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Information-theoretical analysis of Dirac and nonrelativistic quantum oscillators
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An information-theoretical study of the Dirac oscillator and the usual quantum oscillator is provided, in terms
of the respective spatial densities. The comparative analysis is grounded on the values of Shannon entropy,
Fisher information, and disequilibrium of both systems in arbitrary states. It is emphasized the dependence of
these entropic functionals on the angular frequency and the quantum numbers that characterize the state of
the systems, and remarkably also on the different spin-angular momentum coupling schemes. The results are
interpreted accordingly with the structural patterns of the corresponding densities, providing information on
their spread, uniformity, and disorder.
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I. INTRODUCTION

In the last few decades, the study of quantum-mechanical
systems by means of different density functionals has in-
creased in interest. Particular attention has been paid to the
employment of the powerful tools provided by Information
Theory [1], designed to enable a precise description of the sys-
tem in terms of its representative or characteristic probability
distributions.

The applications of those tools include a great diversity
of physical and chemical objects, with very different levels
of sophistication, ranging from few particle systems [2] to
complexly structured molecules [3,4], passing through many-
electron atoms and ions [5,6]. Additionally, it is frequent
that, for a given system, we can consider different descriptive
models according to the level of precision pursued as well as
the variables considered.

A complete description of a mono- or many-particle system
at a given state, in a time-independent quantum-mechanical
framework, requires the knowledge of the corresponding wave
function �(r1, . . . , rn), which is the corresponding solution of
the eigenvalue equation

H�(r1, . . . , rn) = E�(r1, . . . , rn),

with H the Hamiltonian operator and E the energy of the
considered state. Fortunately, for most purposes regarding a
relevant physical description assuming indistinguishability of
particles, it is sufficient to deal with the one-particle density
[7]

ρ(r) ≡
∫

|�(r, r2, . . . , rn)|2dr2 . . . rn.

(no integration is required for monoparticular systems). The
density function ρ(r) provides a measure of the probability of
finding a particle at a given position.

Even more, the grounds of Information Theory guarantees
a physically meaningful system description in terms of diverse
density functionals, each one quantifying specific features of

the system under analysis. In this sense, it is worth mentioning
the role played by the Shannon entropy S [8–12], as a measure
of the spreading of ρ(r) over its whole domain. This quantity
was introduced in the framework of Communication Theory,
but its name is inspired in the thermodynamical concept of
order, quantified by entropy.

Complementary to the Shannon entropy, the disequilibrium
D allows to quantify how far from uniformity the density ρ(r)
is, or equivalently, it can be interpreted as a distance from
the equiprobability of finding a particle at arbitrary positions
[13,14].

Both Shannon entropy and disequilibrium are usually la-
beled as global measures, due to their low sensitivity to
notable changes in the density at very localized regions. For
this reason, it is also interesting to consider additionally the
Fisher information I , a local density functional with a higher
sensitivity to the abovementioned changes [15–19].

The present work is focused on the information-theoretical
analysis of a so well-known system as the harmonic oscillator,
considering its quantum-mechanical description for arbitrary
angular frequencies. Therefore, it is a monoparticular system,
and the probability distributions of the different states are
obtained by only squaring the modulus of the respective wave
functions.

It should be emphasized that many other studies of the
abovementioned characteristics are known, but the majority
of them pay attention to the solutions derived from a nonrel-
ativistic Hamiltonian. Many of those studies consider some
other features of quantum oscillators, including, e.g., statis-
tical correlations [20–22], confinement [23–28], uncertainty
[29] or time dependence [28].

Not only the quantum oscillator, but some other quantum-
mechanical systems at different levels of sophistication, have
been analyzed from an information-theoretic perspective, with
the aim of quantifying relativistic effects on the descriptive
distributions [30,31]. At times, the functionals employed are
interpreted as complexity measures, a notion briefly discussed
in Sec. III. Such is the case of atomic systems at the ground
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state [30], considering both relativistic and nonrelativistic
complexity measures in conjugate spaces, for which the main
conclusions are derived from the dependence of such compar-
ative indexes on the nuclear charge and shell structure of the
multielectronic systems.

In this sense, it is worth remarking that the Dirac oscillator,
described within a relativistic framework, belongs to the class
of the few relativistic systems that admits a fully analytical
description (as also occurs with hydrogen [31–33]).

Of course, the oscillator solutions are modified, to a greater
or lesser extent, depending on whether or not the relativistic
description is taken into account. This means that the density
functions arising from the relativistic Dirac oscillator differ
from the nonrelativistic ones.

The transition from the ordinary to the Dirac oscillator
makes analytical treatment evolve in difficulty, mainly due
to the need to handle Dirac matrices in the relativistic case.
The corresponding differential equations give rise to solutions
composed by a couple of kets, each with its own radial and
angular factors. This is contrast with the ordinary harmonic
oscillator, which wave functions are fully factorized in a
unique radial part and a unique angular one, thus facilitating
its analytical treatment at different levels.

