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Abstract

Functional neuroanatomy of cognitive impairment in multiple sclerosis is currently still a

challenge. During the progression of the disease, several cognitive mechanisms deteriorate

thus diminishing the patient’s quality of life. A primary objective in the cognitive assessment

of multiple sclerosis (MS) patients is to find reliable measures utilizing diverse neuroimaging

techniques. Moreover, especially relevant in the clinical environment is finding technical

approaches that could be applied to individual participants and not only for group analysis. A

64-channel electroencephalographic recording (EEG) was made with thirty participants

divided into three groups of equivalent size (N = 10) (healthy control, low-EDSS (1–2.5) and

moderate-EDSS (4–6)). Correlation analysis was applied to multiple measures: behavior,

neuropsychological tests (Paced Auditory Serial Addition Test, 3 seconds (PASAT-3s) and

the Symbol Digit Modality Test (SDMT)), Expanded Disability Status Scale (EDSS), even-

related potential (P3) and event-related desynchronization (ERD) parameters and the corre-

lation scores between individual participant’s P3/ERD maps and the healthy grand average

P3/ERDmaps. Statistical analysis showed that diverse parameters exhibited significant cor-

relations. A remarkable correlation was the moderate score found between SDMT and

EDSS (r = −0.679, p = 0.0009). However, the strongest correlation was between the value

of integrated measures (reaction time, P3 and ERD latency) and EDSS (r = 0.699, p =

0.0006). In regard to correlations for grand average maps between groups, the P3 compo-

nent exhibited a lower score according to a more deteriorated condition (higher EDSS). In

contrast, ERD maps remained stable with an increase of EDSS. Lastly, a Z-transformation

of individual values of all variables included in the study exhibited heterogeneity in cognitive

alterations in the multiple sclerosis participants.
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Introduction

Understanding the functional and anatomical changes related to cognitive impairment in mul-

tiple sclerosis is currently still a challenge. The relatively stochastic localization of lesions in

multiple sclerosis (MS) causes complex patterns of cognitive impairment mainly related to slo-

wed cognitive processing speed and episodic memory decline as well as to executive function,

verbal fluency and visuospatial analysis [1]. Considering this heterogeneity in the course of

cognitive disability, one primary aim is to define protocols and techniques that would allow

reliable evaluation of altered brain activity in individual patients.

One possibility for studying the functional alterations of brain activity associated with cog-

nitive impairment is through cognitive tasks (i.e., visual oddball). As a result of this applica-

tion, diverse behavior variables (reaction time and accuracy) and physiological activity

(electroencephalography (EEG)) can be measured. Diverse approaches can be used in the anal-

ysis of the EEG signal: time domain (i.e., event-related potentials (ERPs)) or frequency domain

(i.e., event-related desynchronization (ERD)). In the particular case of multiple sclerosis, both

approaches have evidenced alterations related to cognitive impairment. For instance, the P3

component (as a typical ERP measure) has shown that amplitude could be decreased in MS

patients [2, 3, 4, 5, 6, 7], increased in its latency [8, 9, 10, 11, 12], or both simultaneously [13,

14, 15]. All of these modulations were obtained with diverse cognitive paradigms that suggest a

non-sensory modality-dependent process representing a more central cognitive function.

With regard to the frequency domain, one possible technique is the ERD (event-related

desynchronization) that was described by Pfurtscheller and Aranibar [16] and allows for the

analysis of spectral modulations in the millisecond range for the EEG signal. This time-fre-

quency technique allows for observing modulations in brain activity that are not visible in the

time domain of ERPs. In the particular case of MS, Leocani et al.[17] looked for changes in

ERD related to fatigue and motor dysfunction in MS patients. The results showed that the

onset latency of the ERD was not different between experimental groups (fatigued and non-

fatigued patients);however, a more widespread anterior topography was found in fatigued

patients. Later, Leocani et al. [18] demonstrated a delay in the ERD onset latency that was

related to the lesion load presented in MS patients but without correlation to clinical disability.

On the other hand, disability in MS is usually assessed by EDSS (Expanded Disability Status

Scale) [19]. The EDSS comprises the evaluation of 8 functional systems (Pyramidal, Cerebellar,

Brain Stem, Sensory, Bladder-Bowel, Visual, Cerebral or Mental and Other) in the patient and

can assess the progression of the disease. A long time ago, diverse studies have tried to relate

EDSS to cognitive measures, in some cases with promising results [9, 13] and in others failing

to confirm that link [6, 20, 21]. The progression of disability in MS defined by the EDSS score

could serve as a reference for the course of cognitive alterations in patients. An interesting aim

would be to define how psychophysiological variables (such as P3 and ERD) evolve through

different phases and are related to the EDSS score. In particular, it would be interesting to

describe a more general path for cognitive deterioration in MS and its subtypes but at the same

time be able to study individual courses of impairment in MS.

