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Featured Application: The knowledge obtained by this work is a contribution to the field of
nanoemulgels and it could be of great interest for the development of new products based
on them.

Abstract: Nanoemulgels are novel formulations of great interest for their use as dual-release systems
and as fat substitutes in foods. Lemon essential oil, with a large number of benefits due to its an-
timicrobial, antifungal, and medicinal properties, and low methoxyl pectin, a natural polysaccharide
capable of gelling by adding divalent ions such as calcium, are very appropriate ingredients to
produce nanoemulgels with potential applications in industries such as cosmetics, agrochemistry,
pharmaceuticals, or food. In this work, lemon-essential-oil-in-water nanoemulgels containing low
methoxyl pectin derived from citrus peels were prepared following a three-step process that involves
the preparation of a nanoemulsion, a pectin gel, and the mixture of both. In the first stage, the
stirring time and the rotational rate employed during the mixing step were assessed. Once the
preparation protocol was established, the pectin gel/nanoemulsion mass ratio was investigated.
Different techniques were combined to evaluate the influence of the processing and the composition
variables on the particle size distribution, mean diameters, flow curves, and physical stability of
different emulgels obtained. It was found that the processing variables studied, stirring time, and
rotational rate, do not influence the mean particle size of the emulgel, with values matching those
of the starting nanoemulsion. However, 3 min and 200 rpm were selected for exhibiting the lowest
TSI values. Regarding the composition, a higher content of pectin gel caused a higher viscosity, and
therefore a higher physical stability, with the 75P/25E emulgel being the most stable. Aggregation of
gel particles, because the pectin gel was really a sheared gel, was the main responsible contributor
to the results obtained. This work highlights the importance of the preparation and formulation
variables to develop stable, innovative formulations based on nanoemulgels.

Keywords: nanoemulgel; microfluidization; lemon essential oil; low methoxyl pectin; sheared gel

1. Introduction

Emulgels [1,2], emulsion gels [3], emulsion-filled gels [4], gelled emulsions, or creamed
gels [5] are some of the different ways to name a system consisting of the dispersion of
emulsion droplets in a gel-like matrix or structured phase [6]. Depending on the type of
emulsion, they can be classified as oil-in-water or water-in-oil emulgels. At the same time,
depending on the size of the droplet, they can be a macroemulsion gel, a nanoemulgel, or a
microemulsion gel [5]. However, regardless of their classification, all of them are semisolid
emulsions.

In the cosmetic and pharmaceutical industries, emulgels have been employed exten-
sively for some time [7–10] and more recently in the food industry [11,12]. Emulgels, which
are formed by an emulsion and a gel-like structure, share the properties of both and can
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therefore be used as a dual control release system [13], namely, as delivery systems for hy-
drophilic and lipophilic ingredients (drugs, carotenoids, vitamins, probiotics, unsaturated
fatty acids, etc.). Additionally, as a promising application in foods, they could also be used
as fat replacers [14]. Emulgels are capable of overcoming the low solubility and chemical
stability, as well as the poor absorption, bioaccessibility, and bioavailability of some active
ingredients, while improving the texture, bioadhesivity, and penetration ability into the
skin of the formulations [14–16]. These advantages are more relevant in nanoemulgels, that
is, when the size of the droplet in the emulsion is less than 500 nm [17].