Additionally, in obtaining the Dirac wave functions, it is
necessary to distinguish the different couplings between or-
bital angular momentum and spin. In fact, this is an essential
point when considering the closeness of the Dirac solutions
to the nonrelativistic ones, as will be quantified in next
sections by employing a diversity of information-theoretical
tools.

The main aim of this work is to analyze the differences
just pointed out, among the relativistic and non-relativistic
probability distributions, for different states and frequencies
of the oscillator. In doing so, a comparative study on the re-
spective values of Shannon entropy, disequilibrium and Fisher
information is carried out.

In Sec. II, a brief description of the quantum harmonic
oscillator and its relativistic counterpart is provided, paying
attention to the analytical expressions of the eigenvalues,
eigenfunctions, and probability distributions. Then, in Sec. III,
the explicit definitions of the density functionals employed are
given, together with their information-theoretical meanings
and their main properties as well. The resulting numerical val-
ues of distributions and functionals are discussed in Sec. IV,
interpreting them in physical terms. Finally, some conclusions
are derived, and different emerging open problems are pointed
out as well.

II. QUANTUM HARMONIC OSCILLATOR AND DIRAC
OSCILLATOR DENSITIES

This section is devoted to the theoretical grounds of the
systems under study, namely the Dirac oscillator (DO) (thus
in a relativistic framework) and its nonrelativistic counterpart
(which will be referred to simply as the quantum harmonic
oscillator (QHO).

Focusing on the spherically symmetric distributions an-
alyzed in this paper, we highlight that the Dirac oscillator
belongs to the class of the few relativistic systems that admits
a fully analytical description [34–37].

The Dirac wave function in coordinate representation is
given by the solution of the Dirac matricial differential equa-
tion of a particle moving in an oscillatory potential (h̄ = c = 1
are set):

(α · (p − im0ωβr) + m0β )|�〉 = −i
∂

∂t
|�〉, (1)

where α and β are the 4 × 4 Dirac matrices (α defined in terms
of the Pauli matrices σ) [38], ω is the oscillator frequency, and
m0 the mass of the particle. The spinorial eigenfunctions are
represented as

|�〉 =
(|φ〉

|χ〉
)

exp(−iEt ), (2)

yielding two coupled equations on |φ〉 and |χ〉.
These two solutions take into account the set of commuting

operators {H, J2, Jz, L2}, where H = p2

2m0
+ 1

2 m0ω
2r2 [which

is not the Hamiltonian of the system, given by the left-hand-
side of Eq. (1)] and J = L + 1

2σ, with L being the angular
momentum, and σ being the Pauli matrices [34]. It is neces-
sary to remark that |φ〉 is an eigenvector of L2 with eigenvalue
l (l + 1) and |χ〉 with a different one, l ′(l ′ + 1) as described
below.

This set of commuting operators leads to the description
of the system in terms of the quantum numbers n, j, m. In
addition, the spin-angular momentum coupling will be taken
into account by means of a new parameter ε, defined in terms
of the parity (−1)l as

ε =
{

+1 if parity is (−1) j+ 1
2 ,

−1 if parity is (−1) j− 1
2 .

(3)

In order to distinguish the above cases when analyzing the
DO, the notations DO+ and DO− will be considered for the
respective values ε = ±1.

In what follows, we discuss all the results in terms of
{N, l, ω, ε}, with N the radial quantum number given by n =
2N + l , and with l = j + ε

2 . This description is convenient
due to the wave-function expressions (both Schrödinger and
Dirac) and the fact that we will only analyze the radial part of
the systems.

The energy included in the eigenvalues corresponding to
|φ〉 and |χ〉 becomes expressed as [34]

Enl = ±m0

{
1 + 2ωm−1

0

[
n + 1 + ε

(
l − ε

2
+ 1

2

)]} 1
2

. (4)

For the sake of simplicity in notation, at times we will refer to
the above energy as E .

The normalization conditions

〈φ|φ〉 = 1

2

(
1 + m0

E

)
, (5)

〈χ |χ〉 = 1

2

(
1 − m0

E

)
, (6)

lead to the following Dirac ket (for the explicit calculation,
see Ref. [34]) in the coordinate representation, for j = l ± 1

2 :

�±(r, t ) =
(

iFNl (r)V ±
jml (
)

GN ′l ′ (r)V ∓
jml ′ (
)

)
exp(−iEt ) (7)
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with 
 denoting the three-dimensional solid angle. Both
rows are factorized into radial and angular parts. The an-
gular functions V ±

jml (
) are the spinor spherical harmonics,
each one expressed in terms of the two spherical harmonics
Yl,m±1/2(
).

The so-called large (F ) and small (G) components of the
wave function are given by

FNl (r) =
[

1

2

(
1 + m0

E

)]1/2

CNlRNl (r), (8)

GN ′l ′ (r) = sgn(E )

[
1

2

(
1 − m0

E

)]1/2

CN ′l ′RN ′l ′ (r) (9)

with

RNl (r) = 1F1

(
−N ; l + 3

2
; m0ωr2

)
(m0ωr2)l/2

× exp

(
−1

2
m0ωr2

)
, (10)

CNl = (m0ω)3/4εN

[
2l−N+2(2N + 2l + 1)!!

