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Abstract

The optimization of aircraft trajectories using the theory of singular optimal control is stud-
ied in this thesis. To describe the aircraft motion, a general nonlinear 3-degree-of-freedom
point-mass model is adopted, along with realistic aerodynamic and propulsion models. The
controlled motion of an aircraft is modeled as a control system whose performance can be
optimized according to some performance index. This control system exhibits different dy-
namics, constraints and performance indices depending on the flight phase considered, which
leads to a multiphase control system formulation.

An indirect optimization method is applied, in which necessary conditions for optimality
are explicitly involved into the problem resolution. The method proposed in this thesis
exploits the singular character of the problem in order to provide analytical state-feedback
control laws. With this approach, assuming a prescribed solution structure in terms of phase
sequence and sequence of singular and bang arcs within each phase, the problem of finding
the optimal control is transformed into the problem of finding the values of some unknowns
such that the necessary conditions for optimality as well as the initial and final conditions
are satisfied, that is, the problem of solving a nonlinear system of equations.

Optimizing global trajectories implies not only addressing each flight phase, but also
taking into account the interactions among them as well as looking for a global objective.
Therefore, an optimal global trajectory cannot be obtained by simply piecing individually
optimized phases together, not even when each phase is optimized with a performance index
suitable for a global objective. However, by choosing appropriate performance indices, con-
clusions regarding the optimal control and optimal path structure for a single-phase optimal
trajectory also apply at each phase of an optimal multiphase trajectory. As a consequence,
prior to applying this approach to the problem of multiphase trajectories of commercial trans-
port aircraft providing minimum fuel consumption, this approach is applied to three auxiliary
single-phase problems.

First, the problem of fuel-optimal fixed-rating aircraft climb in the presence of altitude-
dependent winds is analyzed. The climb is optimized to give minimum contribution to the
global-trajectory fuel consumption. The optimal control is of the bang-singular-bang type,
and the optimal trajectories are formed by a singular arc and two minimum-path-angle arcs
joining the singular arc with the given initial and final points. This analysis is used to assess
the optimality of a standard climb procedure defined by segments with constant calibrated
air speed and Mach number. Linear wind profiles defined by two parameters, the average
wind and the wind shear, are considered. The effects of the wind profile and of the initial
aircraft weight on the results are studied. Comparison with the optimal results shows that
the performance of the optimized standard climb, in terms of global variables such as fuel
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Abstract

consumption, flight time and horizontal distance travelled, is very close to optimal.

Second, minimum-fuel cruise at constant altitude with the constraint of a fixed arrival
time is analyzed, including the effects of average horizontal winds. Again, the optimal control
is of the bang-singular-bang type, and the optimal trajectories are formed by a singular arc
and two minimum/maximum-thrust arcs joining the singular arc with the given initial and
final points. The effects of average horizontal winds on the optimal results are analyzed,
both qualitatively and quantitatively. The influence of the initial aircraft weight and the
given cruise altitude is analyzed as well. Two applications are studied: first, the cost of
meeting the given arrival time under mismodeled winds, and second, the cost of flight delays
imposed on a nominal optimal path. The optimal results are used to assess the optimality of
cruising at constant speed; the results show that the standard constant-Mach cruise is very
close to optimal.

Third, unpowered descents of commercial transport aircraft are optimized in the presence
of altitude-dependent winds, with the objective of maximizing range. The optimal problem
and an optimized constant-calibrated-airspeed procedure are analyzed. The optimal control is
of the bang-singular-bang type, and the optimal trajectories are formed by a singular arc and
two maximum-path-angle arcs joining the singular arc with the given initial and final points.
Linear wind profiles defined by two parameters, the average wind and the wind shear, are
considered. The effects of both the average wind and the wind shear on the optimal results,
as well as the effects of the aircraft weight, are analyzed. The wind shear is shown to have
a clear effect on the maximum range. The comparison between the two sets of results shows
that the optimized constant-calibrated-airspeed descent is very close to optimal.

Once the auxiliary single-phase problems are solved, the problem of global trajectories
of commercial transport aircraft providing minimum fuel consumption is analyzed. The
global trajectories are considered to be composed of three types of phases: climb, cruise,
and unpowered descent. The optimal control in every phase is of the bang-singular-bang
type, and the optimal climb, cruise and descent trajectories are formed by a singular arc
and two minimum /maximum-control arcs joining the singular arc with the given initial and
final points. The optimal trajectories and controls, the minimum fuel consumption and some
interesting global results are computed for an aircraft performing a climb-cruise-climb-cruise-
descent trajectory. Linear wind profiles defined by two parameters, the average wind and the
wind shear, are considered. The influence of the aircraft weight and the wind profile on the
results is analyzed.

xil



Foreword

This PhD thesis has been conducted under the supervision of Professor Damian Rivas, from
the Technical School of Engineering at the University of Seville.

The work presented in this document is the result of original research carried out by my-
self, in collaboration with others, while enrolled in the Department of Aerospace Engineering
and Fluid Mechanics as a Lecturer and candidate for the degree of Doctor of Philosophy.
This work has not been submitted for any other degree or award in any other university or
educational establishment.

On one hand, some of this work has been previously published or accepted for publication
in the following papers:

e Franco, A., Rivas, D., and Valenzuela, A., “Minimum-Fuel Cruise at Constant Altitude
with Fixed Arrival Time”, Journal of Guidance, Control, and Dynamics, Vol. 33, No.
1, 2010, pp. 280-285. doi: 10.2514/1.46465.

e Franco, A., Rivas, D., and Valenzuela, A., “Optimization of unpowered descents of
commercial aircraft in altitude-dependent winds”, Journal of Aircraft, Vol. 49, No. 5,
2012, pp. 1460-1470. doi: 10.2514/1.C031737.

e Franco, A., and Rivas, D., “Analysis of optimal aircraft cruise with fixed arrival time
including wind effects”, accepted for publication in Aerospace Science and Technology,
2013. doi: 10.1016/j.ast.2013.10.005.

On the other hand, some of this work either has been already submitted for publication
or belongs to the following papers in progress:

e Franco, A., Rivas, D., and Valenzuela, A., “Analysis of fuel-optimal fixed-rating aircraft
climbs in altitude-dependent winds”, submitted for publication to Journal of Aircraft,
2013.

e Franco, A., and Rivas, D., “Analysis of fuel-optimal, global trajectories in the presence
of altitude-dependent winds”, in progress, 2013.

xiil



This page intentionally left blank

Xiv



Acknowledgements

I wish to express my deepest gratitude to my mentor and supervisor, Professor Damidn Rivas,
for his extraordinary help, advices, corrections, guidance and endless support without which
this work would not have been possible. T appreciate all these years of close collaboration;
they have left their mark on me.

A special thanks goes to Dr. Alfonso Valenzuela, for his useful insights and discussions
in our shared office, his assistance in editing this thesis, and his willingness to help. I would
also like to thank the rest of the Aerospace Engineering Group: Carlos Antunez, Antonio
Corrales, Sergio Esteban, Francisco Gavilan and Rafael Vazquez, for their friendship, and for
creating an excellent working atmosphere full of passion for research and education. I also
wanted to thank Dr. Miguel Pérez-Saborid for accepting being the tutor of this thesis.

Thanks to all of my friends, for being always there and for their understanding and
support.

I would also like to thank my family, with a special thought for those who left us. Thanks
to my parents, for instilling an insatiable thirst for knowledge into me, for being the best
examples to follow, and for their unconditional love. Thanks to my wonderful brothers, my
best friends, for showing me that my happiness is theirs. Finally, thanks to my best behalf
and my whole life, Diana, for her genuine love, encouragement, support and infinite patience.
This thesis is dedicated to them.

Antonio Franco Espin

XV



This page intentionally left blank

XVi



If I have seen further it is by standing
on the shoulders of giants.

Isaac Newton

xvil



This page intentionally left blank

XViil



1 Introduction

1.1 Motivation

Aviation industry plays a key role in the social and economic development of Nations, apart
from being itself an indicator of the level of that development. A snapshot of air transport
sector in 2010 reveals that it supports 56.6 million jobs worldwide and 3.5% of global gross
domestic product (GDP) !. Both figures take into account direct, indirect, induced and
tourism-catalytic impacts, but do not include other economic benefits like the existence of
companies or industries because air travel makes them possible.

Despite the global economic crisis, air transport industry has not stopped growing. In
2011, more than 2800 million passenger flew, which compared to 1800 million passengers in
2003 implies an average, sustained rate of increase of 5.7% per year 2. Also in 2011, airlines
all over the world spent $176000 million in fuel, four times what they spent in 2003 ($44000
million)3.
dramatic increase, raising from 14% in 2003 to 28% in 2011. Hence, it is increasingly impor-

Moreover, fuel relative impact on airlines operating costs has also experienced a

tant for airlines to implement measures to improve efficiency in fuel consumption, not only for
the positive impact on companies’ income statements but also to reduce the environmental
impact. In fact, air transport industry is committed to reduce the environmental impact,
even though airline operations only accounts for the 2% of the total human COy emissions.

The aviation industry agreed in 2008 upon a set of aggressive targets with the afore-
mentioned two incentives: Reducing charbon dioxide emissions, and reducing operating costs
associated to the largest budget line in relative terms*. Thus, in this industry it is broadly
accepted that the following targets have to be sequentially satisfied:

1. To improve fleet fuel efficiency by 1.5% per year between 2009 and 2020.
2. To stabilize net CO9 emissions from aviation from 2020 through carbon-neutral growth.

3. To reduce net CO4 emissions from aviation by half by 2050, as compared with 2005.

!Source: Air Transport Action Group (ATAG),
http://wuw.aviationbenefitsbeyondborders.org
Source: International Air Transport Association (TATA),
http://wuw.iata.org/whatwedo/Documents/economics/Industry-0utlook-Presentation-Dec2012.pdf
3Source: International Air Transport Association (IATA),
http://wuw.iata.org/pressroom/facts_figures/fact_sheets/Documents/fuel-fact-sheet.pdf
*Source: Air Transport Action Group (ATAG),
http://www.atag.org/component/downloads/downloads/201.html
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In order to achieve these targets, companies across the sector make use of a four-pillar
strategy: new technology, efficient operations, improved infrastructure and economic mea-
sures to fill the remaining emissions gap. In this context, aircraft trajectory optimization as
well as optimality assessment of standard flight procedures are important tools to improve
the efficiency of operations.

The participation of Spain in the modernization of the air navigation systems is mainly
carried out by its participation in SESAR, but also national projects are promoted as, for ex-
ample, the projects CENIT ATLANTIDA (Application of Leading Technologies to Unmanned
Aerial Vehicles for Research and Development in ATM ) and CENIT SINTONIA (SIstemas
No Tripulados Orientados al Nulo Impacto Ambiental). The first develops innovative con-
cepts for the automation in air-traffic management, testing them in high-fidelity simulations
and experiments based on the use of UAVs (Unmanned Air Vehicles); whereas the second
tries to increase the efficiency and to reduce the environmental impact of UAVs through the
introduction of improvements in the whole life cycle, including the generation of optimal
trajectories.

Since 2005, the Department of Aerospace Engineering and Fluid Mechanics has conducted
several studies in the fields of trajectory prediction and optimization. In this context, the
Aerospace Engineering Group has participated in the following projects: IMPACT (Advanced
Multi-Purpose Infrastructure for Trajectory Computation), funded by Boeing Research and
Technology Europe, for the development of trajectory calculators; CENIT ATLANTIDA, for
the development of conflict resolution algorithms in arrival air traffic in the terminal ma-
neuvering area; CENIT SINTONTA, for the development of an automatic optimal-trajectory
generator for UAVs; and, nowadays, the group is the scientific leader of the ComplexWorld
network established within the framework of SESAR, for the understanding and modeling of
the behavior and evolution of the air-traffic management system.

The thesis presented in this document is the result of research in aircraft trajectory
optimization. In the next section, the main objective of the thesis is described.

1.2 Objective

The main goal of this thesis is to study the optimization of global multiphase aircraft tra-
jectories composed of climb, cruise and descent phases, by using the singular optimal control
theory (see Bell and Jacobson [4]). With this approach, control variables do not take a con-
stant value (as in parametric optimization) but vary along time. To solve the singular control
problem, an indirect method is proposed, in which necessary conditions for optimality (ad-
joint dynamic equations, transversality conditions and Hamiltonian minimization condition)
are explicitly used to obtain the optimal trajectory, i.e., the optimal control time function
(or the optimal control feedback law) and the associate evolution of the states that optimize
some property derived from the trajectory (e.g., fuel consumption, flight time, range, etc.).

Optimizing global multiphase aircraft trajectories implies not only addressing each flight
phase, but also taking into account the interactions among them as well as looking for a
global objective. Nevertheless, it is convenient to previously solve some related single-phase
problems (optimal climb, optimal cruise and optimal descent), not only because they are
interesting per se, but also because their resolution provides some valuable insight into the
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optimization of global multiphase aircraft trajectories (they act as auxiliary problems). In
fact, as it will be seen latter, the optimal control and optimal path structure for an optimal
single-phase aircraft trajectory also apply at each phase of an optimal multiphase aircraft
trajectory.

Therefore, some intermediate goals of this thesis can be pointed out:

e General formulation of multiphase aircraft trajectory optimization problem as a singular
optimal control problem.

e Optimization of the fixed-rating aircraft climb in the presence of altitude-dependent

winds.

e Optimization of the cruise at constant altitude with the constraint of a fixed arrival

time and in the presence of an average uniform wind.
e Optimization of the unpowered descent in the presence of altitude-dependent winds.

e Optimality assessment of standard flight procedures commonly used in practice, such
as CAS/Mach climbs, constant-Mach cruises and Mach/CAS descents.

e Study of the effects of some factors, such as wind speed distribution or the initial aircraft
weight, on the optimal trajectories.

After having solved the three aforementioned auxiliary problems, the optimization ap-
proach is applied to the study of minimum-fuel global trajectories in the presence of altitude-
dependent winds, where the effects of the wind profile and of the initial aircraft weight on
the results are analyzed as well.

The employed optimization approach features the following advantages:

1. Tt provides analytical state-feedback control laws, allowing for an easy implementation.

2. It leads to more accurate results than those obtained by direct trajectory optimization
methods.

3. It allows for generating trajectories with the best performance which, although these
may not be flyable according to present-day air-traffic-control procedures and regula-
tions, they can be used either as references to the design of improved flight procedures,
or to assess the optimality of standard flight procedures commonly used in practice,
such as CAS/Mach climbs, constant-Mach cruises and Mach/CAS descents.

To describe the aircraft motion, a general nonlinear 3-degree-of-freedom point-mass model,
along with realistic aerodynamic and propulsion models, is adopted. This model is commonly
used for trajectory prediction. Plane Earth, rigid and symmetric aircraft, symmetric flight
(there is no slip), and thrust parallel to the aircraft aerodynamic velocity are considered as
hypothesis. These assumptions are appropriate for subsonic, transport aircraft.
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1.3 Outline

This thesis is organized as follows.

In Chapter 2, after a brief overview of references in optimal control theory (including the
special cases of singular optimal control problems and switched dynamical systems), a review
of the state of the art in numerical methods for trajectory optimization as well as in aircraft
trajectory optimization is presented.

In Chapter 3 the formulation of an optimal control problem is first presented, including
the necessary conditions for optimality and analyzing the special cases of singular optimal
control problems and control problems of switched control systems; second, the equations
governing the motion of an aircraft under appropriate assumptions are included; and third,
the procedure to compute optimal aircraft trajectories developed in this thesis is explained.

In Chapter 4 the optimal control formulation is applied to the optimization of a fixed-
rating climb in the presence of altitude-dependent winds, with the objective to give minimum
contribution to the global-trajectory fuel consumption.

In Chapter 5 the formulation is used to analyze the minimum-fuel cruise at constant
altitude with the constraint of a fixed arrival time, including the effects of average horizontal
winds.

In Chapter 6 the formulation is applied to the analysis of the maximum-range unpowered
descent in the presence of altitude-dependent winds.

In Chapter 7 the problem of minimum-fuel global trajectories in the presence of altitude-
dependent winds is analyzed by means of the previously developed formulation.

Finally, some conclusions are presented in Chapter 8, and the future lines of research are
drawn in Chapter 9.

The nomenclature and the supplementary models used throughout this document are
included in Appendices A and B, respectively. The functions which describe the optimal
singular control during climb are defined in Appendix C. The optimized standard climb and
descent procedures are included in Appendix D.
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Different classifications of optimization problems can be considered. Biegler and Gross-
mann [8] propose a possible classification attending to the nature of the decision variables.
In this sense, there are parametric optimization problems, commonly referred to as program-
ming problems (in which each variable can only have a single value from a given set), optimal
control problems, commonly referred to as trajectory optimization problems (which usually
correspond to dynamic systems in which the decision variables are functions of the inde-
pendent variable, for instance, time), and stochastic optimization problems (in which the
variables are defined by probability functions). Aircraft trajectory optimization can be con-
sidered as an optimal control problem in which the control variables are time varying. As
a consequence, the present thesis is not addressing parametric nor stochastic optimization
problems.

In this chapter, an overview of references in optimal control theory is first addressed,
including works related to singular optimal control problems and optimal control for switched
control systems. Then, a review of the state of the art in numerical methods for trajectory
optimization is included. Finally, a review in aircraft trajectory optimization is presented.

2.1 Optimal Control

Many authors agree on considering the optimal control as an extension of the calculus of
variations, among which Sussman and Willems [72] and Bryson [16], both citing the work of
Goldstine [35], regarding the history of the calculus of variations from its beginnings to the
Chicago school in the early 20th century.

Sussman and Willems [72] address the historical evolution of the optimal control from
what they consider its origin: the publication of the solution to the Brachistochrone problem
in 1697 by Johann Bernoulli. They defend that the early contributions of Leibniz, Jacob
Bernoulli, Tschirnhaus, L’Hépital and Newton paved the way for the optimal control to be
born. They also remark, first, the key role performed by Euler, Lagrange and Legendre in
setting up the classical theory of the calculus of variations; second, the advantages behind
the reformulation proposed by Hamilton; third, the important advances made by Wierstrass;
and finally, the formal appearance of the optimal control, thanks to the statement of the
Maximum Principle by Pontryagin and his group.

Bryson [16] addresses optimal control developments from 1950 to 1985. He points out that
optimal control has also roots in some other scientific fields (not only calculus of variations),
such as classical control theory, random processes theory and parametric optimization theory
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(linear and nonlinear programming).

There exist plenty of books addressing optimal control theory, from which one can stand
out those from Athans and Falb |2], Bryson and Ho [15], Leitmann [41], Ben-Asher [6], Speyer
and Jacobson [71], and Clarke [24].

2.1.1 Singular Optimal Control

Following the definition from Ben-Asher [6], singular optimal control problems are a subclass
of optimal control problems in which the Hamiltonian minimization condition (see Chapter
3) does not yield a definite value for the control. This type of problems arises, in particular,
when the Hamiltonian is linear on the control variable. Bell and Jacobson [4] give insight
into the theory of singular optimal control, addressing necessary conditions for optimality of
this type of problems.

Singular optimal control theory has been used, among other works, to analyze maximum-
range cruise at constant altitude (Pargett and Ardema [51] and Rivas and Valenzuela [55]),
minimum fuel cruise at constant altitude with fixed arrival time (Franco et al. [30] and Franco
et al. [33], the latter in the presence of a constant wind), minimum-cost cruise including both
the DOC and the arrival-error cost associated to not meeting the scheduled time of arrival
(Franco and Rivas [31]), maximum-range unpowered descents in the presence of altitude
dependent winds (Franco et al. [32]) and fuel-optimal fixed-rating climbs in the presence of
altitude dependent winds (Franco et al. [34]).

2.1.2 Optimal Control for Switched Dynamical Systems

In this work the theory of optimal control for switched dynamical systems is applied. Optimal
control problems of switched dynamical systems are contained into a broader class of problems
called hybrid optimal control problems. Branicky et al. [12] propose a very general framework
that systematizes the notion of a hybrid system. They introduce a mathematical model
of hybrid systems as interacting collections of dynamical systems, evolving on continuous-
variable state spaces and subject to continuous controls and discrete transitions. Hybrid
systems can be seen as a generalization of the concept of multiprocesses, previously stated
by Clarke and Vinter [23].

Numerous authors (among which Sussmann [73|, Riedinger et al. [54], Caines et al. [19],
and Shaikh and Caines [62]), have developed necessary conditions for optimality, in the form
of a maximum principle for hybrid optimal control problems. They address different cases
such as fixed and variable time interval problems (|73, 54]), and with and without pathwise
state constraints ([19]). Shaikh and Caines [62] also present algorithms for hybrid systems
optimization. Dimitruk and Kaganovich [27] state that results in Sussmann [73]| (and, by
extension, the maximum principle for hybrid optimal control) cannot be recognized as a new
independent result, but as a direct application of the original Pontryagin maximum principle
to an appropriately transformed problem.

As Xu and Antsaklis [83] pointed out, the feature distinguishing a switched system from

a general hybrid system is that its continuous state does not exhibit jumps at the switching
instants. Such a feature makes the computation of continuous inputs amenable via the
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usage of conventional optimal control methods, such as those methods developed for singular
optimal control problems.

2.2 Numerical Methods for Trajectory Optimization

There exist several techniques for numerically solving trajectory optimization problems. Ac-
cording to numerous authors (Von Stryk and Bulirsch [80], Betts [7] and Rao [53]|, among
many others) the methods most widely used today can be classified into two broad categories,
indirect methods and direct methods depending on whether or not they explicitly consider
the necessary conditions for optimality. Direct and indirect methods can also be classified
into shooting methods and transcription methods (also called collocation methods). On one
hand, shooting methods are characterized by performing an initial value problem (IVP) at
each iteration step and by defining, as decision variables, those needed to perform that IVP.
On the other hand, transcription or collocation methods define, as decision variables, the
values of continuous variables (state, control and, eventually, adjoints) at some time instants
called nodes, approximate these continuous variables by a piecewise continuous interpolant
polynomial and enforce the satisfaction of the differential equations at some points between
each pair of contiguous nodes.

Some other methods such as those based on dynamic programming and direct search
have been also developed, although these are generally not computationally competitive with
direct and indirect methods. Betts [7] provides an excellent survey of numerical methods
for trajectory optimization, focusing on direct and indirect methods, and including practical
examples and main issues of them. Some remarkable aspects of the research therein are
highlighted in the sections below.

2.2.1 Direct Methods

Direct methods do not require an analytical expression for the necessary conditions for opti-
mality and, hence, do not involve definitions of adjoint variables as well as initial guesses for
them. Instead, the dynamic variables (state and control) are adjusted to directly optimize
the objective function. All direct methods introduce some parametric representation for the
control variables (and, possibly, for the sate variables). Hence, the original optimal control
problem, which can be seen as an infinite dimensional optimization problem, is transformed
into a finite dimensional optimization problem, which in general is a nonlinear programming
(NLP) problem.

For simple shooting, the control variables are defined by a relatively small number of
NLP variables. For direct multiple shooting and direct transcription methods the number
of NLP variables used to describe the control increases, ultimately including values at each
mesh point of the integration interval.

Advantages and disadvantages of direct methods are the disadvantages and advantages,
respectively, of the indirect methods explained in the following section.
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2.2.2 Indirect Methods

Indirect methods are characterized by explicitly considering the necessary conditions for
optimality, which are stated in terms of the adjoint differential equations, the Maximum
Principle, and the transversality conditions. Hence, the dynamic variables (state and control)
are adjusted to satisfy optimality conditions instead of to directly optimize the objective
function. In general, and depending on the optimal control problem, the indirect approach
can lead to stating a nonlinear two-point or multipoint boundary value problem, which can be
solved by a simple shooting, a multiple shooting or a transcription method. Hence, to solve
the original optimal control problem it is necessary to solve a system of nonlinear equations.

On one hand, there are three main disadvantages of using indirect methods.

First, in order to implement an indirect method it is necessary to previously derive analytic
expressions for the necessary conditions of optimality. This can be difficult to perform and
automatize, specially when nonlinear systems with complicated dynamics or constraints are
considered.

Second, when indirect methods are applied to problems with path inequalities or to singu-
lar optimal control problems one has to impose the sequence of constrained and unconstrained
subarcs or the sequence of bang and singular arcs. Special intuition regarding the particular
problem being solved (for instance, based on previous pieces of research or on the results form
applying a direct method) is necessary, because the solution structure is a priori unknown,

in general.

Third, the resolution of optimal control problem by means of an indirect method implies,
as previously mentioned, solving a system of nonlinear equations with, in most cases, poor
convergence properties. The region of convergence is very small, specially when it is nec-
essary to guess values for the adjoints variables, which may not have an obvious physical
interpretation and whose dynamics exhibits an unstable behavior.

On the other hand, there is an important advantage of using indirect methods: the
accuracy of the solution is higher than with direct methods. In fact, since the solution
structure is directly involved in the method, discontinuities in the control function at junction
points (when entering or leaving a path constraint or a singular arc) can be easily taken into
account.

2.2.3 Other Methods

Methods based on dynamic programming, also called extremal field methods, rely on a neces-
sary condition for optimality consisting of a system of first-order partial differential equations
known as the Hamilton-Jacobi-Bellman equation (see Bellman [5]). Dynamic programming
has been successfully applied to discrete optimal control problems, as well as to special classes
of continuous optimal control problems for which there is an analytical solution of the HJB
equation (linear systems with quadratic costs). However, for solving nonlinear continuous
optimal control problems, dynamic programming can hardly be used as the basis for a viable
numerical method due to the curse of dimensionality. This term means that, as the time,
state and control have to be sampled, the computational complexity increases exponentially
with the dimensions of the state and control.
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Methods based on direct search can be considered as a special class of direct methods
in which the original optimal control problem is transformed into a nonlinear programming
problem (as in the rest of direct methods) but the resolution proposed do not make use of
derivatives. Instead, the basic notion of evolutionary algorithms (such as genetic algorithm
and particle swarm method), simulated annealing, tabu search and Monte Carlo method is to
randomly select values for the unknown variables. When a sufficiently high number of random
samples have been taken, the best one is considered the solution. These methods are very
attractive because they are very easy to apply. Nevertheless, since less information about the
function being minimized is used (as they do not compute gradients), methods based on direct
search are not computationally competitive with respect to direct and indirect methods.

2.3 Aircraft Trajectory Optimization

Aircraft trajectory optimization is, from the operational point of view, a subject of great
importance in air traffic management (ATM), that aims at defining optimal flight procedures
for the given aircraft mission that lead to energy-efficient flights and enable for optimality
assessment of standard flight procedures.

In order to optimize an aircraft trajectory one must take into account that it is composed
of different flight phases (see Torenbeek [75]): take off, climb, cruise, descent, loiter, approach
and landing. In each one, equations of motion can be different from one another. In a
sufficiently simple but fairly general model, a global trajectory is formed by a climb phase,
a cruise phase and a descent phase. The next step in complexity could be to split the cruise
phase into two different ones by adding an intermediate climb phase. In that case the global
trajectory would be formed by an initial climb phase, a first cruise phase, a climb between
the two cruise levels, a second cruise phase and a descent. For any given solution structure
(i.e., sequence of flight phases), optimizing global trajectories implies not only addressing
each flight phase (as many authors have already done), but also taking into account the
interactions among them as well as looking for a global objective.

In practice, the airlines consider a cost index (CI) and define the direct operating cost
(DOC) as the combined cost of fuel consumed and flight time weighted by the CI. Their goal
is to minimize the DOC of the global trajectory.

2.3.1 Global Trajectory Optimization

Before the seventies, there are not many works about global-trajectory optimization. As
pointed out by Schultz and Zagalsky [60], previous works focus on optimizing one trajectory
phase, with the exception of Bryson et al. [14]|, who studied climb-descent trajectories by
using the energy-state approximation. This approach is characterized by considering, on one
hand, the specific energy as a state variable and the speed as the control variable, and, on
the other hand, that kinetic and potential energy interchanges are instantaneous (leading to
discontinuities in speed and altitude laws).

From then on, different authors have addressed minimum-DOC problem for global tra-
jectories. Barman and Erzberger [3] and Erzberger and Lee [28] analyze minimum-DOC
problem for global trajectories (climb-cruise-descent), considering steady cruise and taking
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the aircraft mass as constant. In particular, Erzberger and Lee 28] consider an altitude-
dependent horizontal wind, although they do not take into account the acceleration term in
the dynamic equation, so that equations of motion are the same as with a constant wind.
Burrows [17] also analyzes minimum-DOC problem for global-trajectories, without the as-
sumption of constant mass, but with the assumption that the cruise phase takes place in the
stratosphere.

Some other authors have studied minimum-fuel-consumption global trajectories, which
can be thought of as a particular case of minimum-DOC global trajectories with CI equals
zero. For example, Schultz and Zagalsky [60] address minimum-fuel-consumption problem
for global trajectories considering steady cruise and constant mass. Zagalsky et al. [84] ana-
lyze minimum-fuel-consumption problem for global trajectories considering the energy-state
approximation and constant mass. They find the velocity set to be nonconvex, which implies
first that optimal control solutions only contain full-powered climbs and unpowered descents,
and second, that certain suboptimal solutions containing a minimum-fuel cruise segment at-
tain fuel economies superior to any optimal control solution. Newman and Kreindler [49]
study minimum-fuel, three-dimensional flight paths; non-turning paths (in a vertical plane)
are considered as a particular case. Control variables are the thrust, the path angle and the
bank angle. They show that for the most part of the trajectory the flight path angle is a
singular control. The main simplifications are constant aircraft mass and constant thrust
for each power setting. Only short (up to 50 nmi), low-altitude (below 10000 ft) flights are
considered. Final values of altitude and speed are given, whereas the final time and the
final horizontal distance travelled are unspecified. A comparison with non-optimal standard
climbs is also performed.

Sorensen and Waters [68|, Burrows [18], Chakravarty [21] and Williams [81] analyze
minimum-fuel-consumption trajectories with fixed arrival time as minimum-DOC trajectories
with free final time (the problem is to find the time cost for which the corresponding free
final time DOC-optimal trajectory arrives at the assigned time); the two last authors address
the problem by considering a minimum-DOC steady cruise as the outer solution of a singular
perturbation solution for the global trajectory. Burrows [18] considers a general point-mass
model and a constant wind throughout the entire trajectory and, although a variable-mass
model is considered, only presents results for the constant-mass case. Chakravarty [21] con-
siders a simpler model (by using the energy-state approzimation), obtains as a result a quasi-
steady cruise with altitude and speed varying as mass diminishes, and analyzes the effects
of an altitude-dependent horizontal wind on cruise-descent trajectories (although, as in Ref.
[28], the acceleration term in the dynamic equation is neglected). Williams [81] also addresses
that problem, analyzing the effects of mismodeled constant winds in a scenario formed by
the final cruise and the descent phases, although wind effects on the whole cruise phase are
not considered.

Chakravarty [22] and Liden [42] analyze minimum-cost global trajectories (climb-cruise-
descent), considering not only the DOC but also the arrival-error cost which takes into account
some other factors such as crew overtime cost, passenger dissatisfaction cost and losses due
to missed connections. They also describe procedures to select the best CI based on what
they call optimal flight schedule, and consider different wind conditions.

