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Abstract

In the upcoming years, legume crops will be subjected to multiple, diverse, 
and overlapping environmental stressors (raise in global temperatures and CO2, 
drought, salinity, and soil pollution). These factors will menace legume pro-
ductivity and food quality and security. In this context, tolerant plant growth 
promoting rhizobacteria (PGPR) are useful biotechnological tools to assist legume 
establishment and growth. In this chapter, tolerant PGPR able to promote legume 
growth will be revised. Besides, in the era of -omics, the mechanisms underlying 
this interaction are being deciphered, particularly transcriptomic, proteomic, 
and metabolomic changes modulated by PGPR, as well as the molecular dialog 
legume-rhizobacteria.
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1. Introduction

Plants are colonized by several microorganisms, mainly bacteria, and the num-
ber of them sometimes is higher than the number of plant cells [1]. These micro-
organisms can live inside (endophytes) and outside (epiphytes) the plant tissues, 
and they do not cause diseases in the host plant [2]; rather, these microorganisms 
contribute to improve the health and the productivity of the plants [3].

Soils also have many microorganisms with potential to improve plant growth, 
and overall the rhizosphere. The rhizosphere is an area of interaction between 
microorganisms and plant roots, and it is inhabited by bacteria, fungi, protozoa, 
actinomycetes, and algae, with bacteria and mycorrhizal fungi being the main 
populations [4]. The size of the microbial population in the rhizosphere of plants is 
influenced by root exudates. The chemicals found in the soil along with the exu-
dates from the plants cause changes in the pH and in the redox potentials that will 
be determined by the microbial community around the roots [5].

Among the bacteria that colonize the rhizosphere, those promoting plant 
growth, also known as PGPB (Plant Growth Promoting Bacteria), rhizobacteria or 
PGPR (Plant Growth Promoting Rhizobacteria), and nitrogen-fixing rhizobia, are 
the most remarkable because they provide beneficial effects in the development 
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of the plants being able to do it by direct or indirect mechanisms. Regarding 
legumes, they also interact with rhizobacteria, and the main interaction is the 
symbiosis between legumes and nitrogen-fixing rhizobia [4]. Rhizobia are bac-
teria that belong to the family Rhizobiaceae, and the most important genera are 
Bradyrhizobium, Ensifer, Mesorhizobium, Rhizobium, and Sinorhizobium [6]. During 
this interaction, rhizobia invade the root and group into a specialized organ called 
nodule. Inside the nodules, rhizobia become bacteroids, which transform N2 to 
NH4

+, molecule that can be assimilated by plants [7]. Inoculation of legumes with 
rhizobacteria produces a bioaugmentation of the microbial population in soils, 
thus contributing to plants growing bigger and faster [8–10], and this can solve the 
problem of the rapid growth of the world population that causes a great pressure 
in the area of land destined for food [11]. Moreover, the arable lands are decreasing 
because of the climate change and some human activities.

Climate change is one of the most important problems in the planet nowadays. 
Because of that, temperature and drought are increasing, involving an increase in 
arid and semi-arid zones and generating a loss of arable soils [12–14]. Drought is an 
abiotic stress that causes the highest losses in agriculture, so it is a very important 
factor in crop productivity [15]. Drought and heat involve the appearance of saline 
soils [16], although some human activities, like the increase of irrigation with 
bad water quality, are also responsible [17]. Salinity affects around 800 million 
of hectares in the world, and it is considered a global problem [18] being another 
stress that limits plant growth, productivity, nitrogen fixation in legumes, and 
the seed germination [19, 20] due to the uptake excess of NaCl by the plants [21]. 
Furthermore, the salt excess decreases the organic matter in soils and modifies the 
microbial population in the rhizosphere [22], so salinity also affects the nodulation 
negatively [23]. Finally, an additional abiotic stress is heavy metals. The increase 
of heavy metal concentrations becomes a pollution problem, being humans the 
main responsible of it [24]. Heavy metals affect plants and soils as the rest of abiotic 
stress does, and in legumes, they dramatically reduce nodule number and nitrogen 
fixation [25, 26].