π1/2N!{(2l + 1)!!}2

]1/2

. (11)

We have introduced the new definitions l ′ = l − ε, as well as
N ′ = N − 1

2 (1 − ε), restricted to N, N ′ ∈ N by the finiteness
of the sum defining the Kummer’s function 1F1(x; y; z). The
energy E in the above expressions, given by Eq. (4), becomes
now expressed as

ENl = ±m0
{
1 + [4N + (ε + 1)(2l + 1)]m−1

0 ω
} 1

2 , (12)

in terms of the quantum numbers N, l .
The global normalization of the wave function is given by∫ |�(r)|2dr ≡ ∫

ρ(r)dr = 1, with ρ(r) being the probability
density of finding the particle somewhere in the space. The
factorization of �(r) into radial and angular parts in Eq. (7)
leads to respective independent normalizations, giving rise to
the condition∫ ∞

0
r2

[
F 2

Nl (r) + G2
N ′l ′ (r)

]
dr ≡

∫ ∞

0
4πr2ρ(r)dr = 1, (13)

where the function ρ(r) does not include the angular factors
of the wave function. In fact, ρ(r) is the spherical average of
ρ(r), so that the function 4πr2ρ(r) constitutes the probability
density of finding the particle at a given distance from the
origin.

The nonrelativistic limit is well-known and is given by the
coordinate representation of the wave function [38]:

ψNlm(r) =
[

2N!ν l+ 3
2

�
(
N + l + 3

2

)
]1/2

rle− ν
2 r2

L
l+ 1

2
N (νr2)Ylm(
),

(14)

with ν = m0ω, L
l+ 1

2
N are the generalized Laguerre polynomials

and Ylm(
) the spherical harmonics (m the eigenvalue of the
operator Lz). The energy of a given state is

Enlm = ω
(
n + 3

2

)
, (15)

with n = 2N + l , and N ∈ N determines the degree of the
Laguerre polynomial. And similarly to the Dirac case, the
nonrelativistic distributions ρ(r) and ρ(r) are defined from
|ψNlm|2 [39,40].

Let us mention the similar expressions holding in the con-
jugate (momentum) space, for both the wave function �̃(p, t )
and the one-particle density γ (p), due to the interconnection
between the gaussian-like functions � and �̃ by means of a
Fourier transform. In fact, it is easy to prove that

γ (p) = ν−3ρ(p/ν). (16)

III. INFORMATION THEORETIC MEASURES

The aim of this work is to study the different states of the
relativistic and nonrelativistic quantum oscillators, in terms
of specific information-theoretic functionals of the respective
spatial distributions.

The spread of the probability density, ρ(r), that charac-
terizes the state of quantum-mechanical mono- or multielec-
tronic systems (e.g., atoms, molecules) in position space, is
related to their physicochemical properties [41]. There exists
different measures able to quantify and grasp this spreading,
some of them arise within the framework of Information The-
ory [7,17,42–46]. Beyond the well-known standard deviation
or its square, i.e., the variance, the most widely used is the
Shannon entropy S, which definition is given in terms of a
logarithmic functional [8]:

S[ρ] = −
∫

ρ(r) ln ρ(r)dr. (17)

This measure quantifies the total delocalization of the prob-
ability density over its whole domain. The value of S[ρ] is
maximal when knowledge of ρ(r) is minimal, and thus be-
coming delocalized. It is worth mentioning that the Shannon
entropy is not an a priori bounded magnitude, so it can reach
negative values. In order to avoid this, the exponential Shan-
non entropy is often used:

L[ρ] = eS[ρ]. (18)

This quantity is also known as the Shannon length, because it
has the same dimensions as the independent variable consid-
ered, as well as the standard deviation, one of the most widely
used uncertainty measures.

The disequilibrium [47], self-similarity [48] or informa-
tion energy [49], D, quantifies the departure from uniformity
(equiprobability) of the density function. It is defined as a
power functional [47,49], given by

D[ρ] =
∫

ρ2(r)dr. (19)

This expression arises from its discrete and finite counterpart.
It is initially provided by summing the squares (pi − 1/N )2 of
the differences between each probability pi and the respective
term 1/N for equiprobability. The transition to the continuous
case (implying N → ∞) gives rise to Eq. (19).

Disequilibrium D, together with the Shannon entropy S, are
the essential ingredients in defining the pioneering measure
of complexity C for arbitrary distributions [47]. This con-
cept refers to the departure, in some way, from the situations
of extreme order/disorder. The initial definition of López-
Mancini-Calbet (LMC) complexity was later modified [50],
by replacing the Shannon entropy S by the Shannon length
L, as CLMC = DL. This expression complies with different
desirable properties for any complexity measure.
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Both measures defined above, namely Shannon entropy
and disequilibrium, have a global character, i.e., they are de-
termined by the behavior of the probability density over its
whole domain. In contrast to these two quantities, the Fisher
information I defined below is a local measure because its
definition constitutes a functional enclosing not only the own
density, but its gradient as well [15,18]:

I[ρ] =
∫ |∇ρ(r)|2

ρ(r)
dr. (20)

This quantity is very sensitive to the strong changes on the
distribution over small-sized regions. It quantifies the gradient
content of the distribution hence revealing the irregularities
of the density and providing a quantitative estimation of its
fluctuations.