Three components are essential in the formulation of an emulgel, namely, the dispersed
phase, the emulsifier, and the structured phase. As a dispersed phase, essential oils, due to
their antifungal, antimicrobial, and therapeutic properties, are a good choice [18]. Among
them, lemon essential oil has proven these properties [19–25]. Furthermore, the FDA
considers it a safe ingredient [26]; therefore, it could have applications in industries as
diverse as food, agrochemicals, cosmetics, flavorings, and household cleaning products. It
should be noted that its inclusion in a formulation such as an emulgel is very interesting
because this structure protects the lemon essential oil against oxidation, one of the main
drawbacks of its use. Several papers on emulgels containing essential oils can be found in
the literature. By way of an example, it is worth mentioning the work published by Kharat
et al. (2022) [27] who studied emulgels formulated with tea tree oil and thymoquinone to
be used to reduce psoriasis disease, or the articles reported by Srivastava et al. (2018) [28]
and da Silva et al. (2021) [29] for the treatment of vaginal candidiasis by the formulation
and preparation of an emulgel containing mentha essential oil and clove oil, respectively, or
Abdallah et al. (2023) [30] who after optimizing the formulation of erythromicynin-loaded
transethosomes obtained erytromicynin-loaded transethosomes in cinnamon-oil-based
emulgels to treat topical bacterial infections, or Azam et al. (2023) [31] who evaluated anise-
based emulgels to also treat skin infections caused by bacteria. Emulsifiers are adsorbed
at the oil/water interface, facilitating not only the formation of the emulsion but also its
physical stability, thus allowing the shelf life of the emulgel to be prolonged. Tween and
Span are nonionic surfactants widely used as emulsifiers in food, cosmetic, or biomedical
applications because of their low toxicity and compatibility with the other ingredients of
the formulation. Their mixture could help improve the stability of products compared to
surfactant alone [32,33]. Regarding the structured phase, it is worth noting the relevance
of selecting inexpensive and natural gelling agents that contribute to health to respond
to current consumer demands. Pectin satisfies these conditions. It consists of long chains
made up of galacturonic acid units, which can be found as such with a free carboxyl group
or with a carboxyl esterified by methanol (methoxylated). Units of galacturonic acid are
linked by α1-4 bonds. [12]. When the degree of esterification is less than 50%, pectin is
termed low methoxyl pectin. These pectins form gels in the presence of calcium ions
or other divalent cations. The egg box model has been widely accepted and describes
that gelation occurs as a consequence of the interaction between calcium ions and the
carboxyl groups of the pectin chains. [34]. Pectin has been incorporated into emulsions or
nanoemulsions in numerous works [35–37] to provide structure or stability to the sample,
but it should be noted that pectin was added as a powder or in solution, not in the form of
a gel. Really, there are a few works that use pectin as a gelled matrix for the preparation
of an emulgel, as occurs in this investigation. Among them, it is worth mentioning those
carried out by Lupi et al. (2015) [38], Hou et al. (2017) [39], Ren et al. (2020) [40], Jiang et al.
(2021) [41], or more recently that of Zhang et al. (2022) [42]. Interestingly, different gelation
mechanisms for pectin were used in these works.

There are different preparation processes for the emulgels. One of them commonly
used is that which involves three steps: (a) preparation of an emulsion, (b) preparation of
a gel, and (c) mixing of both the emulsion and gel [5]. In order to obtain nanoemulgels,
nanoemulsions should be obtained. Different high-energy devices could be used for this
purpose, such as ultrasonic equipment, high-pressure homogenizers, or microfluidization
devices. Another important issue to consider when preparing an emulgel is the control of
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the processing variables during the third step, namely, mixing both components because
the physical stability of the nanoemulgel could depend on it.

In this work, lemon-essential-oil-in-water nanoemulgels were studied containing
low methoxyl pectin derived from citrus peels as the structured phase and a mixture
of Tween 80 and Span 20 as the emulsifiers, which were prepared as indicated above.
Microfluidization with F12Y and H30Z interaction chambers arranged in series was used
to obtain the nanoemulsions. The review of the literature exposed that there were very
few works that used low methoxyl pectin as a gel-like matrix and even fewer that used
microfluidization to obtain nanodroplets. Another aspect little studied was the influence of
long-term aging on this type of sample. We have recently published a work in which, using
the same ingredients as in this study, the effect of a change in the CaCl2/pectin mass ratio
on the properties of emulgels prepared following a different protocol was assessed [12].
Now, in the first stage, the influence of the rotational rate and stirring time during the
mixing step between the nanoemulsion and the gel on the particle size distribution and
physical stability of the emulgel obtained was investigated. Next, in the second stage,
the influence of the formulation, evaluated through different pectin gel/emulsion mass
ratios, on the particle size distribution, rheology, and physical stability of the final emulgel
was assessed. For these purposes, laser diffraction, multiple light scattering, and rheology
were the techniques used in this investigation to assess the quality of different emulgels
obtained, allowing the determination of which processing variables and formulations were
the most appropriate to obtain stable emulgels. This work brings to light the important role
of both the formulation and preparation in promoting a stabilization process in essential
oil emulgels.