10
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Recently, Soler et al. [67] address minimum-fuel-consumption trajectories composed of
seven flight phases (takeoff, initial climb, climb, cruise, descent, approach and landing) by
using a hybrid optimal control approach in which the phase sequence is predefined but the
switching times are included as unknown variables. The resolution method employed is
a direct collocation method or direct transcription method, which transforms the original
trajectory optimization problem into a non-linear programming problem (that is, into a
parametric optimization problem).

Nevertheless, some authors have exclusively addressed a single flight phase in the sense
that they have optimized one phase, not only without taking into account the interactions
among the different phases, but also considering different performance indices.

2.3.2 Climb Phase Optimization

In the optimization of the climb flight of commercial aircraft, the objective is to minimize the
economical and environmental impacts, by defining the best flight procedure for the given
aircraft mission. Depending on the mission, different performance indices can be considered
(such as minimum time, minimum fuel consumption or minimum emissions).

Minimum-time climb deserved great attention in the early works on trajectory optimiza-
tion, especially for supersonic aircraft, see for example the works of Bryson and Denham [13]
and Vincent et al. [77, 78], in which thrust is given and the angle of attack (or the lift co-
efficient) is taken as control variable, and the work of Bryson et al. [14]. In this work, the
energy-state approximation is used, with the speed as control variable; the solution is formed
by a central path and, depending on the initial and final conditions, by zoom climbs or zoom
dives with constant energy (performed instantaneously). These works also review the early
work (made in the 1950’s) on trajectory optimization.

Minimum-fuel climb in a vertical plane between two given points (given speed and altitude,
Vi, hy and V¢, hy) has been analyzed by Miele [47] using a method based on Green’s theorem, in
the case of given thrust (depending both on speed and altitude), using the limiting constraint
hi < h < hy, and with the simplification of constant aircraft mass. The solution is formed
by a central climbing path and two accelerations at constant altitude (at h; and hy). This
problem is also analyzed by Bryson et al. [14] in the case of supersonic aircraft, using the
energy-state approximation, with the speed as control variable; the solution structure is the
same (zoom-central-zoom) as for the minimum-time problem, although the central path is
different.

Some authors optimize the climb as part of a global climb-cruise-descent trajectory in
a vertical plane (see for example the works of Schultz and Zagalsky [60], Barman and
Erzberger [3]|, Erzberger and Lee [28] and Burrows [17, 18]), considering different perfor-
mance indices, such as minimum direct operating cost and minimum fuel consumption with
fixed arrival time. In all these cases the final range is fixed, and thrust is used as a con-
trol variable. In some of these works the formulation is simplified by taking the aircraft
mass as constant, or by taking the lift equal to the constant weight in the calculation of the
aerodynamic drag. More recently, climb (and descent) optimization to reduce noise at small
altitudes has been given special attention (see the works of Visser and Wijnen [79], Ho and
Clarke [37], Torres et al. [76]), with the goal of defining noise abatement procedures.
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In the previous works, wind effects are not taken into account. Wu and Zhao [82] optimize
climb trajectories considering different performance indices and wind effects; although the
nominal wind is zero, sensitivities with respect to wind uncertainties are analyzed. In this
analysis, lift coefficient and thrust are taken as control variables, and the formulation is
simplified by considering constant specific fuel consumption. The optimization is formulated
as a parameter optimal control problem, in which a predefined trajectory profile (formed by
a series of pre-ordered flight phases) is considered.

2.3.3 Cruise Phase Optimization

Some authors have exclusively addressed optimal aircraft cruise independently considered.

Minimum-DOC cruise has been studied by different authors. Bilimoria et al. [9] analyze
the minimum-DOC steady cruise as the outer solution when applying a singular perturbation
approach. They point out that non-convexity in the fuel-flow vs airspeed graph has the
important consequence of defining a velocity segment that is nonoptimal, which leads to the
sometime occurrence of time-shared operation between two altitude-airspeed combinations
for optimal steady cruise. Franco and Rivas [31] analyze minimum-cost cruise including both
the DOC and the arrival-error cost associated to not meeting the scheduled time of arrival.
They obtain that, for some values of the parameters present in the problem, the solution
is obtained by fixing the final time to be the scheduled time of arrival, whereas for some
other values of the parameters, the solution is obtained by solving a minimum-DOC problem
with free final time and a cost index different from the original one. The related problem
of finding the minimum-fuel cruise at constant altitude with fixed arrival time is analyzed,
among others, by Franco et al. [30] and Franco et al. [33] (the latter in the presence of a
constant wind).

The particular case of minimum-fuel cruise (CI equal to zero) has been considered by
others. For example, Speyer [69], Schultz [61], and Speyer [70] analyze the optimality of the
steady-state cruise, taking the aircraft mass as constant. For an aircraft model where the
control variables are thrust and flight path angle, Speyer [69] shows that cruise condition is a
doubly singular arc which is non-minimizing because it fails to satisfy a necessary condition
for optimality. For an aircraft model where the control variables are the thrust and the lift
coefficient, Schultz [61] considers that the cruise solution is a thrust-singular arc and shows
that, unlike with the energy state equations or with the intermediate model considered in
Ref. [69], the cruise is now a minimizing-arc. In response to Ref. [61], Speyer [70] applies
a frequency domain version of the Jacobi test to the Goh’s transformation of a point-mass-
model, and shows that the steady-state cruise is nonoptimal over long ranges because of
the appearance of conjugate points. He also points out that a small-amplitude oscillatory
cruise can provide slight improvements in fuel consumption with respect to steady-sate cruise.
The equivalent problem of finding the maximum-range cruise at constant altitude for a fixed
amount of fuel is analyzed, among others, by Pargett and Ardema [51], Rivas and Valenzuela
[55], and Rivas et al. [56].

Some authors have explored nonconventional cruise, such as chattering cruise, and optimal
cyclic cruise with the objective of minimizing fuel consumption per range travelled or per flight
time. Houlihan et al. [38] study the minimum-fuel chattering cruise as the outer solution of
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a singular perturbation solution, considering the energy-state approximation and a constant-
mass model. They obtain that, when the velocity set is not convex, a chattering cruise only
shows a substantial improvement with respect to steady cruise at low energy levels; therefore,
from a practical point of view, chattering cruise implies at best only a small advantage over
conventional cruise. Sachs and Christodoulou [59] analyze the problem of finding periodic
flight paths that maximize either the ratio of the horizontal cycle range to the fuel consumed
in a cycle, or the ratio of the cycle time to the fuel consumed in a cycle. They consider
a constant-mass model with the throttle parameter and the lift coefficient as controls and
a maximum altitude constraint. Optimal cyclic paths are obtained, which are bang-bang
in the thrust and can be decomposed into two flight segments, a maximum thrust segment
and a minimum thrust segment. For range maximization per fuel consumed, important
improvements with respect to steady-state cruise can be achieved for low maximum altitudes
and without considering compressibility effects, whereas negligible improvements are obtained
if the admissible altitude is high enough and compressible effects are taken into account.
Finally, Menon [46] performs an interesting survey of aircraft cruise optimization and provides
further insight into minimum-fuel oscillatory cruise.

2.3.4 Descent Phase Optimization

In the optimization of the descent flight of commercial aircraft, the objective is to descend and
decelerate continuously, so that the economical and environmental impacts are minimized,
keeping thrust as low as possible for as long as possible. An example is the continuous descent
approach (CDA) procedure (see for instance Clarke et al. [25] where the design and flight
test of a CDA as a noise abatement procedure is presented).

Maximum-range glide between two given points (given speed and altitude, V;, h; and
Vi, hy) has been analyzed by different authors using different procedures. For instance,
Miele [47] analyzes the problem using a method based on Green’s theorem, using the limiting
constraint hy < h < h;; the solution is formed by a central pattern and two decelerations at
constant altitude (h; and hy). Bryson et al. [14] present an analysis using the energy-state
approximation, with speed as control variable; the solution structure is the same (zoom-
central-zoom) as for the climb problems. More recently, Shapira and Ben-Asher [64, 65]
use singular perturbation theory, considering two and three timescales, and obtain the inner
and outer solutions using optimal control theory; the inner (boundary layer) solution is
characterized by an increase in altitude, a decrease in speed, and large values of flight-path
angle; the outer (slow) solution is a steady-state glide; these analyses are made for the simple
incompressible case of a parabolic drag polar of constant coefficients. In all these works wind
effects are not taken into account; however, some other authors have taken into account
wind effects when addressing descent trajectories within the context of global trajectory
optimization (see Refs. [28, 18, 21]).
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3 Formulation of the Optimal Control
Problem

In this chapter, the singular optimal approach is applied to optimize aircraft trajectories.
For that purpose, the formulation of an optimal control problem is first presented, including
the necessary conditions for optimality and analyzing the special cases of singular optimal
control problems and optimal control problems of switched systems. The explicit statement
of the necessary conditions for optimality is needed because an indirect numerical method
is considered. Then, the equations governing the motion of an aircraft under appropriate
assumptions are included. Finally, the procedure to compute optimal aircraft trajectories
developed in this thesis is explained.

3.1 Optimal Control Theory

The outline of this section is as follows. First, a general formulation of an optimal control
problem is presented, preceded by the definition of some standard terminology based on the
works of Bryson and Ho [15] and Clarke [24]. Second, necessary conditions for a solution
candidate to be optimal are included, with a formulation based on the works of Ross [58] and
Clarke [24]. Third, particular considerations regarding singular optimal control problems are
addressed, including additional necessary conditions for such a type of problems. Finally, an
extension of the formulation of an optimal control problem to switched dynamical systems is
performed including, as well, additional necessary conditions for such a type of problems.

3.1.1 Optimal Control Problem

Let consider a time interval [to,tf], the dynamics function f: [to,tf] x R" x R™ — R", and
the control set U C R™. A control is an m-vector function on [tg,ts] with values in U,
whereas the state, or state trajectory, corresponding to the control u refers to a solution y of
the initial-value problem (IVP) given by

y=flt,y @), u(®)],  Vteltots]

y(to) = ¥ 3

where y, € R" is a prescribed initial condition, ¢ is the time, and the dot denotes derivation

d
with respect to ¢ (i.e., y = d—}t’) Hence, y : [to,ty] — R™ is an n-vector function with

continuous components. The ordinary differential equation (ODE) system (3.1) linking the
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3. Formulation of the Optimal Control Problem

control u and the state y is referred to as the state equation. The couple (f,U) is referred to
as the control system. A process of the control system (f,U) is the couple (y,u) consisting
of an n-vector function with continuous components y and an m-vector function u which
satisfy the state equation (3.1). The cost functional J(y,u) is defined by
ty
Iy = leyep)] + [ Uty (0, u ) (32)
to

were the running cost [ and the terminal cost ¢ are given functions. In some cases, one may
be interested in constraining functions of the terminal state to have prescribed values, which
can be expressed as

Glty,y ()] =0 (3:3)

where the k-vector function ¥ : R x R® — R¥ is the final-state-constraint function. The
particular case in which some state variables are prescribed at the final time is subsumed in
the more general case addressed by Eq. (3.3).

In summary, the optimal control problem can be stated as follows:

Minimize J(y,u) = ¢ [ty,y(ts)] + /t ! Lty (t),u(t)]dt
subject to y =f[t,y (¢),u(t)], Vt € [to, ty]

u(t) e U, Vt € [to, ty]
y(to) = ¥o
1/1[tfa}’(tf)] =0

An optimal process, also called an extremal, is a process (y*,u*) defined on the interval
[to, tf] satisfying the constraints of Eq. (3.4) and verifying J(y*,u*) < J(y,u), for any other
process (y,u) satisfying the aforementioned constraints, as well as |y — y*|| < ¢, for some
e > 0. In this definition, ||z|| means the relevant supremum norm, that is, sup |z(¢)].

t€[toty]

Although an optimal control problem stated as in Eq. (3.4) is quite general, additional
considerations can be made.

First, the final time ¢; can be either specified, that is, a given parameter, or unspecified,
that is, an unknown parameter whose optimal value will result from solving the optimal
control problem. Although it does not imply any change in the problem formulation, it has
a direct impact in the statement of the necessary conditions for optimality. Moreover, in
the case of t; unspecified, the definition of an optimal process has to be slightly modified
as follows. An optimal process (equivalently, an extremal), is a process (y*,u*) defined on
the interval [to,t¢], satisfying the constraints of Eq. (3.4) and verifying J(y*,u*) < J(y,u),
for any other process (y,u) defined on the interval [to, 7¢] and satisfying the aforementioned
constraints, as well as [ty — 77| < e and |ly — y*|| < ¢, for some € > 0.

Second, constraints that apply at intermediate points or over the whole path ¢ € [tg, ],
rather than just at the end points, may also be considered. In particular, one may have
integral constraints, equality or inequality constraints of functions of the control and state
variables, interior point constraints, and discontinuities in the dynamics function or variables
at interior points.
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3.1.2 Necessary Conditions for Optimality

In this section, necessary conditions for a process (y,u) to be the solution of the optimal
control problem (3.4) are presented, with a formulation based on the works of Ross [58]
and Clarke [24]. These conditions are known as Pontryagin Maximum Principle, or simply
Maximum Principle. In these thesis, sufficient conditions for optimality are not considered.

The Maximum Principle is a set of necessary conditions for optimality which, as Hestenes
[36] pointed out, is equivalent to the conditions of Euler-Lagrange, Weierstrass and Legendre-
Clebsch in the classical theory of the calculus of variations. Nevertheless, the Maximum
Principle extends those conditions in a twofold way, to optimal control problems, and to
problems in which the control is constrained to be in a specified control set (i.e., in the
presence of control variable inequality constraints).

Let first define the Hamiltonian and the endpoint Lagrangian of the problem (3.4) as
functions H" : [tg,tf] x R" x R™ x R™ = R, and E" : [tg,ts] x R" x RF — R, respectively,
given by

H'(t,y,u,\) =l (t,y,u) + AT (t,y,u) (3.5)

and

Ety,y(ty) vl = 0oty y(tp)] + v ¢ty y (tp)] (3.6)
Then, assuming classical regularity of the functions involved (see Clarke [24]), the Maximum
Principle can be stated as follows:

Let (y*,u*) be an optimal process of the problem (3.4), where U is bounded. Then there
exist an n-vector function with continuous components A : [tg,tf] — R", a scalar n > 0, and
a multipliers vector v € R¥ satisfying the following conditions:

1) The non-triviality condition, that is, (n, \(t),v) # 0, Vt € [to,t].
2) The adjoint dynamics equation, given by

At) = "oy [, y" (1), u* (), A(t)], Vit € [to, tf] (3.7)

3) The Hamiltonian minimization condition, which states that for the control to be opti-
mal it must globally minimize the Hamiltonian, and hence

u” [t,y*(t), A(t)] = arg Lnel[rle" [t,y"(t),u,\(t)], Vi€ [to,tf] (3.8)

4) The transversality conditions, stated as

A(ty) = fT’if) £y (tf). ] (3.9)

to which one has to add, if the final time is unspecified, another transversality condition

called the Hamiltonian value condition and given by

H' [ty y"(tg),u(ty), Aty)] = T g,y " (ts), ] (3.10)

Furthermore, the minimized Hamiltonian H" : [to,tf] x R™ x R™ = R, defined as

Hi(ty, A) = minH"(t,y,u, ) (3.11)
uc
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evolves according to the Hamiltonian evolution equation, given by

y * OH" * *
H" [t,y (t)a )‘(t)] = W [tay (t)’ u (t)a )‘(t)] ) vt € [tO,tf] (312)
If the problem is autonomous, Eq. (3.12) reduces to the Hamiltonian constancy condition

stating that, for some constant H, one has
H [ty (), u™ (0, A = 7, Yt € [to, ty] (3.13)

Moreover, if the final time is unspecified, the Hamiltonian value condition provides H = 0.

In these necessary conditions, A is known as adjoint or costate, whereas the components
of the constant vector v are referred to as the final-state Lagrange multipliers. The cost
multiplier n is introduced to include the abnormal case, in which 7 = 0. The abnormal case
arises when the constraints are so restrictive as to identify the optimal solution regardless of
the running cost [ [t,y (t),u (¢)] and the terminal cost ¢ [y(ts),ts]. For the normal case, the
constancy and non-negativity of 7 leads to consider n = 1 without loss of generality, as 7
simply scales the Hamiltonian; this is called the normality condition.

The Hamiltonian minimization condition, whose solution is symbolically stated in the
form of Eq. (3.8), can be posed as a problem in itself, given by (see Ross [58])

Minimize H" (t,y,u, \)

(3.14)
subject to ue U
for every ¢ € [to, t¢].
The convexity condition for problem (3.14) is given by
OPH" L,
G2 Y (), W (@), AW)] 2 0, VEeE [to,ty] (3.15)

which is known as the Legendre-Clebsch condition.

Furthermore, when the optimal control is interior to the set U (i.e. u*(t) € intU, Vt €
[to,t¢]), the stationarity condition for problem (3.14) is given by

OH" . .
e [t,y"(t),u*(t),\(t)] =0, Vte [to,tf] (3.16)
which is known as the Euler-Lagrange condition. This equation allows for the determination
of u*, provided that the Hessian of the Hamiltonian Hy}y (£,y,u, \) is not singular. In a more
general case in which the control constraints may be active in some portions of the optimal
process, (3.14) is a nonlinear programming problem. In particular, when u is scalar (namely
u) and the set U is given by U = {u € R : upin < u < Upgs}, the Karush-Kuhn-Tucker
conditions applied to the problem (3.14) provide:

OH"

U*(t) = Umazx if W [t’ y* (t)’ U* (t)’ )‘(t)] S 0
% Ly (O u (O AD] =0 i i < U < U (3.17)
W) = Ui if % [ty (8), (1), A(1)] > 0
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for every t € [to, ty].

According to the Maximum Principle, once the optimal control is obtained, then it can be
substituted into the state and adjoint differential equations, leading to a 2n system of ordinary
differential equations with boundary conditions given by the combination of prescribed initial
state, final-state constraint and transversality conditions. Boundary conditions add up to
2n+k equations, but with k additional unknown final-state multipliers that can be eliminated
(in principle) form these, leading to 2n boundary conditions for a 2n system that, hence, can
be solved (again, in principle) in order to obtain an extremal. Note that if the final time is
unspecified one has an additional unknown ¢; and an additional transversality condition (the
Hamiltonian value condition), which lead to 2n+ 1 boundary conditions for a 2n system with
1 unknown parameter.

In the subsequent sections, only the normal case is considered, and H and E are written
for H' and E!, respectively.

3.1.3 Singular Optimal Control

According to Bell and Jacobson [4], a singular optimal process is one for which the Legendre-
Clebsch necessary condition (3.15) is not satisfied with strict inequality, or equivalently, the
m x m determinant |Hyuy| vanishes at any point along it. In this thesis only the case in which
the Hamiltonian is a linear function on u is considered, as it is the most common case in which
singular optimal problems arise in applications (see Bryson [15]). In that case, the derivative
Hy (t,y,A), commonly known as the switching function S (t,y,\), does not depend on u and
represents the vector of coefficients of these linear terms. In this section, a scalar control is
considered (m = 1, u = u) and the set U is given by U = {u € R : upmin <t < Upaz }-

In singular optimal control problems, the switching function may vanish over a finite
time interval, that is, S (t,y,A) = 0 for t € [r, 7] C [to,tf], defining a portion of the
optimal process referred to as a singular arc. If that happens, the optimal control along the
singular arc, known as singular control ugng (t,y, ), is not determined by the Hamiltonian
minimization condition. This can be understood by particularizing Eq. (3.14) for a singular
optimal problem with a scalar control, which gives

Umaz it S[t,y*(t),A(t)] <0
' = Using [ty (t), ()] if S[t,y*(t),\(t)] =0 over a finite time interval  (3.18)
Umin it S [tay*(t)’ A(t)] >0

for every ¢ € [to,t¢]. The singular control is determined, instead, by the requirement that
the switching function remains zero on the singular arc, which implies that also the time
derivatives of the switching function must vanish.

Thus, on one hand, there is one equation defining the singular control
d%*s
dt2¢

where £ is the order of the singular arc. Note that, in general, the order of the singular arc

(t7 Y, Using, )\) =0 (3.19)

is & when the lowest-order time derivative in which u appears explicitly is of order 2¢, as
defined in Ref. [4]. Kelley et al. [40] demonstrate that u cannot first appear in an odd-order
derivative; hence the order £ is an integer number.
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3. Formulation of the Optimal Control Problem

On the other hand, 2§ equations have to be satisfied along the singular arc

STty (), A(t)] =0
dis (3.20)

Y WA =0 forj=1,.,26~1

for every t € [11,72]. As a consequence, singular arcs are not possible at any point of the
(t,y,\) space of dimension 2n + 1, but they are restricted to a manifold, referred to as a
singular surface (see Bryson and Ho [15]). The singular surface is in fact the locus of possible
points in the aforementioned space on which optimal paths can lie, as well as a switching
boundary for the optimal control (see Ben-Asher [6]).

For singular optimal problems of autonomous systems, a remark regarding the dimension
of the singular surface can be made. The Hamiltonian constancy condition adds, in general,
an extra equation (which makes 2§ + 1 equations defining the singular arc) and an extra
unknown parameter 7. Thus, the singular surface can be seen to belong to a uniparametric
family of surfaces of dimension 2(n — &) — 1. If the final time is unspecified, there is no
unknown, since H = 0, so that one simply has a singular surface of dimension 2(n — ¢) — 1.

Hence, for n = 3 and £ = 1, the previous analysis shows that, in general, the singular arc
is defined by three equations involving an unknown parameter, which define a uniparametric
family of singular surfaces of dimension 3. As a consequence, it may not be possible to define
a singular surface exclusively contained in the state space, but those three equations are
enough to define the three adjoints along the singular arc in terms of the state variables, and
thus, in combination with Eq. (3.19), one obtains a feedback control law (control variable
as function of the state variables) that can be directly used to guide the aircraft along the
optimal path.

3.1.3.1 Additional Necessary Conditions for Optimality

A remarkable consequence of the singularity of H,, is that additional necessary conditions
for optimality must be satisfied in order both, for a singular extremal to be minimizing, and
for the junctions between singular and nonsingular arcs to be optimal.

On one hand, the generalized Legendre-Clebsch condition (see Kelley et al. [40]), also
known as Kelley-Contensou test, establishes that for the singular control to be optimal one

must have oe
0 (d=S
—1)* — >0 3.21
i (52): o
In particular, when & = 1, this necessary condition for the optimality of the singular control
reduces to .
oS
-——2>0 (3.22)
ou

On the other hand, McDanell and Powers [45] prove that, for the optimality of junctions
between singular and nonsingular arcs, the following necessary condition must be satisfied:
the sum of the order of the singular arc (£) and the lowest-order time derivative of the control
which is discontinuous at the junction () must be an odd integer if the strengthened gener-
alized Legendre-Clebsch condition is satisfied at the junction and if the control is piecewise
analytic in a neighborhood of the junction. In particular, this necessary condition is satisfied
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when the order of the singular arc is ¢ = 1, and the lowest-order time derivative of the control
which is discontinuous at the junction is ¢ = 0 (that is, the control itself is discontinuous at
the junction).

Moreover, one has that at the junctions where the control variable were discontinuous,
the adjoint variables, the Hamiltonian and the switching function should all be continuous
in order for the Weierstrass-Erdman corner conditions to be satisfied (see Ref. [15]).

3.1.4 Optimal Control for Switched Systems

Switched systems usually refer to the class of hybrid systems in which there are no discon-
tinuities (jumps) in the state at the switching times (see Xu and Antsaklis [83]). Therefore,
a switched control system consists of an indexed set of dynamical control subsystems, whose
elements are formed by the couple (f;,U,), and a set of constraints in the endpoints of the
state trajectories (state continuity).

In the previous definition, f; : [to,ts] x R" x R™« — R"™ and U, C R™ are the dynamics
function and the control set, respectively, in the phase ¢ € @), where @ is the set of possible
discrete phases.

The input for a switched control system comprises the three following elements: the
phase sequence (also referred to as the switching sequence) o = (qi,...,qn), where ¢; € Q
for j = 1,...,N and N is the number of phases considered; the sequence of switching times
7 = (to,...,tn), where ty = ty and the number of switchings is N — 1; and the sequence
of control functions at each phase, uy,. If the phase sequence is o = (q1,...,qn) and the
sequence of switching times is 7 = (%o, ..., tn), the dynamical control subsystem ¢; is active
during the time interval [t;_1,t;) ([tv—1,tn] if j = N).

According to Branicky et al. [12], the nature of the discrete phenomenon underlying the
switching law leads to define different types of switchings for hybrid systems: autonomous
switching, autonomous impulse, controlled switching and controlled impulse. For switched
systems, in which state discontinuities are not allowed, only autonomous switching and con-
trolled switching can happen. A switching is said to be autonomous if it takes place when
the state enters a prescribed manifold in the state space, whereas it is said to be controlled
if it takes place in response to a control command. In this thesis, only the case in which
one is allow to pick among the set of control subsystems is considered; hence, the subsequent
formulation is restricted to controlled switchings.

The control in the phase g; is an mg;-vector function on [t; 1,t;) with values in Uy,
whereas the state in the phase g; corresponding to the control u,; refers to a solution Y of
the IVP given by

Yqj = qu [t’ Yq; (t) y Ug; (t)]a vt € [tjfl’ tj) (3.23)
yq](t]_l) = yq]'7j—1

The initial value Yg;,i-1 is given by y, (=yy for j = 1, where y, is the prescribed initial
value, and by
Yo -1 = 1m y, (1) (3.24)

t—ti—1

for j = 2,...,N. As a consequence, the state y : [to,t;] — R", defined as y(t) = A (1),
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vVt e [tj—1,t;) (tv—1,tn] if j = N) for j =1,..., N, is an n-vector function with continuous
components.

The cost functional J(y,uy,...,uy) is defined by

Iy, oun) = 0l 3t + 30 [l by 00, 0] 32)
j=1"ti-1

were the running cost in the phase gj, l;;, and the terminal cost ¢ are given functions. Note
that no switching cost is considered in this thesis. A final-state constraint as Eq. (3.3) can
also be taken into account.

In this thesis, only multiphase optimal control problems in the sense of Soler et al. [67]
are considered. These are optimal control problems of switched dynamical control systems
in which the number of switchings (equivalently the number of phases N) and the phase
sequence o (the sequence of active dynamical subsystems) are predefined.

In summary, the multiphase optimal control problem can be stated as follows:

N t
Minimize  J(y,uy,...,un) = ¢ [ts,y(t)] +Z/ ly, [ty (t),ug, (8)] dt
j=1"ti-1

subject to y = f, [t,yqj (t),ug (1), Vteltj-1,t;), j=1,.,N
ug(t) € Uy, V€ [tj—1,t;), j=1,..,N (3.26)
y(to) = yo
Yty y (tr)] =0

for a given o= (q1,...qn), ¢ €Q, j=1,..,N

The concept of optimal process or extremal can be readily extended to multiphase opti-
mal control problems. An optimal multiprocess is a multiprocess (y*,uj,...,u},) defined on
the interval [to,s] satisfying the constraints of Eq. (3.26) and verifying J(y*, uf,...,uy) <
J(y,uy,...,uy), for any other multiprocess (y, uy, ..., uy) satisfying the aforementioned con-
straints, as well as ||y — y*|| < ¢, for some € > 0.

3.1.5 Necessary Conditions for Optimality in Switched Systems

In this section, necessary conditions for a multiprocess (y,ui,...,uy) to be the solution of
the multiphase optimal control problem (3.26) are presented, with a formulation based on
the previous one in 3.1.1. These conditions are known as Hybrid Maximum Principle. In this
thesis, sufficient conditions for optimality are not considered.

The Hybrid Maximum Principle is a set of first order necessary conditions for optimality
relating to how to select continuous variables in a hybrid optimal control problem in such
a way that optimizes the cost function for a fixed choice of the switching sequence. Several
formulations of the Hybrid Maximum Principle can be found in works of Sussmann [73],
Riedinger [54], Caines [19] and Shaikh and Caines [62]), among others. In this thesis, the
Hybrid Maximum Principle is both, rewritten in terms of the formulation in Section 3.1.1,
and particularized to multiphase optimal control problems introduced in Section 3.1.4, in
order to obtain a Multiphase Maximum Principle.
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Let first define the Hamiltonian at the phase g; € @ of the problem (3.26) as a function

H, [tjfl,tj) x R? x R™% x R™ — R, ([thlatN] if j = N) given by

aj
Hy,(ty,ug,, \) =g, (ty,ug,) + ATE, (ty,ug,) (3.27)

and second, the end endpoint Lagrangian of the problem (3.26) as a function E : [to,tf] x
R™ x R* = R given by

Elty,y(tp).v] =ty ytp)] +vivltry (ty)] (3.28)

Note that the superscript n is no longer used because only the normal case is considered.
Then, assuming classical regularity of the functions involved, the Multiphase Maximum Prin-
ciple can be stated as follows.

Let (y*, uj, ..., u},) be an optimal multiprocess of the problem (3.26), where U, is bounded
for any ¢ € @, the phase sequence is defined as o = (q1, ..., qn ), with ¢; € Q for j =1,..., N,
and N is the number of phases considered. Then there exist a piecewise continuous function
A : [to, tf] = R™ and a multipliers vector v € R¥ satisfying the following conditions:

1) The non-triviality condition, that is, (A(t),v) # 0, Vt € [to, tf].
2) The adjoint dynamics equation, given by

. 0H,.
M) = =5 [y @O0, (0. M0)] V€ [to1sty) (3.29)
([tnv—1,tn]if j=N) for j=1,...,N.
3) The switching conditions regarding the adjoint variables, which state that since the

states are continuous at the switching points ¢;, and only controlled switchings are considered,

the adjoint function verifies
A(t;) = A(t)) (3.30)

for j = 1,..,N — 1. Hence, A is a continuous functions for all ¢ € [0,%f]. Note that some
authors classify these conditions as transversality conditions at the switching instants, because
they are associated to the constraints ensuring the state continuity at the switching points.

4) The Hamiltonian continuity condition, which states that, since the transition times ¢;
are not specified, the Hamiltonian is continuous at the switching instants ¢;:

Hy, [t.y" (1) 05, (45), A ()| = Hoppy Loy (6) ug L, (5), A ()] (3.31)
for j =1,...,N — 1, where the left-hand side is defined as
Hay 133" (1) 0, (1) 0 (0] = Jim Hoy (123" (0w, (6,20 (3:32)

because, with the formulation considered, H,; is not defined for ¢t =¢; and j =1,.., N — 1.

5) The Hamiltonian minimization condition, which states that for the control to be opti-
mal it must globally minimize the Hamiltonian, and hence

w6y (0, 0] = arg_min Hy, [ty (), 1, A(0)] (3.33)
a5 a5

forj=1,...,. N —1.
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3. Formulation of the Optimal Control Problem

6) The transversality conditions, stated as Eq. (3.9)

S ¥ )0 (334

Aty) = oy,

to which one has to add, if the final time is unspecified, the so called Hamiltonian value
condition, given by

%AMfWMQWMWH:%§WWWW] (3.35)

Furthermore, the minimized Hamiltonian at the phase q; € Q, Hy, : [to, tf]xR"xXR" — R,
defined as
Hy, (t,y,\) = min Hy (t,y,ug,A) (3.36)

ug; €Uq;

evolves according to the Hamiltonian evolution equation, given by

Ty, [0y (1. M) = 0

[t,y*(t),u;j(t),x(t) Ve [t i) (3.37)

([tn—1,tn] if j = N). If the problem is autonomous, Eq. (3.37) reduces to the Hamiltonian
piecewise-constancy condition stating that, for some constant ﬁj, one has

Hy, [ty (), (t),A(t)} —H,;, Ve [ti_it;) (3.38)

» Y,

(tn-1,tn] if j = N) for j = 1,...,N. Moreover, if the final time as well as the transition
times ¢; are unspecified, the Hamiltonian value condition provides ﬁj =0forj=1,..,N.