For this to be done, not only behavioral parameters (i.e., reaction time in cognitive tasks or

neuropsychological scores) but also neuroimaging techniques will be necessary to understand

the functional neuroanatomy of cognitive impairment in MS. Indeed, some recent studies

have evinced that some EEG parameters (topographical microstates) could be highly corre-

lated to the EDSS score [22] and with cognitive processes.

One of the main goals of the present study is to measure alterations in diverse behavioral

and EEG parameters (reaction time, P3 component and alpha-ERD) in two different samples

of patients (low and moderate EDSS scores) compared to a healthy sample. A cognitive task
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(visual oddball) will be used because of its reliability in all of these measures as has been previ-

ously tested [23, 24]. It is worth noting that not only a group analysis will be performed for all

of these parameters but also individual participant analysis will be performed to contrast the

general pattern (group analysis) with individual profiles assessed by individual z-scores. A spe-

cial consideration will be focusing on checking for individual and group topography alter-

ations related to a higher disability status in these patients as one of the relevant parameters of

P3 and ERD measures.

A second main goal is to look for statistically significant correlations between different

types of variables (behavior, neuropsychological and neurophysiological) and disability of the

MS patient assessed by EDSS. With this aim, we tried to identify neurophysiological parame-

ters that are part of the mechanisms related to the cognitive impairment manifested by MS

patients.

We hypothesized that a more severely disabled condition in MS patients will show diverse

cognitive alterations such as delays in reaction times, or changes in latency, amplitude and

topography of P3 and ERD between healthy and patient groups. Another prediction is that

correlation analyses will show a moderate correlation between EDSS and SDMT or the

PASAT test as has been described in previous studies. However, we expect that a combination

of diverse behavioral and neurophysiological parameters could correlate even better with

EDSS score.

Lastly, and as a more general hypothesis, we expect that the moderate-EDSS group will

show a larger number of alterations in diverse parameters (Z-scores >1) than that of the low-

EDSS group, indicating a more severe cognitive impairment. At the same time, the full set of

individual patients will provide evidence of a complex landscape of alterations in all experi-

mental parameters, indicating diverse cognitive status.

Method

Participants

Thirty participants were divided evenly into three groups. Two pathological groups were

defined by the disability of patients measured through EDSS [18] (low-EDSS (1–2.5) and mod-

erate-EDSS (4–6)). A healthy group with ten participants was also recruited with sociodemo-

graphic variables matched between the groups. The participants’ sociodemographic data can

be seen in Table 1. All participants were recruited in an MS Unit of the Hospital Universitario

Virgen Macarena and exhibited a definite diagnosis of relapsing-remitting multiple sclerosis

(RRMS) according to the Poser criteria [25]. Exclusion criteria included the following: forms

of MS other than RRMS, suffering a clinical relapse 30 days before participating in the study,

EDSS score over 6, presence of comorbid neurodegenerative or psychiatric disorders, history

of drug abuse, neurological conditions as head trauma, vascular diseases and seizures, severe

depression, significant upper limb impairment, and visual acuity or field deficits. Healthy

Table 1. Demographic data of experimental subjects.

Low EDSS patients (n = 10) Mod EDSS patients (n = 10) Healthy controls (n = 10) Significance

Sex (m/f) 8/2 5/5 6/4 p = 0.360

Age (years, mean ± SD) 41 (9.91) 41.9 (10.32) 41.6 (10.12) p = 0.990

Handedness (left/right-handed) 1/9 1/9 1/9 p = 1.00

Secondary education (yes/no) 8/2 9/1 10/0 p = 0.874

Key: m: male; f: female; EDSS: Expanded Disability Status Scale; SD: standard deviation; NS: Non-significant difference (p>0.05).

https://doi.org/10.1371/journal.pone.0219594.t001
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controls were students and professionals from the Psychology faculty. Exclusion criteria for

healthy controls were the same as used for patients in regards to a clean neurological report

and checks for visual acuity or field deficits. Beck Depression Inventory (BDI-II) [26, 27] was

used to assess symptoms of depression and compare low- and moderate-EDSS groups.

The current study was carried out in compliance with the Helsinki Declaration. All partici-

pants were informed about all relevant information in their participation of the study and have

at least seven days to decide if they want to be participants and signed informed consent. The

experimental protocol and informed consent procedure was reviewed and approved by the

ethics committee of the University of Seville (project code: PSI2016-78133-P).

