formed by four segments, all of themwith �xed engine rating, that is, with given thrust T (V, h): 1) an initial a

eleration segmentat 
onstant altitude hi from the initial speed Vi to the 
limb CAS (CASc), 2) a 
limb segmentwith 
onstant CAS (CASc) from hi to the transition altitude ht at whi
h 
limb Ma
h Mc isrea
hed, 3) a 
limb segment with 
onstant Ma
h (Mc) from ht to the �nal altitude hf , and4) a �nal a

eleration at 
onstant altitude hf from Mc to the �nal speed Vf . This pro
edureis similar to the one used by Coppenbarger [26℄ in his analysis of 
limb traje
tory predi
tionenhan
ement using airline �ight-planning information.To solve the equations of motion (4.1) for ea
h �ight segment, a �ight 
onstraint mustbe given (besides the engine rating) so that the 
ontrol parameter γ 
an be determined. Forthe initial and �nal �ight segments the �ight 
onstraint is h = const, and therefore γ = 0.For the 
onstant-CAS segment, it is CAS = const = CASc, whi
h is in fa
t a speed law
V = VC(h) (see Asselin [1℄) given by

VC =

√

√

√

√

√

2

k
RaΘ(h)





(

1 +
pSL
p(h)

[

(

1 +
k

2

ρSL
pSL

CAS2
c

)1/k

− 1

])k

− 1



, (D.1)where k = (κ − 1)/κ. For the 
onstant-Ma
h segment, the �ight 
onstraint is M = const =

Mc, whi
h is in fa
t a speed law V = VM (h) given by
VM =Mc

√

κRaΘ(h), (D.2)Note that the transition altitude ht is de�ned by the relation
VC(ht) = VM (ht) (D.3)For the initial and �nal horizontal segments the equations of motion (4.1) redu
e to

V̇ =
T (V, hA)−D(V,m, hA)

m

ṁ = −c(V, hA)T (V, hA)
ẋ = V + w(hA)

(D.4)131



D. Optimized Standard Pro
edureswhere hA stands for the initial and �nal altitudes, hi and hf , respe
tively.For the 
onstant-CAS and 
onstant-Ma
h segments, let V = VA(h) stand for the knownspeed laws V = VC(h) and V = VM (h), respe
tively. Then one has
dV

dt
= V ′

A

dh

dt
= V ′

A(h)VA(h)γ (D.5)therefore, the �rst equation of motion (4.1) de�nes the 
ontrol variable γ as a fun
tion of mand h, say γ = γA(m,h), as follows
γA =

T (VA(h), h) −D(VA(h),m, h)

m
[

g + VA(h)
(

w′(h) + V ′

A(h)
)] (D.6)On
e γ is known, one must integrate the following equations

ṁ = −c(VA(h), h)T (VA(h), h)
ḣ = VA(h)γA(m,h)

ẋ = VA(h) +w(h)

(D.7)The 
omputation of the CAS/Ma
h 
limb is performed as follows: For the initial segment,Eqs. (D.4) are integrated from V = Vi, m = mi and x = 0 until V = VC(hi); at the end ofthe segment one has m1 and x1. For the 
onstant-CAS segment, Eqs. (D.7) are integratedstarting at m = m1, h = hi and x = x1 until h = ht; at the end of the segment one has
m2 and x2. For the 
onstant-Ma
h segment, Eqs. (D.7) are integrated starting at m = m2,
h = ht and x = x2 and stopping at h = hf ; at the end of the segment one has m3 and x3.Finally, for the last segment, Eqs. (D.4) are integrated from V = VM (hf ), m = m3, and
x = x3 until V = Vf ; at the end of the segment one has the �nal mass mf and the �naldistan
e xf . The fuel 
onsumption is therefore mF = mi −mf .This pro
edure to obtain the �nal distan
e and the fuel 
onsumption for given values ofCAS and Ma
h 
an be written in symboli
 form as

xf = xf (CASc,Mc)

mF = mF (CASc,Mc)
(D.8)The CAS/Ma
h pro
edure is now optimized to give minimum performan
e index, taking

CASc and Mc as the optimization parameters. The optimum values of CASc and Mc areobtained solving the following parametri
 optimization problemminimize mF (CASc,Mc)−Kxf (CASc,Mc)subje
t to CASc ≥ CASi

Mc ≤Mf

hi ≤ ht(CASc,Mc) ≤ hf

(D.9)where CASi and Mf are the values of CAS and Ma
h that 
orrespond to Vi, hi and Vf , hfrespe
tively. The 
onstraints guarantee that the 
limb pro
edure has the segments 
onsideredin its de�nition. In this appli
ation, the optimization solver used is MATLAB's fmin
on, asequential quadrati
 programming (SQP) method (see Ref. [29℄).132



D.2. Optimized Constant-Calibrated-Airspeed Des
entD.2 Optimized Constant-Calibrated-Airspeed Des
entThe 
onstant-CAS pro
edure 
onsidered in Ref. [32℄ is formed by three segments, all of themwith zero thrust: 1) an initial de
eleration segment at 
onstant altitude hi from the initialspeed Vi to the des
ent CAS (CASd), 2) a des
ent segment with 
onstant CAS (CASd) from
hi to the �nal altitude hf , and 3) a de
eleration segment at 
onstant altitude hf from CASdto the �nal speed Vf .To solve the equations of motion (6.1) for ea
h �ight segment, a �ight 
onstraint mustbe given (besides �ying unpowered) so that the 
ontrol parameter γ 
an be determined. Forthe initial and �nal �ight segments, the �ight 
onstraint is h = const, and therefore γ = 0;for the 
onstant-CAS segment, it is CAS = const = CASd, whi
h is in fa
t the same speedlaw V = VC(h) as in (D.1) but with CASd, instead of CASc, that is