3.2 Equations of Motion

To describe the aircraft motion, the model adopted considers the aircraft as a point-mass with
three degrees of freedom, commonly used for trajectory prediction, as indicated by Slattery
and Zhao [66]. The equations describe the movement of the aircraft center of mass, considered
as a mass-varying body, and are uncoupled from the rotational equations by assuming that
the aircraft rotational rates are small and the control surface deflections do not affect forces.

The scalar equations of motion are formulated based on the following general assumptions:

1. The Earth is considered plane, non-rotating and an approximate inertial reference
frame. The acceleration of gravity is constant and acting perpendicular to the sur-
face of the Earth. (Flat Earth model.)

2. The aircraft is a symmetric rigid body.
3. The flight takes place in a vertical plane.

4. The aircraft performs a symmetric flight (no sideslip) with all forces (thrust, aero-
dynamic force and weight) acting at the center of gravity and lying in the plane of
symmetry.

5. The wind velocity field is steady and contained in the flight plane.
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3.2. Equations of Motion

These assumptions are appropriate for subsonic, transport aircraft. Under all these assump-
tions the scalar equations of motion are (see Miele et al. [48] and Jackson et al. [39]):

. Tcose—D —mgsinvy

Vv — (Wy cosy + 1wy, sin )
m
. Tsine+ L —mg 1. . .
v = 7 —i—v(wxsmfy—whcos*y)
. m (3.39)
m = —cT
h=Vsiny + wy,
T =V cosvy+ w,
where
Owy, ow, .
Wy = au; (Vcosy+wg) + 52 (Vsiny + wp,)
[ Own (Vcosy+w )+8wh (Vsiny 4 wy,) A
wp = —— e) + ——

In these equations, V' is the aerodynamic speed; ~ is the aerodynamic path angle (or velocity
pitch angle); m is the aircraft mass; h is the altitude; z is the horizontal distance travelled,;
g is the gravity acceleration; w, and wj, are the horizontal and vertical wind velocities,
respectively; D is the aerodynamic drag; L is the aerodynamic lift; 7" is the thrust; € is the
thrust angle-of-attack; c is the specific fuel consumption; and ¢ is the time.

In addition to the previous assumptions, some supplementary hypotheses are considered
in the applications of this thesis:

1. The thrust is parallel to the aerodynamic velocity, that is, e = 0.
2. An altitude-dependent, horizontal wind is considered, that is, w, = 0 and w = w,(h).

3. The aerodynamic path angle is very small, that is, v < 1, which leads to sinvy =~
v,cosy ~ 1,sin? v ~ 0.

VA
4. The normal acceleration . is negligible.
9

Under these supplementary assumptions, the scalar equations of motion (3.39) become

. T—-D dw
V = —gy —V—
gy dhﬂy
==l (3.41)
h=Vxy
t=V +w

In these equations, the drag is a general known function D(V, m, h), which takes into account
the remaining equation of motion L = myg; the thrust T'(V, h) is given by T'(V, h) = 7Ty (V, h)
where m models the throttle setting and Ty, (V, h) is a general known function; and the specific
fuel consumption is also a general known function ¢(V, h). The aerodynamic and propulsion
models considered in this thesis, which provide D(V, m,h), T'(V,h) and ¢(V, h), are described
in Appendix B, along with the Earth model providing gravity and atmosphere models. In
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3. Formulation of the Optimal Control Problem

particular, a general aircraft performance model corresponding to a Boeing 767-300ER (a
typical twin-engine, wide-body, transport aircraft) is considered. In these equations, there is
an independent variable, t; four states, V', m, h and x; and two controls, v and 7, both of
which are bounded (Vmin < v < Ymaz and 0 < Tpin < 7 < Tpae = 1, respectively).

Additional constraints can be imposed to the aircraft motion in order to model the exis-
tence of different flight phases. A flight phase is defined by one additional flight constraint.
A change from one flight phase to another implies a switch in the structure of the dynamics,
constraints sets, etc., governing the evolution of the continuous variables (states and con-
trols). In particular, three types of flight phases are considered in this thesis: climb, cruise,
and unpowered descent. During climb, one has the additional constraint that 7 is a known
parameter m = m.; hence, in this phase there are four states, V', m, h and z, and one control,
~. During cruise, one has the additional constraint of flying at constant altitude (y = 0),
that is, the altitude is a parameter; thus, in this phase there are three states, V', m and z,
and one control, 7. During unpowered descent, one has the additional constraint that = = 0,
that is, the mass is a parameter; hence, in this phase there are three states, V', h and z, and
one control, .

Particularization of the equations of motion for each flight phase (by taking into account
the additional constraint) leads to different equations of motion and control definition. How-
ever, when changing from one flight phase to another the state remains continuous. These
characteristics indicate that the controlled aircraft motion in a trajectory composed of climb,
cruise and descent phases is a switched control system. Moreover, the optimization of the
controlled aircraft motion in a trajectory composed of a prescribed series of climb, cruise and
descent phases is a multiphase optimal control problem.

3.3 Computation of Optimal Aircraft Trajectories

In all the phases corresponding to a multiphase trajectory to be optimized, there is one control
variable which appears linearly in the equations of motion as well as in the performance indices
to be optimized (this is shown in the following chapters). As a consequence, the Hamiltonian
of the problem is also linear on the control variable, which leads to a singular optimal control
problem.

When addressing a flight phase, it is assumed that the initial and final points of the path
are given. In that case, the optimal path is expected to be of the bang-singular-bang type,
that is, formed by three arcs: one initial bang arc (with the control being at its maximum or
minimum value) to go from the initial point to the singular arc, the singular arc, and a final
bang arc (again, with the control being at its maximum or minimum value) to go from the
singular arc to the final point.

The remark regarding the dimension of the singular surface with n = 3 and £ = 1 applies
to all the problems to be solved, even to the optimization of a climb phase (in which n = 4)
because neither the dynamics function nor the performance index depend on x, and the
final value of x is not specified. Therefore, in order to solve the singular optimal control
problems considered in this thesis, an indirect numerical method is implemented, because
it has the great advantage of providing feedback control laws, that can be directly used to
guide the aircraft along the optimal path. This feedback control law and the expression of
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3.3. Computation of Optimal Aircraft Trajectories

the singular surface (in which singular arcs must lie) are obtained thanks to the application
of the necessary conditions for optimality (as seen in Section 3.1).

As already mentioned, optimizing global trajectories implies not only addressing each
flight phase, but also taking into account the interactions among them as well as looking
for a global objective. The aim for a global objective is achieved by considering a global
performance index, which is split into the contributions of each phase and particularized to
the additional constraint imposed at each phase. The interactions are taken into account
by appropriately imposing the transversality conditions and by enforcing state and adjoint
continuity at the switching points.

Therefore, an optimal global trajectory cannot be obtained by simply piecing individually
optimized phases together, not even when each phase is optimized with a performance index
suitable for a global objective, because the transversality conditions do not provide the same
results for the evolution of the adjoints. However, conclusions regarding the optimal control
and optimal path structure for a single-phase optimal trajectory also apply at each phase of
an optimal multiphase trajectory. As a consequence, besides trajectories involving a series of
flight phases, trajectories involving only one flight phase are also optimized. These are the
auxiliary problems analyzed in Chapters 4, 5 and 6.

In order to explain the numerical method developed in this thesis to compute optimal
aircraft trajectories, the general case in which the trajectory is composed of a predefined
sequence of phases is considered throughout this section. Note that the general case includes
applications in which the trajectory only contains one phase.

3.3.1 Indirect Numerical Method

Assuming the control law has already been obtained the optimization problem becomes a mul-
tipoint boundary-value problem for which a numerical resolution procedure must be defined.
Knowing the structure of the solution allows one to define an efficient numerical procedure
(see Maurer [44]). In this thesis, an indirect multiple shooting method is implemented, which
includes:

1. The definition of some unknown parameters.

2. A procedure to compute the candidates for optimal trajectory phases for given values
of that unknown parameters.

3. An iterative procedure to find the value of the unknown parameters that satisfy some
closing equations.

On one hand, the procedure to compute the candidates for optimal trajectory phases
includes, for each phase, integration of the state equations with either u = wy;, Or 4 = Umas
from the initial point (with known initial values) until the singular arc is reached (which
defines the first junction point), integration of the state equations with u = gy from the
first junction point until the second one is reached, and integration of the state equations
with either u = Umip OF U = Umqr from the second junction point until the final point
(with known final values) is reached (see Franco and Rivas [31]). This procedure may also
include integration of the adjoint equations along the trajectory phases in order to apply
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3. Formulation of the Optimal Control Problem

some necessary conditions for optimality (transversality conditions and continuity of the
adjoints at the switching instants). The computation of the adjoints also allows, once the
iterative method has converged, to check both, whether the assumed structure for the control
is correct, and whether the generalized Legendre-Clebsch condition for the singular arc to be
minimizing is satisfied.

To solve the IVP posed at any trajectory segment, the ODE systems are solved by using
MATLAB’s ode45 (see Shampine and Reichelt [63]), which is a method based on a pair of
explicit Runge-Kutta formulae, the Dormand-Prince pair. This method is suitable for non-
stiff problems with medium to quite stringent integration tolerances, and is therefore the
method of choice. The other codes for non-stiff problems in MATLAB’s ODE suite, ode28
and odel13, are not preferred in this thesis.

On the other hand, to find the values of the unknown parameters, a set of nonlinear equa-
tions must be solved, which includes those necessary conditions for optimality and terminal
constraints not explicitly imposed to obtain the candidates for optimal trajectory phases. In
this thesis, the systems of nonlinear equations are solved by using MATLARB’s fsolve, start-
ing the iteration with appropriate initial values selected specifically for each application. By
default, MATLAB’s fsolve applies a trust-region dogleg algorithm, whose implementation is
based on the dogleg method described by Powell [52].

In summary, this thesis proposes a methodology for aircraft trajectory optimization that
exploits the singular character of the problem. With this approach, assuming a prescribed
solution structure in terms of phase sequence and sequence of singular and bang arcs within
each phase, the problem of finding the optimal control is transformed into the problem of
finding the values of some unknowns such that the necessary conditions for optimality as well
as the initial and final conditions are satisfied, that is, the problem of solving a nonlinear
system of equations.
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4 Fuel-Optimal Climb

4.1 Introduction

For commercial transport aircraft, minimizing fuel consumption is of prime importance, both
economically and environmentally (because COy emissions are directly related to fuel burnt).
In the context of minimum-fuel global trajectories (from take-off to landing) the horizontal
distance travelled during the climb affects the cruise distance. Thus, to be able to compare
different climb trajectories which in general cover different horizontal distances, the fuel
consumption up to a common reference distance could be considered, for example by including
a horizontal segment at the final altitude (as done in Ref. [82]). However, in this chapter to
take this point into consideration, a different approach is followed: only the climb segment is
considered, and a performance index is defined in which fuel consumption is minimized, but
penalizing small values of the climb distance, so that the actual objective is to minimize the
contribution of the climb to the global-trajectory fuel consumption (as done in Ref. [49]).

In this chapter this fuel-optimal climb problem is addressed in the case of fixed engine
rating and in the presence of altitude-dependent horizontal winds, so that wind-shear effects
can be analyzed. The aircraft mass is not taken as constant but considered as a state variable,
and a general aircraft performance model is considered (general compressible drag polar, and
general thrust and specific fuel consumption models dependent on speed and altitude). The
two main objectives of this chapter are: 1) to optimize the climb in the presence of altitude-
dependent winds; and 2) to assess the optimality of the climb procedure, commonly used in
practice, defined by segments with constant calibrated air speed (CAS) and constant Mach
number (CAS/Mach climb).

The optimization analysis is made using the theory of singular optimal control, which has
the great advantage of providing feedback control laws (control variables as functions of the
state variables), that can be directly used to guide the aircraft along the optimal path. The
control variable is the aerodynamic path angle (). The initial and final speeds and altitudes
are given, so that the structure chosen for the optimal control is of the bang-singular-bang
type, with the optimal paths formed by a singular arc and two minimum-v arcs joining the
singular arc with the given initial and final points. In the analysis of the climb made in
this chapter the singular arc cannot be obtained in terms of the state variables alone, which
makes the numerical procedure to solve the singular optimal control problem more involved
than in another applications, such as maximum-range or minimum-cost cruise at constant
altitude and maximum-range unpowered descents.
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4. Fuel-Optimal Climb

Despite their theoretical interest, optimal solutions may not be flyable according to
present-day air traffic procedures and regulations. However, they represent best performance
and can be used either as references to design improved flight procedures or to assess the
optimality of flight procedures commonly used in practice, as for example the CAS/Mach
procedure. In Franco et al. [34], a CAS/Mach procedure, composed of four segments (ini-
tial and final horizontal accelerations, constant-CAS climb and constant-Mach climb), is
optimized using parametric optimization theory (see Fletcher [29]), with the same objective
of minimizing the contribution of the climb to the global-trajectory fuel consumption; the
optimization parameters are the climb CAS and Mach. In this chapter the optimality of
CAS/Mach climbs is analyzed by comparing results from Ref. [34] with the optimal ones.
The comparison of the results with the optimal ones shows that the integral performance of
the optimized CAS/Mach procedure is very close to optimal, that is, the fuel consumption,
the flight time, the horizontal distance travelled and, especially, the minimum performance
index are very close to the optimum values.

Results are presented for a model of a Boeing 767-300ER, for linear wind profiles, charac-
terized by two parameters: the average wind speed and the speed-profile slope or wind shear,
and for v,,,;, = 0 so that the initial and final arcs are horizontal segments, as in the optimized
CAS/Mach procedure, with which the optimum results are to be compared. The influence
of the two wind parameters and of the initial aircraft weight on the results is analyzed. The
strong effect of the wind shear is described.

The outline of the chapter is as follows: the problem is formulated in Section 4.2, including
equations of motion, performance index, application of the necessary conditions for optimality
and obtention of the singular surface and the singular control; the numerical procedure is
explained in Section 4.3; some results are presented in Section 4.4, both for the optimal and
the optimized CAS/Mach procedure, along with the comparison between the two procedures;
and finally, a summary of the main results and conclusions is included in Section 4.5.

4.2 Problem Formulation

In this section, the fuel-optimal climb problem is formulated. First, the optimal control
problem is stated by defining the equations of motion (along with the initial and final condi-
tions) and the performance index considered. Second, because an indirect numerical method
is considered for the resolution of the problem, the necessary conditions for optimality are
included. Then, the optimal trajectories are described, including the equations defining the
singular arc and the singular control (which is a feedback control law).

4.2.1 Equations of Motion

The equations of motion (3.41) particularized to a climb phase, in which one has the additional
constraint that 7 is a known parameter m = 7, reduce to

. T—-D dw
V= —gy—V—
97y dhﬂy
==l (4.1)
h=Vxy
=V 4w
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4.2. Problem Formulation

In this problem there are four states, V', m, h and z, and one control, ~v. The initial values of
speed, mass, altitude and distance (V;,m;, h;, x;), and the final values of speed and altitude
(Vy,hy) are given. The final value of mass (my), distance (z), and flight time (t;) are
unspecified.

4.2.2 Performance Index

In the study of minimum-fuel climbs in the context of the analysis of global trajectories (from
take off to landing), one must take into account that the horizontal distance travelled during
the climb affects the cruise distance and the associated fuel consumption. If one compares a
minimum-fuel climb trajectory with another one less steep, in which the horizontal distance
is larger, even though the fuel consumption during the climb in the former case is smaller,
to have a fair comparison of fuel consumption one should consider the extra fuel consumed
to cover the same distance as in the latter case. To take this point into consideration in the
analysis of climb performance, it is common in the literature (see for example Ref. [82]) to
define a procedure in which the climb to the given final altitude is followed by a horizontal
segment which ends when an arbitrarily given horizontal distance is travelled.

In this thesis a different approach is followed. Only the climb phase is considered, and
the fuel consumption during the climb is minimized but penalizing small values of the climb
distance. Hence the following performance index is considered

myg Ty
JimF—Kxf:—/ dm—K/ dz, (4.2)
m; 0

which can be also written as follows, using the equations of motion (4.1),
ty
J= / (T — K(V + w)] dt, (4.3)
0

where mp=m; — my is the fuel consumed during the climb, z; is the climb horizontal dis-
tance, and the positive parameter K is a cost factor that defines the tradeoff between fuel
consumption and horizontal distance. Obviously, K = 0 corresponds to the minimum-fuel
problem, and K > 0 leads to optimal climbs with larger horizontal distance, but at the
expense of a larger fuel consumption. One can see that this cost factor plays a role similar
to the one played by the well-known cost index used by airlines, which defines the tradeoff
between fuel consumption and flight time.

Although one could consider K just as a penalty factor and fix its value arbitrarily, in
this cahpter to choose a value for K the following physical interpretation given in Ref. [49] is
considered: if K is defined as an average fuel consumption per unit distance in cruise flight,
and if two different climbs with horizontal distances xy and xy, > xy are considered, then
K(xy, — ) can be seen as an estimation of the decrease in fuel consumption during the
cruise due to the reduction in cruise distance. Therefore, K is defined as follows

expression that must be evaluated at the start of the cruise phase, under some given reference
conditions.

The optimal climb problem reduces to minimize the performance index given by Eq. (4.3)
subject to the constraints defined by the equations of motion (4.1).
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4. Fuel-Optimal Climb

4.2.3 Necessary Conditions for Optimality

The Hamiltonian of this problem is given by
T—-D ,
H=cT+M\y T—gv—va — AL + M Vy+ (A — K) (V +w) (4.5)

where ()" denotes derivative with respect to h, and Ay, Ay, Ap, and A, are the adjoint variables.

Assuming that the normality and non-triviality conditions are satisfied, the necessary
conditions for optimality are summarized next (see Chapter 3):

1) The equations defining the adjoints:

Ay = 8H:_>\_V<3T aD—myw')—(l—)\m) (T&—}—Ca—T)—)\h’y

oV m \av v ov oV
+K— A,
i, = OH _\v(T-D 0D
om m m om (4.6)
\, — _OH __ v (or oD y e OT |
A= o T T (ah_ah_vmw")_(l_M)( ah“ah)
+w' (K —\;)
: oH

The last equation leads to constant A, .

2) The transversality conditions: First, because the final distance x is not specified, one
has
Ae(ty) =0 (4.7)

which leads to
A(t) =0 (4.8)

Second, because the final mass m(ts) is not specified,
Am(ty) =0 (4.9)
Third, because the final time is not specified,

Ht;) =0 (4.10)

3) The Hamiltonian minimization condition: For the control to be optimal it is necessary
that it globally minimize the Hamiltonian. The Hamiltonian is linear in 7, so that it can be

written as
H=H+ Sy (4.11)
with
H="(T-D)+(1—\pn)cT — K(V +w)
m (4.12)
S =MV = Ay(g+ V)
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4.2. Problem Formulation

where Eq. (4.8) has been taken into account, and S is the switching function. As a conse-
quence, this is a singular optimal control problem. The Hamiltonian minimization condition
for singular optimal control problems has a special form given by Eq. (3.18), which in this
case defines the optimal control as follows

Ymax if S <0
Y=19 Ymin if S>0 (4.13)
Vsing if S =0 over a finite time interval

where 7ing is the singular control (yet to be determined), which satisfies ymin < Veing < Ymaz-
Trajectory segments defined by vsing are singular arcs.

As indicated in Chapter 3, in singular optimal control problems there arise additional
conditions that must be satisfied in order both, for a singular arc to be minimizing, and
for the junctions between singular and nonsingular arcs to be optimal. These additional
necessary condition for optimality are analyzed below in Section 4.2.4.2.

Finally, because the Hamiltonian is not an explicit function of time (as the problem is
autonomous), the Hamiltonian constancy condition applies, and using Eq. (4.10) one gets

H(t)=0 (4.14)

along the optimal trajectory.

4.2.4 Optimal Trajectories

In general the optimal trajectory will be composed of singular arcs (with vsng) and arcs with
Ymin OT Ymaz, commonly referred to as bangs; whether one has Yin Or Ymae is defined by
the sign of the switching function S. In this problem the solution is expected to be of the
bang-singular-bang type, that is, a singular arc and two minimum/maximum-vy arcs joining
the singular arc with the given initial and final points. This bang-singular-bang structure
is suggested by the results in Miele [47], where it is shown that the minimum-fuel climb is
defined by a central path and two initial and final branches to join that path with the initial
and final conditions. Although the underlying aerodynamic and propulsive models might
affect the structure of the solution, for the smooth models considered in this thesis, the bang-
singular-bang structure is plausible, and hence it is the one analyzed in this chapter. Since
the initial and final speeds are given, there is a physical criterium to decide whether one has
Ymin O Ymaz, just by comparing those speeds with the speeds that correspond to the singular
arc for the initial and final altitudes and masses.

Although called optimal trajectories, they are in fact extremals, that is, trajectories that
satisfy the necessary conditions for optimality.

4.2.4.1 Singular Arc

The singular arc is defined by the following three equations

H=0, S=0, $=0 (4.15)
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4. Fuel-Optimal Climb

where the function S is given by

. Avg Vw 0T VoT Vw 0D VoD u
S = 1 -1+ —) =+ ————-—(T-D
m [(+ g)8V g Oh (1+ g)8V+g(9h g( )
Vw 10T 'V oT Vw' 1 0c V Oc
1— T+ )y _ 2 S P 4.16
+( Am) g [( + g )TBV gT8h+( + g )CBV gc@h] ( )

A
+ 2 (T - D) - gK
m

(note that the terms in the control variable « have cancelled out of this equation). Moreover,

because H = 0 one also has H = 0.

Hence, the three equations that define the singular arc (H = S = S = 0) lead to

%(T_D)+(1_Am)cT—(v+w)K:o
/
)\hV—)\vg(l—IrV;U):O
Avg Vw' 0T VoT Vw' 0D VD
VI R § A a5 .
m[(+g)8V g Oh (+g)8V+g(9h g( ) (4.17)
Vw' 10T V oT Vw' 1 0c 'V dc
1- T4+ 22 L g XYy 2% L
(1= Am)ge [( * g )TaV gT8h+( + g )08V gcah]
A
+2M (T - D) - gK =
m

which define the three adjoints Ay, A, and A, along the singular arc in terms of the state
variables, namely
)\V = fv(V, m, h)
Am = fm(V.,m, h) (4.18)
)\h = fh(V, m, h)

Contrary to other cases (such as cruise and descent problems), in this climb problem it
is not possible to obtain an expression for the singular arc in terms of the state variables
alone. However, in the case K = 0 it is possible, because the system of equations (4.17) is
homogeneous, and, therefore, to have a nontrivial solution one must have

LY\ (vor VoD _v(1ior 10D
g TV DoV g \Toh D on

C(EoN o (1Yo VRO
D g cdV = gcOh|

which defines a singular surface in the (V,m,h) space, namely f(V,m,h) = 0.

(4.19)

In the case of no wind (w = 0), even in the case of constant wind (v’ = 0), Eq. (4.19)
reduces to

VOr VDY V2 (10T 10D\ (T \\(, Vo V2oc\_y oo
TOV DoV g \T Oh D Oh D cdV = gcoh) ’

which is the same result obtained by Miele [47] for the cental pattern of his solution, even
though it is obtained under the assumption of constant aircraft mass.
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4.3. Numerical Procedure

4.2.4.2 Optimal Singular Control

Because the function S depends linearly on the control variable ~y (note that S does not
depend on 7), the order of the singular arc is € = 1. Let § = A(V, m, h)+ B(V,m, h)y, where

vy A (1= Aw) ge
A= 7 A (V,m,h) + m2VA2(V’m’ h) + — As(V,m, h)
Kg
—A4(V,m,h 4.21
i mV 4(Vom, ) (4.21)
Avg’ Ang (1 —Am) g%
B =—2Z5Bi(V,m, h) + —= By(V,m, h) + ~——5=—B3(V,m, h)

with known functions Ay, As, Az, A4, Bi, B2, and Bs (these functions are included in
Appendix C), and with the adjoints Ay, Ay, Ay given by Eqgs. (4.18). Therefore, because one
also has § = 0 (where S = S = 0), the singular control is given by

A(V,m, h)

sing — — 4.22
’7 g B(V, m7 h) ( )

The generalized Legendre-Clebsch condition for the optimality of the singular control,
08
Eq. (3.21), reduces in this case (¢ = 1 and u = v) to 5 > 0, which leads to
Y

B(V,m,h) <0 (4.23)

It can be shown numerically that B < 0 for all the cases considered in this Chapter, so that
oS
the strengthened generalized Legendre-Clebsch condition (_(3_ > 0) is satisfied.
8

The McDanell-Powers necessary condition for the optimality of junctions between singular
and nonsingular arcs (see Chapter 3) is shown to be satisfied, because the order of the singular
arc is & = 1 and the lowest-order time derivative of the control which is discontinuous at
the junction is ¢ = 0 (that is, the control itself is discontinuous at the junction). Moreover,
although the control variable is discontinuous at the junctions, the Weierstrass-Erdman corner
conditions are satisfied because the adjoint variables, the Hamiltonian and the switching
function are all continuous.

4.3 Numerical Procedure

In this section the numerical procedure used to solve the optimal climb is described. In Fig. 4.1
a sketch of the expected optimal path (bang-singular-bang) is presented (the particular case
of two Ymin arcs is depicted). Knowing the structure of the solution allows one to define an
efficient numerical procedure (see Maurer [44]), as follows.

The first bang starts with the initial values V;, m;, h; and z;. Let Ay; be the value of
the adjoint Ay at the beginning of the singular arc (point 1 in Fig. 4.1). If Ay were known,
the state equations (4.1) could be integrated until the singular arc were reached, that is until
Avi = fy(Vi,mq, hy) were satisfied. Also, if the altitude at the end of the singular arc hs
were known, the state equations could be integrated along the singular arc (from point 1 to
point 2 in Fig. 4.1), and then, using Eqgs. (4.18), Ay, A, and A, could be obtained at point
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4. Fuel-Optimal Climb

2. Finally, the state equations and the adjoint equations (4.6) could be integrated along the
second bang, which starts at the singular arc (point 2) and ends when the value V = V} is
reached. At the final point one has two additional conditions, h(ts) = hy and A, (tf) = 0,
which are to be used to define Ay;; and hg; this task is performed by means of an iterative
procedure.

Figure 4.1: Sketch of the optimal climb path.

The iterative procedure must be started with an initial guess for the two unknowns.
First, the initial guess for hs is h[zo] = hy, because the second bang arc has very small length.
Second, an initial guess for Ay; can be obtained by considering A,, 1 ~ 0 in H = 0, which
m [T — K (V + w)]

T—-D 1
expression can be approximated by evaluating the variables at ¢, so that the initial guess
N m [l — K (V + w)]
is Ayy = — T—D
considered in this chapter.

. As the state variables at 1 are unknown, the previous

gives Ay ~ —

These initial guesses lead to convergence in all cases

4.3.1 Iterative Procedure

The following iterative procedure is used in the numerical resolution.
Step 0. Guess values )\@1 and h[2n}.

Step 1. Integrate the state equations (4.1) with either v = 4pin Or ¥ = Ypae from the
initial point (with known initial values Vj, m;, h;, z;) until the singular arc is reached (point
1), that is, until V4, mq, hy and )\@1 satisfy )\@1 = fy(V1,m1, h1); at that point one also has
x1. The value Ypin OF Vinae is chosen depending on whether one has V; < V, or V; > V,,, where
V, is defined by )‘51]1 = fv(Va,my, h;), that is, the speed that corresponds in the singular arc
to the initial mass m; and altitude h;.

Step 2. Integrate the state equations (4.1) with v = 7y from point 1 (with known

]

starting values Vq, mq, hy, 1) until the altitude h[Qn is reached. At the end of the integration
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along the singular arc one also has V5, mo and x2; Av,2, A2 and Ap, o are obtained from Egs.
(4.18).

Step 3. Integrate the state equations (4.1) and the adjoint equations (4.6) with either v =
Ymin O ¥ = Ymaz from point 2 (with known starting values Vo, mao, h[Qn},ﬂjQ, AV,2; Am,2; Ab.2)
until the speed Vy is reached. The value v,in O Ymae is chosen depending on whether one
has Vy > V5 or V; < Va. At the final point one also obtains the final values hgfl] and )\[g] £
which in general are different from hy and 0, respectively; in such case, one must iterate on

the guessed values h[2n} and )\?}]1, which is done as described next.
The procedure defined by steps 1 to 3 defines a function g : R? — R?, (hg"],)\?}]l) —

<h£cn}, )‘[ﬁ,f)’ so that one searches for the values ho and Ay;; that satisfy g (ha, Av;1) = (hy,0).
If one defines the function G = g (ha, Av;1) — (hy,0) one searches for the zero of G (ha, Av,1).
The resolution of this system of equations is performed using MATLAB’s fsolve, starting
the iteration with the values h[20} and )\@7]1 defined above, and stopping when hgfn} = hy and
)\[ﬁ] = 0 to within some prescribed tolerance.

Once the problem is integrated, one has the final optimum values of the distance travelled
xy, the flight time ¢; and the aircraft mass m; which defines the fuel consumption mp =

m; —myg.

4.3.2 Control Structure Optimality

It still remains to check whether the assumed structure for the control (bang-singular-bang)
is correct. That is, one must check that S > 0 for v = v, and that S < 0 for v =
Ymaz- Lhis requires the computation of S along the extremal path just computed. Since
S =MV — Ay (g + Vw'), one must compute Ay and Aj.

Because of the resolution procedure previously explained, Ay and A, have already been
computed along the final bang. To compute them along the initial bang, one can integrate
backwards the state equations (4.1) and the adjoint equations (4.6) from point 1 (with known
starting values Vi, m1, hi, 21, Av,1, Am,1, Ap,1) until the initial point is reached. Note that Ay,
Am,1 and Ay ; are obtained from Eqs. (4.18).

The numerical results show that the control structure is correct in all cases presented in
Section 4.4.

4.4 Results

The aircraft model considered in this thesis for the numerical applications (corresponding to
a Boeing 767-300ER) is described in Appendix B, and the atmosphere model is the Interna-
tional Standard Atmosphere (ISA).

For the wind model, linear profiles are considered, with the absolute value of the wind
speed increasing with altitude (see Ref. [50]). The profiles are defined as follows
h—h

w(h) =w+ Aw = h (4.24)

where @ is the average wind, Aw is the wind-shear parameter and h = (h; + hy)/2 is the
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d
average altitude. For given values of h; and hy, Aw defines the wind shear d_z;:, and, in
particular, Aw = 0 defines a uniform wind profile. Note that the average wind speed w
satisfies

U 1 N h)dh 4.25
o= | ) (4.25)

and, also, since the wind profiles are linear, w is the wind speed at the average altitude, that
is, w = w(h). In the following, both tailwinds (TW) and headwinds (HW) are considered,
with the linear profiles defined as follows: for TW one has @w > 0 and Aw > 0, and for HW

w < 0 and Aw < 0.