It is worth remarking that the Fisher information I is
enclosed in the definition of complexity measures after the
pioneering LMC one. Such is the case of the productlike
Fisher-Shannon (FS) [51] and Cramér-Rao (CR) [1] complex-
ities, combining I with a global functional (Shannon entropy
and variance, respectively).

Let us focus for a moment on the analysis of the above
functionals {S, D, I} for quantifying the respective aspects of
the different states (as characterized by N, l quantum num-
bers) of the QHO, and those of both coupling versions of the
Dirac oscillator (DO+ and DO−, corresponding to ε = ±1,
respectively). The actual work could also serve, in the near
future, for an in-depth analysis of the LMC, FS, and CR
complexities.

It is worth noting that, in the analytical expression of
the QHO function ρNl (r), the angular frequency ω appears
systematically and exclusively via the term ωr2 (apart from
the normalization constant). As for any arbitrary normalized-
to-unity function with a dependence f (ωr2), it is guaranteed
the proportionality of each of the above functionals L, D, I of
ρNl (r) to some power ωλ of the angular frequency, the power
λ being independent of ρNl (r).

The above property is due to the fact that, varying the value
of the parameter ω for such a function f (ωr2), preserving
normalization, is equivalent to carry out a scale transforma-
tion. So, the previous comment means that the quotient of any
of the above functionals and its corresponding power ωλ is
invariant under scale trasnformations.

In fact, this is true for the so-called Rényi entropies Rα[ρ]
of order α, namely [52]

Rα[ρ] = 1

1 − α
ln

∫
ρα (r)dr, (21)

for arbitrary α whenever Rα[ρ] be well defined. In a similar
fashion as for the Shannon length L[ρ], the Rényi lengths are
defined as Lα[ρ] = exp{Rα[ρ]}.

Some interesting particular cases correspond to the values
α = 1 and α = 2, providing, respectively, the Shannon en-
tropy and the disequilibrium:

S[ρ] = R1[ρ]; D[ρ] = exp{−R2[ρ]}. (22)

Emphasizing the ω dependence for the fω(r2) ≡ f (ωr2)
distributions, the Rényi-like scaling property (for arbitrary
α) reads as Rα[ fω] = Rα[ f1] − 3

2 ln ω. In other words, there
exists a linear dependence among any Rényi entropy Rα[ fω]

and the logarithm ln ω of the scaling parameter (particularly
the angular frequency), with slope −3/2. Equivalently in
terms of Rényi lengths, it is found the proportionality rela-
tion Lα[ fω] = Cω−3/2, with C independent of ω. Notice the
additional implication that any quotient Lα[ fω]/Lβ[ fω] is ω-
independent.

Regarding the particular cases we are focusing on, the
linear relations among S[ρ] and ln ω with slope −3/2 on one
hand, and ln D[ρ] and ln ω with slope 3/2 on the other, have
been determined.

With similar arguments to those regarding Shannon and
Rényi entropies, a proportionality between the Fisher infor-
mation I[ fω] and the angular frequency ω is derived. In fact,
the power of the scaling parameter is the unity for the Fisher
functional, so that the corresponding relation reads now as
I[ fω] = Cω, for some independent-of-ω factor C. In other
words, there exists a linear dependence between the loga-
rithms of I and ω.

In what concerns the DO and the corresponding distribu-
tions ρNl±(r), let us remember that they are built up from the
large and small components, FNl (r) and GN ′l ′ (r) in Eqs. (8)
and (9), respectively. In fact, the radial factor ρNl±(r) is ob-
tained from the sum of their squares.

Regarding the above scaling properties of the functionals
{L, D, I}, it is worth remarking that they would hold for each
separate term F 2

Nl (r) and G2
N ′l ′ (r) of the sum giving rise to the

density, if both would be properly normalized (i.e., with ω-
independent respective norms). However, the scale invariance
does not apply to the whole density ρNl±(r). The reason is that
the aforementioned norms of the large/small components, in
spite of summing unity as shown in Eqs. (5) and (6), depend
on ω separately in different ways.

More precisely, the two norms are expressed in terms of the
energy E as 1

2 (1 ± 1
E ), and the energy depends on the angular

frequency as given by Eq. (4).
Anyway both norms become identical (with value 1/2) in

the limit E → ∞, reached (for a given state) as the frequency
ω increases (and also for fixed ω as N increases). Conse-
quently, a linearization should be expected of the dependence
on ln ω of the different functionals for arbitary states (as in the
QHO case) as far as ω becomes larger.

The above comments on the functionals, together with
Eq. (16) for momentum space densities, allow us to straight-
forwardly extend the conclusions obtained from the numerical
study in position space to the momentum space. This is done
by only replacing the angular frequency ω by its inverse 1/ω.
Thus, only distributions in r space are considered in what
follows.