2. Materials and Methods
2.1. Materials

Lemon essential oil (batch AELIE028), employed as the dispersed phase, was provided
by Bidah-Chaumel (Murcia, Spain). Tween 80 and Span 20 (HLB 15 and 8.6, respectively),
used as emulsifiers, were purchased from Sigma Aldrich (Madrid, Spain). As a structured
phase, pectin derived from citrus peels (Aglupectin LC S18YP, batch CL1811, Rende, Italy)
with a methoxylation degree between 37 and 41% courtesy of JRS Silvateam Ingredients Srl
(Rende, Italy) was used. Other ingredients in the formulation were CaCl2 anhydrous (batch
0E012485), citrate buffer solution (citric acid anhydrous (batch 0001923544), tris-sodium
citrate 2-hydrate (batch 0001936140), and deionized water) purchased from Sigma-Aldrich
(Madrid, Spain), and deionized water. All materials were used as received.

2.2. Emulgel Preparation

Firstly, a nanoemulsion was prepared based on the report of the experimental method
of Santos et al. [43] with minor adjustments. For this purpose, a coarse emulsion was
obtained by adding to the aqueous phase (Tween 80 and Span 20 (HLB 12) [43] and
deionized water) the appropriate amount of lemon essential oil using an Ultraturrax T-50
(Ika Werke GmbH and Co. KG, Breisgau, Germany) rotor-estator device for 40 s at 2000 rpm
and then for an additional 90 s at 4000 rpm. The particle size was then reduced by passing
the sample through a laboratory-scale microfluidizer (M-110P, Microfluidics International
Corporation, Westwood, MA, USA) having a Y-type (F12Y, with 75 µm minimum internal
dimension) and Z-type (H30Z, with 200 µm minimum internal dimension) interaction
chamber arranged in series, at 20,000 psi and 2 passes.

Secondly, a pectin gel was obtained. Pectin powder (0.3 wt%) was dispersed in a citrate
buffer solution (pH = 4.2) and deionized water employing a rotor-estator homogenizer
(Ultraturrax T-50) at 2000 rpm for 1 h. Subsequently, gels were obtained by adding CaCl2 in
solution (7% w/v stock solution) following the method developed by Lupi et al. (2015) [38]
and Lorenzo et al. (2013) [44], that is, stirring at 8000 rpm for 30 s using the same device.
The sample was kept at an ambient temperature for 24 h to ensure that the pectin was
properly hydrated.
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Finally, emulgels were obtained by mixing different proportions of freshly prepared
nanoemulsions and pectin gel using an IkaVisc MR-D1 device (Ika Werke GmbH and Co.
KG, Breisgau, Germany) and a sawtooth-type impeller. Then, they were kept at 25 ◦C and
allowed to stand until the analyses.

A schematic diagram of the emulgel preparation process can be found in Figure 1.
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Figure 1. Schematic diagram of emulgel preparation.

Table 1 shows the composition of the emulgels. These compositions have been selected
as intermediate values of the two extreme conditions that correspond to the nanoemulsion
and the pectin gel. The AP/BE nomenclature will be used to denote the emulgels, with
AP being the pectin gel mass proportion and BE being the emulsion mass proportion. It
should be noted that the initial emulsion contained 15 wt% lemon essential oil and 15 wt%
emulsifiers, while the initial pectin gel contained 0.3 wt% pectin and a CaCl2/pectin mass
ratio of 1.

Table 1. Composition of the emulgels studied.