Results are presented for the case of initial and final 7,;,-arcs, which require that the
initial and final speeds be sufficiently low and high, respectively. In particular, v, = 0 has
been considered so that the initial and final arcs are horizontal segments, as in the optimized
CAS/Mach procedure, with which the optimum results are compared.

The initial conditions (corresponding to a hypothetical departure fix) are C' AS; = 250 k¢,
h; = 10000 ft, and the final conditions (corresponding to the initial cruise conditions) are
My = 0.80, hy = 33000 ft. The average altitude is h = 21500 ft. The value of K follows
from Eq. (4.4) evaluated at the final climb conditions (start of the cruise) My and hy,
for Wy = 1670 kN, without wind, and using a quasi-steady cruise formulation; the value
obtained is K = 6.27 kg/km. The throttle setting has been fixed to 7 = 0.75, so that typical
performance is obtained for the range of parameters considered in the application.

To analyze the wind effects on the optimal trajectories, the initial aircraft weight is
W; = 1700 kN, the average wind ranges from —30 kt to 30 kt, and the absolute value of
the wind-shear parameter ranges from 0 to 20 kt. In the analysis of the effect of the initial
aircraft weight on the results, no wind is considered, and W; ranges from 1650 kN to 1750 kN.

Results from Franco et al. [34] corresponding to optimized CAS/Mach climbs for the same
performance index, aircraft and atmosphere models, wind model, as well as initial and final
conditions are reproduced here. For completeness, a detailed description of this CAS/Mach
climb procedure is included in Appendix D.

The outline of this section is as follows: the effects of the average wind speed (Section
4.4.1), the wind-shear parameter (Section 4.4.2), and the aircraft weight (Section 4.4.3) on
the optimal and optimized trajectories as well as on the optimal control and the aerodynamic
path angle are analyzed; then, the optimal and optimized climbs are compared in terms of
global variables, which are also analyzed in Section 6.4.2.

4.4.1 Effect of the Average Wind Speed

The optimal and optimized CAS/Mach speed profiles V(h) are represented in Fig. 4.2, for
different values of the average wind speed (w ranging from —30 kt to 30 kt) and for a wind-
shear parameter Aw = 0. The climb trajectories start and end with horizontal accelerations.
In the optimal climbs, these horizontal segments correspond to the ~,,;,-arcs, from the given
initial point to the singular arc, and from the singular arc to the given final point; and in the
optimized CAS/Mach climbs, they correspond to the initial and final horizontal accelerations
from the given initial speed to the optimum CAS,., and from the optimum M, to the final
speed. In the optimal climbs, along the singular arc the speed increases, reaches a maximum
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and then slowly decreases; and in the optimized CAS/Mach climbs, the speed increases during
the CAS segment and decreases during the Mach segment, as expected. Qualitatively one
has the same behavior in both cases. The influence of w is clear: as w increases, the speed
decreases, so that for TW one has speeds smaller than for HW.
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Figure 4.2: Speed profiles for w = —30, —20, —10, 0, 10, 20, 30 kt and Aw = 0. (a) Optimal
climbs, (b) Optimized CAS/Mach climbs.

The CAS and Mach profiles, CAS(h) and M (h), are represented in Figs. 4.3 and 4.4.
One can see that the first part of the optimal trajectory is not at constant CAS, but rather
the CAS decreases, and as a consequence the increase of the aerodynamic speed during the
constant-CAS segment is stronger than during the first part of the optimal trajectory (see
Fig. 4.2). On the other hand, during the last part of the optimal trajectory the variation
of the Mach number is small, so that the constant-Mach segment is somewhat close to the
optimal trajectory (closer than the constant-CAS segment).
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Figure 4.3: CAS profiles for w = —30, —20, —10, 0, 10, 20, 30 kt and Aw = 0. (a) Optimal
climbs, (b) Optimized CAS/Mach climbs.
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Figure 4.4: Mach-number profiles for w = —30, —20, —10, 0, 10, 20, 30 kt and Aw = 0. (a)
Optimal climbs, (b) Optimized CAS/Mach climbs.

The optimal control and the aerodynamic path angle in the CAS/Mach climbs ~(h) are
represented in Fig. 4.5 for the same values of w as before and Aw = 0. It is discontinuous: for
the optimal trajectories, one has the two arcs with v,,;, = 0 (hardly seen in the figure) and
the singular arc, and for the optimized CAS/Mach trajectories, one has the four constitutive
segments (the initial and final ones hardly seen). Note that in the CAS/Mach climbs there
is an increase in vy at the transition altitude between the segments with constant CAS and
constant Mach, as required to decelerate the aircraft. As one can see, the average wind speed
has very little influence both on the singular optimal control (except near the final bang) and
on the path angle of the optimized CAS/Mach climbs.
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Figure 4.5: Path-angle profiles for w = —30, —20, —10, 0, 10, 20, 30 kt and Aw = 0. (a)
Optimal climbs, (b) Optimized CAS/Mach climbs.
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Figure 4.6: Flight paths for w = —30, —20, —10, 0, 10, 20, 30 kt and Aw = 0. (a) Optimal
climbs, (b) Optimized CAS/Mach climbs.

The flight paths h(x) are represented in Fig. 4.6, where one can see that there is a
big qualitative agreement between the optimal and optimized CAS/Mach climbs. Note the
slope discontinuity at the transition altitude between the constant-CAS and constant-Mach
segments.

4.4.2 Effect of the Wind Shear

The optimal and optimized CAS/Mach speed profiles V' (h) are represented in Fig. 4.7, for
different values of the wind-shear parameter (JAw| ranging from 0 kt to 20 kt), and for two
values of the average wind (w = 30 kt TW and w = —30 kt HW).
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Figure 4.7: Speed profiles for TW (w = 30 kt, Aw = 0, 5, 10, 15, 20 kt) and HW (w = —30 k¢,
Aw =0, =5, —10, —15, —20 kt). (a) Optimal climbs, (b) Optimized CAS/Mach climbs.
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As before, the speed increases, reaches a maximum and then slowly decreases; in the
optimal trajectories the speed decrease is very weak for HW and quite strong for TW. The
influence of Aw on the profiles is relatively small, except with TW at higher altitudes, when
the speed decreases. The effect of Aw can be seen as a reinforcement of the average wind
effects: as Aw increases, the speed decreases (note that, for HW, when Aw increases |Aw|
decreases). The behavior of the CAS and Mach profiles in this case follows the same trends
already shown in Figs. 4.3 and 4.4, and are not represented for that reason.

The optimal control and the aerodynamic path angle in the CAS/Mach climbs ~(h) are
represented in Fig. 4.8 for the same values of w and Aw as before. They show the same
discontinuities as before. The wind shear has a small influence on ~, although somewhat
larger than the influence of the average wind speed.
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Figure 4.8: Path-angle profiles for TW (w = 30 kt, Aw = 0, 5, 10, 15, 20 kt) and HW
(w = —=30kt, Aw =0, =5, —10, —15, —20 kt). (a) Optimal climbs, (b) Optimized CAS/Mach
climbs.

The corresponding flight paths are shown in Fig. 4.9, where again there is a big qualitative
agreement between the optimal and optimized CAS/Mach climbs, except in the case of TW
at high altitudes.

4.4.3 Effect of the Initial Aircraft Weight

The optimal and optimized CAS/Mach speed profiles V' (h) are represented in Fig. 4.10, for
different values of the initial aircraft weight (WW; ranging from 1650 kN to 1750 kN) and for
no wind (w = 0 and Aw = 0). The optimal and optimized CAS/Mach profiles have the same
structure as before: the speed increases, reaches a maximum and then slowly decreases. The
influence of W; on the profiles is clear: as the initial aircraft weight increases, the speed along
the singular arc and the constant-CAS and constant-Mach segments slightly increases. As
before, the CAS and Mach profiles in this case are not represented.
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Figure 4.9: Flight paths for TW (w = 30 kt, Aw = 0, 5, 10, 15, 20 kt) and HW (w = —30 k¢,
Aw =0, =5, —10, —15, —20 kt). (a) Optimal climbs, (b) Optimized CAS/Mach climbs.
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Figure 4.10: Speed profiles for W; = 1650, 1675, 1700, 1725 and 1750 kN. (a) Optimal climbs,
(b) Optimized CAS/Mach climbs.

The optimal control and the aerodynamic path angle in the CAS/Mach climbs ~(h) are
represented in Fig. 4.11 for the same values of the initial aircraft weight as before and no
wind, showing the same discontinuities as before. The initial aircraft weight has a clear

influence on : as W; increases, the control slightly decreases.

The corresponding flight paths are shown in Fig. 4.12, where again there is a big qualita-
tive agreement between the optimal and optimized CAS/Mach climbs.
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Figure 4.11: Path-angle profiles for W; = 1650, 1675, 1700, 1725 and 1750 kN. (a) Optimal
climbs, (b) Optimized CAS/Mach climbs.
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Figure 4.12: Flight paths for W; = 1650, 1675, 1700, 1725 and 1750 kN. (a) Optimal climbs,
(b) Optimized CAS/Mach climbs.

4.4.4 Comparison and Analysis of Global Variables

Besides the comparison made between the flight profiles in the previous sections, now the
optimized CAS/Mach climbs are compared with the optimal climbs in terms of fuel consump-
tion, flight time and range, global variables which are also analyzed in this section, along with
the minimum performance index.

In Figs. 4.13, 4.14, 4.15 and 4.16, the fuel consumption, the flight time, the range and
the minimum performance index for both problems are represented, first, as functions of the
wind-shear parameter for two values of the average wind (w = 30 kt TW and w = —30 kt
HW) and W; = 1700 kN, and, second, as functions of the average wind for different values of
the initial aircraft weight (W; ranging from 1675 to 1750 kN) and Aw = 0. One can see that
the differences between both sets of results are very small in all cases (less than 88 kg in fuel
consumption, less than 1.1 min in flight time, less than 15 km in range and less than 3.1 kg
in performance index). Hence, it can be concluded that the performance of the CAS/Mach
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procedure is very close to optimal, provided that the optimum values of C'AS,. and M, are
used in the climb.

Next the global variables are analyzed. Some numerical values are given in Table 4.1.
The results show the following: 1) the stronger the wind shear for TW, the larger the fuel
consumption, the flight time, the range and the minimum performance index, although this
index is roughly constant; 2) the stronger the wind shear for HW (in absolute value), the
smaller the fuel consumption, the flight time, the range and the minimum performance index;
3) the higher the average wind speed, the higher the fuel consumption, the flight time and
the range, and the lower the minimum performance index; and 4) the heavier the aircraft,
the larger the fuel consumption, the flight time, the range and the minimum performance
index. These trends are now quantified (using the values given in Table 4.1).

Table 4.1: Flight variables for different winds and initial aircraft weights (optimum values)

W; = 1700 kN

w = —30kt (HW) w = 30kt (TW)
Aw = —20kt Aw = 0kt Aw = 0kt Aw = 20kt
mp [kg| 2650.6 2825.3 2992.9 3433.3
t ¢ [min] 19.06 20.63 23.18 28.12
x ¢ [km] 243.82 264.59 331.08 399.97
J [kg] 1121.8 1166.3 917.0 925.5

Aw = 0kt

w = —30kt (HW) w = 30kt (TW)
W; =1650kN W, =1750kN W, = 16560kN W, = 1750kN
mr [kg] 2576.7 3165.9 2735.8 3338.4
Ly [min] 18.70 23.43 21.20 25.99
xf [km] 237.97 302.83 299.57 375.25
J [kg] 1084.7 1267.2 857.5 985.6

The effect of the average wind speed on the fuel consumption, the flight time, the range
and the minimum performance index is quite large, especially the effect on xy. When w
increases from —30 kt to 30 kt, the increases in mp, ty and 7 (for Aw = 0 and W; = 1700 kN)
are 167.6 kg, 2.55 min and 66.49 km, respectively, that is 5.93%, 12.4%, 25.1%, and the
decrease in J is 249.3 kg, that is 21.4%.

The effect of the wind shear on mp, tf and x 7 in the case of TW (w = 30 kt) is quite large,
although its effect on J is quite small; when Aw increases from 0 to 20 kt, the increases in
mp, ty and x ¢ are 440.4 kg, 4.94 min and 68.89 km, respectively, that is 14.7%, 21.3%, 20.8%,
whereas the increase in J is of just 8.5 kg, that is 0.93%. In the case of HW (w = —30 kt) the
effect on mp, ty and z is not so large, and the effect on .J is also small although larger than
for TW; when Aw increases from —20 kt to 0, the increases in mp, ty and xy are 174.7 kg,
1.57 min and 20.77 km, respectively, that is 6.59%, 8.24%, 8.52%, whereas the increase in J
is of 44.5 kg, that is 3.97%.
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The effect of the initial aircraft weight, can be quantified as follows: for w = —30 kt HW,
when W; increases from 1650 kN to 1750 kN, the increases in mp, t¢, xy and J are 589.2 kg,
4.73 min, 64.86 km and 182.5 kg, respectively, that is 22.9%, 25.3%, 27.3%, 16.8%; and for
w = 30 kt TW, the increases are 602.6 kg, 4.79 min, 75.68 km and 128.1 kg, respectively,
that is 22.0%, 22.6%, 25.3%, 14.9%.

In summary, the influence of the wind profile and of the initial aircraft weight is in general
quite large.
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Figure 4.13: Fuel consumption: (a) vs. wind-shear parameter for TW (w = 30 kt) and HW
(w = —30 kt), for W; = 1700 kN; (b) vs. average wind speed for W; = 1650, 1675, 1700, 1725
and 1750 kN, for Aw = 0. Solid lines: optimal climbs. Dashed lines: optimized CAS/Mach
climbs.
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Figure 4.14: Flight time: (a) vs. wind-shear parameter for TW (w = 30 kt) and HW
(w = =30 kt), for W; = 1700 kN; (b) vs. average wind speed for W; = 1650, 1675, 1700,
1725 and 1750 kN, for Aw = 0. Solid lines: optimal climbs. Dashed lines: optimized
CAS/Mach climbs.
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Figure 4.15: Range: (a) vs. wind-shear parameter for TW (w = 30 kt) and HW (w = —30 kt),
for W; = 1700 kN; (b) vs. average wind speed for W; = 1650, 1675, 1700, 1725 and 1750 kN,
for Aw = 0. Solid lines: optimal climbs. Dashed lines: optimized CAS/Mach climbs.
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Figure 4.16: Minimum performance index: (a) vs. wind-shear parameter for TW (w = 30 kt)
and HW (w = —30 kt), for W; = 1700 kN; (b) vs. average wind speed for W; = 1650, 1675,
1700, 1725 and 1750 kN, for Aw = 0. Solid lines: optimal climbs. Dashed lines: optimized
CAS/Mach climbs.
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4.5 Summary

An analysis of fuel-optimal, fixed-rating climb in the presence of altitude-dependent winds
has been made, using the theory of singular optimal control. The climb has been optimized to
give minimum contribution to the global-trajectory fuel consumption, by means of penalizing
small values of the climb distance. The optimal control is of the bang-singular-bang type, and
the optimal paths are formed by a singular arc and two minimum/maximum-y arcs joining
the singular arc with the given initial and final points. Results have been presented for the
case of initial and final ~,,,;,-arcs, in the particular case of Y, = 0, which lead to two short
horizontal acceleration segments at the beginning and end of the optimal trajectory. This
analysis has been used to assess the optimality of a CAS/Mach climb procedure composed by
four segments (climbs with constant CAS and constant Mach, and initial and final horizontal
accelerations), which is defined and optimized in Ref. [34].

This study has been quite general, in the sense that it has been made for a general aircraft
model and a general horizontal wind profile, although results have been presented for linear
profiles. In the numerical applications, the linear wind profiles have been defined by two
parameters: the average wind and the wind shear. The influence of these two parameters on
the results and the influence of the initial aircraft weight have been analyzed.

The results have shown that as the average wind increases, the fuel consumption, the flight
time and the range increase, being the increase of range quite strong. The result that tailwinds
lead to values of fuel consumption and flight time larger than the values for headwinds is not
what one usually has, but note that in this chapter the objective has been to minimize the
contribution of the climb to the global-trajectory fuel consumption, and that is obtained by
flying large horizontal distances (with the corresponding increase in fuel consumption and
flight time). The performance index does decrease as the average wind increases, and, hence,
one has that tailwinds lead to fuel contributions to the global trajectory smaller than those
of headwinds, as one would expect.

Of particular importance in this chapter has been the analysis of the influence of the
wind shear on the climb performance. The influence of the wind shear on fuel consumption,
flight time and horizontal distance is quite large, especially in the case of tailwinds, influence
comparable to that of the average wind, and even larger in the cases of fuel consumption
and flight time; in these cases the wind shear reinforces the effects of the average wind. The
overall effect of the wind shear on the performance index is however not so large.

The comparison between both sets of results leads to the conclusion that the performance
of the optimized CAS/Mach procedure, in terms of global variables such as fuel consumption,
flight time and range, is very close to optimal, although the constant-CAS segment is not close
to optimal. Clearly, the optimum CAS value represents an average speed that approximates
very well, in global terms, the optimal speed law during the first part of the climb. Moreover,
the flight paths (altitude vs horizontal distance) also show a very good agreement. From
the operational point of view, one can conclude that the use of the CAS/Mach climb in
operational practice is justified by the very close comparison with the optimal results.
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5 Minimum-Fuel Cruise with Fixed
Arrival Time

5.1 Introduction

An important problem in air traffic management (ATM) is the design of aircraft trajectories
that meet certain arrival time constraints at given waypoints, for instance at the top of
descent, at the initial approach fix, or at the runway threshold (estimated time of arrival). The
final-time constraint may be defined, for example, by a flight delay imposed on the nominal
(preferred) trajectory. These are four-dimensional (4D) trajectories, which are a key element
in the trajectory-based-operations (TBO) concept proposed by SESAR and NextGen for the
future ATM system (for example, Bilimoria and Lee [11] analyze aircraft conflict resolution
with an arrival time constraint at a downstream waypoint). Also important in ATM is the
design of optimal flight procedures that lead to energy-efficient flights. In practice, the airlines
consider a cost index (CI) and define the direct operating cost (DOC) as the combined cost
of fuel consumed and flight time, weighted by the CI; their goal is to minimize the DOC.
When the flight time is fixed, the objective is to minimize fuel consumption.

In the analysis of aircraft trajectories with fixed flight time, wind effects are of primary
importance, because changes in wind speed modify the flight time (over a given range), and
therefore lead to changes in the speed profiles required to keep the final-time constraint. In
this chapter, an analysis of mimimum-fuel cruise with fixed arrival time, at constant altitude,
in the presence of horizontal winds, is presented. The problem is unsteady, with variable
aircraft mass.

The optimization analysis is made using the theory of singular optimal control, which has
the great advantage of providing feedback control laws (control variables as functions of the
state variables), that can be directly used to guide the aircraft along the optimal path. The
initial and final speeds are given, so that the structure chosen for the optimal control is bang-
singular-bang, with the optimal paths formed by a singular arc and two minimum /maximum-
thrust arcs joining the singular arc with the given initial and final points. The singular arc
in the case of no winds is studied in Franco et al. [30].

The main objective of this chapter is to present a quantitative analysis of the effects of
average horizontal winds on the optimal trajectories and control laws that lead to minimum
fuel consumption while meeting the final-time constraint. The influence of the initial aircraft
weight and the given cruise altitude on the optimal results is also analyzed. From the op-
erational point of view, two applications are studied: first, the fuel penalties associated to
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5. Minimum-Fuel Cruise with Fixed Arrival Time

mismodeled winds are estimated, that is, the cost of meeting the given time of arrival under
mismodeled winds is quantified; and, second, the cost of flight delays imposed on a nominal
optimal path is quantified as well.

The optimal trajectories define speed laws in which the Mach number varies along the
singular arc. These optimal solutions, which are a reference for optimal performance, are used
to assess the optimality of the standard constant-Mach cruise procedure commonly used in
practice (according to air traffic regulations). The comparison with optimal results shows
that the performance of the constant-Mach cruise is very close to optimal.

Results are presented for a model of a Boeing 767-300ER, with a general aircraft per-
formance model (general compressible drag polar, and general thrust and specific fuel con-
sumption models dependent on speed and altitude), and for constant winds, which represent
average winds along the cruise.

The outline of the chapter is as follows: the problem is formulated in Section 5.2, including
optimal control problem statement, application of the necessary conditions for optimality
and obtention of the singular surface and the singular control; the numerical procedure is
explained in Section 5.3; some results are presented in Section 5.4, both for the optimal and
the constant-Mach problems, along with the comparison between the two procedures; and
finally, a summary of the main results and conclusions is included in Section 5.5.

5.2 Problem Formulation

In this section, the problem of minimum-fuel cruise with fixed arrival time is formulated.
First, the optimal control problem is stated by defining the equations of motion (along with
the initial and final conditions) and the performance index considered. Second, because an
indirect numerical method is considered for the resolution of the problem, the necessary
conditions for optimality are included. Then, the optimal trajectories are describe, including
equations defining the singular arc (a uniparametric family of surfaces in the state space) and
the singular control (which is a feedback control law).

5.2.1 Optimal Control Problem

The equations of motion (3.41) particularized to a cruise phase, in which one has the addi-
tional constraint of flying at constant altitude (y = 0), reduces to

. T—-D
V:

m
=V +w

In this problem there are three states, ¥V, m and x, and one control, w. The initial values
of speed, mass and distance (Vj,m;,x;), and the final values of speed and distance (Vy,xzy)
are given. The final value of aircraft mass (my) is unspecified, whereas the flight time (¢5) is
fixed. The altitude A, which plays the role of a parameter, is a given constant.

The objective is to minimize the fuel consumption for a given range, that is, to minimize
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5.2. Problem Formulation

the following performance index

ty
J:/ crdt (5.2)
0

The optimal cruise problem considered reduces to minimize the performance index given
by Eq. (5.2) subject to the constraints defined by the equations of motion (5.1).

5.2.2 Necessary Conditions for Optimality

The Hamiltonian of this problem is given by
Av
HZC?TTM+—(7TTM—D)—)\mCT{'TM—F)\x(V—i—w) (5.3)
m

where Ay, A\, and )\, are the adjoint variables. Note that H is linear in the control variable,
so that it can be written as
H=H+ St (5.4)

where H and the switching function S are given by

H= —AV% + A (V +w)
(5.5)
S = |:>\—V - ()\m - 1)C:| TM

As a consequence, this is a singular optimal control problem.

Assuming that the normality and non-triviality conditions are satisfied, the necessary
conditions for optimality are summarized next (see Chapter 3):

1) The equations defining the adjoints:

: OH Ay 0D Ay dTy de
= -+ Y O = e m = 4 (A — 1) T

AVE gy T T gy [m (A )C}de + O = 1) g7

: H Ty —D D

i, = OH _Avmlu—-D , 0D (5.6)
om m m om

: OH

do= 25 =0
ox

Note that the last equation leads to constant A,.
2) The transversality condition (associated to my being unspecified):

3) The Hamiltonian minimization condition: For the control to be optimal it is necessary
that it globally minimize the Hamiltonian. The Hamiltonian minimization condition for
singular optimal control problems has a special form given by Eq. (3.18), which in this case
defines the optimal control as follows

Tomax AL S <0
T =< Tmin If S >0 (5.8)
Tsing if S =0 over a finite time interval
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5. Minimum-Fuel Cruise with Fixed Arrival Time

where 7ng is the singular control (yet to be determined), which satisfies i < Tging <
Tmaz- 1rajectory segments defined by 7,4 are singular arcs.

As indicated in Chapter 3, in singular optimal control problems there arise additional
conditions that must be satisfied in order both, for a singular arc to be minimizing, and
for the junctions between singular and nonsingular arcs to be optimal. These additional
necessary condition for optimality are analyzed below in Section 5.2.3.2.

Finally, because the Hamiltonian is not an explicit function of time (as the problem is
autonomous), the Hamiltonian constancy condition applies

Ht)=H (5.9)

where the constant H is unknown.

5.2.3 Optimal Trajectories

In general the optimal trajectory will be composed of singular arcs (with 7g,4) and arcs
with Tmin OF Tmer; Whether one has i, O Tmar 18 defined by the sign of the switching
function S. In this problem the solution is expected to be of the bang-singular-bang type,
as suggested by the results obtained by Bilimoria and Cliff [10], where, using a reduced-
order model with different time scales, the trajectory is decomposed into 3 parts: an initial
transient, the cruise-dash arc and a terminal transient. Although the underlying aerodynamic
and propulsive models might affect the structure of the solution, for the smooth models
considered in this thesis, the bang-singular-bang structure is plausible, and hence it is the
one analyzed in this chapter. Since the initial and final speeds are fixed, there is a physical
criterium to decide whether one has m,,;;, Or T, just by comparing those speeds with the
speeds that correspond to the singular arc.

Although called optimal trajectories, they are in fact extremals, that is, trajectories that
satisfy the necessary conditions for optimality.

5.2.3.1 Singular Arc

The singular arc is defined by the following three equations
H=H, §=0, S=0 (5.10)

where the function S is given by

S =— [)\—V—(Am—l)c] DdTy
m m dV (5.11)
)\V oD oD de TM '

(note that the terms in the control variable 7 have cancelled out of this equation).
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Hence, the three equations that define the singular arc (5.10) lead to

D _
“AZv—F+ NV +w)=H
m

A

A —1)e=0 (5.12)
v (0D oD de
" <W+CD_mCa_m> ~ A+ O =)D =0

The singular arc is obtained after eliminating the adjoints, Ay and A, from these equations.
One obtains the following expression

1 1 de oD oD
D _ - _— = .1
<_Q v ¢ ch) cm 0 (5.13)

"o T Mom

which is a family of singular arcs defined by the family parameter

| =

This family can be written as f(m,V,2) = 0. This is the same family obtained by Franco
et al. [30] in the case of no wind, but for a different family parameter. The value of {2
is determined by imposing the final time to be ¢; (the numerical procedure is described in
Section 5.3). Once 2 is determined, Eq. (5.13) defines a singular line in the (V,m) space.

5.2.3.2 Optimal Singular Control

Because the function S depends linearly on the control variable 7 (note that S does not
depend on ), the order of the singular arc is € = 1. Let S = A(V,m) + B(V,m), therefore,
because one also has S = 0 (where S = S = 0), the singular control is obtained from
A(V,m) 4+ B(V,m)m = 0; one gets the following

D A1 (V,m)
o= 14 Ve 2 1
Trsing TM < CBl(V’, m)) (5 5)

where A;(V,m) and By (V, m) are given by

9D , O°D  m oD oD oD
Vo) =mgT <l l - G (b gy - mey)
de 1 d%c oD V de
2
= — - — - 1
Bi(V,m) DV(a +3dv+ch2>+26V <Vc+ ch) (5.16)
dc\ 0D 0°D 0°D 9*D
_ 2 e Wt i 2 2y,
mV <c +3dv> B +V(3V2 +mc V8m2 2vcm8m8V

This expression for the optimal singular control depends implicitly on the parameter of the
family of singular arcs, because V' and m are related by the singular arc equation (5.13) which
includes the dependence on 2.

The generalized Legendre-Clebsch condition for the optimality of the singular control,

Eq. (3.21), reduces in this case ({ =1 and u = 7) to —g—s > 0, which leads to
T

B(V,m) <0 (5.17)
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5. Minimum-Fuel Cruise with Fixed Arrival Time

It can be shown numerically that the strengthened generalized Legendre-Clebsch condition

08
(_8_ > 0) is satisfied for all the cases considered in this Chapter.
T

The McDanell-Powers necessary condition for the optimality of junctions between singular
and nonsingular arcs (see Chapter 3) is shown to be satisfied, because the order of the singular
arc is & = 1 and the lowest-order time derivative of the control which is discontinuous at
the junction is ¢ = 0 (that is, the control itself is discontinuous at the junction). Moreover,
although the control variable is discontinuous at the junctions, the Weierstrass-Erdman corner
conditions are satisfied because the adjoint variables, the Hamiltonian and the switching
function are all continuous.

5.3 Numerical Procedure

The definition of an efficient numerical procedure to obtain the optimal path is facilitated by
the knowledge of the structure of the solution (see Maurer [44]). In this case the expected
optimal path is of the bang-singular-bang type, as sketched in Fig. 5.1. Based on this type
of path, a procedure is defined to obtain the optimal trajectory.

Figure 5.1: Sketch of the optimal cruise path.

The first bang starts with the initial values V;, m;, and x;. Let z15 be the distance
traveled along the singular arc (between points 1 and 2 in Fig. 5.1). If {2 were known,
the state equations (5.1) could be integrated until the singular arc were reached, that is
until f(mq, V1, 2) = 0 were satisfied. Also, if x19 were known, the state equations could be
integrated along the singular arc until the distance x[f;] is traveled (from point 1 to point 2
in Fig. 5.1). Finally, the state equations could be integrated along the second bang, which
starts at the singular arc (point 2) and ends when the value V' = V} is reached. At the final
point one has two additional conditions, x = z; and ¢ = ¢y, which are to be used to define

{2 and x19; this task is performed by means of an iterative procedure.
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5.3. Numerical Procedure

The iterative procedure must be started with an initial guess for the two unknowns. First,
the initial guess for 2 is 2% = w, because for ty unspecified one has H = 0. Second, an
(0]

initial guess for z19 is xj5 = xy, because the two bang arcs have very small length. These
initial guesses lead to convergence in all cases considered in this chapter.

5.3.1 Iterative Procedure

The following iterative procedure is used in the numerical resolution.

Step 0. Guess values 2" and x[{;}

Step 1. Integrate the state equations (5.1) with either @ = 7, Or T = Mg, from the
initial point (with known initial values V;, m;, ;) until the singular arc is reached (point 1),
that is, until V; and m; satisfy f(m, V1, Q[”]) = 0; at that point one also has x1. The value
Tmin O Tmaz 18 chosen depending on whether one has V; > Vj or V; < V|, where V} is defined
by f(m;, Vo, Q["}) = 0, that is, the speed that corresponds in the singular arc to the initial
mass m; (point 0 in Fig. 5.1).

Step 2. Integrate the state equations (5.1) with 7 = 7,4 from point 1 (with known initial
values Vi, my,x1) until the distance x[{;} is traveled. At the end of the integration along the
singular arc one has Vo, mo, and xs (point 2).

Step 3. Integrate the state equations (5.1) with either m = i, Or T = e, from point
2 (with known initial values Va,mo,x2) until V- = V;. The value 75, O Tpmaq is chosen
depending on whether one has V; < V or Vy > V5. At the final point one obtains the final

values ngn} and tgc"], which in general are different from x; and #;; in such a case, one must
iterate on the guessed values x[{;} and 20 which is done as described next.

The procedure defined by steps 1 to 3 defines a function g : R? — R?, (a:[lg], Q)
(xgc"],tgfn}), so that one searches for the values x12 and {2 that satisfy g(x12,2) = (zy,t¢).
If one defines the function G = g(x12,2) — (xf,t¢), one searches for the zero of G. The
resolution of G(z12, 2) = 0 is performed using MATLAB’s fsolve, starting the iteration with

[0] [n] [n]

the values (z7,, Q[o}) defined above, and stopping when z°;" = xy and t,." = t; to within

some prescribed tolerance.