Neuropsychological assessment

Previous to the ERP study, neuropsychological testing of the patients was provided by well-

trained neuropsychologists blinded to the study goals. Diverse cognitive processes such as

attention, concentration and speed of information processing were measured through the

Paced Auditory Serial Addition Test, 3 seconds (PASAT-3s) [28, 29], and the Symbol Digit

Modality Test (SDMT) [30, 31], and were compared to the normative scores described by

Sepulcre et al. [32]. Patients were cognitive preserved (some participants of low EDSS group)

or mildly impaired (low and moderate EDSS group). In any case, all participants were pro-

vided with details about the safety of the experiment and the right to voluntarily withdraw

from participation in the presence of a neurologist who confirmed that all participants were

able to understand the details about the study and any risk implied.

Cognitive neurophysiology task

EEG parameters were recorded using a visual oddball paradigm that consisted of the discrimi-

nation of uncommon visual stimuli in a sequence of frequent stimuli. A total of 200 trials were

used: 50 were target and 150 standard stimuli displayed in a pseudorandom presentation. The

target stimulus was a rectangle with a checkerboard pattern comprising red and white squares.

The standard (frequent) stimulus was equivalent in size with the same pattern but with black

and white squares. Both stimuli were shown in the same position in the center of the screen. A

fixation point was present when no stimuli were displayed to prevent changes in eye position

during the experiment. The screen was located 70 centimeters from the participant’s eyes, and

the size of both stimuli was 7.98 of visual angle on the X axis and 9.42 on the Y axis. Both sti-

muli were presented for 500 milliseconds (ms), and the stimulus onset asynchrony (SOA) was

1.5 seconds during which the participant could respond. The participants were required to

press the mouse button with the right index finger when a target stimulus appeared but to

ignore the standard stimulus. At the end of the experimental session, reaction time and accu-

racy percentage were calculated.

EEG data acquisition and processing

The EEG signal was recorded from 64 electrodes mounted in an elastic cap (Electro-cap)

according to the International 10–20 system (Fig 1). All electrodes were referenced during the

recording to the linked earlobe channel and offline re-referenced to an averaged reference. Ver-

tical and horizontal electrooculograms (VEOG and HEOG) were recorded with bipolar record-

ings from electrodes situated in the inferior and superior positions of the right orbit and in the

external canthi of the ocular orbits, respectively. The EEG was amplified with a BrainAmp

64-channel system (Brain Products GmbH, Germany) with band limits of 0.01–100 Hz, and a

sampling rate of 500 Hz was used. The impedance was kept below 5 kOhms in all derivations

used. Previous to the calculation of P3 and ERD parameters, a protocol was applied to the EEG
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data: ocular correction of the blinking artifact in the scalp electrodes using the algorithm devel-

oped by Gratton et al. [33], segmentation of the continuous EEG recording (-100 to 800 ms,

zero being the onset of the target stimulus), baseline correction based on the previous interval

to the stimulus (-100 to 0 ms), and visual review of EEG epochs and rejection of artifacts.

An automatic rejection protocol was applied, and limits to exclude trials were set as ±75 μV

that reject ocular movements performed during the experiment, as well as large muscle activity

(i.e., from neck, face, back or jaw muscles). Lastly, averages (with an equivalent number of tri-

als for both P3 and ERD) were calculated for the target stimulus and for each participant. As

recommended by Polich [34], all of the individual averages comprised at least 15 artifact-free

trials with correct behavior (mean number of trials per group: 30.7 for healthy, 30.4 for low-

EDSS and 30.6 for moderate-EDSS). No significant differences were found for the number of

trials accepted for averaging among groups.

BrainVision Analyzer Software was used to calculate amplitude, latency and topographical

maps for both P3 and ERD modulations. The latency and amplitude values of the P3 compo-

nent were calculated in the electrode that showed the maximum amplitude for each partici-

pant. The criterion to identify the P3 component was to select the maximum positivity from

electrodes of a matrix of 6 x 7 (Fig 1) (in this case, the Pzp derivation) in the interval between

300 and 450 milliseconds. After the latency was determined by the maximum amplitude,

amplitude values for the rest of the electrodes (matrix 6x7, see Fig 1) were exported in the

same latency for topographical study, as some authors suggest [35].

Alpha event-related desynchronization (ERD) was obtained from the EEG signal applying

the following protocol: 1) filtering in the 8–13 Hz band, 2) rectifying (which turns negative volt-

age values into positive values) and 3) averaging [16, 36]. Latency and amplitude values of the

alpha ERD were calculated in the electrode that showed the maximum amplitude (as with P3,

the Pzp derivation). The alpha “valley” was identified as the maximum negativity in the interval

between 250 and 700 milliseconds. Calculation of voltage values were performed in regards to

the baseline previous to the onset of the stimuli (−100 to 0 ms) for both P3 and ERD.