VC =

√

√

√

√

√

2

k
RaΘ(h)





(

1 +
pSL
p(h)

[

(

1 +
k

2

ρSL
pSL

CAS2
d

)1/k

− 1

])k

− 1



, (D.10)For the initial and �nal horizontal segments the equations of motion (6.1) redu
e to
V̇ = −D(V, hA)

m

ẋ = V +w(hA)

(D.11)where hA stands for the initial and �nal altitudes, hi and hf , respe
tively.For the 
onstant-CAS segment, be
ause V = VC(h) is given, one has
dV

dt
=

dVC
dh

dh

dt
=

dVC
dh

VC(h)γ (D.12)therefore, the �rst equation of motion (6.1) de�nes the 
ontrol variable γ as a fun
tion of h,say γ = γC(h), as follows
γC = −D(VC(h), h)

m

[

g + VC(h)
dw

dh
+ VC(h)

dVC
dh

]

−1 (D.13)On
e γ is known, one must integrate the following equations
ḣ = VC(h)γC(h)

ẋ = VC(h) + w(h)
(D.14)The 
omputation of the 
onstant-CAS des
ent is performed as follows: For the initialsegment, Eqs. (D.11) are integrated from V = Vi and x = 0 until V = VC(hi); at the end ofthe segment, one has x1 = ∆x1. For the 
onstant-CAS segment, Eqs. (D.14) are integratedstarting at h = hi and x = x1, and stopping at h = hf ; at the end of the segment onehas x2 = x1 + ∆x2. Finally, for the last segment, Eqs. (D.11) are integrated from from

V = VC(hf ) and x = x2 until V = Vf ; at the end of the segment one has the �nal distan
e
xf = x2 +∆x3. The range is therefore xf = ∆x1 +∆x2 +∆x3.This pro
edure to obtain the range for a given value of CAS 
an be written in symboli
form as

xf = xf (CASd) (D.15)133



D. Optimized Standard Pro
eduresThe 
onstant-CAS pro
edure is now optimized to give maximum range, taking CASd asthe optimization parameter. The optimum value of CASd, say CAS∗

d , is obtained solving thefollowing parametri
 optimization problemminimize − xf (CASd)subje
t to CASf ≤ CASd ≤ CASi
(D.16)where CASi and CASf are the values of CAS that 
orrespond to Vi, hi and Vf , hf , re-spe
tively. In this 
hapter, the optimization solver used is MATLAB's fmin
on, a sequentialquadrati
 programming (SQP) method (see Flet
her [29℄, for example).

134


	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Foreword
	Acknowledgements
	Introduction
	Motivation
	Objective
	Outline

	Literature Review
	Optimal Control
	Singular Optimal Control
	Optimal Control for Switched Dynamical Systems

	Numerical Methods for Trajectory Optimization
	Direct Methods
	Indirect Methods
	Other Methods

	Aircraft Trajectory Optimization
	Global Trajectory Optimization
	Climb Phase Optimization
	Cruise Phase Optimization
	Descent Phase Optimization


	Formulation of the Optimal Control Problem
	Optimal Control Theory
	Optimal Control Problem
	Necessary Conditions for Optimality
	Singular Optimal Control
	Optimal Control for Switched Systems
	Necessary Conditions for Optimality in Switched Systems

	Equations of Motion
	Computation of Optimal Aircraft Trajectories
	Indirect Numerical Method


	Fuel-Optimal Climb
	Introduction
	Problem Formulation
	Equations of Motion
	Performance Index
	Necessary Conditions for Optimality
	Optimal Trajectories

	Numerical Procedure
	Iterative Procedure
	Control Structure Optimality

	Results
	Effect of the Average Wind Speed
	Effect of the Wind Shear
	Effect of the Initial Aircraft Weight
	Comparison and Analysis of Global Variables

	Summary

	Minimum-Fuel Cruise with Fixed Arrival Time
	Introduction
	Problem Formulation
	Optimal Control Problem
	Necessary Conditions for Optimality
	Optimal Trajectories

	Numerical Procedure
	Iterative Procedure
	Control Structure Optimality

	Results
	Optimal Trajectories and Optimal Control
	Minimum Fuel Consumption
	Cost of Mismodeled Winds
	Cost of Flight Delays
	Optimality of Constant-Mach Cruise

	Summary

	Maximum-Range Unpowered Descent
	Introduction
	Problem Formulation
	Optimal Control Problem
	Necessary Conditions for Optimality
	Optimal Trajectories

	Numerical Procedure
	Control Structure Optimality

	Results
	Optimal Trajectories and Optimal Control
	Comparison of Optimal and Optimized Constant-Calibrated-Airspeed Descents
	Effects of the Aircraft Weight on the Results

	Summary

	Minimum-Fuel Global Trajectory
	Introduction
	Problem Formulation
	Optimal Control Problem
	Necessary Conditions for Optimality
	Optimal Flight Phases

	Numerical Procedure
	Algorithm for Optimal Climb
	Algorithm for Optimal Cruise
	Algorithm for Optimal Descent
	Closing Equations

	Application to a Climb-Cruise-Climb-Cruise-Descent Trajectory
	Results
	Effect of the Average Wind Speed
	Effect of the Wind Shear
	Effect of the Initial Aircraft Weight
	Analysis of Global Variables

	Summary

	Conclusions
	Future Work
	Bibliography
	Nomenclature
	Supplementary Models
	Earth Model
	Aircraft Model for Boeing 767-300ER

	Singular control functions at climb
	Optimized Standard Procedures
	Optimized CAS/Mach Climb
	Optimized Constant-Calibrated-Airspeed Descent