IV. NUMERICAL RESULTS

In this section, structural patterns of the oscillator densities
are described, accordingly with the values of the characteristic
quantum numbers (N, l, ε) for a given state. This includes,
e.g., concentration of the density in specific regions (par-
ticularly around the origin), or number and heights of local
extrema.

Next, those patterns are interpreted in terms of
information-theoretical functionals. As described in Sec. III,
a diversity of density functionals are defined with the aim
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of quantifying different structural features of the probability
distributions, such as, e.g. spreading, uniformity or disorder.

The above is done for the QHO, and the Dirac oscillator
(DO±), thus including or not a relativistic description of the
system. For the sake of simplicity, a reference mass m0 = 1
will be considered throughout the numerical section. Conse-
quently, atomic units (a.u.) are used in what follows.

For the numerical analysis, only the radial parts of the
distributions ρ(r) will be considered. In other words, we will
refer to the density or distribution, in fact being its spherical
average ρ(r), which depends only on the radial variable r.

A. Structural patterns of the density

Due to the presence of Laguerre polynomials in the ex-
pressions of the Schrödinger and Dirac wave functions, and
consequently on those of the spatial densities, we expect an
increasingly rich structure with the radial quantum number N
(i.e., the degree of the polynomial). Additionally the orbital
angular momentum l modifies the coefficients of the polyno-
mials and their weight function as well.

The following structural changes have been observed when
varying N , l and ω:

(1) The joint analysis of plots in Fig. 1 reveals the just
mentioned changes as the value of N increases. On one hand,
the probability density spreads along regions of space further
away from the origin, with significantly non-null values. On
the other, the height of the main maximum, which is the clos-
est one to the origin, increases as N increases. In the specific
cases of the DO+ and DO− systems, it is observed that the
first few minima, particularly those of DO−, have a greater
height than the furthest ones (which are roughly zero). Thus,
increasing N entails an increase of the number of minima with
values far from 0 in the DO± cases. Let us remind the reader
that all minima of QHO are exactly zero.

(2) Figure 2 displays a lowering of the height of all max-
ima for increasing l , equalizing their relative height (i.e.,
leading to more equiprobable probability distributions), and
shifting them away from the origin. In addition, heights of
all minima become reduced for DO− and particularly for
DO+, whose density becomes very similar to that of QHO for
higher l ′s.

(3) A deeper study, not displayed in the above figures,
reveals that as ω increases for any of the three systems, re-
gions with probability significantly higher than zero tend to
concentrate towards the origin.

In what follows, regarding the analysis of the density func-
tionals, a fixed value of angular frequency ω is considered,
taking into account the well-known dependency of the differ-
ent functionals on it, at least excepting extremely low ω values
for DO±.

B. Shannon entropy

Let us firstly focus on the Shannon entropy S[ρ] of the
systems we are dealing with. As emphasized in previous
sections, the functional S[ρ] constitutes a measure of spatial
delocalization of the distribution ρ(r). It is in this sense that
the next comparative analysis among the Shannon entropies of
the different systems and/or states (as characterized by appro-

(a)

(b)

(c)

FIG. 1. Density ρ(r) for angular frequency ω = 5, with fixed
l = 2 and values {N = 1, 5, 8}, of systems (a) DO+, (b) DO−, and
(c) QHO. Atomic units (a.u.) are used.

priate quantum numbers) provides an eventual interpretation
of structural patterns of the density in terms of relativistic
effects and/or excitation levels.

A first look at Fig. 3, displaying S[ρ] as a function of
the radial quantum number N , clearly reveals the increasing
monotonicity of all curves. Each curve corresponds to (i) one
of the three systems, and (ii) a fixed value of the orbital
angular momentum, particularly l = 1, 12, 20.

The curves appear to be grouped accordingly with the l
value, in sets of three lines, perfectly ordered along the whole
range N = 0 − 15, with increasing height as l increases. On
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(a)

(b)

(c)

FIG. 2. Density ρ(r) for angular frequency ω = 5, with fixed
N = 4 and values {l = 2, 12}, of systems (a) DO+, (b) DO−, and
(c) QHO. Atomic units (a.u.) are used.

the other hand, within a given set of curves (i.e., for fixed l),
the ordering of the three curves for the corresponding systems
(QHO and DO±) is almost systematic, with very few excep-
tions. This is revealed by the existence of some line crossings
among QHO and DO+: from N = 2 − 3 (with l = 1), and
from N = 1 − 2 (with l = 12, 20). In other words: most usu-
ally the Shannon entropy of QHO is lower than that of DO+
(i.e., the Dirac one is more spread out), with the exceptions
N = 0, 1, and also N = 2 for l = 1. Systematically, entropy
of DO+ is below entropy of DO−.

Some of the above observations are interpreted accordingly
to the structural features of the densities plotted in Figs. 3 and
4, as follows:

(1) Minima of the DO− density are larger than those of
QHO and DO+. As normalization is preserved, this leads to
a higher delocalization of the particle and, consequently, to a
higher entropy S[ρ] for arbitrary values of N and l .

(2) As l increases the entropy increases, so obtaining more
equiprobable distributions. For high values of l , the DO+
and QHO entropies converge one to each other, due to the
structural similarity of their densities.