Emulgels Oil (wt%) Emulsifier
(wt%)

Pectin
(wt%)

CaCl2
(wt%)

Buffer + Water
(wt%)

75P/25E 3.75 3.75 0.225 0.225 92.05
50P/50E 7.50 7.50 0.150 0.150 84.70
25P/75E 11.25 11.25 0.075 0.075 77.35

2.3. Particle Size Distribution

The particle size and size distribution (PSD) of the emulgels were determined using
a Mastersizer 2000 laser particle sizer (Malvern, Worcestershire, UK). For this purpose,
the emulgel was dripped into the dispersion chamber containing water until the laser
obscuration reached a value around 15%. The refraction indices were 1.474 and 1.330 for
lemon essential oil and water, respectively. Each test was carried out at least twice and at
an ambient temperature.

The size of the emulgels is expressed as D3,2 and D4,3 and the polydispersion degree is
quantified by the span parameter:

D3,2 =
∑N

i=1 nid3
i

∑N
i=1 nid2

i
(1)
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D4,3 =
∑N

i=1 nid4
i

∑N
i=1 nid3

i
(2)

Span =
D(v, 0.9)− D(v, 0.1)

D(v, 0.5)
(3)

where N is the total number of particles, di is the diameter of the particle, ni is the number of
particles having diameter di, D(v, 0.9) is the diameter where 90% of the volume distribution
is below this value, D(v, 0.1) is the diameter where 10% of the volume distribution is below
this value, and D(v, 0.5) is the volume median diameter.

2.4. Apparent Viscosity of the Emulgel

Rheological measurements were carried out employing a controlled stress rheometer
Haake MARS II (Thermo Fisher Scientific, Waltham, MA, USA) with a sand-blasted coaxial
cylinder geometry (Z-20, Re/Ri = 1.085, Ri = 1 cm). The apparent viscosity of the emulgel
was obtained by flow curves that varied the shear rate from 0.05 to 150 s−1. A total of
300 s were used for the structural recovery of the sample after loading it into the measurement
system. Each test was carried out at least two times with fresh samples and at 20 ◦C ± 0.1 ◦C.

The results obtained were fitted to the power-law equation:

ηa = K· .
γ
(n−1) (4)

where ηa is the apparent viscosity (Pa·s),
.
γ the shear rate (s−1), K is the consistency index

(Pa·sn), and n is the flow index of the power law.

2.5. Physical Stability

A multiple light scattering instrument (Turbiscan Lab Expert, Formulaction, Toulouse,
France) was used to determine the physical stability of the emulgels at 25 ◦C. The equipment
has an optical head with an infrared light source (850 nm) and two detectors, one for
transmittance and the other for backscattering, the latter being ideal for opaque samples
like ours. First, the sample prepared in Section 2.2 was immediately transferred to the
instrument-matched tube. Next, the tube was placed in the instrument and a moving head
inside the equipment moves every 40 mm from the base of the tube to the final height of
the sample. The backscattering intensity was recorded for 30 days to calculate the TSI using
Equation (5):

TSI = ∑h|scani (h)− scani−1(h)|
H

(5)

where scani is the mean backscattering intensity of the i-th scan, scani−1 is the mean
backscattering intensity of the (i − 1)-th scan, and H is the scan number in the whole
measurement. According to this equation, a lower TSI indicates a more stable system.

2.6. Statistical Analysis

The results were analyzed by the analysis of variance (ANOVA) using Origin 8.0
and the data were expressed as mean ± standard deviation. Tukey’s test was used to test
whether the means were significantly different (p < 0.05).

3. Results and Discussion
3.1. Influence of the Stirring Time and the Rotational Rate

Figure 2A shows the particle size distribution (DSP) for the fresh 50P/50E lemon
essential oil emulgel as a function of the stirring time, being constant the rotational rate
(400 rpm). As can be observed, a monomodal distribution was obtained with a population
peak about 0.12 µm and, in the time interval studied (from 1 to 7 min), the DSP was not
influenced by this variable. Additionally, in Figure 2B, the mean diameters (Sauter mean
diameter, D3,2 and mean volume diameter, D4,3) and the span as a function of the stirring
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time are shown, corroborating that this variable does not influence them. This state was
also corroborated by ANOVA analysis.
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The physical stability of these emulgels is shown in Figure 3. The stirring time does
not influence the stability of the emulgel significantly, although a slightly lower TSI value
was found for 3 min. For this reason, this time, 3 min, was selected as the stirring time.
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Figure 3. Time evolution of the Turbiscan Stability Index, calculated for the entire height of the
measuring cell, with aging time (15 days) for 50P/50E emulgels as a function of the stirring time.