To try to recover these affected soils, phytoremediation is being used, and sev-
eral studies confirm that it is a very efficient tool, particularly in combination with 
bacterial inoculation since PGPB improve the potential of plants to phytoremedi-
ate soils [27–31]. Legumes belong to the plants used in phytoremediation because 
this family is one of the most diverse among other plant families in the world, and 
some of them are able to grow in degraded soils and can be used as pioneer plants 
in order to repopulate these degraded areas [25, 32]. In fact, legumes are usually 
used in intercropping with other crops to decrease the amount of pesticides and 
improve the quality of soils making legumes one of the most promising components 
of the Climate Smart Agriculture concept [33]. As described above, the symbiosis 
of legumes with rhizobia improves the growth of legumes and allows them to grow 
better in the degraded soils, but all the named abiotic stresses interfere with this 
interaction. For that, authors look for rhizobia resistant to these stresses that able 
to grow and form nodules even in degraded soils [34–37]. Furthermore, several 
studies demonstrate that coinoculation of legumes with rhizobia and another PGPR 
increases nodulation, plant growth, and the potential to phytoremediate soils of 
plants in the presence of abiotic stresses [38–41]. This improvement in legumes 
occurs for the interaction between plants and bacteria through different direct and 
indirect mechanisms that help the plant to grow in the presence of stress.

In this chapter, the different bacterial mechanisms used to improve the plant 
growth in the presence of the most important abiotic stresses nowadays are been 
reviewed, in order to help legumes to grow under stress situations and recover the 
degraded soils using the interaction between legumes and bacteria. Furthermore, 
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the molecular mechanisms involved in these interactions are being described with 
the transcriptomic, proteomic, and metabolomic studies so far.

2.  Effects and mechanisms of plant growth promotion  
by microorganisms

As mentioned above, some bacteria are capable of promoting plant growth 
(PGPB and PGPR) through direct (biofertilization) and indirect (biocontrol) 
mechanisms. The direct mechanisms are based on the direct promotion of plant 
development, among which are nitrogen fixation, phosphate solubilization, pro-
duction of phytohormones (auxins, cytokinins, and gibberellins), the enzymatic 
activity of the aminocyclopropane carboxylic acid (ACC) deaminase, and iron 
complexation by bacterial siderophores. On the other hand, indirect methods are 
responsible for inhibiting pathogenic organisms for plants. Among these methods 
are the synthesis of antibiotics, enzymes that degrade the cell wall, or the induced 
systemic resistance (ISR) process [42]. The mechanisms carried out by PGPB and 
PGPR will depend on the host plant and will be influenced in turn by biotic (such as 
plant defense mechanisms and genotype) and abiotic (such as weather conditions 
and soil composition) factors [43].

However, bacteria are not the only microorganisms that are able to promote 
plant growth. Mycorrhizal fungi also can carry out this function, there being a 
symbiotic association between them and most terrestrial plants [44] favoring 
micronutrient absorption, resistance to diseases caused by pathogens, or reduction 
of plant stress caused by environmental factors [45].

2.1 Direct mechanisms

2.1.1 Fixation of nitrogen

Nitrogen is one of the essential elements for life that is present in biochemical 
structures as important as nucleotides and proteins, but atmospheric nitrogen is 
mostly nonassimilable for plants since about 78% is in a gaseous state, so it must 
become ammonia, thanks to the nitrogenase enzyme to be assimilable. This reac-
tion is carried out by rhizobia under symbiosis with legumes, thanks to which the 
rhizobia obtain carbon provided by the legumes from photosynthesis, and they 
provide the plant with nitrogen [46].