(3) As N increases, the uncertainty in the position of the
particle becomes larger, and therefore the entropy increases.
This is especially relevant for the DO± systems, with higher
entropies as compared to that of the QHO system for large N .

(4) Crossovers (see Fig. 3) between curves of DO+ and
QHO entropy are observed for low N and l , as mentioned
above. For illustration, let us notice that SDO+ < SQHO for
N < 2 and arbitrary l . Analyzing the respective densities in
Fig. 1, DO+ displays a high maximum close to the origin,
giving rise to a region where the DO+ distribution is more
localized as compared to the QHO one.

(5) Increasing ω compresses the density towards the ori-
gin, for all three systems. The accumulation of the distribution
around a point reduces the size of the region most likely to find
the particle, so that the particle becomes more localized and
therefore the entropy tends to decrease with increasing ω.

An in-depth numerical analysis of the Shannon entropies
displayed in Fig. 3, regarding the dependency on the radial
quantum number N , reveals a powerlike behavior as S ∼ Na.
The accuracy of the fits slightly depends on the system con-
sidered (QHO, DO+ and DO−), and on the orbital angular
momentum l . In Table I, the powers of the fitted curves are
provided for a diversity of l values, together with the respec-
tive correlation coefficients.

Some comments are in order:
(1) For all the three systems, the power a decreases as

l increases, roughly from 0.3 (l = 1) to 0.1 (l = 20). This
means that the increasing trend of S[ρ] with N becomes softer
for larger angular momenta.

(2) For a given l , the three corresponding a values are
similar, the more the higher l is. Nevertheless, the highest
power is displayed systematically by the DO+ system, while
those of QHO and DO− are much closer to each other. Thus,
the entropy of DO+ increases with N faster than those of the
other systems.

(3) All correlation coefficients are above 0.98, with higher
accuracies for lower l values.

(4) The value N = 0 has not been included for the fittings,
based on a log-log regression.

For fixed N , the Shannon entropy also displays an in-
creasing behavior with the orbital angular momentum l , as
shown in Fig. 4 for the illustrative cases N = 1, 4, 15. Again a
powerlike dependence is found, within the whole l range here
considered for low N’s, and for large l at least as N becomes
larger. Some details are given below:

(1) Respective fittings S ∼ A la provide, roughly for the
three systems, 2.1l0.22 (N = 1), 2.9l0.16 (N = 4 within the
range l = 5 − 25) and 4.2l0.095 (N = 15 for l = 10 − 25).
All correlation coefficients are above 0.99.
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FIG. 3. Shannon entropy S[ρ] as a function of the radial quantum number N , for systems DO± and QHO with ω = 5. Atomic units (a.u.)
are used.

(2) Consequently, the increase of entropy with l becomes
softer as N increases. On the other hand, the fitted value
at l = 1 varies (roughly) as 2.1, 2.9, 4.2 (for N = 1, 4, 15,
respectively). This is true for QHO, DO+, and DO−.

(3) There is not a systematic ordering, for a given N , of
fitting powers for the three systems. As indicated above, the
three values are similar. However, let us remark that the lowest
power corresponds to DO− in the N = 1, 4 cases, but to DO+
for N = 15.

In Ref. [39], a thorough information-theoretic analysis
on the d-dimensional quantum harmonic oscillator is pro-
vided, considering also arbitrary energetic states. The main
difference, as compared to the present work, is that only the
nonrelativistic solutions are considered, but in both conjugate
spaces and including the angular part. The study is limited to
Shannon entropy, paying attention to its dependence on the
state quantum numbers. The numerical analysis regards the
three-dimensional case with fixed frequency. The main con-
clusions in Ref. [39] are: (i) the Shannon entropy displays an

increasing trend with the principal quantum number n, and (ii)
the curves of Shannon entropies in position and momentum
spaces are roughly identical (apart from a shifting constant).
Such conclusions are in agreement with those here derived.
Additional results are provided regarding the angular factor
(with dependence on |m| as well).

C. Disequilibrium

The analysis of disequilibrium D[ρ] for the harmonic os-
cillators in terms of the quantum numbers (N, l ) allows us
to quantify the departure from uniformity/equiprobability of
the respective distributions ρ(r). One of the aims is to inter-
pret the disequilibrium values accordingly with the structural
properties of the corresponding densities, in a similar fashion
as previously done with Shannon entropy. Let us here remind
the reader of the global character of both magnitudes D[ρ] and
S[ρ].

In Fig. 5, the disequilibrium D[ρ] is displayed for fixed val-
ues of the orbital angular momentum l , and varying the radial

FIG. 4. Shannon entropy S[ρ] as a function of the orbital angular momentum l , for systems DO± and QHO with ω = 5. Atomic units
(a.u.) are used.
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TABLE I. Powers of the fittings S ∼ Na of the Shannon entropy S[ρ] in terms of the radial quantum number N , and the respective
correlation coefficients, for oscillators QHO, DO+ and DO− with orbital angular momentum l .