In Figure 4, the DSP (Figure 4A) and the mean diameters and span (Figure 4B) for the
fresh 50P/50E lemon essential oil emulgel as a function of rotational rate at the stirring
time previously set are shown. All emulgels showed the same particle size distribution and
similar to previous samples, they were monomodal with a population peak about 0.11 µm.
This fact can also be observed by analyzing the values of mean diameters and span, and in
addition, was confirmed by ANOVA analysis. Therefore, it can be concluded that, within
the interval of times and rates studied, the mixing protocol used to obtain the emulgels
does not influence their final size.
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The evolution of TSI with aging time is shown in Figure 5. All rates exhibited a
similar evolution of the TSI and there was no defined trend between the TSI values and the
rotational rate. However, 200 rpm showed the lower values of this parameter, namely a
higher stability; therefore, this rotational rate was selected for the next stage.
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3.2. Influence of the Pectin/Emulsion Mass Ratio

In this section, different pectin gel/emulsion mass ratios were investigated. As oc-
curred with variables previously studied, the particle size distribution was monomodal
at the 24 h aging time (Figure 6A). It should be noted that the DSP of the emulsion was
the same as that of the emulgel obtained with a higher amount of emulsion. As the pectin
content increased to the detriment of that of the emulsion, the intensity of the main peak
decreased slightly. No significant differences were found in average particle sizes, as can
be seen in Figure 6B and demonstrates the statistical analysis of variance (ANOVA) carried
out. It is worth noting that pectin is known not only as a thickener or gelling agent but
also as an emulsifier, being the mechanism accepted that pectin is adsorbed on the surface
of the droplets through anchor points, resulting in loop and tail adsorption. However,
the results previously obtained revealed that the main function of pectin in these samples
was not as an emulsifier because its presence does not significantly influence particle size.
This result could be expected for several reasons. On the one hand, it might be because
similar pectins at the olive oil/water interface are capable of reducing interfacial tension
but are not as effective as commercial surfactants [38]. On the other hand, as reported
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by Isusi et al. (2020) [45], pectin microgels are less effective as an emulsifier than pectin
as a linear polymer. Note that in our research, the pectin gel is really a sheared gel as
indicated below. In addition, the emulgel preparation protocol also influences the results.
In other works [12,38,42], pectin was added to the continuous phase of the emulsion and
once formed, calcium ions were added to proceed to the formation of the emulgel. In those
cases, pectin may adsorb at the interface and contribute to the formation and stabilization
of the emulsion. However, in this research, the pectin, previously gelled, was added to a
nanoemulsion which was also already formed. Under these conditions, in addition to the
low interfacial activity as mentioned above, its function as an emulsifier is hindered.
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Note that the mean diameters, as for the previous emulgels and emulsions, were below
150 nm; hence, it is possible to state that they were nanoemulgels.