Atmospheric nitrogen fixation occurs mainly in leguminous plants where 
rhizobia/plant interactions are highly specific [42]. However, certain free-living 
bacteria (such as Frankia spp. or Actinobacteria) are also able to fix atmospheric 
nitrogen to a much wider range of plants than rhizobia [47]. For example, coinocu-
lation of Bradyrhizobium sp. UFLA 03-84 with Actinomadura sp. 183-EL, Bacillus sp. 
IPACC11, or Streptomyces sp. 212 in cowpea plants improves the nitrogen fixation 
even in the presence of salinity conditions [48]. Another example of the improve-
ment of nitrogen fixation in the presence of a different abiotic stress is reported 
by Saia et al. [49] in which plants of Trifolium alexandrinum were inoculated with 
arbuscular mycorrhizal (AM) fungi leading to an improvement of nitrogen fixation 
and the plant growth in water stress.

2.1.2 Solubilization of phosphate

Phosphorus is also an essential element for life that is involved in such impor-
tant processes as energy transfer, respiration, or photosynthesis [50]. After 
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nitrogen, phosphorus is the second most limiting element for plant growth [51]. 
The content of this element in the soil is 0.05% (w/w) of which only 0.1% can be 
used by plants, a problem to which the use of phosphorus-based chemical fertil-
izers that are fixed within the soil must be added and limited the bioavailability of 
the element [52].

There are a wide variety of microorganisms that can solubilize phosphate to 
make it assimilable to plants by releasing phosphorus from soil insoluble phos-
phates. An example of this is the endophytic bacterium Gluconacetobacter diazotro-
phicus that is capable of solubilizing phosphate by acidification [53]. Bacteria also 
can solubilize phosphates in the presence of different stresses such as Serratia sp. 
J260, Pantoea sp. J49, Acinetobacter sp., L176, and Planomicrobium sp. MSSA-10 that 
kept this property in the presence of salinity conditions or Bacillus sp. L55 in the 
presence of high temperatures [54, 55]. Besides, other bacteria are able to solubilize 
organic phosphorous because they produce phytase and phosphatases enzymes 
that act by dephosphorylating phytates and organic phosphorus [51]. This kind of 
bacteria can help to legume crops to improve their growth and productivity in these 
abiotic stress conditions.

2.1.3 Phytohormones production

There are certain microorganisms capable of producing phytohormones, which 
can promote or modify the development of plants at low concentrations [43]. 
Among the most common phytohormones are gibberellins, cytokinins, auxins, 
ethylene, and abscisic acid [53], and their effects can be stimulants or inhibitors of 
plant growth. The most widely studied are auxins, particularly the indole-3-acetic 
acid (IAA), being the one that is produced in a greater proportion by plants and 
PGPR where up to 80% of rhizobacteria synthesize it as a secondary metabolite 
[56]. This auxin is present in different cellular responses such as cell division, gene 
expression, or root development and lengthening and affects photosynthesis, pig-
ment formation, and resistance to stress conditions [53].

When the concentration of IAA in plants is adequate, the application of bacterial 
IAA can have positive, negative, or neutral effects [46], so that this bacterial syn-
thesis will determine the stimulation or inhibition of plant growth and may change 
the hormone level from optimal to supraoptimal. In this way, the PGPR will stimu-
late growth when the IAA concentration is below the optimum levels for the plant 
[42]. It is important that IAA producing bacteria must keep the property even in 
the presence of any abiotic stress to help plants to grow in these conditions. Table 1 
shows some examples of IAA producing microorganisms that cause improvements 
in legume crops under stress conditions.

2.1.4 ACC deaminase activity

Ethylene, also known as the stress hormone, is a phytohormone present in 
all higher plants, making it a key element in a wide range of biological activities, 
intervening in processes that affect the growth and development of plants where 
almost all plant tissues and their stages of development are affected by it. It is 
produced from 1-aminocyclopropane-1-carboxylic acid (ACC) and is catalyzed 
by the enzyme ACC oxidase [59, 60]. Most abiotic stresses cause a large increase in 
ethylene concentration causing wilting of the flowers or initiating senescence in 
the leaves among other consequences, so its increase translates into harmful effects 
on the growth and health of plants and therefore to a reduction in crop production. 
However, when its concentration is adequate, it decreases the wilting, stimulates 
the germination of seeds, and influences the fruit ripening [61]. More recently, 
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evidence is being presented showing that ACC deaminase producing microorgan-
isms can facilitate nodulation of legumes under stress conditions, called as nodulat-
ing helper bacteria [62, 63].