Fittings S ∼ Na of Shannon entropy

Quantum number Oscillator QHO Dirac oscillator DO+ Dirac oscillator DO−
l Power a Correlation Power a Correlation Power a Correlation

1 0.292 ± 0.002 0.9996 0.311 ± 0.002 0.9994 0.2894 ± 0.0012 0.9998
3 0.224 ± 0.004 0.9952 0.237 ± 0.004 0.9971 0.224 ± 0.003 0.9970
7 0.163 ± 0.005 0.9877 0.173 ± 0.005 0.9895 0.165 ± 0.004 0.9915
12 0.130 ± 0.005 0.9841 0.137 ± 0.005 0.9851 0.132 ± 0.004 0.9890
20 0.104 ± 0.004 0.9828 0.109 ± 0.004 0.9829 0.107 ± 0.003 0.9887

quantum number within the range N = 0 − 15. A noticeable
decreasing behavior is observed for all the curves, that is, for
systems QHO and DO± with arbitrary l .

Overall, the height of curves are higher as l is lower. And,
as happened with Shannon entropy, they seem to run along
corridors determined by each l value. In all cases, for a given
l , the curve of DO− is displayed clearly below the other
two, which means that this system has a lower disequilib-
rium or, in other words, is closer to uniformity. Regarding
QHO and DO+, the respective curves are much closer among
themselves, andbecome roughly overlapped for large l . These
comments are valid for the whole range of N , only with
slightly observable separation for large N .

In order to better interpret the variation of D[ρ] with in-
creasing N , let us analyze Fig. 1. In spite of the increasing
height of the main maximum (what could be interpreted as
departure from uniformity), the region of density values closer
to zero enlarges as N increases. For illustration, values out
from the narrow strip ρ(r) < 0.05 beyond the maximum of
DO− are limited roughly to r = 0.7 for N = 8, while they
extend up to r = 1.3 for N = 1 (thus with a larger region of
departure from the lower strip).

On the other hand, the dependence of D[ρ] on the quan-
tum number l is observed in Fig. 6 for different N’s. Again,
a decreasing monotonicity is systematically displayed in all
cases, with similar shapes. Trios of curves are distinguished

accordingly with each fixed value of N , the height of the
groups being ordered from above to below for increasing N .
As in the previous figure, the curves of the system DO−
clearly distinguish from the other two, and these ones (DO+
and QHO) almost overlap among themselves for the whole
range of l . Nevertheless, some crossovers are observed, partic-
ularly in the steps: l = 3 − 4 (for N = 4) and l = 1 − 2 (for
N = 15).

Let us now discuss the results obtained, looking for power-
like dependences D ∼ Na and D ∼ la. Table II provides the
main data corresponding to fittings of D in terms of N :

(1) In the three systems, the negative power a decreases
(in absolute value) as l increases. As occurred with the mono-
tonicity of the Shannon entropy, also the monotonic trend
(now decreasing) of the disequilibrium D[ρ] with N weakens
for larger angular momenta.

(2) For each l , the decreasing powers round similar values,
and the monotonic rate attenuates for higher l . Systematically
the fitting power of disequilibrium for DO+ implies a faster
decrease with N as compared to those of QHO and DO+.

(3) All fittings are notably accurate: most of them exceed
0.99, the others round that value.

(4) As for any log-log regression, the null value of the
variable N has not been included.

Regarding the relation D ∼ la, let us make the following
observations:

FIG. 5. Disequilibrium D[ρ] as a function of the radial quantum number N , for systems DO± and QHO with ω = 5. Atomic units (a.u.)
are used.
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FIG. 6. Disequilibrium D[ρ] as a function of the orbital angular momentum l , for systems DO± and QHO with ω = 5. Atomic units (a.u.)
are used.

(1) For the curves N = 1, 4, 15 in all systems, fittings
are very accurate, with correlation coefficients systematically
above 0.99.

(2) All powers belong to the interval (−0.9,−0.7).
(3) Contrary to the heights of curves, there is not a sys-

tematic ordering of decreasing rates, neither accordingly to
the systems considered nor to the value of N .

D. Fisher information

Let us now analyze the trends of the functional I[ρ],
namely the Fisher information given by Eq. (20), when vary-
ing the values of each of the quantum numbers N and l .
Interestingly, both behaviors are notably different, and the
DO+ system distinguishes from the other two in this aspect.

First, an increasing monotonic behavior of I[ρ] as N
increases is clearly displayed in all cases. This is shown
in Table III, for different values of l (particularly l =
1, 3, 7, 12, 20), and for three selected values in Fig. 7. Thus,
this provides for the three systems and for the three chosen
values of l , a total of 9 curves plotted in Fig. 7. However, not
all of them are clearly distinguishable in the figure, due to
the notable overlaps of all paths for QHO on one hand, and
those of DO− for higher l’s, on the other. Even more, the
DO− curve for l = 1 is only slightly distinguished from the
abovementioned other two.

This means that the only system with a noticeable sensitiv-
ity to the l value for fixed N is the positive’ Dirac one DO+.
And oppositely, each of QHO and DO− display roughly
identical dependences of I[ρ] in terms of the radial quantum
number N for arbitrary values of l . In this sense, it is observed
that the higher the orbital angular momentum l , the higher the
Fisher information of DO+ is.