Once the problem is integrated, one has the final optimal value of aircraft mass, my,
which defines the minimum fuel consumption mpg = m; — my, for the given values of range
and flight time. Note that this procedure for the computation of the optimal path does not
require the integration of the adjoint equations.

5.3.2 Control Structure Optimality

It still remains to check whether the assumed structure for the control (bang-singular-bang) is

correct. That is, one must check that S > 0 for m = m,,,;, and that S < 0 for m = m,4,. This

A
requires the computation of S along the extremal path. Since S = [—V — (Am — 1)0] Ty,
m

one must compute Ay and A,,.

First, to obtain Ay and A, along the final bang it is necessary to solve a two-point
boundary value problem defined by the corresponding adjoint equations (5.6), in which A,
is a parametric unknown, with boundary conditions H(ts) = H, S(t2) = 0 and A\, (tf) = 0.
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5. Minimum-Fuel Cruise with Fixed Arrival Time

These boundary conditions can be rewritten in terms of Ay and A,,, as follows

Az
Ay (t2) = m22 (Vo + 02)
Az 5.18)
= 1 Q ( °
Am(t2) +CZD2(V2+ )
)\m(tf) =0

where (2 has been already computed. The resolution of this two-point boundary value prob-
lem is performed using MATLAB’s bup/c, starting the iteration with the parameter A, and
the constant distributions of Ay and A, that satisfy Eqs. (5.18), namely

(Am)o =0
0 c2 Do
o= 2 1
(P = 22 (5.19)
(MW)? = —cama

Once the final bang is integrated, Ay and A, at any point of the singular arc follow from
H =%H and S = 0, that is,
Az
Av(t) = mT(V +£2)
\ (5.20)
m(t) =1+ =% 02
An(t) =1+ —5(V +02)

Finally, Ay and A, along the initial bang are obtained integrating backwards the first two
Egs. (5.6) from point 1 to point 4, with initial conditions Ay (t1), A (t1) defined by Eqgs.
(5.20).

The numerical results show that the control structure is correct in all cases presented in
Section 5.4.

5.4 Results

The aerodynamic model considered in this thesis for the numerical applications (correspond-
ing to a Boeing 767-300ER) is described in Appendix B, and the atmosphere model is the
International Standard Atmosphere.

Results are presented for a cruise flight defined by a range xy = 8000 km, and by initial
and final speeds V; = 240 m/s and V; = 180 m/s, corresponding to hypothetical conditions at
the end of the climb and the start of the descent (the same values in all cases studied below).
Different values of headwind (HW) and tailwind (TW) are considered, corresponding to
negative and positive values of w respectively, ranging from —15 to +15 m/s; the case of no
wind (NW) is included. The flight times range from 8.67 to 10.50 h. The nominal initial
aircraft weight is taken to be W; = 1600 kN. In the analysis of the effects of W, results are
presented for a reference case defined by w = 0, ty = 9.5 h and h = 10000 m. The nominal
cruise altitude is taken to be h = 10000 m. In the analysis of the effects of h, results are
presented now for a reference case defined by w =0, t; = 9.5 h and W; = 1600 kN.

In the analysis of the effects of cruise altitude on the optimal results, one can take into
account the altitude dependence of the wind. For example, in Ref. [21] a linear wind profile

26
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is considered. The theoretical analysis made in this chapter is general and valid for any wind
profile, so that results could be presented for any choice of profile. For simplicity, a constant
profile is considered (as in Ref. [81]).

The outline of this section is as follows: the optimal trajectories are analyzed in Section
5.4.1 and the minimum fuel consumption in Section 5.4.2; then, two applications are consid-
ered: the cost of mismodeled winds is studied in Section 5.4.3, and the cost of flight delays in
Section 5.4.4; and, finally, the optimality of the constant-Mach cruise procedure is assessed
in Section 5.4.5. Besides the analysis of the wind effects on the optimal results, which is the
main objective of this chapter, as already indicated, the effects of the initial aircraft weight
and of the cruise altitude are analyzed as well.

5.4.1 Optimal Trajectories and Optimal Control

The optimal trajectories (Mach number as a function of flown distance) are shown in Fig. 5.2a
for ty = 9.5 h, h = 10000 m, W; = 1600 kN and different values of wind speed (ranging
from —15 to 15 m/s). The corresponding optimal controls are shown in Fig. 5.2b. The
structure is minimum-thrust arc, singular arc, minimum-thrust arc, in all cases shown except
for w = —10,—15 m/s, in which cases the optimal trajectory start with a maximum-thrust
arc, required to accelerate the aircraft to the high initial singular-arc speed.

0.851 1y
0.87| 0.87|
__ 075 \\-\ 0.6 \
- o
v =
= w &
0.7y 0.4
0.65 0.2
0.6 : : : 0 : : :
0 2000 4000 6000 8000 0 2000 4000 6000 8000

(a) (b)

Figure 5.2: Optimal trajectories and optimal control for w = —15, —10, —5, 0, 5, 10, 15 m/s
(ty =9.5 h, h =10000 m, W; = 1600 kN). (a) Optimal trajectories, (b) Optimal control.

The results show that, to meet the given arrival time, the optimal Mach number decreases
as the wind speed increases (the optimal cruise speed is larger for HWs than for TWs, as
expected); for example, for a HW w = —10 m/s the optimal Mach number is M =~ 0.815,
whereas for a TW w = 10 m/s it ranges from 0.756 to 0.732. In general, the optimal
trajectory calls for a variation of the Mach number along the cruise (for a given ¢¢, one has
the largest variations of M along the singular arc for the strongest TWs). However, for a
given flight time, there is always a range of wind speeds for which the optimal trajectory
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along the singular arc is M ~ const; for example, as shown in Fig. 5.2a, for £y = 9.5 h and
w = —5 m/s one has M = 0.798. The singular control decreases along the singular arc, and
its variation with the wind speed is weak.

To analyze the influence of the arrival time, the optimal trajectories for HW w = —10 m/s
and TW w = 10 m/s, and different arrival times (ranging from 9.17 to 10 h) are shown in
Fig. 5.3 for h = 10000 m and W; = 1600 kN. The corresponding optimal controls are shown

in Fig. 5.4.
0.9; 0.9;
HW ™
0.85 \\ 0.85f
\
0.8 : 0.8l;
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ty
0.65 0.65
06" : : : 06"
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x [km]
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(b)
Figure 5.3: Optimal trajectories for t; = 9.17, 9.33, 9.5, 9.67, 9.83, 10 h (h = 10000 m,
W; = 1600 kN). (a) HW w = =10 m/s, (b) TW w = 10 m/s.
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Figure 5.4: Optimal control for t; = 9.17, 9.33, 9.5, 9.67, 9.83, 10 h (h = 10000 m, W; =
1600 kN). (a) HW w = —10 m/s, (b) TW w = 10 m/s.
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As expected, the optimal Mach number decreases as the arrival time increases; and, for
the same arrival time, the optimal Mach number is larger in the case of HW. The results
also show that the variation of the singular control with the flight time is very small in
the case of TW, and somewhat larger in the case of HW. In fact, the results show that for
large speeds (say, Mach numbers larger than 0.8) the dependence of the singular control
on speed is large, increasing as M increases, whereas for smaller speeds the dependence is
very week (this behavior can be seen also in Fig. 5.2b). The reason for this behavior is
that the variation of = with M is very shallow at low M (say 0.7< M <0.8) and increases
strongly for M >0.8, following the same trend as the aerodynamic drag; note that, as a first
approximation, m ~ D /Ty (as given by Eq. 5.15), and that the variation of Ty, with M at
high M is not as strong as the variation of D.

Now, to study the influence of the initial aircraft weight, the optimal trajectories for
different values of W; (ranging from 1500 to 1700 kN) are shown in Fig. 5.5a, for t; = 9.5 h,
w = 0 and h = 10000 m. The corresponding optimal controls are shown in Fig. 5.5b. In
this problem in which the final distance and final time are fixed, the speed is so constrained
that the influence of the initial aircraft weight on the speed profiles is very small (almost
negligible). However, the singular control increases as W increases.
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Figure 5.5: Optimal trajectories and optimal control for W; = 1500, 1550, 1600, 1650,
1700 kN (ty = 9.5 h, w = 0, h = 10000 m). (a) Optimal trajectories, (b) Optimal control.

Finally, to analyze the influence of the cruise altitude, the optimal trajectories for different
values of h (h = 9000, 10000, 11000 m) are shown in Fig. 5.6a, for ty = 9.5 h, w = 0 and
W; = 1600 kN. The corresponding optimal controls are shown in Fig. 5.6b. One can see that,
as the cruise altitude increases, the optimal Mach number increases (result that is related to
the corresponding decrease of the speed of sound). The results also show that the singular
control increases significantly as the cruise altitude increases.
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0 2000 4000 6000 8000 0 2000 4000 6000 8000

(a) (b)

Figure 5.6: Optimal trajectories and optimal control for A = 9000, 10000, 11000 m (t; = 9.5 h,
w = 0, W; = 1600 kN). (a) Optimal trajectories, (b) Optimal control.

5.4.2 Minimum Fuel Consumption

The minimum fuel consumption as a function of the flight time is shown in Fig. 5.7 for
h = 10000 m, W; = 1600 kN and different wind speeds (ranging from —15 to 15 m/s).
For concretion, some numerical values are given in Table 5.1. As expected, HWs require
larger values of fuel consumption, as compared to TWs. This effect can be quantified now,
for example, for a flight time of 9.5 h, in the nominal case of no wind the minimum fuel
consumption is 39838 kg (see Table 5.1), whereas for a HW w = —10 m/s it is 43029 kg and
for a TW w = 10 m/s it is 38265 kg; hence, one has a difference of 4764 kg between HW and
TW, that is an increase of about 12%.

4510

mrp [kg]

‘8.5 9 95 10 10.5 11 11.5
ty [b]

Figure 5.7: Minimum fuel consumption vs flight time for w = —15, —10, —5, 0, 5, 10, 15 m/s
(h = 10000 m, W; = 1600 kN).
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Table 5.1: Minimum fuel consumption for different flight times and wind speeds (h =
10000 m, W; = 1600 kN).

mp kg

wm/s] —15 —10 -5 0 5 10 15

ty[h]
8.67 - - - - - - 38727
8.83 - - - - - 39438 37955
9.00 - - - - 40217 38669 37613
9.17 - - - 41068 39430 38318 37520
9.33 - - 42001 40243 39058 38212 37587
9.50 - 43029 41115 39838 38933 38265 37761
9.67 44172 42056 40664 39684 38966 38424 -
9.83 43080 41543 40473 39693 39108 - -
10.00 42486 41305 40452 39813 - - -
10.17 42189 41246 40546 - - - -
10.33 42084 41309 - - - - -
10.50 42110 - - - - - -

All curves in Fig. 5.7 present a minimum. These minima are the solutions of the minimum-
fuel problem with free final time, that corresponds to H = 0, i.e., £2 = w (in this case one
has H(t) = 0, because there is an additional necessary condition for optimality that states
that H(ts) = 0, see Ref. [15]). The numerical values are given in Table 5.2 (where mp is the
minimum fuel and t¢o the corresponding optimal flight time). As before, HWs give larger
values of minimum fuel consumption, and larger values of flight time, as compared to TWs.
For example, for this case of free final time, the difference in minimum fuel consumption
between a HW w = —10 m/s and a TW w = 10 m/s is 3034 kg, and the corresponding
difference in flight time is 48 min.

Table 5.2: Minimum fuel consumption and optimal flight time for the free-final-time problem,
for different wind speeds (h = 10000 m, W; = 1600 kN).

w [m/s] —15 —10 -5 0 5 10 15

mpolkg] 42080 41246 40444 39672 38928 38212 37520

tro [h] 10.38  10.15 9.94 9.74 9.54 9.35 9.17

The effect of the initial aircraft weight on the minimum fuel consumption is shown in
Fig. 5.8, for different pairs of flight time and wind speeds. In particular three cases are
considered: TW (ty = 9.17 h and w = 10 m/s), NW (¢t; = 9.5 h and w = 0), and HW
(tf =10 h and w = —10 m/s). Even though the influence of the initial aircraft weight on
the speed profiles is almost negligible (as shown in Fig. 5.5a), for the fuel consumption the
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5. Minimum-Fuel Cruise with Fixed Arrival Time

behaviour is different: one has larger fuel consumption for larger values of W;, as expected.
The minimum fuel consumption increases almost linearly when W; increases: going from
38781 to 44040 kg for HW, from 37399 to 42489 kg for NW, and from 35942 to 40894 kg for
TW, when W; increases from 1500 to 1700 kN, that is, increases of 5259, 5090, and 4952 kg,
respectively (13.56%, 13.61%, and 13.77%); the results give an approximately constant rate
of increase of about 2500 kg for each 100 kN.

4
a6 %0

mpg [kg]

3.6

34 ‘ ‘ ‘ ‘
15 1.55 1.6 1.65 17

Wi [N] X 106

Figure 5.8: Minimum fuel consumption vs initial aircraft weight, for TW (t; = 9.17 h and
w = 10 m/s), NW (t; = 9.5 h and w = 0) and HW (¢; = 10 h and w = —10 m/s).
(h = 10000 m.)
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Figure 5.9: Minimum fuel consumption vs altitude, for TW (t; = 9.17 h and w = 10 m/s),
NW (ty =9.5 h and w = 0), and HW (ty =10 h and w = —10 m/s). (W; = 1600 kN.)
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5.4. Results

Now, the effect of the cruise altitude on the minimum fuel consumption is shown in
Fig. 5.9, for the same pairs of flight time and wind speeds as before: TW (t; = 9.17 h and
w =10 m/s), NW (¢t = 9.5 h and w = 0), and HW (ty = 10 h and w = —10 m/s). In
each case there is a best altitude that provides lowest minimum fuel consumption. Hence,
appropriate selection of cruise altitude implies a reduction in minimum fuel consumption
during cruise. For example, in the three cases represented in Fig. 5.9 (HW, NW, TW),
cruising at h = 11000 m instead of at the best altitudes (9784, 9721 and 9705 m) gives
increases in minimum fuel consumption of 996, 1141 and 1064 kg, respectively (2.4%, 2.8%,
and 2.7%).

5.4.3 Cost of Mismodeled Winds

In the presence of mismodeled winds, the optimal results are useful in giving an estimation of
the fuel penalty that one might have, that is, an estimation of the cost of meeting the given
time of arrival under mismodeled winds. The fuel penalty is defined as the difference in fuel
consumption between the cases corresponding to the real wind w + dw and the mismodeled
wind w, that is, Amp,, = mp(w + dw) — mp(w). The case of negative values of dw is
considered, which means HWs stronger (larger in modulus) than expected, and TWs smaller
than expected. In the following, the nominal path is that of minimum fuel consumption in
the case of free final time: namely, mpg, with flight time ¢ (see Table 5.2); this flight time
is to be maintained under the mismodeled wind. The fuel penalty is represented in Fig. 5.10
as a function of dw for different values of wind speed. One has that mismodeled HWs have
fuel penalties larger than mismodeled TWs for the same wind speed error (it can be as large
as Amp,, ~ 2400 kg for w = —15 m/s and 0w = —10 m/s); this same result is obtained in
Ref. [81], which is explained by the compressible drag increase at the high Mach numbers
required to meet the arrival-time constraint in the case of strong HWs.

25001
2000}

15001

AmF’w [kg]

10001

500

0 -8 % 4 -2 0
dw [m/s]

Figure 5.10: Increase in minimum fuel consumption vs mismodeled wind for w = —15, —10,

—5,0, 5,10, 15 m/s (h = 10000 m, W; = 1600 kN).
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5. Minimum-Fuel Cruise with Fixed Arrival Time

5.4.4 Cost of Flight Delays

The optimal results are also useful in quantifying the cost of a flight delay At; > 0 imposed
on a nominal optimal path with a nominal average wind. Again, the nominal path is that of
minimum fuel consumption in the case of free final time: namely, m g, with flight time 2.
Note that mpo and t ¢ depend on the wind speed (see Table 5.2). The cost of the flight delay
is defined as the difference in minimum fuel consumption between the cases corresponding to
the path for t; =t + Aty and the nominal path, that is, Amp; = mp(tyo+ Aty) — mpo.
The delay cost is represented in Fig. 5.11 as a function of At; for diferent values of wind
speed. Obviously, the larger the delay, the larger the cost; for instance, the cost of absorbing
a flight delay of 30 minutes in the presence of a TW w = 15 m/s is around 500 kg. Moreover,
the cost of absorbing a given flight delay is larger in the presence of TWs than in the presence
of HWs (the cost increases as w increases); this same result is obtained in Ref. [21], where
it is explained by the larger percentage of the nominal flight time that the flight delay Aty
represents in the case of tailwinds (because in this case the flight times are smaller).

500

0 5 10 15 20 25 30
Aty [min]

Figure 5.11: Increase in minimum fuel consumption vs flight delay for w = —15, —10, —5, 0,
5, 10, 15 m/s (h = 10000 m, W; = 1600 kN).

5.4.5 Optimality of Constant-Mach Cruise

In Section 5.4.1 it is shown that the optimal solutions define variable-Mach cruise procedures.
Even though these procedures may not be flyable (according to common air traffic control
practice), they are a reference for optimum performance, and, therefore, can be used to
analyze the optimality of standard flight procedures.

In this section, the optimality of the constant-Mach cruise procedure is analyzed, pro-
cedure which is described next. Let M, be the cruise Mach, hence the cruise speed is
Ve = Mca(h) where a(h) is the speed of sound at the given altitude h. The procedure
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considered is formed by three segments, all of them at constant altitude: 1) an initial ac-
celeration/deceleration segment from the given initial speed V; to the cruise speed V., with
maximum cruise/idle engine rating, 2) a main cruise segment with constant speed V,, and 3)
a final acceleration/deceleration segment from V. to the given final speed V, with maximum
cruise/idle engine rating.

For the initial segment, the equations of motion (5.1) are integrated with initial conditions
Vi, m; and x; until V' = V_; at the end of the segment one has m; and xy. For the cruise
segment, because the speed is constant, the equations of motion (5.1) reduce to

m = —c(Ve, h)D(Ve,m, h)

i = Vi + w(h) (5.21)

which are integrated with initial conditions m; and x; until the distance x5 is flown; at the
end of the segment one has my and z5. For the final segment, Eqs. (5.1) are integrated with
initial conditions V., mg and z3 until V' = V}; at the end of the segment one has the final
values of aircraft mass, horizontal distance and time, mg, 3 and t3.

The flight distance and the flight time are in general different from z; and ¢;. Hence,

one must iterate on the two free variables V. and x12 until x3 = xy and t3 = ¢ to within

T
some prescribed tolerance. The iteration is started with the initial guess V. = t_f — w and
f

x12 = xy. Finally, the fuel consumption is mp = m; — ms.

The comparison between the optimal and the constant-Mach procedure in the case TW
w=15m/s, ty = 9.5 h, h = 10000 m and W; = 1600 kN, is represented in Fig. 5.12, where
the initial and final decelerations are not completely represented in order to better compare
both trajectories. The constant Mach number obtained in this case is M, = 0.7311, and the
corresponding fuel consumption is (mp). = 37784 kg, value that one can see is very close to
the optimal value mp = 37761 kg.

0.75¢
0.74¢

0.73r

0.71¢

0.7

0 2000 4000 6000 8000
x [km]

Figure 5.12: Optimal path (solid line) and constant-Mach path (dashed line) for w = 15 m/s,
t;=9.5h, h = 10000 m, and W; = 1600 kN.
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5. Minimum-Fuel Cruise with Fixed Arrival Time

The constant Mach number M, is represented in Fig. 5.13 as a function of the wind speed
for different values of flight time (ranging from 9.17 to 10 h). One has that M, decreases as
w increases and as ty increases. The influence of the initial aircraft weight on M, is found
to be negligible, as distance flown and flight time are given. And the influence of the cruise
altitude is shown in Fig. 5.14, where M, is represented as a function of cruise altitude for
the same pairs of flight time and wind speeds as above: TW (t; = 9.17 h and w = 10 m/s),
NW (ty = 9.5 h and w = 0), and HW (¢; = 10 h and w = —10 m/s); one has that M,
increases as h increases (result that is related to the corresponding decrease of the speed of
sound). Note that if the initial and final decelerations are not considered, M, is given by the

which gives a very good approximation, because the effect of those decelerations in the global

following relation

problem is small.

0.9r

0.85¢

0.71

0.65 ‘ ‘ ‘ ‘ ‘ ‘
=15 -10 -5 0 5 10 15
w [m/s]

Figure 5.13: M, vs wind speed for ty = 9.17, 9.33, 9.5, 9.67, 9.83, 10 h (h = 10000 m,
W; = 1600 kN).

The difference in fuel consumption Ampg, = (mp). — mp between the optimal and the
constant-Mach procedures is represented in Fig. 5.15 as a function of wind speed, for different
values of flight time (ranging from 9.17 to 10 h). For concretion, some numerical values are
given in Table 5.3. One can see that the differences are always very small (almost negligible
in some cases, clearly in those in which the optimal M is almost constant). Hence, one can
conclude that the performance of the constant-Mach cruise is always very close to optimal,
giving fuel consumptions larger than the optimum by less than 25 kg in all cases considered.
As already indicated, for a given t; (or for a given w) there is always a range of values of w
(or tf) in which the optimal trajectory is M ~ const; in these cases the difference between
both procedures is negligible (Amp. < 1 kg). The same trends are obtained for different
values of W; and h.
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0.9 0.95 1 1.05 11
h [m] x 10°

Figure 5.14: M, vs altitude for TW (t; = 9.17 h and w = 10 m/s, dash-dotted line), NW
(tf = 9.5 h and w = 0, solid line) and HW (ty = 10 h and w = —10 m/s dashed line).
(Wi = 1600 kN.)
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Figure 5.15: Increase in minimum fuel consumption vs wind speed for ¢; = 9.17, 9.33, 9.5,
9.67, 9.83, 10 h (h = 10000 m, W; = 1600 kN).
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5. Minimum-Fuel Cruise with Fixed Arrival Time

Table 5.3: Increase in minimum fuel consumption for different flight times and wind speeds
(h = 10000 m, W; = 1600 kN).

AmEc [kg]

wlm/s] -15 —-10 -5 0 5 10 15

ty [h]
8.67 - - - - - - 1.7
8.83 - - - - - 1.9 0.2
9.00 - - - - 2.1 0.3 2.3
9.17 - - - 2.6 0.3 2.2 7.3
9.33 - - 3.2 0.3 1.9 7.1 145
9.50 - 4.1 0.5 1.5 6.5 14.1 234
9.67 5.3 0.9 1.1 5.8 134 229 -
9.83 1.5 0.7 49 124 220 - -
10.00 0.5 3.9 11.1 20.7 - - -
10.17 27 95 19.1 - - - -
10.33 7.8 17.1 - - - - -
10.50 14.8 - - - - - -

5.5 Summary

The problem of minimum-fuel cruise with fixed arrival time have been analyzed, for constant-
altitude flight. The analysis of this four-dimensional problem has been made using the theory
of singular optimal control. The structure of the optimal control considered has been bang-
singular-bang, which is what one expects in this case in which the initial and final values
of the speed are given; the optimal trajectories then are formed by a singular arc and two
minimum /maximum-thrust arcs that join the singular arc with the given initial and final
points. This study has been quite general, in the sense that it has been made for a general
aircraft model and a general horizontal wind profile, although results have been presented
for constant profiles.

The main objective of this chapter has been the analysis of the effects of average horizontal
winds on the optimal problem, both qualitative and quantitatively. The analysis has given,
first, the optimal cruise speed and the optimal control required to meet the given flight
time in the presence of a given average wind, and second, the corresponding minimum fuel
consumption. The influence of the initial aircraft weight and the given cruise altitude on the
optimal results has been analyzed as well.

From the operational point of view, if one considers a reference scenario with a given
flight time and a nominal average wind, the analysis has allowed to quantify, first, the change
in cruise speed required in the case of having a different wind, and second, the fuel penalty
associated, that is, the cost of meeting the given flight time under the mismodeled wind. The
results have shown that mismodeled headwinds have fuel penalties larger than mismodeled
tailwinds for the same wind speed error.

As a second application, the cost of absorbing a flight delay imposed on a nominal optimal
path with a nominal average wind has been also quantified: it has been shown that, for a
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5.5. Summary

given delay, the cost in the presence of tailwinds is larger than in the presence of headwinds.
Although results have been presented for uniform wind profiles, the analysis has been general,
and any other altitude-dependent wind profile could be considered as well.

Despite their theoretical interest, the optimal variable-Mach solutions may not be flyable
(according to common air traffic control practice), however, they are a reference for optimal
performance and, hence, have been used to assess the optimality of the standard procedure
of cruising at constant speed. The results have shown that the performance of this standard
constant-Mach procedure is very close to optimal for all values of flight time, wind, aircraft
weight and altitude considered in the analysis (in fact, it has been shown that in some cases
optimality is obtained by flying at Mach approximately constant).
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6 Maximum-Range Unpowered
Descent

6.1 Introduction

As indicated in Chapter 2, in the optimization of the descent flight of commercial aircraft, the
objective is to descend and decelerate continuously, so that the economical and environmental
impacts are minimized, keeping thrust as low as possible for as long as possible.

In this chapter, an optimization analysis of the descent flight in the presence of altitude-
dependent winds, in the case of zero thrust, is presented. The objective is to maximize
the aircraft range, so that the unpowered descent can be initiated as far in advance as
possible. In this problem the initial and final values of altitude and speed are given; the initial
values correspond to cruise conditions, and the final values correspond to the conditions at a
hypothetical approach fix within the terminal maneuvering area (TMA). Horizontal altitude-
dependent winds are considered, with the acceleration term included in the formulation, so
that wind-shear effects can be analyzed. A general compressible drag polar is considered, and
no limiting constraint on altitude is imposed. The two main objectives of this chapter are:
1) to optimize the descent in the presence of altitude-dependent winds; and 2) to assess the
optimality of a descent procedure, commonly used in practice (a constant-calibrated-airspeed
descent).

The analysis is made using the theory of singular optimal control, which has the great
advantage of providing feedback control laws (control variables as functions of the state
variables), that can be directly used to guide the aircraft along the optimal path. The
control variable is the aerodynamic path angle (7). The initial and final speeds and altitudes
are given, so that the structure chosen for the optimal control is of the bang-singular-bang
type, with the optimal paths formed by a singular arc and two minimum-v arcs joining the
singular arc with the given initial and final points. For typical cruise and TMA conditions
and for ¥4, > 0, the initial and final bang arcs correspond to two short climbs, as reported
by Rivas et al. [57] in the case of no wind, which is in accordance with the results presented
by Bryson et al. [14], and Shapira and Ben-Asher [64, 65].

Despite their theoretical interest, optimal solutions may not be flyable according to
present-day air traffic procedures and regulations. However, they represent best performance
and can be used either as references to design improved flight procedures or to assess the opti-
mality of flight procedures commonly used in practice, as for example the case of idle-thrust,
constant-calibrated-airspeed (CAS) descents considered by Oseguera and Williams [50]. In

71



6. Maximum-Range Unpowered Descent

Franco et al. [32], a constant-CAS unpowered-descent procedure, composed of three segments
(initial and final horizontal decelerations, and descent with constant CAS), is optimized to
give maximum range in the presence of altitude-dependent winds using parametric optimiza-
tion theory (see Fletcher [29]); the optimization parameter is the descent CAS. In this chapter
the optimality of constant-CAS unpowered-descents is analyzed by comparing results from
Ref. [32] with the optimal ones. The comparison shows that the optimized constant-CAS
descent is very close to optimal for all wind profiles considered (this result was shown to hold
in the case of no wind by Rivas et al. [57]).

Results are presented for a model of a Boeing 767-300ER, for linear wind profiles (char-
acterized by two parameters, namely, the average wind speed and the profile slope or wind
shear), and for 7,4, = 0 (so that the initial and final short climbs reported by Rivas et al [57]
become horizontal flight segments, as in the constant-CAS procedure with which the optimal
results are compared). The influence of the two wind parameters and of the initial aircraft
weight on the results is analyzed. For the wind profiles considered, it is shown that the wind
shear has a clear effect on the optimal performance, modifying the maximum range in about
4%: increasing for tailwinds and decreasing for headwinds.

The outline of the chapter is as follows: in Section 6.2 the optimal problem is formulated,
including equations of motion, performance index, application of the necessary conditions
for optimality and obtention of the singular surface and the singular control; the numerical
procedure to solve the optimal problem is described in Section 6.3; some results are presented
in Section 6.4, both for the optimal and the optimized constant-CAS problems, along with
the comparison between the two procedures and the analysis of the effect of the aircraft
weight on the results; and finally, a summary of the main results and conclusions is included
in Section 6.5.

6.2 Problem Formulation

In this section, the problem of maximum-range unpowered descent is formulated. First, the
optimal control problem is stated by defining the equations of motion (along with the initial
and final conditions) and the performance index considered. Second, because an indirect
numerical method is considered for the resolution of the problem, the necessary conditions
for optimality are included. Then, the optimal trajectories are describe, including equations
defining the singular arc (a surface in the state space) and the singular control (which is a
feedback control law).

6.2.1 Optimal Control Problem

The equations of motion (3.41) particularized to a descent phase, in which one has the
additional constraint that = = 0, reduces to

. D dw
Ve-Zgy-vY
m gy dh’y

=V 4w
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In this problem there are three states, V, h and z, and one control, v. The initial values of
speed, altitude and distance (V;, h;, ;), and the final values of speed and altitude (V, hy) are
given. The final value of distance (xf) and the flight time (¢¢) are unspecified. The aircraft
mass m, which plays the role of a parameter, is a given constant.

The objective in this problem is to maximize range, that is, to minimize the following

performance index

ty
J= —/0 (V 4+ w) dt (6.2)

The optimal descent problem considered reduces to minimize the performance index given
by Eq. (6.2) subject to the constraints defined by the equations of motion (6.1).

6.2.2 Necessary Conditions for Optimality

The Hamiltonian of this problem is given by
D /
H=—-V+w)—- Ay R+97+Vw7 + MV + A (V +w) (6.3)

where ()" denotes derivative with respect to h; and Ay, Aj and A\, are the adjoint variables.

Assuming that the normality and non-triviality conditions are satisfied, the necessary
conditions for optimality are summarized next (see Chapter 3):

1) The equations defining the adjoints:

: OH 190D

)\V oV + )\v <m oV +w ’7) )\h"}/ )\x

. H 1 0D

Ah = ——%h =w + Ay (E—gh + Vw”w) — A’ (6.4)
‘ OH

Ao =%, =0

The last equation leads to constant \,.

2) The transversality conditions: First, because the final distance x ¢ is not specified, one
has

which leads, together with the last Eq. (6.4), to

Az(t) =0 (6.6)
Second, because the final time is not specified, one has

H(ty) =0 (6.7)

3) The Hamiltonian minimization condition: For the control to be optimal, it is necessary
that it globally minimize the Hamiltonian. The Hamiltonian is linear in 7, so that it can be
written as

H=H+ Sy (6.8)

73



6. Maximum-Range Unpowered Descent

with
_ D
H=- <V+w+)\v—>
m

S =MV = Aylg+ V')

(6.9)

where equation (6.6) has been taken into account. S is the switching function. As a conse-
quence, this is a singular optimal control problem. The Hamiltonian minimization condition
for singular optimal control problems has a special form given by equation (3.18), which in
this case defines the optimal control as follows

Ymaz i S <0
V= Ymin i 5>0 (6.10)
Ysing if S =0 over a finite time interval

where 7y;p,4 is the singular control (yet to be determined), which satisfies Yynin < Ysing < Ymaz-
The trajectory segments defined by 74 are singular arcs.