The great importance of this hormone is the reason for it having being exten-
sively studied, so a wide range of microorganisms capable of secreting the enzyme 
ACC deaminase is known. ACC deaminase hydrolyses ACC in ammonia and 
2-oxobutanoate, thus causing a reduction in the concentration of ethylene in plants 
[64]. Among ACC deaminase producing microorganisms are the following genera: 
Bacillus, Pseudomonas, Klebsiella, Serratia, Arthrobacter, Azospirillum, Streptomyces, 
Microbacterium, Achromobacter, Acinetobacter, Acidovorax, Agrobacterium, 
Alcaligenes, Enterobacter, Agrobacterium, and Rhizobium [59, 60]. The interaction of 
these microorganisms with legumes enhances plant growth and crop productivity 
under stress conditions (Table 2).

2.1.5 Production of siderophores

Iron is another essential micronutrient for plants that, in the oxygen-rich 
conditions of the rhizosphere, is in the form of Fe+3 that is insoluble for plants 
and microorganisms [53]. Siderophores, involved in both direct and indirect 
mechanisms of plant growth promotion, are small molecules of a peptide nature 
formed by side chains and functional groups that act as ligands with high affinity 
for the Fe+3 ions [65]. A wide range of bacteria and fungi are capable of secreting 
siderophores that occur in rhizospheric soils in neutral-alkaline pH conditions, 
where there is a deficiency of this element due to its low solubility in these condi-
tions [66]. These microorganisms can subsequently absorb the siderophore-Fe+3 
complex by means of a specific receptor and release the Fe in its bioavailable form 
(Fe+2) to support bacterial growth [61]. The creation of this complex also assumes 
an important role in the adsorption of Fe by plants, in the presence of other metals 
such as nickel or cadmium [43]. Another very important function of siderophores is 
to prevent the proliferation of pathogens by competing for the available iron. In this 
way, rhizobacteria help plant growth by releasing these biocontrol agents against 
phytopathogens (antagonism of PGPR against pathogens) [61].

Microorganism Plant host Plant improvement Abiotic 

stress

References

Ochrobactrum cytisi 
Azn6.2

Medicago sativa Larger root size Heavy 
metals

[37]

Pseudomonas 

extremorientalis TSAU20 
and P. trivialis 3Re27

Galega 

officinalis

Improved the growth and 
increased the nodulation

Salinity [57]

Bradyrhizobium sp. RM8 Vigna radiata Reduced the uptake of Ni 
and Zn and increased the 
nodulation

Heavy 
metals

[58]

Ensifer meliloti RD64 M. sativa Accumulation of 
osmoprotectants, greater 
Rubisco availability

Drought [8]

Bradyrhizobium sp. 
RJS9–2

Stylosanthes 

guianensis

Higher salt tolerance and 
osmoprotectants

Salinity [9]

Aspergillus japonicus 
EuR-26

Glycine max Improved the plant biomass 
and other growth features

Heat [10]

Table 1. 
Beneficial interactions between IAA producing bacteria and legumes under stress conditions.
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In general, plants can benefit in many ways, thanks to the production of sid-
erophores since they are also involved in the improvement of nitrogen fixation or 
in the prevention of toxicity by heavy metals [75]. Thus, PGPR able to produce 
siderophores have a certain competitive advantage over other microorganisms in the 
rhizosphere [64]. Some of these microorganisms are shown in Table 3 showing the 
repercussions caused by the synthesis of iron chelating compounds depending on 
the crop and the conditions of the plant-microbe interaction.