In Figure 7, the variation of the particle size distribution with the aging time of the
assessed emulgels is illustrated. On the one hand, note that these samples are really
heterogeneous, as can be deduced from the high value of the standard deviation found.
This fact is more relevant when the pectin concentration is higher. To understand this
result, it is necessary to remember that the pectin gel used as the structured phase of these
emulgels was a sheared gel because its gelation process was interrupted by shear forces
by dispersing CaCl2. As a consequence, nanogels and microgels were formed; hence,
a sheared gel can be defined as a suspension of gelled particles [46]. This sheared gel
is a heterogeneous structure derived from its granular nature at the particle level. As
the proportion of pectin gel increased in the formulation of the emulgel, the number of
these gelled particles present in the final product also increased, and hence the greater
variability observed. The occurrence of these nano and microgels in fluid gels was also
stated by other authors [12,45,47]. On the other hand, as can be seen in Figure 7, all emulgels
exhibited aggregation of particles with aging and this process was greater with increasing
the pectin content. This result may be explained by taking into account not only the possible
aggregation of emulsion droplets but also the sheared gel microstructural evolution, both
at the intra-particle level as at inter-particle interactions level. It is worth highlighting
that the 75P/25E emulgel, which contained the highest proportion of pectin gel, changed
its particle size distribution from day 1 to the next day on which the measurement was
taken, namely day 6, but afterwards the changes were not so noticeable. This result may
be explained by taking into account that this occurs in the formation of a quiescent gel.
It is known that the formation of the gel network is not immediate, but requires time,
which can vary from hours to days, until those interactions that give rise to the network
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stabilize. This process could occur within the particles of a sheared gel [46]. Gabriele et al.
(2009) [48] demonstrated that interactions between fluid gel particles not only take place
during processing or immediate postprocessing but also that the maturation of the structure
can involve a significant time once processing is completed. They also corroborated that
fluid gels with shorter processing times, by having less time to form, are more reactive once
the processing is finished. This circumstance occurs during the formation of the sheared
pectin gel since calcium ions are added for 30 s at 8000 rpm. For this reason, this emulgel
(75P/25E) needs a long time to mature its structure.
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The evolution of the flow curves with the aging time of the three emulgels is shown
in Figure 8. In these figures, the apparent viscosity is plotted against the shear rate on a
double logarithmic scale. Emulgels exhibited a shear thinning behavior which is typical of
non-Newtonian fluids. This flow behavior was observed by other authors who also studied
emulgels [2,27]. These authors explained the decrease in viscosity with the increase in shear
rate by a decrease in contact, and therefore a decrease in interactions, between the polymer
chains. In addition, gelled particles may be aligned by shear flow contributing to a decrease
in viscosity. On the other hand, all of the emulgels experienced an increase in apparent
viscosity with aging time. This result may be due to the existence of the aggregation of
droplets and, especially, of gelled particles in the continuous phase of the emulgel. This
result is in agreement with laser diffraction results. Note that the viscosity turned out
to be higher as the pectin content in the final emulgel increased, pointing out that the
rheology of these samples was controlled by the continuous phase and not by the dispersed
phase concentration.
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Table 2 shows the rheological parameters obtained by fitting the experimental data to
the power-law model (Equation (4)). All emulgels exhibited n values lower than 1, confirm-
ing a shear thinning behavior. Da Silva et al. (2021) [29], with emulgels containing clove
essential oil and carboxymethylcellulose as the gelling agent, also found a pseudoplastic
behavior that was also fitted to the power-law model. This behavior was explained by
the presence of the gelling agent. Overall, a higher pectin content increased the viscosity
and shear thinning character of the emulgel (lower n value), with the 25P/75E emulgel
being the one with the greatest Newtonian character. This result may be explained by
considering that when the pectin content is higher, intermolecular interactions intensify,
causing a stronger network. With aging time and regardless of the emulgel considered,
there was an increase in the value of the consistency index, k, and a decrease in the flow
index, n, indicating a most marked pseudoplastic behavior.

Finally, in order to compare the physical stability in these emulgels, the Turbiscan
Stability Index (TSI) was calculated. Figure 9 shows the TSI calculated from the bottom
to the top of the tube (from 0 to 30 days), as a function of the mass ratio of the pectin
gel/emulsion. It is worth highlighting that when the TSI is calculated as indicated, all the
destabilization mechanisms that occur in the sample contribute to its value. As can be
observed in Figure 6, the emulgel containing a higher proportion of emulsion, 25P/75E,
exhibited both a higher TSI value and a destabilization slope. The 50P/50E emulgel
presented a slower destabilization rate for the first two weeks of aging to the point of being
considered almost stable. However, from this time, the TSI value and therefore its slope,
increased considerably. The TSI values of the 75P/25E emulgel changed during two days
after preparation, but then remained practically constant. The multiple light scattering
technique brought to light that the emulgel containing a higher proportion of pectin gel
exhibited the best physical stability.
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Table 2. Mean values and standard deviations of the parameters obtained from the fit of the flow
curves of the emulgels studied to the power-law equation. Temperature: 20 ◦C.