As indicated in Chapter 3, in singular optimal control problems there arise additional
conditions that must be satisfied in order both, for a singular arc to be minimizing, and
for the junctions between singular and nonsingular arcs to be optimal. These additional
necessary condition for optimality are analyzed below in Section 6.2.3.2.

Finally, because the Hamiltonian is not an explicit function of time (as the problem is
autonomous), the Hamiltonian constancy condition applies, and using Eq. (6.7) one gets

H(t) =0 (6.11)

along the optimal trajectory.

6.2.3 Optimal Trajectories

In general the optimal trajectory will be composed of singular arcs (with vs,g) and arcs with
Yimin O Vmaz; Whether one has Yin OF Vmasz 18 defined by the sign of the switching function
S. In this problem the solution is expected to be of the bang-singular-bang type, as suggested
by the results obtained by Miele [47], Bryson et al. [14], and Shapira and Ben-Asher 64, 65],
where it is shown that the maximum-range glide is defined by a central path and two initial
and final branches joining that path with the initial and final conditions. Although the
underlying aerodynamic and propulsive models might affect the structure of the solution, for
the smooth models considered in this thesis, the bang-singular-bang structure is plausible,
and hence it is the one analyzed in this chapter. Since the initial and final speeds are given,
there is a physical criterium to decide whether one has v.,in Or Vinae, just by comparing those
speeds with the speeds that correspond to the singular arc for the initial and final altitudes.

Although called optimal trajectories, they are in fact extremals, that is, trajectories that
satisfy the necessary conditions for optimality.

6.2.3.1 Singular Arc

The singular arc is defined by the following three equations

H=0, S=0, $=0 (6.12)
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where the function S is given by

. M [.,0D oD oD D

(note that the terms in the control variable « have cancelled out of this equation). Moreover,
because H = 0 one also has H = 0.

Hence, the three equations (6.12) that define the singular arc lead to

D
V4+w+Ay— =0
m

AV = Av(g+ V') =0 (6.14)
x [ oD oD oD D
m | on ey TV <D_Vav>}”"m_g_o

The singular arc is obtained after eliminating the adjoints, Ay and Ap, from these equations.
One obtains the following expression

oD » 0D w D
Vor ~rVlgy —9y 57 =0

5 (6.15)

which defines a singular line in the (V, h) space, namely f(V,h) = 0.

Miele [47] obtains, for the case of no wind (w = 0), the same expression in equation (6.15)
for the central pattern of his solution. Note that, for w = 0, if one considers the specific energy
E=gh+ %VQ, and makes a change of variables in the problem (V,h) — (V| E), then one has

oD, 9D VoD

— == -— 6.16
oV'e 0V g 0Oh ( )
so that one can write the expression for the singular arc, given in equation (6.15), as
oD
—| =0 6.17
oV 'E (6.17)

as shown by Rivas et al. [57], which is the result obtained by Bryson et al. [14] for the central
part of the maximum-range glide path.

6.2.3.2 Optimal Singular Control

Because the function S depends linearly on the control variable v, the order of the singular
arcis € = 1. Let S = A(V,m, h) + B(V,m, h)~, where

=

~

=
!

= Al(V, h) + wAg(V, h) + w/Ag(V, h)

/ AV " (6'18)
= Bl(V’ h) + U)B2(V’ h) +w BB(V’ h) + (w ) B4(V’ h) +w B5(V, h)

=

<

=
|
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with
Az(V,h) = —% [g—l‘; +(V+ w)%]
i = (o o o 58 )
BV = [% (D B Vg_l;) v <88—li? - 293;2 * QVaa;ghﬂ
Bs(V,h) = V;wvzg_g
Therefore, because one also has S = 0 (where S = S = 0), the singular control is given by
e (6.20)

Vsing = _B(V, h)
The generalized Legendre-Clebsch condition for the optimality of the singular control,

oS
equation (3.21), reduces in this case (£ =1 and u = ) to 5 > 0, which leads to
Y

B(V,h) <0 (6.21)
It can be shown numerically that B < 0 for all the cases considered in this chapter, so that

oS
the strengthened generalized Legendre-Clebsch condition (_(9_ > 0) is satisfied.
Y

For the case of no wind (w = 0), the singular control is given by

A1 (V,h)
R 7 .22
Tsing B1(V,h) (6.22)

and the generalized Legendre-Clebsch condition by
Bi(V,h) <0 (6.23)
and, in terms of the variables (V| E), it reduces to

9°D
W‘E >0 (6.24)

as shown by Rivas et al. [57].

The McDanell-Powers necessary condition for the optimality of junctions between singular
and nonsingular arcs (see Chapter 3) is shown to be satisfied, because the order of the singular
arc is & = 1 and the lowest-order time derivative of the control which is discontinuous at
the junction is ¢ = 0 (that is, the control itself is discontinuous at the junction). Moreover,
although the control variable is discontinuous at the junctions, the Weierstrass-Erdman corner
conditions are satisfied because the adjoint variables, the Hamiltonian and the switching
function are all continuous.
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6.3 Numerical Procedure

In this section the numerical procedure used to solve the optimal problem is described. In Fig.
6.1 a sketch of the expected optimal path (bang-singular-bang) is presented (the particular
case of tWo Ypnqq arcs is depicted). Knowing the structure of the solution allows one to define
an efficient numerical procedure (see Maurer [44]).

Figure 6.1: Sketch of the optimal descent path.

The following procedure is used in the numerical resolution:

Step 1. Integrate the state equations (6.1) with either v = Y, OF v = Ve from the
initial point (with known initial values V;, h;, and ;) until the singular arc is reached (point
1 in Fig. 6.1), that is, until V4 and h; satisfy the singular-arc equation f(Vi,hy) = 0; at
that point one also has x1. The value ¥,in O Vimae is chosen depending on whether one has
Vi < Vg or V; > V,, where V, is defined by f(V,, h;) = 0, that is, the speed that corresponds
in the singular arc to the initial altitude h; (point @ in Fig. 6.1).

Step 2. Integrate backwards the state equations (6.1) with either v = Ynin OF ¥ = Yimaz
from the final point (with known starting values V¢, hy and an arbitrary value of x, which
can be taken as zero), until the singular arc is reached (point 2 in Fig. 6.1), that is, until
Vo and hgy satisfy f(Va, hy) = 0; at that point one also has the distance travelled Az. The
value Ymin OF Ymaz 18 chosen depending on whether one has V; > Vj or V;y <V}, where V; is
defined by f(V4,hy) = 0, that is, the speed that corresponds in the singular arc to the final
altitude hy (point b in Fig. 6.1).

Step 3. Integrate the state equations (6.1) with v = 7gpng from point 1 (with known
starting values Vi, hq, and x1) until the altitude hs is reached. At the end of the integration
along the singular arc one also has 3.

Once the problem is integrated, one has the final optimum value of distance x; = z9+ A,
that is, the maximum range. Note that this procedure for the computation of the optimal
path does not require the integration of the adjoint equations.
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6. Maximum-Range Unpowered Descent

6.3.1 Control Structure Optimality

It still remains to check whether the assumed structure for the control (bang-singular-bang)
is correct. That is, one must check that S > 0 for v = v, and that S < 0 for v =
Ymaz- Lhis requires the computation of S along the extremal path just computed. Since
S =MV = Ay(g + V'), one must compute Ay and \y. From Egs. (6.3), (6.6), and (6.11)

one has
)\_V B MVy = (V 4+ w)

= 6.25
m D4+ m(g+ Vuw')y (6.25)
and therefore, from Eqgs. (6.4), and (6.6)
. MVy—(V 4+w) (0D
/ "
_ oD 2
A =w + D+mig+ Vu)y \ ok +mVuw"y (6.26)

Along the first and final bangs, A, is obtained integrating Eq. (6.26) backwards from
point 1 and forward from point 2, respectively, starting with the known values, obtained
from the first and the second Egs. (6.14)

B w(h1)] g+ Viw'(h)
Apy = —m [1 T ] D(V4, hy) (6.27)
Ay = =m0 [1 + w(hz)] g + Vow'(h) |

hy — Vs D(V2ah2)

Once )\, is obtained, Ay follows from Eq. (6.25).

The numerical results show that the control structure is correct in all cases presented in
Section 6.4.

6.4 Results

The aerodynamic model considered in this thesis for the numerical applications (correspond-
ing to a Boeing 767-300ER) is described in Appendix B, and the atmosphere model is the
International Standard Atmosphere.

For the wind model, linear profiles are considered, with the absolute value of the wind
speed increasing with altitude (see Ref. [50]). The profiles are defined as follows
h—h
h; —h

w(h) =0+ Aw (6.28)

where @ is the average wind, Aw is the wind-shear parameter and h = (h; + hy)/2 is the

average altitude. For given values of h; and hy, Aw defines the wind shear d_z;:, and, in
particular, Aw = 0 defines a uniform wind profile. Note that the average wind speed w
satisfies

_ 1 /’”
W= w(h)dh (6.29)
hi — g Jy, (h)

and, also, since the wind profiles are linear, w is the wind speed at the average altitude, that
is, w = w(h). In the following, both tailwinds (TW) and headwinds (HW) are considered,
with the linear profiles defined as follows: for TW one has w > 0 and Aw > 0, and for HW

w < 0 and Aw < 0.
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6.4. Results

In this section, besides the state and control variables, the ground path angle v, is also
analyzed, which is defined (for v,~, < 1) by

Vv

Y =Y e (6.30)

Results are presented for the case of initial and final ~,,4.-arcs, which require that the
initial and final speeds be sufficiently high and low respectively, as it is the case in common
practice. In particular, v,,q. = 0 is considered, so that the initial and final arcs are horizontal
decelerations, as in the optimized constant-CAS procedure, with which the optimum results
are to be compared. (Results for 4,4, > 0 are reported in Ref. [57] in the case of no wind.)

The initial conditions (corresponding to the final cruise conditions) are M; = 0.8, h; =
33000 ft, and the final conditions (corresponding to a hypothetical approach fix within the
TMA) are CAS; = 210 kt, hy = 9000 ft. The average altitude is then h = 21000 ft. To
analyze the wind effects on the optimal trajectories, the average wind ranges from —30 kt to
30 kt, and the wind-shear parameter ranges from 0 to 20 kt. In the analysis of the effect of
the aircraft weight on the results, W ranges from 1100 kN to 1300 kN.

Results from Franco et al. [32] corresponding to optimized constant-CAS descents for
the same performance index, aircraft and atmosphere models, wind model, as well as initial
and final conditions are reproduced here. For completeness, a detailed description of this
constant-CAS descent procedure is included in Appendix D.

The outline of this section is as follows. The effects of the average wind speed and the
wind-shear parameter on the optimal trajectories as well as on the optimal control is first
analyzed in Section 6.4.1; then, the optimal and optimized descent are compared in terms
of global variables, which are also analyzed in Section 6.4.2; finally, the effects of the initial
aircraft weight on the optimal and optimized results are studied in Section 6.4.3.

6.4.1 Optimal Trajectories and Optimal Control

In this section, the effects of the wind profile on the optimal trajectories are analyzed; first,
the effect of the average wind speed, and second, the effect of the wind shear. In all cases
the aircraft weight is W = 1200 kN.

6.4.1.1 Effect of the Average Wind

The optimal speed and altitude profiles V' (z) and h(z) are represented in Fig. 6.2 for different
values of the average wind (w ranging from —30 to 30 kt) and for a wind-shear parameter
Aw = 0. The speed continuously decreases. Note that for the different values of w, these
profiles end at different values of x; the large influence of w on the horizontal distance flown
is analyzed in more detail in Section 6.4.2.

The optimal control y(x) and the ground path angle ~4(x) are represented in Fig. 6.3
for the same values of the average wind as before and for Aw = 0. They are discontinuous
(one has the two arcs with 4 = 0, and the singular arc). The results show that both the
optimal control and the ground path angle slightly decrease (|| and |4 increase) along the
singular arc. The average wind w has very little influence on the singular optimal control,
except that it importantly affects the bang-singular and singular-bang switching times. On
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6. Maximum-Range Unpowered Descent

the contrary, the influence on the ground path angle is larger; as w increases, the ground
path angle significantly increases (|y4| decreases, corresponding to flatter profiles), which is
also seen in Fig. 6.2b.
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Figure 6.2: Optimal speed and altitude profiles for w = —30, —20, —10, 0, 10, 20, 30 kt, and
Aw =0 (W = 1200 kN). (a) V(x), (b) h(x).
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Figure 6.3: Optimal control v(z) and ground path angle v4(x) for w = —30, —20, —10, 0,
10, 20, 30 kt, and Aw =0 (W = 1200 kN). (a)v(z), (b)yy(x).

6.4.1.2 Effect of the Wind Shear

The optimal speed and altitude profiles V(x) and h(x) are represented in Fig. 6.4 now for
different values of the wind-shear parameter (JAw| ranging from 0 to 20 kt) and for two
values of the average wind (w = 30 kt, TW, and w = —30 kt, HW). The influence of Aw on
the optimal profiles is relatively small.
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Figure 6.4: Optimal speed and altitude profiles for TW (w = 30 kt, Aw = 0, 5, 10, 15, 20 kt)
and HW (w = —30 kt, Aw = 0, —5, —10, —15, —20 kt) (W = 1200 kN). (a) V(x), (b) h(x).

The optimal control v(z) and the ground path angle v,(z) are represented in Fig. 6.5 for
the same values of Aw and w (TW and HW) as before. The results show again that both the
optimal control and the ground path angle slightly decrease (|| and |4 increase) along the
singular arc. As the wind-shear parameter increases, both y(x) and v,(z) slightly increase
(7| and |v,4| decrease). The influence of Aw on + is somewhat larger than the influence of
w. On the contrary, the influence on 7, is smaller. The influence of Aw on the bang-singular
and singular-bang switching times is also smaller than the influence of w.
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Figure 6.5: Optimal control v(z) and ground path angle v,(z) for TW (w = 30 kt, Aw =0,
5, 10, 15, 20 kt) and HW (@ = —30 kt, Aw = 0, —5, —10, —15, —20 kt) (W = 1200 kN).

(a)y(x), (b)yg(x).
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6. Maximum-Range Unpowered Descent

6.4.2 Comparison of Optimal and Optimized Constant-Calibrated-Airspeed
Descents

In this section the optimized constant-CAS unpowered descents are compared with the opti-
mal descents. The comparison is made in terms of the maximum range and the corresponding
flight time, global variables which are also analyzed in this section. In all cases the aircraft
weight is W = 1200 kN.

The maximum range and the flight time for both problems are represented as functions
of the average wind for a wind-shear parameter Aw = 0 in Fig. 6.6, and as functions of the
wind-shear parameter for two values of the average wind (w = 30 kt, TW, and w = —30 k¢,
HW) in Fig. 6.7. One can see that the differences between both sets of results are almost
negligible in all cases (less than 45 m in maximum range and less than 0.5 s in flight time).

In the following section, where the effect of the aircraft weight is analyzed, results for
speed, altitude, and aerodynamic path angle profiles are presented for optimal and optimized
constant-CAS descents, so that the comparison between both sets of results is pursued further.
Again the differences are almost negligible. Hence, it can be concluded that the constant-
CAS procedure is very close to optimal, provided that the optimum value of C'ASy is used
in the descent.

The results (Fig. 6.6) show that the maximum range increases as the average wind speed
increases, as expected, going from 167.79 km for w = —30 kt (HW) to 201.70 km for w = 30 k¢t
(TW); that is, an increase of 33.91 km (20.2%) when the average wind changes from HW
to TW at |w| = 30 kt. One can also see that the rate of increase of the maximum range
is approximately constant: about 0.56 km/kt. On the other hand, the flight time is less
sensitive than the maximum range to changes in w, increasing from 18.03 min to 18.54 min
for the same increase in average wind speed as before; that is, an increase of just 0.51 min

(2.8%).
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Figure 6.6: Maximum range and flight time vs. average wind for Aw = 0 (W = 1200 kN).
Solid lines: optimal descents. Dashed lines: optimized constant-CAS descents.
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The influence of the wind shear on the maximum range is analyzed next (see Fig. 6.7a).
For w = 30 kt (TW), the maximum range increases when Aw increases: going from 201.70 km
to 209.10 km when Aw increases from 0 to 20 kt (an increase of 7.40 km, that is 3.67%),
with an approximately constant rate of increase of about 0.37 km/kt. On the other hand,
for w = —30 kt (HW), the maximum range decreases when Aw decreases (that is, when
|Aw| increases): going from 167.79 km to 161.67 km when Aw decreases from 0 to —20 kt
(a decrease of 6.12 km, that is 3.65%), with an approximately constant rate of decrease of
about 0.31 km/kt.
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Figure 6.7: Maximum range and flight time vs. wind-shear parameter for TW (w = 30 kt) and
HW (w = =30 kt) (W = 1200 kN). Solid lines: optimal descents. Dashed lines: optimized
constant-CAS descents.

Now the influence of the wind shear on the flight time is studied (see Fig. 6.7b). The
trends are analogous to the case of the maximum range. For w = 30 kt (TW), the flight time
increases as Aw increases: going from 18.54 min for Aw = 0 to 19.20 min for Aw = 20 k¢t
(an increase of 0.66 min, that is 3.56%), with an approximately constant rate of increase of
about 1.99 s/kt. On the other hand, for w = —30 kt (HW), the flight time decreases when
Aw decreases (that is, when |Aw| increases): going from 18.03 min for Aw = 0 to 17.35 min
for Aw = —20 kt (a decrease of 0.68 min, that is 3.78%), with an approximately constant
rate of decrease of about 2.04 s/kt.

Comparatively, the wind shear affects equally the maximum range and the flight time.

Hence, one can conclude first that the stronger the TW and the wind shear are, the larger
the maximum range and the flight time are, and second that the stronger the HW and the
wind shear are, the smaller the maximum range and the flight time are. The maximum range
increases from 161.67 km for (w, Aw) = (—30,—-20) kt (HW) to 209.10 km for (w, Aw) =
(30,20) kt (TW); that is, an increase of 47.43 km (29.3%). And the flight time increases
from 17.35 min to 19.20 min for the same winds as before; that is, an increase of 1.85 min

(10.7%).
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6. Maximum-Range Unpowered Descent

6.4.3 Effects of the Aircraft Weight on the Results

In this section, the effects of the aircraft weight on the results are analyzed, with W ranging
from 1100 kN to 1300 kN.

6.4.3.1 Effects on the State and Control Variables

The speed, altitude and aerodynamic path angle profiles (V(z), h(x), and v(z)) that corre-
spond to the optimal and the optimized constant-CAS descents are presented in Figs. 6.8,
6.9, and 6.10, respectively, for different values of W, for two values of the average wind
(w = 30 kt, TW, and w = —30 kt, HW), and for Aw = 0.
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Figure 6.8: Speed profiles for Aw = 0 and W = 1100, 1150, 1200, 1250, 1300 kN. Solid lines:
optimal descents. Dashed lines: optimized constant-CAS descents. a) TW (w = 30 kt), b)
HW (i = —30 kt).
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Figure 6.9: Altitude profiles for Aw = 0 and W = 1100, 1150, 1200, 1250, 1300 kN. Solid
lines: optimal descents. Dashed lines: optimized constant-CAS descents. a) TW (w = 30 kt),
b) HW (@ = —30 kt).
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Figure 6.10: Path angle v(z) for Aw = 0 and W = 1100, 1150, 1200, 1250, 1300 kN. Solid
lines: optimal descents. Dashed lines: optimized constant-CAS descents. a) TW (w = 30 kt),
b) HW (@ = —30 kt).

One can see that as the aircraft weight increases, 1) the speed during the singular arc
increases, 2) the altitude slightly decreases, and 3) the aircraft weight has very little influence
on the singular optimal control. The influence on the ground path angle is not represented
graphically because the dependence is very small, as can be inferred from Fig. 6.9.

As it was advanced in the previous section, the differences between the profiles for the op-
timal and the optimized constant-CAS descents are almost negligible for all weights, showing
again that the constant-CAS procedure is very close to optimal.

6.4.3.2 Effects on the Maximum Range and Flight Time

The maximum range and the corresponding flight time for the optimal and for the optimized
constant-CAS descents are represented as functions of the aircraft weight in Fig. 6.11 for
three values of the average wind (w = 30 kt, TW; no wind, NW; and w = —30 kt, HW) and
for different values of the wind-shear parameter (|Aw| from 0 to 20 kt, in the cases of TW
and HW).

The influence of W on the maximum range is very small, for all wind profiles considered.
However, the influence of W on the flight time is larger: as the aircraft weight increases, the
flight time decreases in an almost linear way. The rate of decrease is roughly independent of
the wind condition: about 75 s when W increases from 1100 kN to 1300 kN.

Again, the differences between the optimized constant-CAS results and the optimal results
are almost negligible for all weights and wind conditions (less than 30 m in maximum range
and less than 0.5 s in flight time).
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Figure 6.11: Maximum range and flight time vs. aircraft weight for TW (w = 30 kt, Aw = 0,
5, 10, 15, 20 kt), NW (w = Aw = 0), and HW (w = —30 kt, Aw = 0, =5, —10, —15,
—20 kt). Solid lines: optimal descents. Dashed lines: optimized constant-CAS descents.

6.5 Summary

An analysis of maximum-range, unpowered descent in the presence of altitude-dependent
winds has been made, using the theory of singular optimal control. The optimal control is
of the bang-singular-bang type, and the optimal paths are formed by a singular arc and two
minimum /maximum-y arcs joining the singular arc with the given initial and final points.
Results have been presented for the case of initial and final v,,4,-arcs, in the particular case
of Ymaz = 0, which lead to two short horizontal deceleration segments at the beginning and
at the end of the optimal trajectory. This analysis has been used to assess the optimality
of a constant-CAS, unpowered descent procedure defined by three segments (descent with
constant CAS and initial and final horizontal decelerations), which is defined and optimized
in Ref. [32].

This study has been quite general, in the sense that it has been made for a general aircraft
model and a general horizontal wind profile, although results have been presented for linear
profiles. In the numerical applications, the linear wind profiles have been defined by two
parameters: the average wind and the wind shear. The influence of these two parameters on
the results and the influence of the initial aircraft weight have been analyzed.

The results have shown that the average wind affects strongly the maximum range, as
expected, increasing for tailwinds and decreasing for headwinds. Its effect on the flight time
is much weaker. The influence of the wind shear has been shown to be moderately large,
presenting the same trends as the average wind, that is, increasing the maximum range
and the flight time in the case of tailwinds and decreasing them in the case of headwinds.
Comparatively, the wind shear affects the flight time more strongly than the average wind;
on the contrary, its effect on the maximum range is weaker, but nonetheless important.
The effect of the aircraft weight on the results has been analyzed as well. Its effect on the
maximum range is very small, and on the flight time is considerably larger, decreasing as the
aircraft weight increases.
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6.5. Summary

From the operational point of view, a main conclusion can be drawn: the use of the
constant-CAS descent in operational practice, when one aims at starting the unpowered
descent as far in advance as possible, is justified by the very close comparison with the
optimal results for all wind profiles and aircraft weights considered; that is, the performance
of the optimized constant-CAS procedure is expected to be very close to optimal.
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7 Minimum-Fuel Global Trajectory

7.1 Introduction

Asindicated in Chapter 2, trajectory optimization is a subject of great importance in air traf-
fic management (ATM). In fact, for commercial transport aircraft, minimizing fuel consump-
tion is of prime importance, both economically and environmentally (because CO2 emissions
are directly related to fuel burnt).

In this chapter, the minimum-fuel global-trajectory problem is analyzed, taking into ac-
count altitude-dependent horizontal winds, so that wind-shear effects can be analyzed. The
aircraft mass is not taken as constant but considered as a state variable, and a general air-
craft performance model is considered (general compressible drag polar, and general thrust
and specific fuel consumption models dependent on speed and altitude). Trajectories are
considered to be decomposed into several phases of three different types: climb, cruise and
descent.

The analysis is made by applying the theory of singular optimal control to a switched
dynamical system. This approach has the great advantage of providing feedback control laws
(control variables as functions of the state variables), that can be directly used to guide the
aircraft along the optimal path. The control variable is the aerodynamic path angle (v) for
climb and descent phases, and the throttle setting () for the cruise phase. As in Chapters 4,
5 and 6, the structure chosen for the optimal control in every phase is of the bang-singular-
bang type, with the optimal paths formed by a singular arc and two minimum/maximum
arcs joining the singular arc with the initial and final switching points.

Results are presented for a model of a Boeing 767-300ER performing a climb-cruise-climb-
cruise-descent trajectory, and for linear wind profiles, characterized by two parameters: the
average wind speed and the speed-profile slope or wind shear. The influence of the two wind
parameters and of the initial aircraft weight on the results is analyzed. The strong effect of
the wind shear is described.

The outline of the chapter is as follows: the problem is formulated in Section 7.2, including
equations of motion, performance index, application of the necessary conditions for optimality
and description of the optimal trajectories; the implemented numerical method is explained
in Section 7.3; the particular application considered is defined in Section 7.4; and finally,
some results are presented in Section 7.5.
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7. Minimum-Fuel Global Trajectory

7.2 Problem Formulation

In this section, the problem of minimum-fuel global trajectory is formulated. First, the
trajectory optimization problem (consisting of the performance index, the equations of motion
and the initial and final conditions) is categorized as a multiphase optimal control problem
whose phases are also defined. Second, because an indirect numerical method is considered for
the resolution of the switched optimal control problem, the necessary conditions for optimality
are included. Then, the optimal flight phases are described, including the equations defining
the singular arc and the singular control at each phase. These equations coincide with those
obtained for the previous applications in which a single phase is optimized (although in some
cases additional considerations must be made).

7.2.1 Optimal Control Problem

Under appropriate assumptions, the equations of motion for a flight in a vertical plane subject
to an altitude-dependent horizontal wind w(h) are Eqs. (3.41), which are reproduced here
for completeness:

. T—-D V@i

= el (7.1)
h=Vxy

t=V+w

In this problem there are four states, V, m, h and z, and two controls, v and w. The
initial values of speed, mass, altitude and distance (V;, m;, h;, x;), and the final values of
speed, altitude and distance (Vy, hy, x¢) are given. The final value of mass (my), and flight
time (tf) are unspecified. Without loss of generality, ¢, = 0 and x; = 0 are considered.

In this chapter, minimum-fuel global trajectories with fixed range are analyzed. However,
it turns out to be more convenient to consider the equivalent problem of minimizing the

following performance index
tf
J=(mi —my) — Ka (ty) :/ [T — K (V 4+ w)]dt, (7.2)
0

with « (t;) unspecified. For both problems to be equivalent, one has to find the unknown
parameter K for which the free-range optimal trajectory travels the assigned final range
xy, as proven next. Let z be a state variable specified at an unspecified final time. The
transversality condition of the associated adjoint A, is given by A, (t¢) = v., where v, may
be regarded as a control parameter that makes the terminal value of z take the specified value
(see Bryson and Ho [15]). If now the final value of that state, z (t¢), were unspecified and
a linear terminal cost function —Kz (ty) were considered, the transversality condition on X,
would be A, (tf) = —K, and the remaining necessary conditions for optimality would remain
unchanged. Hence, both problems are equivalent if K = —wv, is chosen, that is, if the cost
factor K is chosen so that the terminal value of z is the specified one.

Therefore, the problem can be written as in Eq. (3.4), where y = (V,m,h,z) is the
state vector, u = (v,m) is the control vector, I(y,u) = ¢I' — K (V +w) is the running
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cost, no terminal cost is considered, U = {(7,7) € R? : Ymin < v < Ymar and 0 <
Tmin < T < Tmee = 1} is the control set, ¢; = 0, y; = (Vi,m4, hs,0), ¢ty (ty)] =
(V(tg),h(ty)) — (V§, hy) is the final-state-constraint function, and ¢; is unspecified. Note
that the initial and final values of the states are the same as before, except for the final value
of the distance x (ty), which is now unspecified.

The global trajectory considered in this chapter is composed of climb, cruise and descent
phases in a prespecified phase sequence o = (qi, ..., qn ). According to Section 3.2, this allows
for the optimization of the controlled aircraft motion to be considered as a multiphase optimal
control problem. Hence, the problem can be stated as in Eq. (3.26) with some considerations:
the running costs [,, at each phase g; are particularizations of [ according to the type of phase
corresponding to ¢;; no terminal cost is considered; Q= {cl, cr, d} is the set of types of phases,
where cl, cr, and d stand for climb, cruise and descent, respectively; and the values of the
states at the switching instants (Vj, m;, hj, ;) and the switching instants themselves (t;)
for j = 1,...,N — 1 are unspecified. Again, the initial and final values of the states are the
same as before, with x (¢5) being unspecified.

In the next subsections, the dynamic state equations y = f; (y, uq), the control variable u,,
the control constraints ug, ., < uq < ug,..., the running cost I, (y,u,), and the Hamiltonian
H, (y,uq, A) = 1y (y,ug) + ATE, (y,uy), where A € R?* is the adjoint vector, are defined for
each ¢ € Q. The Hamiltonian is needed to apply the necessary conditions for optimality,
which is done in Section 7.2.2.

7.2.1.1 Climb Phase

During climb (¢ = ¢l), the additional constraint that 7 is a known parameter (7 = my) is
considered in this thesis. The equations of motion in this phase are Eqs. (4.1), which are
reproduced here for completeness:

. WclTM—D dw

[

m = —CWClTM (73)
h=Vy

=V +w

Now, there is only one control, the aerodynamic path angle u., = 7, which is bounded
(Ymin,et < ¥ < Ymam,ct). The running cost for the climb phase is ly(y,v) = cmgTy —
K (V + w), whereas the Hamiltonian is given by

Ty — D
m

Hy=\y — gy — Vw'fy> + (A =p)emaTy + A Vy+ (A — K) (V +w) (7.4)

where ()" denotes derivative with respect to h, and Ay, Ay, Ay and A, are the adjoint variables.
Note that H,; is linear on the control variable, so that it can be written as Hy = Hy + Sa7,
where H . and the climb switching function S, are given by

— A
H, = EV (WclTM - D) + (1 - )\m) el + (Az - K) (V +w)

(7.5)
S =MV = Av(g+ V')
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7.2.1.2 Cruise Phase

During cruise (¢ = cr), the additional constraint of flying at constant altitude (y = 0) is
considered in this thesis. The equations of motion in this phase are Eqs. (5.1), which are
reproduced here for completeness:

m
h=0 (7.6)
m = —cnl)yy
=V 4w

where the dynamic equation for altitude has been maintained for the sake of consistency,
although the altitude is now a constant parameter.