2.2 Indirect mechanisms

Indirect mechanisms are those processes where PGPR prevent or neutralize 
the harmful action of phytopathogens by the production of substances that confer 

Microorganism Plant host Plant improvement Abiotic 

stress

References

Bradyrhizobium sp. 
RM8

V. radiata Reduction of Ni and Zn 
concentrations in plant tissues

Heavy 
metals

[58]

Bradyrhizobium sp. 
YL6

G. max Positive effects in photosynthesis 
and mineral nutrients

Heavy 
metals

[72]

P. aeruginosa GS-33 G. max Improve plant biomass, 
chlorophyll content, and 
reduction of fungal infections

Salinity [73]

Pseudomonas putida 
NBRIRA and Bacillus 

amyloliquefaciens 
NBRISN13

Cicer 

arietinum

Higher growth and yield Drought [74]

Table 3. 
Beneficial interactions between bacteria that produce siderophores and legumes and plant improvements under 
stress conditions.

Microorganism Plant host Abiotic 

stress

Benefits for plants References

Pseudomonas fluorescens 
TDK1

Arachis 

hypogea

Salinity Improved plant growth 
parameters and alleviated saline 
stress

[67]

Pseudomonas 

aeruginosa GGRJ21
V. radiata Drought Increased plant biomass, the 

relative water content, and 
osmolytes

[68]

Bacillus subtilis LDR2 Trigonella 

foenum-

graecum

Drought Alleviated ethylene-induced 
damage and improved 
nodulation and mycorrhizal 
fungi colonization

[69]

Arthrobacter 

protophormiae SA3
Pisum 

sativum

Salinity Alleviated ethylene-induced 
damage and improved 
nodulation and mycorrhizal 
fungi colonization

[70]

Ochrobactrum 

pseudogrignonense RJ12, 

Pseudomonas sp. RJ15 
and B. subtilis RJ46

Vigna 

mungo and 
P. sativum

Drought Increased seed germination, 
plant biomass, chlorophyll, and 
relative water content.

[71]

Table 2. 
Beneficial interactions between ACC deaminase producing bacteria and legumes under stress conditions.
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greater natural resistance to the host plant, protecting it against infections (biotic 
stress), although they also help plants to grow actively under conditions of environ-
mental stress (abiotic stress) [43].

2.2.1 Production of antibiotics

Antibiotic production is the main mechanism by which a large and heteroge-
neous group of bacteria fight the harmful effects of plant pathogens (usually fungi). 
The antibiotics produced by PGPR are low molecular weight compounds that 
negatively interfere with the metabolic processes of other microorganisms, thus 
delaying their growth [64] or inhibiting it [56]. There are some examples of PGPR 
that produce antibiotics against phytopathogens reflected in Table 4.

The effectiveness with which these molecules interfere with pathogen sup-
pression will depend on the metabolite secreted by the PGPR and environmental 
conditions (mineral content of the soil, osmotic conditions, carbon sources, etc.) 
[76]. Moreover, some phytopathogens may develop resistance to specific antibiot-
ics by repeated use of the same strain that produces a particular antibiotic, so it 
is preferable to inoculate plants with PGPR that produce several antibiotics [59]. 
There are some PGPR that have antagonistic activities against some phytopathogens 
in addition to improve plant growth in the presence of some stress as it is the case 
of Cellulosimicrobium funkei AR6 that improves the root elongation in crops of P. 
vulgare, V. radiata, and V. mungo in the presence of Cr(VI) and also has a strong 
antagonistic activity against Aspergillus niger [77]. Another example is B. thuringien-
sis UFGS2 that improves plant growth, physiologic parameters, and the resistance of 
the soybean against S. sclerotiorum under drought stress [78].

2.2.2 Lytic enzymes of the cell wall

Some PGPR produce enzymes that are involved in the lysis of cell walls and 
neutralization of pathogens by interrupting a particular stage of development or 
the cell cycle [79], playing an important role in promoting plant growth by protect-
ing them of biotic and abiotic stresses due to the suppression of these pathogens. 
Among the produced enzymes for this purpose are chitinases, dehydrogenases, 
β-glucanases, lipases, phosphatases, or proteases [59]. The cell wall of most fungi is 
formed by residues of β-1,4-N-acetyl-glucoseamine and chitin, so that the bacteria 
that produce β-1,3-glucanase and chitinase can control the growth of phyto-
pathogen [43]. Furthermore, some PGPR are able to produce this kind of enzymes 
and protect the crops under abiotic stress like Bacillus licheniformis A2 that produces 