Statistical analyse

Statistical analyses were performed with SPSS v20 software. Considering the limited number

of cases for each group (N = 10), a nonparametric test (Kruskal-Wallis) was conducted to

Fig 1. Electrode array and Pzp wave for alpha event-related desynchronization and P3 component. The X axis represents “time”

expressed in milliseconds (ms), and the Y axis represents the “amplitude” of the ERP/ERD in microvolts (μV). The vertical dashed line

indicates the onset of the stimulus. The black trace corresponds to the healthy group: red corresponds to the low-EDSS group, and green

corresponds to the moderate-EDSS group. Note the delayed latency in ERD latency for the moderate-EDSS group compared to healthy

control group.

https://doi.org/10.1371/journal.pone.0219594.g001
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determine potential differences in the behavioral and neurophysiological variables (reaction

time, accuracy and ERD and P3 latencies). In all cases, pairwise comparisons were performed

with a Bonferroni correction for multiple comparisons. Adjusted p-values are presented in the

results section. The transformation of all parameters into a z-score was calculated using the fol-

lowing formula: Z = (value-mean)/standard deviation. Mean and standard calculations were

obtained from the healthy group.

To analyze the correlations between EDSS and all behavioral and EEG parameters (ERD

and P3 latencies and map scores), Pearson’s product-moment r was employed. Neuropsycho-

logical data were only correlated with other measures for patient groups. Data from both

patient groups were combined to perform the correlation analyses.

In addition, we defined two variables termed “map scores” (for P3 and ERD) that were cal-

culated as the correlation score between the voltage from the scalp electrodes (matrix 6x7

referred to above) for each patient and the corresponding voltage values of the grand average

P3/ERD maps from the ten healthy controls. These two new variables were also included in

the variables that were correlated to the EDSS score. Finally, we calculated the mean of a com-

bined measure of three z-scores from three variables (reaction time, P3 latency and ERD

latency) and termed it as “Z3”.

As a general consensus, p<0.05 was considered statistically significant. However, as recom-

mended by Kileny & Kripal [37], a new level of significance was determined by the classic

value (0.05) divided by the number of correlations performed (25) (the new p level was set to

0.002).

Results

Behavior

A Kruskal-Wallis test was conducted to determine whether there were differences in the reaction

time between the experimental groups: "healthy control" (n = 10), "low-EDSS" (n = 10), and "mod-

erate-EDSS" (n = 10). The median (Mdn) RT values were significantly different between the dif-

ferent levels of experimental groups, χ2(2) = 6,265, p = .043. The post hoc analysis indicated

statistically significant differences in the RT values between the healthy control group (Mdn =

10,3) and the moderate-EDSS group (Mdn = 20,1) (p = .038). There were no significant differ-

ences between the other comparisons. The faster value corresponded to the healthy control group

(418 ± 72.32 milliseconds (ms)), followed by the low-EDSS group (457 ± 69.19 ms) and finally the

longer value belonged to the moderate-EDSS group (494 ± 66.40 ms) (Table 2). Accuracy vari-

ables assessed by Kruskal-Wallis test showed no statistical significance between groups (p = 0.984)

(healthy: 99.3 ± 0.97, low-EDSS: 99.3 ± 0.71 and moderate-EDSS: 99.2 ± 1.34). In the case of trans-

formation of individual reaction time values in z-scores, one participant from the healthy group,

three for low-EDSS, and five from moderate-EDSS exhibited values higher than 1.

Neuropsychological data

Table 2 presents the SDMT and PASAT scores for individual patients. Using the normative val-

ues from Sepulcre et al. [29], it is possible to observe that low-EDSS patients were cognitively

unimpaired (except in one case). In contrast, five of the moderate-EDSS group showed lower

hits for one or both tests that were under the cut-off value for their age and education level.

Alpha event-related desynchronization (ERD)

Potential differences among the three groups ("healthy control", "low-EDSS" and "moderate-

EDSS") in the ERD latency were examined using a Kruskal-Wallis test. The median ERD
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latency values were significantly different between the different levels of experimental groups,

χ2(2) = 10,095, p = .006. The post hoc analysis indicated statistically significant differences in

the ERD values between the healthy control group (Mdn = 10,1) and the moderate-EDSS

Table 2. Individual behavioral, neuropsychological and EEG parameters in three experimental groups.