Again, there is only one control, the throttle setting u.. = m, which is bounded (0 <
Tmin < T < Tmaz = 1). The running cost for the cruise phase is l..(y,m) = enThy —
K (V 4+ w), whereas the Hamiltonian is given by

H. = %(TI'TM — D)+ (1= p)ernTy + (A — K) (V +w) (7.7)

where Ay, A, and A, are the adjoint variables. Note that H,, is linear on the control variable,
so that it can be written as Hg. = H.p 4+ Sepm, where H,, and the cruise switching function
Ser are given by

T = M2t (A — K) (V +w)
mn (7.8)

Scr |:)\—V + (1 - )\m)C:| TM
m

7.2.1.3 Descent Phase

During descent (¢ = d), the additional constraint of flying unpowered (7 = 0) is considered
in this thesis. The equations of motion in this phase are Eqs. (6.1):

. D dw
Ve—" gy -V
0 a7
h=Vy (7.9)
m =0
t=V+w

where dynamic equation for aircraft mass has been maintained for the sake of consistency,
although the mass is now a constant parameter.

There is only one control, the aerodynamic path angle ug = -, which is bounded (Yin,a <
v < Ymagz,d)- The running cost for the descent phase is l;(y,v) = —K (V + w), whereas the
Hamiltonian is given by

D
Hy=—-\y <E +g7+ Vw’*y) +MVy+ (A — K) (V4 w) (7.10)
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where Ay, A\, and A\, are the adjoint variables. Note that H is linear on the control variable,
so that it can be written as Hy = Hy 4+ Sq7y, where Hy and the descent switching function
Sy are given by

- AvD
Hd:—VT—F()\w—K)(V—Fw)

Sqa =MV = Av(g+ Vw/)

(7.11)

7.2.2 Necessary Conditions for Optimality

Assuming that the normality and non-triviality conditions are satisfied, and for a given
switching sequence o = (q1, ...,qn), with ¢; € @ for j = 1,..., N, the necessary conditions for
optimality are summarized next (see Chapter 3):

1) The adjoints are piecewise continuous functions satisfying the following dynamic equa-

tions:
. 8qu
AV =5y
).\m = _aaj{qj
m
- quj (7.12)
T T on
. 8qu
Ar == ox

along each phase of the optimal trajectory, that is, Vt € [t;_1,t;) ([tn—1,tn] if j = N) for
45

J=1,..,N. Because H,;, does not depend on x (that is, =0, Yg;), Ay is a piecewise

constant function.

2) Because the states are continuous at the switching points ¢;, and only controlled
switchings are considered, the adjoint variables satisfy the following switching conditions:

v (ty) = Av(t])
(7)) = A (5
(5) =) )
)\m(tj )= Am(tj )
Ae(t5) = Aa(t])
for j = 1,.., N — 1. Hence, the adjoints are continuous functions for all t € [0,7]. In

particular, the last equation (7.13) implies that A, is constant. Note that some authors
classify these conditions as transversality conditions at the switching instants.

3) The Hamiltonian continuity condition states that, since the transition times ¢; are not
specified, then the Hamiltonians for the two phases contiguous at t¢; satisfy the following
equation:

HQ'(tj) = HQj+1 (tj) (7'14)

for j = 1,..., N —1. Again, some authors classify these conditions as transversality conditions
at the switching instants.
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4) The Hamiltonian minimization condition states that for the control to be optimal it is
necessary that it minimize the Hamiltonian. In all flight phases considered, the Hamiltonian
is linear on the control variable and the control is bounded, that is, Hy, = qu + Sg;uq; and
Ug;min < Ug; < Uqg; maz, Vg;. Hence, the minimization of qu with respect to Ug; defines the
optimal control as follows

Ug;maz if  Sg; <0
Ug, = Ug,; min if qu >0 (7.15)

J
Ug;sing if Sg; =0 over a finite time interval

for j = 1,..., N, where ug; sing is the singular control (yet to be determined), which satisfies
Ug; min < Ugj sing < Ug;maz- Lrajectory segments defined by Ug; sing AT€ called singular arcs,
whereas trajectory segments defined by Ug; min OF Ug; maz are called bangs.

6) The transversality conditions are the following: First, since the final distance x(ty) is
not specified, one has
Ae(ty) =0 (7.16)

which, along with the result that A\, is a constant, leads to
A(t) =0 (7.17)
along the entire optimal trajectory. Second, as the final mass m(ts) is not specified, one has
Am(tf) =0 (7.18)
Third, since the final time ¢ is not specified, one has

Hyy(t7) = 0 (7.19)

Moreover, since the Hamiltonian is not an explicit function of time, one has the first
integral that it is constant along each phase of the optimal trajectory, that is,

Hg,(t) =H,; (7.20)
for j = 1,...,N, where ﬁj are unknown constant values. This first integral, along with
Egs. (7.19) and (7.14), leads to

Hy (t) =0 (7.21)

forj=1,...,N.

As indicated in Chapter 3, in singular optimal control problems there arise additional
conditions that must be satisfied in order both, for a singular arc to be minimizing, and
for the junctions between singular and nonsingular arcs to be optimal. These additional
necessary condition for optimality are analyzed below in Section 7.2.3 for each phase.

7.2.3 Optimal Flight Phases

The optimal global trajectory is built up by linking the optimized phases together. Although
called optimal trajectories, they are in fact extremals, that is, trajectories that satisfy the
necessary conditions for optimality.
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In general, each optimal phase ¢ € @ will be composed of singular arcs (with ug sing)
and arcs with ug min OT Ugmae; Whether one has g min Or Ugmas is defined by the sign of
the switching function S;. In this problem, each optimal phase is expected to be of the
bang-singular-bang type, that is, a singular arc and two minimum/maximum-u, arcs joining
the singular arc with the initial and final points. Although the underlying aerodynamic and
propulsive models might affect the structure of the solution, for the smooth models considered
in this thesis, the bang-singular-bang structure is plausible, and hence it is the one analyzed
in this chapter.

In the next subsections, the singular arc as well as the singular control are analyzed for
the three types of optimal phases considered in this chapter.

7.2.3.1 Singular Arc at a Climb Phase

The singular control is obtained when the switching function is zero (S, = 0) on an interval
of time; hence, since Hy = 0, one also has Hy = 0. On that interval of time one has S,=0
as well. The singular arc is defined by the three equations:

Hy=0, S;=0 S;=0 (7.22)

In Chapter 4, the optimization problem of a climb subject to the same equations of
motion and considering the same running cost cmyTy — K (V 4+ w) is analyzed. Hence, the
Hamiltonian and the adjoints dynamic equations are also the same and, as a consequence,
the results in Chapter 4 defining the singular arc and the singular control Ygng (V, m,h)
apply here.

On one hand, it is not possible to obtain an expression for the singular arc in terms of the
state variables alone. Instead, the three Eqs. (4.17) define the adjoints Ay, A, and \;, along
the singular arc in the terms of the state variables. On the other hand, the singular feedback
control law vging,c(V, m, h) is obtained from S‘cl = 0 after eliminating the three adjoints with
the equations defining the singular arc; its expression is given by Eq. (4.22).

The generalized Legendre-Clebsch condition for the optimality of the singular control,
08,

o

same expression as in Chapter 4, that is, Eq. (4.23). It can be shown numerically that the

Eq. (3.21), reduces in this case ({4 = 1 and uy = 7) to — > 0, which leads to the

cl

gl

strengthened generalized Legendre-Clebsch condition (— > 0) is satisfied in all the cases

considered in this chapter.

The McDanell-Powers necessary condition for the optimality of junctions between singular
and nonsingular arcs (see Chapter 3) is shown to be satisfied, because the order of the singular
arc is & = 1 and the lowest-order time derivative of the control which is discontinuous at
the junction is (4 = 0 (that is, the control itself is discontinuous at the junction). Moreover,
although the control variable is discontinuous at the junctions, the Weierstrass-Erdman corner
conditions are satisfied because the adjoint variables, the Hamiltonian and the switching
function are all continuous.
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7.2.3.2 Singular Arc at a Cruise Phase

The singular control is obtained when the switching function is zero (S = 0) on an interval
of time; hence, since H,, = 0, one also has H.. = 0. On that interval of time one has S, = 0
as well. The singular arc is defined by the three equations:

Hy =0, Su;=0, Su;=0 (7.23)

In Chapter 5, the optimization problem of a cruise subject to the same equations of
motion is analyzed, but a different running cost is considered (namely, cnT)s) and the final
distance and final time are fixed. However, as it has already been shown, a problem with
fixed final distance is equivalent to a problem with free final distance and an additional cost
—Kux(ty) just by imposing A;(tf) = —K. By doing so the Hamiltonian and the adjoints
dynamic equations are the same, just by additionally imposing that the constant value of
the Hamiltonian equals zero, that is H = 0. With this modification, the results in Chapter 5
defining the singular arc and the singular control 7ng(V,m, h) apply here.

On one hand, the singular arc is defined by the Eq. (5.13), with 2 = w, that is,

D < 1 1 de ) oD oD

e = _ = i .24
w+V ¢ cdV 8V+cm3m 0 (7.24)

On the other hand, the singular feedback control law is obtained from S, = 0, after elimi-
nating the adjoints with the Eqs. (7.23) defining the singular arc; its expression is given by
Eq. (5.15).

The generalized Legendre-Clebsch condition for the optimality of the singular control,
8Scr

Eq. (3.21), reduces in this case (§; = 1 and ue = 7) to — > 0, which leads to the

T
same expression as in Chapter 5, that is, Eq. (5.17). It can be shown numerically that the

cr

strengthened generalized Legendre-Clebsch condition (— > 0) is satisfied in all the cases

considered in this chapter.

The McDanell-Powers necessary condition for the optimality of junctions between singular
and nonsingular arcs (see Chapter 3) is shown to be satisfied, because the order of the singular
arc is &, = 1 and the lowest-order time derivative of the control which is discontinuous at
the junction is (., = 0 (that is, the control itself is discontinuous at the junction). Moreover,
although the control variable is discontinuous at the junctions, the Weierstrass-Erdman corner
conditions are satisfied because the adjoint variables, the Hamiltonian and the switching
function are all continuous.

7.2.3.3 Singular Arc at a Descent Phase

The singular control is obtained when the switching function is zero (Sy = 0) on an interval
of time; hence, since Hy = 0, one also has Hy = 0. On that interval of time one has S; = 0
as well. The singular arc is defined by the three equations:

H,=0, S;=0, S$;=0 (7.25)

In Chapter 5, the optimization problem of an unpowered descent subject to the same
equations of motion is analyzed, but a different running cost — (V' + w) is considered. That
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running cost is similar to [ except for a scaling factor K. Therefore, except for that factor K,
the Hamiltonian and the adjoints dynamic equations are also the same and, as a consequence,
the results in Chapter 6 defining the singular arc and the singular control vging.qa(V, m,h)
apply here.

On one hand, the singular arc is defined by the Eq. (6.15). On the other hand, the
singular feedback control law is obtained from Sy = 0 after eliminating the three adjoints
with the Eqs. (7.25); its expression is given by Eq. (6.20).

The generalized Legendre-Clebsch condition for the optimality of the singular control,

058,
Eq. (3.21), reduces in this case ({4 = 1 and ug = 7) to _6—d > 0, which leads to the
’Y

same expression as in Chapter 6, that is, Eq. (6.21). It can be shown numerically that the

oS,
strengthened generalized Legendre-Clebsch condition (_B—d > 0) is satisfied in all the cases
2
considered in this chapter.

The McDanell-Powers necessary condition for the optimality of junctions between singular
and nonsingular arcs (see Chapter 3) is shown to be satisfied, because the order of the singular
arc is &g = 1 and the lowest-order time derivative of the control which is discontinuous at
the junction is (4 = 0 (that is, the control itself is discontinuous at the junction). Moreover,
although the control variable is discontinuous at the junctions, the Weierstrass-Erdman corner
conditions are satisfied because the adjoint variables, the Hamiltonian and the switching
function are all continuous.

7.3 Numerical Procedure

In this section the numerical procedure used to solve the problem is described. Knowing the
structure of the solution allows one to define an efficient numerical procedure (see Maurer
[44]).

The numerical procedure is based on three different phase algorithms intended to obtain
a candidate for optimal phase. To apply these phase algorithms one has to guess the values
of some unknown parameters. The phase algorithms can be interpreted as blocks that have
to be sequentially pieced together, according to the given phase sequence o, in order to
obtain a candidate for optimal trajectory. Finally, the numerical procedure has to iterate
on the unknown parameters in order for some necessary conditions for optimality to be
satisfied. Note that the numerical procedure also has to obtain the value of K for which the
corresponding final value of the horizontal distance travelled x(ts) is equal to the specified

one, rf.

7.3.1 Algorithm for Optimal Climb

If the phase considered is a climb (that is, q; = cl), the numerical procedure is as follows.
The first bang starts with the following initial values at the point j —1: V(t;_1) = Vj_1,
m(tj—1) = mj_1, h(tj—1) = hj—1, and x(tj—1) = z;—1. These initial values are known either
because the trajectory at the previous phase has already been obtained (for the general case
Jj # 1), or because they are the given initial values (for the particular case j = 1). Let Ay,q,,
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hy;, and V; be the values of the adjoint Ay at the beginning of the singular arc (point a;),
the altitude at the end of the singular arc (point b;), and the speed at the end of the climb
(point j), respectively. If Ay, were known, the state equations (7.3) could be integrated
until the singular arc were reached, that is, until Ay,o, = fv(Va;, ma;, ha;) were satisfied (see
Eqgs. 4.18). Then, using Eqgs. (7.22), A, and Aj, could be obtained at aj, so that the adjoint
equations (7.12) could be integrated backwards along the first bang. Also, if the altitude hy,
were known, the state equations could be integrated along the singular arc (from point a; to
point b;), and then, using Eqgs. (7.22), Ay, Ay, and Ay, could be obtained. Finally, if V; were
known, the state equations and the adjoint equations could be integrated along the second
bang, which starts at the singular arc (point b;) and ends when the value V' = Vj is reached.

At the end (point j) one has the following final values: V (t;) =V}, m(t;) = m;, h(t;) =
hj, x(tj) = xj, Av(t;), An(t; ), and A (t; ). At the beginning (point j —1) one has )\V(t;L_l),
An(t) 1), and A (6] ).

The final values of the states are used as initial values for the next optimal phase calcu-
lation (j # N in practical cases). The initial (if j # 1) and final values of the adjoints are
used to impose some necessary conditions for optimality and, hence, to define Av,q;, hp;, and
Vj. This task is performed by means of an iterative procedure (described in Section 7.3.4),
when all phases in ¢ are already computed.

7.3.2 Algorithm for Optimal Cruise

If the phase considered is a cruise (that is, ¢; = cr), the numerical procedure is as follows.

The first bang starts with the following initial values at the point j —1: V(t;_1) = Vj_q,
m(tj—1) = mj_1, and z(tj_1) = xj_1, with h(t;_1) = hj_1 playing the role of a parameter
during this phase (h = const). These initial values are known because the trajectory at the
previous phase has already been obtained; note that, in practical cases, the first phase from
the sequence o is not a cruise phase (j # 1). Let zp, and V; be the values of the distance
travelled at the end of the singular arc (point b;) and the speed at the end of the cruise (point
j), respectively. The state equations (7.6) can be integrated until the singular arc (Eq. 7.24)
is reached (point a;). Then, using the first two Eqgs. (7.23), Ay and A, could be obtained at
aj, so that the adjoint equations (7.12) could be integrated backwards along the first bang. If
zp; were known, the state equations could be integrated along the singular arc (from point a;
to point b;), and then, using the first two Eqs. (7.23), Ay and A, could be obtained. Finally,
if V; were known, the state equations and the adjoint equations could be integrated along
the second bang, which starts at the singular arc (point b;) and ends when the value V = V;
is reached.

At the end (point j) one has the following final values: V (t;) =V}, m(t;) = m;, h(t;) =
hj = hj_1, z(t;) = zj, Av(t;) and Ap(t; ). At the beginning (point j — 1) one has )\V(t;il)
and A\, (¢

j—1
order to obtain the remaining adjoint variable \;, one has to integrate its dynamic equation

). Once the full state as well as the adjoints Ay and A, are known, and in
along the entire cruise phase (from j — 1 to j), starting from )\h(t;tl). Note that )\h(t]ll) is

known from the previous phase (again j # 1 in practical cases), and the necessary condition
)\h(tj_l) = Ap(t;_) is imposed.
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The final values of the state are used as initial values for the next optimal phase calculation
(as j # N in practical cases). The initial (as j # 1 in practical cases) and final values of
some of the adjoints are used to impose some necessary conditions for optimality and, hence,
to define xp, and V;. This task is performed by means of an iterative procedure (described
in Section 7.3.4), when all phases in o are already computed.

7.3.3 Algorithm for Optimal Descent

If the phase considered is a descent (that is, ¢; = d), the numerical procedure is as follows.

The first bang starts with the following initial values at the point j —1: V(t;_1) = Vj_q,
h(tj—1) = hj_1, and z(tj_1) = xj_1, with m(t;_1) = m;_;1 playing the role of a parameter
during this phase (m = const). These initial values are known because the trajectory at the
previous phase has already been obtained; note that, in practical cases, the first phase from
the sequence o is not a descent phase (j # 1). Let V; and h; be the values of the speed and
the altitude, respectively, at the end of the descent (point j). The state equations (7.9) can
be integrated until the singular arc (Eq. 6.15) is reached (point a;). Then, using the first two
Egs. (7.25), Ay and Ap, could be obtained at aj, so that the adjoint equations (7.12) could
be integrated backwards along the first bang. If V; and h; were known, the state equations
could be integrated backwards along the second bang, that is, from j until the singular arc
(Eq. 6.15) is reached (point bj). Then, the state equations could be integrated along the
singular arc (from point a; to point b;), and then, using the first two Eqs. (7.25), Ay and A,
could be obtained. Finally, the adjoint equations could be integrated along the second bang,
starting at the singular arc (point b;) and ending at j.

At the end (point j) one has the following final values: V(t;) = V;, m(t;) = m; = m;j_q,
h(t;) = hj, z(tj) = x5, Av(t;) and Ay(t;). At the beginning (point j — 1) one has )\V(t;;l)
and )\h(tﬁl). Once the full state as well as the adjoints Ay and A, are known, and in order
to obtain the remaining adjoint variable \,,, one has to integrate its dynamic equation along
the entire descent phase (from j — 1 to j), starting from )\m(tj_l). Note that A, (¢;_;) is
known from the previous phase (again j # 1 in practical cases), and the necessary condition
)\m(t;r_l) = Am(t;_1) is imposed.

The initial (as j # 1 in practical cases) and final values of some of the adjoints are used to
impose some necessary conditions for optimality and, hence, to define V; and h;. This task
is performed by means of an iterative procedure, when all phases in ¢ are already computed
(described in Section 7.3.4).

In all practical cases the descent phase is the last phase (7 = N); in such a case, the
second bang ends with the known final values V' (t;) = V; and h(ty) = hy, so that there is no
unknown variable needed for the descent computation. However, the initial and final values
of some of the adjoints, as well as the final value of the distance travelled x(ty), are used to
impose some necessary conditions for optimality which are added (as closing equations) to
the iterative procedure.
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7.3.4 Closing Equations

As previously mentioned, given a phase sequence o, the numerical procedure is built by
sequentially piecing the corresponding phase algorithms together. Each phase algorithm may
add some unknown parameters: three for climb phases and two for cruise and descent phases.
However, those necessary conditions for optimality not explicitly taken into account in the
phase algorithms allow for the definition of the unknown parameters by means of an iterative
procedure.

Let ng, ne and ng (with ng+ne-+nqg = N) the number of climb phases, cruise phases and
descent phases, respectively, considered in o. Then, according to the explained algorithms,
the number of total unknown parameters is Ny, = 1 + 3ng + 2ne. + 2(ng — 1) (taking into
account that K is an unknown and that the final descent has zero unknowns). The number
of closing equations can be obtained as follows.

A switching point j for j = 1,..., N—1is the beginning of the phase g;11. At the beginning
of a phase ¢;41, one has three adjoint continuity equations, the first three Eqgs. (7.13). If the
phase gj+1 is a cruise or a descent, one of these adjoint continuity equations has already
been used in the corresponding phase algorithm (the one involving the adjoint associated
to the state that remains constant). This implies that at the beginning of a phase ¢;; for
j=1,..,N —1 (that is, except for ¢;) one has either two (if gj11 = ¢r or gj11 = d) or three
(if gj4+1 = cl) adjoint continuity equations that have not been explicitly taken into account in
the corresponding phase algorithm. Hence, because the first phase is a climb in all practical
cases, one has 3(ng — 1) 4+ 2n. + 2n4 closing equations stating adjoints continuity. Besides,
one has two additional closing equations: x(ty) = z; and Ay, (tf) = 0. As a result, the
number of total closing equations is Nee = 3(ng — 1) + 2ner + 2ng + 2, that is, Nee = Nyp.
The resolution of this system of non-linear equations is performed using MATLAB’s fsolve.

7.4 Application to a Climb-Cruise-Climb-Cruise-Descent Tra-
jectory

As already seen, by conveniently piecing the phase algorithms together one can establish
a numerical procedure to solve the problem given any possible solution structure. Typical
solution structures include considering an initial climb from the given initial state, a final
descent to the given final state and several cruise phases at different altitudes joined by climb
phases (since experience shows that cruise altitudes should increase along the trajectory).
Elements form this family of solution structures can be identified by the number of cruise
phases considered n.,.. In this chapter, results are presented for a climb-cruise-climb-cruise-
descent structure, o = (cl, cr, cl, cr,d), which is the element n., = 2 from the aforementioned
family of solution structures.

In Fig. 7.1 a sketch of the expected optimal path is presented (the particular case of
Ymin,cl = Ymaz,d = 0 is depicted). For this particular case, and with additional assumptions,
several simplifications can be made in the numerical procedure, as described next.
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Figure 7.1: Sketch of the optimal global path.

First, at the switching point j = 2 (switching from the first cruise to the intermediate
climb) H.. = H holds, since the numerical method explicitly imposes H., = 0 and H, =0
to compute the adjoints. Hence, from Eqgs. (7.4), (7.7) and (7.17), at t = t one has

DD ey )+ {% 1= Am(t5)] c} Ty, =
‘% — K(V+w)+ {%@ + [1= An(t)] c} Tarmer + [M(t3)V = M (t3) (9+ V') vag

(7.26)

were T, is the value of the control variable at the final bang of the first cruise and g, is
the value of the control variable at the initial bang of the intermediate climb. For simplicity,
the dependence with respect to time of the state variables has not been included, since the
numerical method explicitly imposes these to be continuous at the switching points.

Combining Eq. (7.26) with conditions Ay (t;) = Ay (t5) and A\p(ty) = An(t3), and
assuming that the wind w is continuous at j = 2, one has

{AVT(;E) + 1= Am(ty)] C} Toar (T — 7at) = M)V = A (t3) (g + V') ey (7.27)

The satisfaction of this equation along with the continuity condition for \,, ensures satis-
faction of the continuity condition for Ay ; hence, it is used as a closing equation instead of
Av(ty) = Av(ts).
Assuming g, = Ymin,e1 and considering ypin = 0, Eq. (7.27) becomes
Av(ts _

{7;2 ) + [T = Am(ty)] C} Ty (i, — mer) =0 (7.28)
Taking into account the Hamiltonian minimization condition, and the fact that m, # 7e #
Tmaz, ONe has

AVSQ_) +[1=An(ty)] =0 (7.29)
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which implies that the switching point 2 belongs to the cruise singular arc (see Eq. 5.12),
and then, 2 = by. As a consequence, the only value for the unknown V5 satisfying the closing
equation (7.29) is V4 = V},, and therefore, there is one decision variable less.

Second, at the switching point j = 4 (switching from the second cruise to the descent)
H.. = H,; holds, since the numerical method explicitly imposes H., = 0 and H, = 0 to
compute the adjoints. Hence, from Eqs. (7.7), (7.10) and (7.17), at ¢ = t4 one has

MDD iy + {M + [1 = Am(ty)] C} Tarmy, =
m ) m (7.30)
_W — K(V +w)+ [MEDV = A () (9+ V)] Yas

were T, is the value of the control variable at the final bang of the second cruise and -, is
the value of the control variable at the initial bang of the descent. Again, the dependence
with respect to time of the state variables has not been included, since the numerical method
explicitly imposes these to be continuous at the switching points.

Combining Eq. (7.30) with condition Ay (t;) = Ay(t]), and assuming that the wind w
is continuous at j = 4, one has

{AVTSZ) + (1= Am(ty)] c} Ty, = [Mt)V = Av (1) (9 + V') s (7.31)

The satisfaction of this equation ensures satisfaction of the continuity condition for Ay ; hence,
it is used as a closing equation instead of Ay (t;) = Ay (t]).

Assuming Vo5 = Ymaz,d and considering Yyqz.4 = 0, Eq. (7.31) becomes

{% L= AmtD)] } Tymy, =0 (7.32)

Taking into account the Hamiltonian minimization condition, and the fact that in cruise

Tmin 7 0, one has

Av(ty

% + 1= An(t)] e=0 (7.33)
which implies that the switching point 4 belongs to the cruise singular arc (see Eq. 5.12),
and then, 4 = by. As a consequence, the only value for the unknown Vj satisfying the closing
equation (7.33) is V4 = V},, and therefore, there is one decision variable less.

According to the two previous developments, the optimal cruise phase considered in this
chapter has a bang-singular structure instead of a bang-singular-bang structure. As a con-
sequence, when setting up the global numerical procedure, the algorithm for optimal cruise
phase (from j — 1 to j) has one decision variable less (V},) and one closing equation less
(continuity of Ay at j) than the algorithm described in Section 7.3.2.

7.5 Results

The aircraft model considered in this thesis for the numerical applications (corresponding to
a Boeing 767-300ER) is described in Appendix B, and the atmosphere model is the Interna-
tional Standard Atmosphere (ISA).

102



7.5. Results

For the wind model, linear profiles are considered, with the absolute value of the wind
speed increasing with altitude (see Ref. [50]). The profiles are defined as follows

h—h

w(h) =w+ Aw———
Q Dhigh — h

(7.34)
where w is the average wind; Aw is the wind-shear parameter; hp;qn = 33000 ft and hjo, =
10000 ft are reference altitudes; and h = (hjoy + hhign)/2 = 21500 ft is the average altitude.
Note that, on one hand, the average wind speed w is the wind speed at the average altitude,

that is, w = w(h); on the other hand, Aw defines the wind shear d—t;:, and, in particular,

Aw = 0 defines a uniform wind profile. In the following, both tailwinds (TW) and headwinds
(HW) are considered, with the linear profiles defined as follows: for TW one has w > 0 and
Aw > 0, and for HW w < 0 and Aw < 0.

The initial conditions (corresponding to a hypothetical SID final fix) are C'AS; = 250 k¢,
h; = 10000 ft, and the final conditions (corresponding to a hypothetical approach fix within
the TMA) are CASy = 210 kt, hy = 9000 ft. The final value of the horizontal distance
travelled is xy = 6000 km. The throttle setting during climb is my =0.75, so that typical
performance is obtained for the range of parameters considered in the chapter. Moreover,
the bounds on the control are iy = 0.015, T = 1, Ymined = 0, VYmaz,a = 10 deg,
TYmin,de = —10 deg: and Tmaz,de = 0.

To analyze the wind effects on the optimal trajectories, the initial aircraft weight is
W; = 1500 kN, the average wind ranges from —30 kt to 30 kt, and the absolute value of
the wind-shear parameter ranges from 0 to 20 kt. In the analysis of the effect of the initial
aircraft weight on the results, no wind is considered, and W; ranges from 1450 kN to 1550 kN.

The outline of this section is as follows: the effects of the average wind speed (Section
7.5.1), the wind-shear parameter (Section 7.5.2), and the aircraft weight (Section 7.5.3) on
the optimal trajectories as well as on the optimal control are analyzed, and then, the global
variables such as minimum fuel consumption, flight time and cruise altitudes are analyzed in
Section 7.5.4.

7.5.1 Effect of the Average Wind Speed

The optimal trajectory V' (h), the speed profile V(x), and the flight path h(z) are represented
in Figs. 7.2, 7.3a, and 7.3b, respectively, for different values of the average wind speed (w
ranging from —30 kt to 30 kt) and for a wind shear parameter Aw = 0. In the optimal
trajectories, the climb phases start with a horizontal acceleration and end with a steep climb
out; the cruise phases start with an initial deceleration; and the descent phase starts and
ends with horizontal decelerations. During the initial climb, the speed continuously increases,
reaches a maximum and then slowly decreases. Along the cruise phases, the speed slowly
decreases. The intermediate climb takes place with slightly higher speeds than those of cruise
phases. During the descent phase the speed continuously decreases. The influence of w on
the optimal profiles is clear: As w increases, the speed decreases at all phases, so that for
TW one has slower speeds than for HW.

103



7. Minimum-Fuel Global Trajectory

260
240+
220}

2200t

: 180}
160¢

140y

120 i i i i i
2000 4000 6000 8000 10000 12000
h [m]

Figure 7.2: Optimal trajectory V(h) for w = —30, —20, —10, 0, 10, 20, 30 kt and Aw = 0.
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Figure 7.3: Optimal speed profile and flight path for w = —30, —20, —10, 0, 10, 20, 30 kt,
and Aw = 0. (a) V(x), (b) h(z).

The optimal controls y(h) and m(x) are represented in Fig. 7.4 for the same values of w
as before and Aw = 0. They are discontinuous, not only at the switchings, but also within
a phase. For the optimal climbs, one has three segments, all of them with 7 = my: the
initial arc with 7, = 0, the singular arc, in which ~ decreases as the altitude increases,
and the arc with 7,,4.,¢. For the optimal cruise, one has two segments, all of them with
~v = 0: the initial arc with m,;, and the singular arc, in which 7 decreases along the flight.
For the optimal descent, one has three segments, all of them with m = 0: the initial and
final arcs with 7,42 ¢ = 0, along with the singular arc, in which 7 remains roughly constant
as the altitude decreases. The structure of the optimal control has been confirmed by the
numerical results of the switching function at each phase. The average wind speed has very
little influence on the singular optimal controls and on the bang-singular and singular-bang
switching points.
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Figure 7.4: Optimal controls vy(h) and 7w (z) for w = —30, —20, —10, 0, 10, 20, 30 kt, and

Aw =0. (a) v(h), (b) w(x).

7.5.2 Effect of the Wind Shear

The optimal trajectory V' (h), speed profile V(z), and flight path h(z) are represented in Figs.
7.5, 7.6, and 7.7, respectively, for different values of the wind-shear parameter (|Aw| ranging
from 0 kt to 20 kt), and for two values of the average wind (w = 30 kt, TW, and w = —30 k¢,
HW). The optimal trajectories have the same structure as mentioned before. The influence of
Aw on the optimal speed profiles and on the optimal flight path corresponding to the initial
climb and to the descent is very small; on the contrary, the influence on the cruise altitudes

is much larger.
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Figure 7.5: Optimal trajectory V(h). (a) TW (w = 30 kt, Aw = 0, 5, 10, 15, 20 kt), (b) HW

(w = —30 kt, Aw =0, —5, —10, —15, —20 kt).
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Figure 7.6: Optimal speed profile V(z). (a) TW (w = 30 kt, Aw = 0, 5, 10, 15, 20 kt), (b)
HW (@ = —30 kt, Aw = 0, —5, —10, —15, —20 kt).
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Figure 7.7: Optimal flight path h(z). (a) TW (w = 30 kt, Aw = 0, 5, 10, 15, 20 kt), (b) HW
(w = —30 kt, Aw = 0, —5, —10, —15, —20 kt).