Microorganism Plant host Phytopathogen Reference

Rhizobium sp. RS12 C. arietinum Fusarium solani and 
Macrophomina phaseolina

[80]

Pseudomonas sp. YL23 G. max Erwinia amylovora and Dickeya 

chrysanthemi

[81]

Pantoea ananatis RM2 P. sativum Trichoderma longibrachiatum and 
Fusarium oxysporum

[82]

Bacillus sp. B19, Bacillus sp. P12, 
and B. amyloliquefaciens B14

Phaseolus 

vulgaris

Sclerotinia sclerotiorum [83]

Table 4. 
PGPR that produce antibiotics and their effects as biocontrol agents.
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chitinase and protects A. hypogea against Fusarium oxysporum f. sp. cubense under 
salinity conditions [84]. Table 5 shows some examples of bacteria capable of 
producing these types of degrading enzymes.

2.2.3 Induced systemic resistance

There is an important feature of biocontrol that helps plant growth based on two 
defensive response mechanisms against various external agents known as mecha-
nisms of induced systemic resistance (ISR) and mechanism of acquired systemic 
resistance (ASR) [56]. ISR is a physiological state of defensive capacity that plants 
present in response to an environmental stimulus [43] in which nonpathogenic 
microorganisms, including various PGPB, reduce the negative effects of pathogens 
of plants by activating a resistance mechanism without the need to target a specific 
pathogen and can develop this resistance in response to infection by pathogens, to 
attack by insects, or to a chemical treatment [42].

To stimulate this defensive response mechanism, the ISR uses phytohormones as 
jasmonic acid (JA) and ethylene (ET) that act as signaling molecules [64], although 
it has been shown that some organelles (such as flagella) and bacterial molecules 
(such as lipopolysaccharides of the outer membrane or antibiotics produced by 
bacteria) can also act as inducing agents activating ISR and generating a rapid 
accumulation of pathogenesis-related enzymes such as chitinase, β-1,3-glucanase, 
peroxidase, or liases, among others [85]. It is important to note that the ISR pre-
pares plant to fight the pathogen with an improved defense [56]. A clear example of 
the ISR elicitor is the effect of Bradyrhizobium japonicum in soybean crops, where 
systemic redox changes are induced in plants [86]. The induction of ISR by Bacillus 
sp. CHEP5 and Bradyrhizobium sp. SEMIA 6144 in peanut plants against S. rolfsii 
also has been demonstrated [87]. However, this microbial induction could be lim-
ited by abiotic stress like the ISR induction of B. amyloliquefaciens S499 in different 
crops under heat and drought conditions where the response against Botrytis cinerea 
infection was prejudiced [88].

2.2.4 Quorum sensing

Quorum sensing (QS) is a mechanism of genetic regulation in response to cell 
density mediated by small self-inducing molecules, which are usually secreted out 
of bacterial cells and act as chemical signals produced by an increase in the cell 
population. These molecules cause an alteration in bacterial metabolism by activat-
ing different sets of genes [89], so that similar bacteria that live in communities 
and are close to each other will begin to act in a coordinated way. The level of the 
autoinductors increases proportionally to the population of bacterial cells until it 

Microorganism Host plant Enzyme Phytopathogen References

B. licheniformis A2 A. hypogea Chitinase F. oxysporum f. sp. 
cubense

[84]

Bacillus altitudinis 
BRHS/S-73

V. radiata Chitinase and 
protease

Thanatephorus 

cucumeris

[90]

B. subtilis DSM1088, 

P. fluorescens ATCC13525 
and Glommus spp.

P. vulgaris Chitinase, 
peroxidase and 
polyphenol oxidase

Sclerotium rolfsii [91]

Table 5. 
Lytic enzymes produced by PGPR and their effect on biocontrol of legume phytopathogens.
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exceeds a defined threshold level (quorum) where it binds to bacterial cell receptors 
and triggers a signal transduction cascade leading to changes in the expression of 
bacterial genes by the action of a group of cells [42].