Group and subjects RT RT Z P3 Lat P3 Lat Z ERD Lat ERD Lat Z Map P3 Map ERD EDSS SDMT PASAT BECK
HC1 408 -0,13 316 -0,93 460 0,18 0,76 0,962

HC2 400 -0,25 322 -0,83 384 -0,67 0,967 0,945

HC 3 594 2,45(�) 406 0,59 486 0,47 0,745 0,847

HC 4 356 -0,86 396 0,42 634 2,13(�) 0,762 0,834

HC 5 377 -0,56 504 2,25 (�) 432 -0,13 0,694 0,759

HC 6 350 -0,95 366 -0,08 488 0,49 0,835 0,925

HC 7 396 -0,30 350 -0,36 436 -0,09 0,889 -0,048(�)

HC 8 400 -0,25 404 0,56 464 0,22 0,616 -0,386(�)

HC 9 485 0,93 318 -0,90 306 -1,55 0,684 0,812

HC 10 410 -0,11 330 -0,69 350 -1,06 0,682 0,925

HC GLOBAL 418 371 444 0,763 0,658

HC STD 72,32 58,70 89,53 0,11 0,47

RT RT Z P3 Lat P3 Lat Z ERD Lat ERD Lat Z Map P3 Map ERD EDSS SDMT PASAT BECK

LOW1 501 1,15(�) 378 0,12 676 2,61(�) 0,461(�) 0,409(�) 2 36 52 15

LOW2 439 0,28 410 0,66 458 0,16 0,876 0,077(�) 2 76 54 6

LOW3 414 -0,06 272 -1,68 406 -0,43 0,85 0,883 2 42 44 20

LOW4 456 0,52 374 0,05 474 0,34 0,438(�) -0,639(�) 2 48 56 9

LOW5 334 -1,17 348 -0,39 424 -0,22 0,865 0,871 1,5 45 43 8

LOW6 463 0,62 390 0,32 508 0,72 0,791 0,872 2 28(�) 17(�) 13

LOW7 553 1,88(�) 334 -0,63 460 0,18 0,755 0,398(�) 2,5 39 47 20

LOW8 553 1,87(�) 300 -1,20 446 0,02 0,77 0,921 1 50 42 15

LOW9 471 0,73 422 0,86 564 1,35(�) 0,413(�) 0,235(�) 2 53 51 14

LOW10 386 -0,45 402 0,53 572 1,44(�) 0,598(�) 0,749 2 49 43 7

LOW GLOBAL 457 363 499 0,682 0,478 1,9 46,6 44,9 12,7

LOW STD 69,19 48,99 82,91 0,19 0,50 0,39 12,76 11,02 5,08

RT RT Z P3 Lat P3 Lat Z ERD Lat ERD Lat Z Map P3 Map ERD EDSS SDMT PASAT BECK

MOD1 453 0,49 316 -0,93 484 0,45 0,469(�) 0,437(�) 4 50 45 10

MOD2 560 1,97(�) 492 2,05(�) 570 1,42(�) 0,62 0,624(�) 6 13(�) 56 18

MOD3 527 1,51(�) 596 3,81(�) 594 1,69(�) 0,299(�) 0,821 6 20(�) 52 3

MOD4 467 0,68 298 -1,24 534 1,01(�) 0,782 0,948 4 50 46 21

MOD5 475 0,79 590 3,71(�) 516 0,81 0,867 0,727 5 32 22(�) 16

MOD6 631 2,96(�) 532 2,73(�) 540 1,08(�) 0,542(�) 0,789 5,5 29(�) 22(�) 16

MOD7 436 0,25 360 -0,19 610 1,87(�) 0,56(�) 0,872 5,5 32 41 30

MOD8 398 -0,28 406 0,59 634 2,13(�) 0,543(�) 0,903 4 42 51 20

MOD9 494 1,06(�) 558 3,17(�) 610 1,87(�) 0,243(�) 0,94 6 20(�) 42 20

MOD10 498 1,11(�) 628 4,36(�) 584 1,57(�) 0,521(�) 0,919 4 26(�) 18(�) 11

MOD
GLOBAL

494 478 568 0,545 0,798 5 38,15 40,91 16,5

MOD
STD

66,40 123,03 47,75 0,19 0,16 0,91 12,64 13,81 7,34

Abbreviations. RT: Reaction time (in milliseconds).Lat: Latency (in milliseconds, ms). ERD: Event-related desynchronization. Z: Z-transformation for the variable.Mod-

EDSS: Moderate-EDSS. Asterisks (�) indicate in Z-columns (RT Z, P3 Lat Z and ERD Lat Z) values higher than 1 for z-score. Asterisks in Map columns specify

correlation scores lower than 0.6 for P3 and 0.7 for ERD.

https://doi.org/10.1371/journal.pone.0219594.t002
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group (Mdn = 22,3) (p = .005) (Fig 1 and Table 2). There were no significant differences

between the other comparisons. In regards to the amplitude, no differences were exhibited by

Kruskal-Wallis test (p = 0.968) (healthy: −0.864 ± 1.78 μV, low-EDSS: −1.010 ± 0.97μV and

moderate-EDSS: −0.885 ± 0.62 μV) (see Fig 2). In the individual analysis for latency parameter,

one participant from the healthy, three from low-EDSS and eight in the moderate-EDSS

groups exhibited a z-score higher than 1 (Table 2).