The optimal controls «y(h) and 7(x) are represented in Figs. 7.8 and 7.9, respectively, for
the same values of Aw and w (TW and HW) as before. They present the same discontinuous
structure as mentioned before, which has been again confirmed by the numerical results of the
switching function at each phase. During climb and descent, the wind-shear factor has little
influence on the singular optimal control v, although somewhat larger than the influence of
the average wind speed; however, it importantly affects the bang-singular and singular-bang
switching times. During cruise, the wind-shear factor has an important influence on the
singular optimal control 7, since it affects the cruise altitudes: As Aw increases, 7 increases
(note that, for HW, when Aw increases |Aw| decreases).
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Figure 7.8: Optimal control y(h). (a) TW (w = 30 kt, Aw = 0, 5, 10, 15, 20 kt), (b) HW

(w = —30 kt, Aw = 0, —5, —10, —15, —20 kt).
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Figure 7.9: Optimal control 7(z).

(a) TW (w = 30 kt, Aw = 0, 5, 10, 15, 20 kt), (b) HW

(w = —30 kt, Aw = 0, —5, —10, —15, —20 kt).

7.5.3 Effect of the Initial Aircraft Weight

The optimal trajectory V(h), speed profile V(z), and flight path h(z) are represented in
Figs. 7.10, 7.11a, and 7.11b, respectively, for different values of the initial aircraft weight
(W; ranging from 1450 kN to 1550 kN) and for no wind (w = 0 and Aw = 0). The optimal
trajectories have the same structure as mentioned before. The influence of W; on the optimal
profiles is clear: As W; increases, the speed increases at all phases.
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Figure 7.10: Optimal trajectory V' (h) for W; = 1450, 1475, 1500, 1525 and 1550 kN (w =
Aw = 0).
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Figure 7.11: Optimal speed profile and flight path for W; = 1450, 1475, 1500, 1525 and
1550 kN (w = Aw = 0).

The optimal controls v(h) and m(x) are represented in Fig. 7.12 for the same values
of the initial aircraft weight and no wind. They present the same discontinuous structure
as mentioned before, which has been again confirmed by the computation results of the
switching function at each phase. The initial aircraft weight has a clear influence on the
singular optimal controls during climb and cruise: As the initial aircraft weight increases,
decreases, whereas 7 slightly increases. During the descent phase, the initial aircraft weight
has very little influence on the singular optimal control.
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Figure 7.12: Optimal controls y(h) and w(z) for W; = 1450, 1475, 1500, 1525 and 1550 kN
(w = Aw = 0). (a) v(h), (b) 7(z).

7.5.4 Analysis of Global Variables

In this section, global variables are analyzed along with the minimum fuel consumption.
In Figs. 7.13, 7.14, 7.15, 7.16, 7.17, and 7.18 the following variables are represented: the
minimum fuel consumption (mp), the flight time (¢5), the climb range (z.), the final distance
of the first cruise (or transition distance, z2), the descent range (x4), and the cruise altitudes
(hy and hg). They are depicted, first, as functions of the wind-shear parameter for two values
of the average wind (w = 30 kt TW and w = —30 kt HW) and W; = 1500 kN, and second,
as functions of the average wind for different values of the initial aircraft weight (W; ranging
from 1450 to 1550 kN) and Aw = 0. It is interesting to note that, in this chapter, the
cruise altitudes are free variables which are obtained as results of the trajectory optimization
problem.

Some numerical values are given in Table 7.1. The results show the following: 1) the
stronger the wind shear for TW, the smaller the fuel consumption, the flight time, and the
transition distance, but the larger the climb range, the descent range and the cruise altitudes;
2) the stronger the wind shear for HW (in absolute value), the larger the fuel consumption,
the flight time, and the transition distance, but the smaller the climb range, the descent
range and the cruise altitudes; 3) the higher the average wind speed, the lower the fuel
consumption, the flight time, and the cruise altitudes, but the higher the climb range, the
transition distance, and the descent range; and 4) the heavier the aircraft, the larger the fuel
consumption, the climb range, and the transition distance, but the smaller the flight time,
the descent range and the cruise altitudes. These trends are now quantified (using the values
given in Table 7.1).
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Table 7.1: Flight variables for different winds and initial aircraft weights (optimum values)

W; = 1500 kN
w = —30kt (HW) w = 30kt (TW)

Aw = —20kt Aw = 0kt Aw = 0kt Aw = 20kt
mr [kg] 31926.4 30710.0 27149.0 26198.6
t [min] 491.16 473.36 417.32 401.90
2. [km| 133.43 159.19 180.47 213.30
xo [km] 3013.59 2996.99 3001.28 2993.65
xq [km)] 156.13 169.17 199.37 214.22
hi |m] 9250 9721 9680 10056
hs |m] 10000 10420 10288 10623

Aw = 0kt
w = —30kt (HW) w = 30kt (TW)

W; = 1450kN  W; = 1550kN  W; = 1450kN W, = 1550kN
mp [kg| 29696.8 31723.1 26241.7 28056.6
t s |min] 475.22 471.58 418.80 415.90
x [km] 158.01 160.30 179.26 181.59
xo [km] 2994.95 2998.96 2998.71 3003.75
xq [km] 172.69 165.72 203.96 194.90
hq [m] 9945 9541 9903 9462
hs [m] 10639 10207 10507 10075
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Figure 7.13: Minimum fuel consumption: (a) vs. wind-shear parameter for TW (w = 30 kt)
and HW (w = —30 kt), for W; = 1700 kN; (b) vs. average wind speed for W; = 1450, 1475,
1500, 1525 and 1550 kN, for Aw = 0.
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Figure 7.14: Flight time: (a) vs. wind-shear parameter for TW (w = 30 kt) and HW
(w = =30 kt), for W; = 1700 kN; (b) vs. average wind speed for W; = 1450, 1475, 1500,
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Figure 7.15: Climb distance: (a) vs. wind-shear parameter for TW (w = 30 kt) and HW
(w = =30 kt), for W; = 1700 kN; (b) vs. average wind speed for W; = 1450, 1475, 1500,

1525 and 1550 kN, for Aw = 0.
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Figure 7.16: Transition distance: (a) vs. wind-shear parameter for TW (w = 30 kt) and HW
(w = =30 kt), for W; = 1700 kN; (b) vs. average wind speed for W; = 1450, 1475, 1500,
1525 and 1550 kN, for Aw = 0.
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Figure 7.17: Descent distance: (a) vs. wind-shear parameter for TW (w = 30 kt) and HW
(w = =30 kt), for W; = 1700 kN; (b) vs. average wind speed for W; = 1450, 1475, 1500,
1525 and 1550 kN, for Aw = 0.
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Figure 7.18: Cruise altitudes: (a) vs. wind-shear parameter for TW (w = 30 kt) and HW
(w = =30 kt), for W; = 1700 kN; (b) vs. average wind speed for W; = 1450, 1475, 1500,
1525 and 1550 kN, for Aw = 0.

The effect of the average wind speed on the minimum fuel consumption, the flight time,
the climb range, the descent range, and the altitude of the second cruise is quite large, whereas
its effect on the transition distance and the altitude of the first cruise is quite small. When
w increases from —30 kt to 30 kt (for Aw = 0 and W; = 1500 kN), the increases in z. and
x4 are 21.28 km and 30.20 km, respectively, that is 12.5%, and 16.4%, and the decreases in
mp, ty, and hg are 3561.0 kg, 56.04 min, and 132.1 m, respectively, that is 12.4%, 12.6%,
and 1.28%, whereas the increases in xo is 4.29 km, that is 0.143%, and the decrease in h; is
42.0 m, that is 0.433%.

The effect of the wind shear on mp, t¢, x., 4, h1, and h3 in the case of TW (w = 30 kt)
is quite large, especially its effect on z., whereas its effect on x5 is quite small; when Aw
increases from 0 to 20 kt, the decreases in mp and t; are 950.4 kg and 15.42 min, respectively,
that is 3.50% and 3.70%, and the increases in z., x4, hi, and hsg are 32.83 km, 14.86 km,
376.8 m, and 335.2 m, respectively, that is, 18.2%, 7.45%, 3.89%, and 3.26%, whereas the
increase in o is of just 7.63 km, that is 0.254%. In the case of HW (w = —30 kt) similar
trends are obtained; when Aw increases from —20 kt to 0, the decreases in mp and t; are
1216.4 kg and 17.80 min, respectively, that is 3.96% and 3.76%, and the increases in x., x4,
hi, and hgz are 25.75 km, 13.03 km, 471.4 m, and 420.5 m, respectively, that is, 16.2%, 7.70%,
4.85%, and 4.04%, whereas the increase in o is of just 16.60 km, that is 0.551%.

The effect of the initial aircraft weight, can be quantified as follows. For w = —30 kt HW,
when W; increases from 1450 kN to 1550 kN, the increases in mp, x., and zo are 2026.3 kg,
2.30 km, and 4.01 km, respectively, that is 6.60%, 1.44%, and 0.134%, and the decreases in
tf, x4, hi, and hg are 3.64 min, 6.97 km, 404.1 m, and 431.3 m, respectively, that is 0.769%,
4.12%, 4.16%, and 4.14%. For w = 30 kt TW, the increases in mp, x., and x5 are 1814.87 kg,
2.33 km, and 5.04 km, respectively, that is 6.68%, 1.29%, and 0.168%, and the decreases in
tf, x4, hi, and hg are 2.90 min, 9.07 km, 440.9 m, and 432.1 m, respectively, that is 0.695%,
4.55%, 4.55%, and 4.20%.
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7.6 Summary

An analysis of minimum-fuel global trajectories in the presence of altitude-dependent winds
has been made, using the theory of singular optimal control and switched control sys-
tems. The optimal trajectory are composed of several phases, in which optimal control
is of the bang-singular-bang type, with optimal paths formed by a singular arc and two
minimum /maximum-control arcs joining the singular arc with the initial and final switching
points.

Results have been presented for the particular case of a climb-cruise-climb-cruise-descent
trajectory with Yin.ci = Ymaz.d = 0, Tmin # Tl # Tmaz, and initial v, g-arc and Ypez d-
arc in the intermediate climb phase and in the descent phase, respectively. In cruise phases,
these assumptions lead to the optimal control being of the bang-singular type instead, with
optimal paths formed by a singular arc and a minimum-7 arc joining the singular arc with the
initial switching point, since the final switching point belongs to the singular arc. In climb
and descent phases, these assumptions lead to a short horizontal acceleration segment and a
steep climb out segment at the beginning and at the end, respectively, of both climb phases,
and two short horizontal deceleration segments at the beginning and end of the descent phase.

This study has been quite general, in the sense that it has been made for a general aircraft
model and a general horizontal wind profile, although results have been presented for linear
profiles. In the numerical applications, the linear wind profiles have been defined by two
parameters: the average wind and the wind shear. The influence of these two parameters on
the results and the influence of the initial aircraft weight have been analyzed.

The results have shown that as the average wind increases, the fuel consumption and
the flight time decrease (as expected). Of particular importance in this chapter has been
the analysis of the influence of the wind shear on the global-trajectory performance. The
influence of the wind shear on fuel consumption and flight time is comparable to that of the
average wind, however not so large; in these variables the wind shear reinforces the effects
of the average wind. With respect to the initial aircraft weight, as it increases the fuel
consumption importantly increases whereas the final time is barely unaffected.

An interesting remark is that the approach considered has the advantage of providing the
altitudes at which cruise phases should take place in order to minimize the fuel consumption
of the global trajectory. Therefore, the influence of the average wind, the wind shear, and the
initial aircraft weight on the cruise altitudes have been also analyzed. The average wind has
very little influence on the optimal values of the cruise altitudes, whereas the wind shear and
the aircraft weight importantly affect them. With tailwinds, the stronger the wind shear,
the higher the cruise altitudes, whereas with headwinds, the stronger the wind shear (in
absolute value), the lower the cruise altitudes. As the initial aircraft weight increases, the
cruise altitudes decrease.
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8 Conclusions

In this thesis, an analysis of optimal aircraft trajectories has been made, using the theory of
singular optimal control. An indirect method is proposed, in which necessary conditions for
optimality are explicitly involved to obtain the optimal trajectory, i.e., the optimal control
law and the associate evolution of the states that optimize some property derived from the
trajectory.

As previously mentioned, the employed optimization approach features the following ad-
vantages:

1. It provides analytical state-feedback control laws that can be directly used to guide the
aircraft along the optimal path, allowing for an easy implementation.

2. It leads to more accurate results than those obtained by direct trajectory optimization
methods.

3. It allows for generating trajectories with the best performance which, although these
may not be flyable according to present-day air-traffic-control procedures and regula-
tions, they can be used either as references to the design of improved flight procedures,
or to assess the optimality of standard flight procedures commonly used in practice,
such as CAS/Mach climbs, constant-Mach cruises and Mach/CAS descents.

The proposed approach has been applied to optimize multiphase aircraft trajectories with
a prescribed phase sequence in the presence of altitude-dependent winds. It has successfully
provided results for a broad range of cases considered, with computation times for an optimal
multiphase aircraft trajectory less than 1.5 min, for a relative tolerance in the unknown
variables of 1072, This figures are obtained when MATLAB 7.8.0 (R2009a) is running in
a PC with an Intel DH67VR motherboard, an Intel Core i7-2600 microprocessor (4 cores,
8 MB cache, 3.4 GHz), and a Windows 7 (64 bits) Operating System.

In order to simplify as much as possible the formulation considered, state constraints
have not been explicitly taken into account. However, all the computed optimal trajectory
presented in this thesis have been checked to provide suitable state laws in which states do
not saturate.

The atmosphere model considered in this thesis do not meet the regularity requirements
assumed in Chapter 3 at the tropopause. However, in all the results presented in this thesis,
optimal trajectories take place within the troposphere, and therefore, it is not necessary for
this lack of regularity to be explicitly taken into account.

Optimizing global trajectories implies not only addressing each flight phase, but also
taking into account the interactions among them as well as looking for a global objective. The
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aim for a global objective has been achieved by considering a global performance index, which
is split into the contributions of each phase and particularized to the additional constraint
imposed at each phase. The interactions have been taken into account by appropriately
imposing the transversality conditions and by enforcing state and adjoint continuity at the
switching points.

As a conclusion, an optimal global trajectory cannot be obtained by simply piecing indi-
vidually optimized phases together, not even when each phase is optimized with a performance
index suitable for a global objective, because the transversality conditions do not provide the
same results for the evolution of the adjoints. However, conclusions regarding the optimal
control and optimal path structure for a single-phase optimal trajectory also apply at each
phase of an optimal multiphase trajectory. This justifies that, prior to optimizing multiphase
aircraft trajectories, the proposed approach has been applied to some auxiliary problems in
which a single-phase aircraft trajectory is optimized.
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9 Future Work

In this thesis, several future research lines can be identified. First of all, the results presented
can be extended.

On one hand, in this thesis results are presented for linear wind profiles in climb, descent
and global trajectories, whereas a uniform wind is considered for cruise trajectories. A
straightforward extension can be presenting results for optimal cruise in the presence of linear
wind profiles. Moreover, for any of the applications considered, results can be presented for
other types of wind profiles. This would allow, for example, to compute cruise altitudes for
a global trajectory in the presence of a jet stream.

On the other hand, in the optimal global trajectory problem, results are presented for one
phase sequence, climb-cruise-climb-cruise-descent. An extension can be presenting results for
some other phase sequences, such as those with only one cruise phase and no intermediate
climb, or with three cruise phases and two intermediate climbs. With these extensions,
a comparison among the different proposed trajectories could be performed, which would
allow, for instance, to analyze the effect of the flight range on the selection of the phase
sequence.

Second, as in the applications involving only one flight phase, results from optimal global
multiphase trajectories could be used to assess the optimality of global trajectories com-
posed of segments performing standard procedures. As an example, a standard global
trajectory could be composed by piecing a CAS/Mach climb, a constant-Mach cruise, an-
other CAS/Mach climb, another constant-Mach cruise and a constant-CAS descent together.
Therefore, the optimized standard global trajectory could be compared with the optimal
climb-cruise-climb-cruise-descent trajectory, which would provide an optimality assessment
of such a standard global trajectory.

Third, the optimization approach presented in this thesis can be extended to analyze
problems with other cost functions, such as global trajectories minimizing the direct operat-
ing cost. To analyze minimum-DOC global trajectory composed of climb, cruise and descent
phases, it is convenient to perform a previous analysis considering only one phase, because
conclusions regarding the optimal control and optimal path structure for a single-phase op-
timal trajectory also apply at each phase of an optimal multiphase trajectory, as it has been
already shown. In this context, the problem of minimum-cost cruise, considering not only
the DOC but also the arrival-error cost, has already been analyzed by Franco and Rivas
[31]. Therefore, prior to studying minimum-DOC global trajectories, it just remains to an-
alyze minimum-DOC climbs penalizing small distance travelled, as well as maximum-range
unpowered descents penalizing large flight time.
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9. Future Work

Fourth, the optimization approach presented in this thesis can also be extended to account
for tropopause crossings during climb and descent phases. One possible approach is based
on regularizing the atmosphere model, that is, adopting an alternative atmosphere model
which coincides with the ISA model except at altitudes in a neighborhood of the tropopause,
for which a sufficiently regular model is considered. Another possible approach is based on
explicitly taking into account the lack of regularity of the atmosphere model, which may force
to change the considered structure of the solution (for instance, by introducing an additional
horizontal segment at the tropopause altitude).
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A Nomenclature

CAS
CAS:

Cp
CL
Cr
CcI

QT

DO

e

h7 hta

3
<23 _xmux

w, w, Aw, dw

T, Tfy Tmax

Vs Vg

speed of sound

specific fuel consumption

calibrated airspeed

optimum descent calibrated airspeed
specific fuel consumption coefficient
drag coefficient

lift coefficient

thrust coefficient

cost index

aerodynamic drag

direct operating cost

gravity acceleration

altitude, CAS/Mach transition altitude, average altitude

Hamiltonian

constant value of the Hamiltonian
objective function

cost factor

running cost

aerodynamic lift
aircraft mass, fuel consumption

Mach number
pressure

air gas constant

switching function

reference wing surface

time, flight time, flight delay

thrust, maximum thrust

control vector, control variable

aerodynamic speed

wind speed, average wind speed, wind-shear parameter, mismodeled wind
aircraft weight

horizontal distance, range, maximum range

state vector

aerodynamic flight-path angle, ground path angle

pressure ratio
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A. Nomenclature

0 temperature ratio

© temperature

Kk ratio of specific heats

A adjoint variable

7 throttle setting

p density

o phase sequence

7 sequence of switching times
{2 cruise singular-arc parameter

Subindices

cl climb
cr cruise

d descent

f final

¢ initial or counter
J counter
flight segment
SL sea level (ISA model)
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B Supplementary Models

B.1 Earth Model

The Earth model adopted has the following characteristics:

e flat Earth,
e constant gravity ¢g—9.80665 m/s?,

e air, a perfect gas defined by a gas constant R, =287.053 J/(kgK) and a ratio of specific
heats k—1.4, and

e standard atmosphere ISA (it defines temperature, ©, pressure, p, and density, p, as
functions of altitude h, with ©gr, psr and pgy, as the reference sea-level values).

B.2 Aircraft Model for Boeing 767-300ER

The aircraft model of the Boeing 767-300ER considered in this thesis for the numerical
applications has a wing surface area Sy =283.3 m?, a maximum take-off mass of 186880 kg
and a maximum fuel mass of 73635 kg.

The aerodynamic model defines the drag polar Cp = Cp(M,Cp), that gives the drag
coefficient as a function of Mach number, M, and lift coefficient, C. The lift and drag
coefficients are defined by L = %pVZSCL and D = %pVZSC’D, respectively. The drag polar
defined by Cavcar and Cavcar [20] is considered; it is given by

5 , 5 .
Cp=|Cpy, + Y koK' (M) | + | Cp,, +> kiK' (M) | Cy
j=1 j=1

(B.1)
5
+ | Cp,, + Y koK' (M) | CF
j=1
where )
— (M —0.4)
K(M)=—% B.2
W= (B2)
The incompressible drag polar coefficients are Cp,, = 0.01322, Cp, ; = —0.00610, Cp, , =

0.06000, and the compressible coefficients are given in table B.1. This polar is valid for
M > 0.4; for M <0.4, the incompressible drag polar applies (obtained by setting K = 0 in
equation B.1).
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B. Supplementary Models

j 1 2 3 4 5
ko  0.0067 —0.1861  2.2420 —6.4350  6.3428
ki 0.0962 —0.7602 —1.2870  3.7925 —2.7672
koj —0.1317 13427 —1.2839  5.0164  0.0000

Table B.1: Compressible drag-polar coefficients for the Boeing 767-300ER

The propulsion model defines the thrust available and the specific fuel consumption. For
the available thrust the following general model is considered (see Torenbeek [74])

T = WrodCr (M, N,) (B.3)

where Wro is the reference take-off weight, 6 = p/pgy, is the pressure ratio (pgy, being the
reference sea-level pressure), and Cr is the thrust coefficient, which in general is a function of
the Mach number and the engine control parameter N.. The control parameter is a function
of Mach number, altitude and the throttle-setting parameter 7 (N (M, h,)), therefore one
can also write the model as T' = T'(M, h, ), that is, thrust dependent on Mach number,
altitude and throttle-setting parameter.

Although different functional dependencies should be used for the different values of the
throttle-setting parameter, in this thesis, for simplicity, the following single model is consid-
ered Cr = mCOT e, and the maximum thrust coefficient C7 1,44 is given by (see Mattingly [43]
and Barman and Erzberger [3|)

K

T sL K—1_ ,\7T 1
Crimar = —25L (4 M 1— 049V = B.4
T Wro < T ) < )0 (B4)

where § = ©/Ogy, is the temperature ratio (Ogz, being the reference sea-level temperature),
and Ty sz, is the maximum thrust at sea level and for M = 0.

As a consequence, the model can be rewritten as T = 7T(M,h) where T); satisfies
Ty = WrodCr maz (M, h) with Crmaq given by equation (B.4). The values used for this
aircraft are Ty 51, =5.00x10° N.

For the specific fuel consumption the following general model is considered (see Toren-
beek [74])

asp V0
— ﬁcc
where ag;, = /kR,Ogy is the speed of sound at sea level, Ly is the fuel latent heat, and C¢
is the specific fuel consumption coefficient (in general C depends on Cr, but this dependence

(M) (B.5)

is neglected, since it is very weak in practice [74]). For the fuel latent heat, one can take
Ly = 43 x 10% J/kg. For the specific fuel consumption coefficient, the linear model defined
by Mattingly [43] is considered; it is given by

L
Ce = csp =L (1.0 + 1.2M) (B.6)
asr,

where cgy, is the specific fuel consumption at sea level and for M = 0. For this aircraft,
csr, =9.0x107% kg /(s N) is used.
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C Singular control functions at climb

In the following, the functions Ay, As, A3, A4, By, By, and Bs, which define the optimal
singular control during climb (see Chapter 4, Section 4.2.4.2) are given.

oD oT V' oT 0D V /0T 0D w’
_ Y72 = 2 Rt DA Bt R _
A=V <CT+6v aV> K” p ><av aV> g<ah ah> g T D)}
Vv

rr=ovgg |00 50) (v o) (@) 5 o)

g
Vw’> 92D VvV 0°D ’aD]

w
g ) OVOm g Ohdm g Om

+ V2meT [<1 +

V2 (0T 0D
5 (G -am)a-»

oD V' 10T 1 0c V (10T 10c
V2T (T-D+m=—= ) |1+ —) ([t~ )| - L (= 4 ==
Vie +m8m + g T8V+08V g T8h+cah

oD or oD

10T 1 0ec V' oT 0D VvV /or 9D w'
Ay ——vep (Lo 1och iy Ywy fof ODN V(0L ODN _ w g
3=—V <T8V+08V> K Ty ><av av) g<ah 8h> s )}

V2 /(10T 10c
@0 (75 + o)

V2 o V' oT Oc Vv [ oT Oc
-0y =2 |1 IL ol L (L ple
T =D) "5y K Ty ><Cav+ av) P <Cah+ 6h>]

(C.3)

V' oT 9D V2 /9T 0D
_ or _oby Ve (ob oD 4
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C. Singular control functions at climb
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D Optimized Standard Procedures

In this appendix, the optimized CAS/Mach climb analyzed by Franco et al. [34] as well as
the optimized constant-CAS descent analyzed by Franco et al. [32] are reproduced for the
sake of completeness.

D.1 Optimized CAS/Mach Climb

The CAS/Mach procedure considered in Ref. [34] is formed by four segments, all of them
with fixed engine rating, that is, with given thrust 7'(V, h): 1) an initial acceleration segment
at constant altitude h; from the initial speed V; to the climb CAS (C'AS,), 2) a climb segment
with constant CAS (C'AS.) from h; to the transition altitude h; at which climb Mach M, is
reached, 3) a climb segment with constant Mach (M,) from h; to the final altitude hy, and
4) a final acceleration at constant altitude hy from M, to the final speed V. This procedure
is similar to the one used by Coppenbarger [26] in his analysis of climb trajectory prediction

enhancement using airline flight-planning information.

To solve the equations of motion (4.1) for each flight segment, a flight constraint must
be given (besides the engine rating) so that the control parameter v can be determined. For
the initial and final flight segments the flight constraint is A = const, and therefore v = 0.
For the constant-CAS segment, it is CAS = const = C'AS., which is in fact a speed law
V = Ve(h) (see Asselin [1]) given by

2
Vo= |=R,0(h) (1 4 BsL

kpseene) )
. ¥ <1+ msg) —1D ~1], (D.1)

2 psL

where k = (k — 1)/k. For the constant-Mach segment, the flight constraint is M = const =
M., which is in fact a speed law V = Vs (h) given by
Ve = Mo/ kR,©O(h), (D.2)
Note that the transition altitude h; is defined by the relation
Vo(he) = Var(hye) (D.3)

For the initial and final horizontal segments the equations of motion (4.1) reduce to

. T(V,ha) = D(V,m, ha)
a m
m=—c(V,ha)T(V,ha)

T = V+w(hA)

(D.4)
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where h4 stands for the initial and final altitudes, h; and hy, respectively.

For the constant-CAS and constant-Mach segments, let V' = V4(h) stand for the known
speed laws V = Vo (h) and V' = Vs (h), respectively. Then one has

dv ,dh ,
i A Va(h)Va(h)y (D.5)
therefore, the first equation of motion (4.1) defines the control variable v as a function of m
and h, say v = ya(m,h), as follows

T(VA(h)a h) — D(VA(h)7 m, h)

T g 4+ Valh) (/) + V()] D6)

Once v is known, one must integrate the following equations

m = _C(VA(h)’ h)T(VA(h)’ h)
b= Vahva(m, b) (0.7)
& =Vy(h)+w(h)

The computation of the CAS/Mach climb is performed as follows: For the initial segment,
Egs. (D.4) are integrated from V = V;, m = m; and x = 0 until V' = Viz(h;); at the end of
the segment one has m; and x1. For the constant-CAS segment, Eqs. (D.7) are integrated
starting at m = my, h = h; and © = x7 until h = h; at the end of the segment one has
mg and x9. For the constant-Mach segment, Eqs. (D.7) are integrated starting at m = mao,
h = hy and x = x9 and stopping at h = hy; at the end of the segment one has mg3 and 3.
Finally, for the last segment, Egs. (D.4) are integrated from V' = Vjs(hy), m = mg, and
x = z3 until V' = V}; at the end of the segment one has the final mass my and the final
distance zy. The fuel consumption is therefore mp = m; —my.

This procedure to obtain the final distance and the fuel consumption for given values of
CAS and Mach can be written in symbolic form as

xf =axp(CAS:, M)

(D.8)
mgp = mF(C'ASC, Mc)

The CAS/Mach procedure is now optimized to give minimum performance index, taking
CAS. and M, as the optimization parameters. The optimum values of CAS. and M, are
obtained solving the following parametric optimization problem

minimize mp(CAS., M.) — Kxy(CAS., M.)
subject to CAS. > CAS;

M, < M;

hi < hy(CASe, M.) < hy

(D.9)

where CAS; and My are the values of CAS and Mach that correspond to V;, h; and Vi, hy
respectively. The constraints guarantee that the climb procedure has the segments considered
in its definition. In this application, the optimization solver used is MATLAB’s fmincon, a
sequential quadratic programming (SQP) method (see Ref. [29]).
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D.2 Optimized Constant-Calibrated-Airspeed Descent

The constant-CAS procedure considered in Ref. [32] is formed by three segments, all of them
with zero thrust: 1) an initial deceleration segment at constant altitude h; from the initial
speed V; to the descent CAS (CASy), 2) a descent segment with constant CAS (C'ASy) from
h; to the final altitude hy, and 3) a deceleration segment at constant altitude hy from C' ASy
to the final speed V.

To solve the equations of motion (6.1) for each flight segment, a flight constraint must
be given (besides flying unpowered) so that the control parameter v can be determined. For
the initial and final flight segments, the flight constraint is h = const, and therefore v = 0;
for the constant-CAS segment, it is CAS = const = C'ASy, which is in fact the same speed
law V' = Vi (h) as in (D.1) but with C' ASy, instead of CAS,, that is

kpsc L/k ’
1+——CASZ> —1 —1/, D.10
( 2 psL d ]) ( )

Vo= |ZR.0(h) <1+pﬂ

p(h)

2
k

For the initial and final horizontal segments the equations of motion (6.1) reduce to

v _D(V,ha)
B m (D.11)
T = V+w(hA)

where hy stands for the initial and final altitudes, h; and hy, respectively.

For the constant-CAS segment, because V' = Vi (h) is given, one has

AV dVedh Ve
TS @ an et (D.12)

therefore, the first equation of motion (6.1) defines the control variable v as a function of h,
say v = vc(h), as follows
D(Ve(h), h) dw ave]™

o= g-i-VC(h)a‘f‘VC(h)ﬁ (D.13)

Once v is known, one must integrate the following equations

h = Ve(h)ye(h)

. (D.14)
& =Ve(h) +w(h)

The computation of the constant-CAS descent is performed as follows: For the initial
segment, Egs. (D.11) are integrated from V =V, and = 0 until V' = Viz(h;); at the end of
the segment, one has 1 = Azy. For the constant-CAS segment, Eqs. (D.14) are integrated
starting at h = h; and z = x1, and stopping at h = hy; at the end of the segment one
has 2o = x1 + Axzs. Finally, for the last segment, Eqs. (D.11) are integrated from from
V = Ve(hy) and @ = 29 until V' = V}; at the end of the segment one has the final distance
xy = wo + Axz. The range is therefore vy = Axq + Axg + Axs.

This procedure to obtain the range for a given value of CAS can be written in symbolic

form as

zyf :(L'f(CASd) (D.15)
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The constant-CAS procedure is now optimized to give maximum range, taking C'AS; as
the optimization parameter. The optimum value of C' ASy, say C'AS}, is obtained solving the
following parametric optimization problem

minimize — x7(C'ASy)

(D.16)
subject to CASy < CASy; < CAS;

where CAS; and CASy are the values of CAS that correspond to V;, h; and Vg, hy, re-
spectively. In this chapter, the optimization solver used is MATLAB’s fmincon, a sequential
quadratic programming (SQP) method (see Fletcher [29], for example).
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