There are numerous bacterial signaling molecules among which the acyl-homo-
serine lactone (AHL) produced by Gram-negative bacteria consisting of a common 
lactone homo resin residue and an acyl chain that can vary between 4 and 18 carbon 
atoms. There are more than 100 species of proteobacteria that produce AHL, and 
three types of enzymes are known (LuxI, LuxM, and HdtS) capable of synthesizing 
AHL in vivo. Degradation of AHL can be carried out by various enzymes as is the 
case of the AHL lactonase that breaks the ester linkage of the lactose ring of the 
AHL to form N-acyl homoserine reversibly [92]. Most of these signal molecules 
are of the bacterial origin: Bacillus spp., Klebsiella pneumoniae KTCTC2241, or 
Rhizobium sp. NGR23 [93]. The detection of this bacterial communication system 
is interrupted by PGPB, thus preventing pathogen infection through immune 
responses and preventing plant growth inhibition [94].

3.  Molecular mechanisms in the bacteria-plant interactions under 
abiotic stress

In spite of the abundant literature available on the improvement of plant growth 
and crop productivity using bacteria under abiotic stress conditions, the molecular 
mechanisms involved in these interactions remain elusive so far. This area has been 
studied by some authors to try to understand what changes bacteria elicit on plant 
gene expression finally leading to enhance the plant resilience to environmental 
stress. There are not many studies about genes involved in the plant-bacteria inter-
actions, particularly in legumes, but in this section, some examples of these studies 
are exposed.

Plants have several mechanisms to adapt in the presence of any stress, whose 
genes are involved in the regulation of transporters, phytochelatins, glutathione 
reductase, phytohormones, oxidative stress reduction, phenolic compound, osmo-
lytes, and low molecular weight organic acids, among others, and the bacteria role 
either expressing or repressing these genes has been investigated using real-time 
quantitative PCR, RNA Seq, and metabolomic and/or transcriptomic analyses. 
OsGRAM family genes are some of the most important in the plant growth and 
development under stress conditions, and it was demonstrated in rice under an 
array of stress situations, including salt. The plants inoculated with B. amyloliquefa-
ciens SN13 showed overexpression of these genes [95].

Regarding heavy metal stress, one of the main genes expressed or repressed in 
plants is genes of transporters [96]. In the case of cadmium, Tatm20 gene codifies 
a transmembrane transport that is expressed in the presence of Cd in wheat. When 
wheat plants were inoculated with Azospirillum brasilense, this gene was expressed 
much less than in the absence of the inoculation suggesting that A. brasilense helps 
plants to decrease Cd uptake and accumulation [97]. In this study, we also studied 
the expression of TasSOS1 gene involving in keeping the plant cell homeostasis 
in the presence of high salt concentrations. In contrast to Tatm20 gene, TasSOS1 
is overexpressed in inoculated plants under salinity stress. This overexpression 
maintains the homeostasis in plants and makes plant more tolerant to salt excess 
[97]. In M. sativa plants grown under heavy metal conditions, the genes involved in 
the phytochelatins synthesis were overexpressed in inoculated plants helping plant 
to detoxify and to grow in the presence of this stress. Moreover, the expression of 
glutathione reductase was improved by bacteria, so inoculated plants keep the redox 
status under heavy metal conditions [41]. Other examples are Bacillus altitudinis 



Legume Crops - Prospects, Production and Uses

10

FD48 that modules the expression of some genes involved in the synthesis of auxins 
improving root elongation in rice [98] and Pseudomonas aeruginosa and Burkholderia 
gladioli that reduced the expression of CAT, GR, GPOX, APOX, and GST genes in 
the presence of Cd stress in Lycopersicon esculentum plants modulating their antioxi-
dative response [98]. P. aeruginosa and Bacillus gladioli also elevated the expression 
of phenolic compound, osmolytes, and molecular weight organic acid (citric acid, 
malic acid, fumaric acid, and succinic acid) genes, decreasing the physiological 
damage of Solanum lycopersicum plants under Cd toxicity [98].