Event-related potentials (P3)

The Kruskal-Wallis test did not show significant differences among the groups for the P3

latency. Despite the lack of significant differences, healthy (371 ± 58.70 ms) and low-EDSS

(363 ± 48.99 ms) groups were faster in their P3 latency compared to the moderate-EDSS group

(478 ± 123.03 ms) (Fig 1). In the case of the amplitude, no statistically significant differences

were found between groups for this variable (p = 0.105) (healthy (11.22 ± 5.39 μV), low-EDSS

(12.74 ± 9.09 μV) and moderate-EDSS (6.78 ± 2.33 μV)) (Fig 3). In the individual analysis of

P3 latencies, there was not a single participant from the low-EDSS group that exhibited a z-

score higher than 1 in contrast to six patients in the moderate-EDSS group (Table 2).

Correlation analyses

After the analyses, only three correlations showed a statistically significant value (p<0.002):

SDMT vs EDSS (r = −0.679, p = 0.0009); SDMT vs Z3, (r = −0.665, p = 0.0013) and EDSS vs

Z3 (r = 0.699, p = 0.0006) (see Fig 4). A statistical trend was observed for P3 latency and the

EDSS variable, r = 0.638, p = 0.0024).

In the correlation analyses for P3 maps between groups, the healthy and low-moderate

group exhibited a good score (r = 0.873, p<0.002), but a lower score was found when the com-

parison was made between healthy and moderate-EDSS groups (r = 0.524, p<0.002). In the

case of ERD maps, correlation scores between healthy and patient groups were in both cases at

an excellent level (healthy vs low-EDSS, r = 0.956, p<0.002; healthy and moderate-EDSS,

Fig 2. Grand average and individual 3D head maps of ERD (event-related desynchronization) for healthy, low- and moderate-EDSS

groups. 3D head maps are displayed for each of the 10 participants of each group (upper line: healthy group; midline: Low EDSS group;

bottom line: Moderate EDSS group) and the grand average for each group (A): healthy; (B): Low EDSS and (C) Moderate. Note that GA

topographies were similar between groups.

https://doi.org/10.1371/journal.pone.0219594.g002
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r = 0.976, p<0.002). Amplitudes for P3 and ERD were not included in these analyses due to

the absence of significant differences across the three groups.

Discussion

The reaction time showed a significant difference between the healthy control and moderate-

EDSS groups. This difference was based on the slower responses for the moderate-EDSS

group. This result suggests progressive deterioration in cognitive processing indexed by a

behavioral variable in the moderate-EDSS group and an intermediate status for the low-EDSS

group. It is necessary to note that the differences in reaction time were not a product of com-

pensation for lower accuracy (speed-accuracy tradeoff) because there were no significant dif-

ferences for the accuracy variable between groups.

Finally, transformation of the reaction time variable in z-scores for each participant

revealed that the moderate-EDSS group has a higher number of individuals with more than 1

(5) and three cases for low-EDSS. This result suggests that the reaction time in an oddball

visual task can provide relative evidence of progressive cognitive deterioration in RRMS

patients.

The Pearson’s product-moment r between EDSS and reaction time exhibited a poor corre-

lation score for these variables (r = 0.393, p>0.05), indicating that behavior by itself is not very

representative of disability progression. Moreover, it is necessary to mention that the healthy

group also showed one individual with a z-score higher than one, indicating the possibility of

false positives with this variable. In any case, it is necessary to remark that changes in the reac-

tion time for MS groups could also be due to motor impairment and not only sensory and cen-

tral cognitive impairments. Moreover, a global EDSS score could hide a potential motor

impairment in an MS sample. Future studies considering subscores and peripheral and central

motor evaluations would be required to confirm this possibility.