Emulgel Day K (Pa·sn) n R2

25P/75E

1 0.007 ± 2 × 10−4 0.92 ± 10 × 10−3 0.84
6 0.007 ± 1 × 10−4 0.97 ± 4 × 10−3 0.82

15 0.014 ± 3 × 10−4 0.92 ± 5 × 10−3 0.95
30 0.039 ± 4 × 10−4 0.81 ± 3 × 10−3 1.00

50P/50E

1 0.006 ± 2 × 10−4 0.84 ± 18 × 10−3 0.91
6 0.006 ± 3 × 10−4 0,87 ± 19 × 10−3 0.82

15 0.008 ± 3 × 10−4 0.84 ± 12 × 10−3 0.93
30 0.579 ± 324 × 10−4 0.03 ± 21 × 10−3 0.93

75P/25E

1 0.018 ± 20 × 10−4 0.580 ± 2 × 10−4 0.91
6 1.249 ± 310 × 10−4 0.002 ± 2 × 10−4 1.00

15 2.861 ± 320 × 10−4 5 × 10−15 ± 0 1.00
30 4.951 ± 109 × 10−3 9 × 10−16 ± 0 0.95
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The results obtained by different techniques are in agreement with each other. Just
after preparation, all the emulgels present a similar particle size distribution, hence similar
mean diameters. With aging, droplets undergo aggregation, but also, the nanogels and
microgels of pectin evolve. As the pectin gel content in the emulgel increases, the inter-
particle interaction is higher, the number of the aggregates formed is higher, the friction
is higher, and therefore, the viscosity is higher. At the same time, the higher viscosity
hinders the movement and destabilization processes. As a result, the most viscous and
stable emulgel was 75P/25E, which contained the highest proportion of pectin gel.

4. Conclusions

In this work, oil-in-water nanoemulgels formulated with lemon essential oil and low
methoxyl citrus peel pectin have been developed using a preparation method based on
the preparation of a nanoemulsion and a pectin gel separately and then mixing them.
The stirring time and rotational rate during the mixing step do not influence either the
particle size distribution or the values of the mean diameters, pointing out that the mixing
process does not affect the droplet properties of the starting nanoemulsion. Note that these
processing variables do not significantly influence the global destabilization parameter
TSI either. However, from the results obtained, 3 min and 200 rpm were set due to
these conditions exhibiting the lowest TSI values. Different pectin gel/nanoemulsion
mass ratios were exhibited at 1 day of aging with very similar DTP, according to the fact
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that all the emulgels contained the same nanoemulsion. However, with aging time, an
aggregation process occurred, especially of the micro or nanoparticles of pectin. These
particles were present as the pectin gel was really a sheared pectin gel as a result of its
method of preparation. This process was more pronounced with higher pectin content.
All samples showed a shear thinning flow behavior and exhibited an increase in viscosity
with aging, the greater the higher the initial pectin content. This result was consistent
with the aggregation process mentioned above. To conclude, the emulgel containing the
higher pectin gel/nanoemulsion ratio presented the longest physical stability. This study
brings to light the role played by microgels formed during the preparation of the structured
phase in the stability of emulgels formulated with lemon essential oil and low methoxyl
pectin. Further tests should be carried out to check if the results obtained here hold for any
pectin gel concentration and CaCl2/pectin mass ratio. Furthermore, it is worth exploring
different methods of emulgel preparation not only at a lab-scale. Additionally, micrographs
obtained by confocal laser and electron microscopy would provide valuable information
on the microstructure of these emulgels formed from a matrix of sheared gel.
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