A global transcriptomic analysis was carried in inoculated Medicago truncatula 
plants grown in the presence of arsenic and inoculated with an arsenic-resistant 
rhizobial strain. The results showed the overexpression of some defense genes in 
the inoculated plants (sulfur metabolism, several enzymes of the phytochelatins 
synthesis pathway, proline, heat shock proteins, and several transcription factors). 
Besides, secondary metabolism, isoflavonoids and phenylpropanoids, were acti-
vated. In contrast, the genes of nodulation were downregulated, particularly those 
involved in the early stages of the interaction [99, 100].

Under drought environments, P. putida MTCC5279 modulates the stress in 
plants of Cicer arietinum by the overexpression of ACO and ACS (involved in the 
synthesis of ethylene); PR1 (synthesis of salicylic acid); MYC2 (synthesis of jasmo-
nate); SOD, CAT, APX, and GST (genes that codify the antioxidative enzymes in 
plants); DREB1A (response element to dehydration); LEA and DHN (dehydrins); 
and NAC1 (transcription factors expressed under abiotic stress) genes [101]. In 
plants of sorghum inoculated with rhizobacterial endophytes, proline (a crucial 
molecule of maintaining the cellular functions under drought) accumulation was 
higher than in the noninoculated plants because bacteria induce the overexpression 
of sbP5CS2 (pyrroline-5-carboxylate synthase 2) and sbP5CS1 (pyrroline-5-carbox-
ylate synthase 1) genes under drought stress [102]. This fact also was demonstrated 
in inoculated chickpea plants, where proline was accumulated by plants under 
drought conditions besides histidine, citrulline, and threonine [103].

Finally, the molecular mechanisms for plant alleviation in salt stress by bacteria 
are also reported by some authors. A transcriptome of rice plants inoculated with 
Bacillus amyloliquefaciens SN13 showed that the bacterial inoculation alters gene 
expression under salt stress. For example, genes of phytohormones, flavonoids, 
or photosynthesis are found in higher number in inoculated plants [104]. Other 
example is the inoculation of wheat with Dietzia natrolimnaea that causes an over-
expression of genes involved in the ABA signaling cascade and in the salt sensitive 
pathway among others [105].

Recently, some authors have studied the miRNAs induced by PGPR as a 
 possibility to regulate the stress in plants [106, 107]. miRNAs are RNA molecules of 
20–24 nucleotides that do not codify proteins, and they get bound to mRNA or any 
transcriptional factor, regulating the expression of the target gene. However, the 
only study about miRNAs was performed in chickpea plants under drought stress, 
where plants were inoculated with Pseudomonas putida RA, and this  inoculation 
improves plants adaptation to drought conditions through the regulations of 
miRNA expression [108].

4. Conclusions and future perspectives

One of the main problems of the rapid increase in the world’s population lies in 
the challenge of having the necessary food for global supply, but the climate change 
and the pollution decrease the number of the agricultural soil, so a possible solution 
would be to encourage more widespread use of PGPB. The evidence that PGPR 
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promote the plant growth under stress environments is becoming increasingly 
true, being even more focused on the study of individual mechanisms than their 
combined mechanisms, which is why new paths are being opened toward the use 
of mixed inoculants that act jointly acquiring faster and improving results. There 
are also investigations in the area of genetics and molecular biology, where studies 
are being carried out based on the discovery of specific genes capable of motivat-
ing greater plant development as well as in the field of nanotechnology where 
nanoencapsulation and microencapsulation offer an alternative to produce effective 
formulations against pest control. However, this area needs more investigations 
and funding to solve the lack of development of new and better storage, shipping, 
formulation and application techniques of these PGPR, and the development of 
effective and consistent regulations regarding their use. In this way, the agricultural 
practice in degraded soils could become an effective and sustainable practice for the 
benefit of all.
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