The main result for neuropsychological variables is that the low-EDSS group was almost

totally unimpaired as assessed by the SDMT and PASAT tests and considering normative

Fig 3. Grand average and individual 3D head maps of P3 for healthy, low- and moderate-EDSS groups. 3D head maps are displayed for

each of the 10 participants of each group (upper line: healthy group; midline: Low EDSS group; bottom line: Moderate EDSS group) and

the grand average for each group (A): healthy; (B): Low EDSS and (C) Moderate. Note that the topography for GA is moved to more

posterior areas as disability (EDSS) increases.

https://doi.org/10.1371/journal.pone.0219594.g003
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scores by Sepulcre et al. [32]. Five of the moderate-EDSS patients exhibited SDMT/PASAT

scores under the cut-off value defined by Sepulcre et al.[32]. It seems reasonable to suggest that

the progression in the disability of patients is related to cognitive impairment as has also been

confirmed by the significant correlation found between SDMT and EDSS (r = -0.679,

p = 0.0009).

Statistical analysis of alpha ERD latency evinced that the moderate-EDSS group showed a

significant delay compared to the healthy and low-EDSS groups. This result is in line with

other described spectral alterations in MS patients. Leocani et al.[18] showed delays in the mu-

ERD onset latency suggesting a disruption in the functional cortico-cortical and cortico-sub-

cortical connections in MS patients during programming voluntary movement. In line with

Leocani et al. [18], a mildly impaired ERD latency in the moderate-EDSS group from our

study could be a consequence of partial disconnection (demyelinization) between neural ele-

ments responsible for alpha ERD modulation. The lack of amplitude or topography changes

suggests no neuronal loss or atrophy associated with the delay of the ERD latency. It is note-

worthy that the alteration of the alpha ERD latency is present in 8 out of 10 patients from the

moderate-EDSS group and in three from the low-EDSS group. It seems reasonable to note that

this parameter is related to the disability score of the MS patient.

In the individual alpha ERD maps,diverse results were remarkable for this parameter. First,

some patients exhibited low correlation scores for their individual maps compared to the

grand average map of the healthy group. Considering that the grand average maps for ERD

between groups reached excellent scores (r>0.9), low correlation scores support previous stud-

ies in which it was noted that the grand averaging can hide individual particularities [23, 24].

Secondly, the number of low score maps in the low-EDSS group is higher compared to that of

the moderate-EDSS group (indeed, healthy and moderate-EDSS groups have the same ratio

for low scores maps: 2/10).Third, there is not a perfect match between the alterations seen in

topography compared to the changes found in the ERD latency, demonstrating that both vari-

ables are not necessarily linked. A possible interpretation of these results could be that the

alteration of the ERD topography represents a possible compensatory mechanism active in the

low-EDSS group. A study from Kiiski et al.[38], has suggested that the increase of the decre-

ment for ERD could represent a compensatory mechanism. In this case, we suggest that

changes in the topography, without changes in latency or amplitude, can index compensatory

mechanisms in early EDSS phases of MS patients.

A remarkable result regarding the topography of alpha ERD is that, despite the reliable dis-

tribution in grand average maps between groups, individual analyses revealed that a more

frontal and sometimes lateralized distribution of ERD modulation is present in the low-EDSS

patients compared to that of the healthy grand average. This result is in line with previous

studies where a more widespread anterior topography was found in fatigued patients [18].

Fig 4. Scattergrams for the significant correlations between EDSS, SDMT and Z3 variables. Abbreviations:Z3: Z-score of combined variables

(reaction time, P3 latency and ERD latency), SDMT:Symbol Digit Modality Test and EDSS: Expanded Disability Status Scale.

https://doi.org/10.1371/journal.pone.0219594.g004
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However, a surprising result is that altered topography in low-EDSS looks like a transitional

modulation because only two patients from the moderate-EDSS group showed low correlation

scores. In any case, a follow-up study for the low-EDSS group will be necessary to confirm this

hypothesis.

In the case of the P3 component, no significant differences were identified for the latency

parameter. A correlation between EDSS and P3 latency has been observed in previous studies

[9]. However, in previous studies from our group, no relation was found between these vari-

ables [6, 11]. Despite the lack of a significant difference in the P3 latency, the progressive

increase in the mean values from the healthy controls to the moderate-EDSS supports the

hypothesis that the demyelinization process causes a progressive slowing of information pro-

cessing that is represented by a delayed P3 peak.

The amplitude variable also exhibited a decrease (not statistically significant) in the moder-

ate-EDSS group compared to that of the healthy group and low-EDSS groups. Some studies

have described similar decrement in P3 amplitude and have suggested that lack of attentional

resources could be behind this modulation [5, 6]. Another possibility suggested by our group

is that the reduction of the amplitude is based on the difficulty of synchronizing all of the neu-

ral mechanisms involved in the building of P3 and that therefore different time intervals for

them caused a flattening of the voltage curve for P3 [24]. However, more studies in the future

could confirm if all of these hypotheses are verified.

The third parameter for the P3 component (topography) showed in the grand average

maps that the correlation score was diminishing in line with the progression of disease status.

A lower P3 map score suggests higher disability. This result supports previous studies in which

spontaneous fluctuation topography was related with EDSS [22] or in a high-density EEG

detecting topographical differences between MS patients and controls for both early and late

components for the visual modality [2]. All of this evidence supports previous studies in which

topography is considered a highly reliable parameter for ERP components that allow for an

individual analysis of cognitive processing [24, 39, 40].

Although no individual P3 latency was higher than z>1 for low-EDSS patients, some topog-

raphy maps in this group exhibited a low P3 map score (4 out 10). This result suggests that P3

latency is probably a highly specific parameter for assessing the cognitive course in MS

patients; however, changes in the topographical distribution could suggest that neural genera-

tors are affected in their orientation (i.e., caused by atrophy) even before cognitive impairment

is visible by other P3 parameters (latency and amplitude).

In other correlation analyses, P3 latency exhibited a moderate score with EDSS (r = 0.638,

p = 0.002). However, the higher score was found for Z3 (combination of z-scores of reaction

time, P3 latency and ERD latency) (r = 0.699, p = 0.0006), suggesting that the combination of

all of these parameters related with cognitive processing correlate at an acceptable level with

the disability status (EDSS) in these patients.

The general pattern that is represented in the current data is that several parameters related

with cognitive processing (behavioral and EEG) are altered at a more advanced phase of dis-

ability of MS patients (moderate-EDSS group). However, individual analyses reflect that, in

the low-EDSS phase of the disease, diverse cognitive measures could be altered and provide,

with just a few cognitive variables, a complex picture of possible compensatory mechanisms or

cognitive processes that are not yet altered but will be once reaching moderate-EDSS status.

Indeed, it is possible to find dissociation between behavioral parameters (reaction time) and

EEG parameters (P3 and ERD latency) in individual patients who support previous studies in

healthy participants [41].

It is necessary to note that the healthy grand average map is valid for a specific cognitive

task [42] and that if there is a purpose for studying cognitive alterations in patients, calculating
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the healthy grand average map would be required for every task implemented [23, 24]. A limi-

tation that has to be considered is that the sample size in the present study is limited (n = 10

for all groups) and that a larger sample size would be recommended for more accurate detec-

tion of cognitive alterations in MS patients. Nevertheless, it is also noteworthy that such a

small sample size was able to determine high correlation scores in topographical maps and

highly statistically significant differences for P3/ERD latency in the moderate-EDSS group.

Moreover, individual z-score analyses have shown a reasonable ratio of false positives consid-

ering critical variables including reaction time or P3 and ERD latencies.

Future research using different approaches to group vs individual analyses, and other

research that uses machine learning to find hidden patterns in the cognitive status and evolu-

tion [43, 44] are required for a better understanding of cognitive alterations suffered by neuro-

logical patients and the possibility of defining therapeutic targets for treatment tailored to

every individual progression of the disease.

In conclusion, the present study supports the idea of a moderate correlation between dis-

ability assessed by EDSS and alterations in diverse parameters related to cognitive processing.

Interestingly, a general pattern is observed with no changes in the P3 latency/amplitude in the

early phases of the disease but with an altered topography (even more for moderate-EDSS)

with regard to the healthy grand average map. Alpha ERD latency is also affected in moderate-

EDSS patients but without changes in topography between groups. However, based on the

individual analyses, a complex landscape of diverse alterations in cognitive elements and their

chronology may be present in the progression of MS. Further research with a higher number

of samples and diverse forms of MS are necessary to enhance our knowledge regarding the

functional neuroanatomy basis of cognitive impairment in MS.
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patients with multiple sclerosis using the Brief Repeatable Battery-Neuropsychology test. Multiple Scler

12 (2): 187–195.

33. Gratton G, Coles MG, Donchin E (1983) A new method for off-line removal of ocular artifact. Electroen-

cephalogr Clin Neurophysiol 55(4):468–484. PMID: 6187540

34. Polich J (1986) P300 development from auditory stimuli. Psychophysiology 23(5):590–597. PMID:

3809365

35. Duncan CC, Barry RJ, Connolly JF, Fisher C, Michie PT, et al. (2009) Event-related potentials in clinical

research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin

Neurophysiol 120 (11): 1883–1908. https://doi.org/10.1016/j.clinph.2009.07.045 PMID: 19796989

36. Vázquez-Marrufo M, Vaquero E, Cardoso MJ, Gómez CM. (2001) Temporal evolution of alpha and
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