The fact that I[ρ] increases monotonically with N is con-
sistent with the density structure. As N increases, the number
of oscillations in the density also increases (see Fig. 1), which
is reflected by I[ρ] due to its sensitivity to such oscillations.

Furthermore, it is observed that the DO+ and QHO sys-
tems display very similar values of Fisher information for
N = 0 and arbitrary l , because their densities are unimodal,
that is, functions with a unique extremum. This is not the case
of DO−, since it does not have access to the N = 0 state.

The inverse analysis, now keeping fixed l and varying N , is
performed on the basis of Fig. 8. As indicated before, different
conclusions from those obtained from the study of the depen-
dence on N are derived, particularly for QHO and DO−. In
fact, Fisher information for these two systems appears roughly
independent of l , maybe excepting the particular case l = 0,
which deviates from a roughly constant value.

Table IV reveals the closeness of I[ρ] values along the
range l = 1 − 25, for both QHO and DO−. Only l = 0 stands
out among the others, and not so much for large N . The data
in this table is in agreement with the shapes of curves in Fig. 8

TABLE II. Powers of the fittings D ∼ Na of the disequilibrium in terms of the radial quantum number N , and the respective correlation
coefficients, for systems QHO, DO+ and DO− with orbital angular momentum l .

Fittings D ∼ Na of disequilibrium

Quantum number Oscillator QHO Dirac oscillator DO+ Dirac oscillator DO−
l Power a Correlation Power a Correlation Power a Correlation

1 −0.417 ± 0.009 0.9945 −0.444 ± 0.007 0.9970 −0.451 ± 0.007 0.9972
3 −0.393 ± 0.010 0.9923 −0.434 ± 0.009 0.9940 −0.418 ± 0.008 0.9954
7 −0.367 ± 0.010 0.9909 −0.403 ± 0.011 0.9908 −0.385 ± 0.008 0.9941
12 −0.350 ± 0.009 0.9906 −0.379 ± 0.011 0.9897 −0.364 ± 0.008 0.9940
20 −0.335 ± 0.009 0.9913 −0.357 ± 0.010 0.9899 −0.346 ± 0.007 0.9945
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FIG. 7. Fisher information I[ρ] as a function of the radial quantum number N , for systems DO± and QHO with ω = 5. Atomic units (a.u.)
are used.

FIG. 8. Fisher information I[ρ] as a function of the orbital angular momentum l , for systems DO± and QHO with ω = 5. Atomic units
(a.u.) are used.

TABLE III. Powers of the fittings I ∼ Na of the Fisher information in terms of the radial quantum number N , and the respective correlation
coefficients, for systems QHO, DO+ and DO− with orbital angular momentum l .

Fittings I ∼ Na of Fisher information

Quantum number Oscillator QHO Dirac oscillator DO+ Dirac oscillator DO−
l Power a Correlation Power a Correlation Power a Correlation

1 0.864 ± 0.013 0.9970 0.51 ± 0.02 0.9775 0.67 ± 0.03 0.9762
3 0.873 ± 0.012 0.9974 0.512 ± 0.011 0.9940 0.69 ± 0.03 0.9779
7 0.877 ± 0.012 0.9975 0.549 ± 0.003 0.9995 0.70 ± 0.03 0.9783
12 0.878 ± 0.012 0.9976 0.594 ± 0.002 0.9998 0.71 ± 0.03 0.9783
20 0.879 ± 0.012 0.9977 0.643 ± 0.003 0.9998 0.71 ± 0.03 0.9782
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TABLE IV. QHO and DO− Fisher information I[ρ] for N = {1, 4, 15} as a function of l: range of I values for l = 1 − 25, and value for
l = 0 with the deviation from the top of the range. Atomic units (a.u.) are used.

Fisher information

Oscillator QHO Dirac oscillator DO−
Quantum number Range for Value for Deviation Range for Value for Deviation
N l = 1−25 l = 0 (in %) l = 1−25 l = 0 (in %)

1 60.2–63.3 70.0 10.6 15.7–18.1 22.4 23.8
4 180.2–183.3 190.0 3.7 31.2–34.1 38.3 12.3
15 618.9–623.3 630.0 1.1 95.9–99.4 103.5 4.1

for those two systems, appearing as almost straight horizontal
lines, only excepting the leftmost point.

On the other hand, the Fisher information of DO+ is
clearly an increasing magnitude with l , as observed in Fig. 8.
Nevertheless, the rate of increase diminishes quickly for larger
l’s, particularly for l � 10 becoming I ∼ l0.14 (N = 1), I ∼
l0.27 (N = 4) and I ∼ l0.31 (N = 15), all with correlation
coefficients above 0.99.

V. CONCLUSIONS AND OPEN PROBLEMS

A well-known physical system, namely the quantum
oscillator, has been studied in this work within an information-
theoretical framework. Particular attention has been paid to
the spread, uniformity, and fluctuations of the respective prob-
ability distributions of the different states, interpreted in terms
of meaningful density functionals and their dependences on
the characteristic state quantum numbers.

On one hand, the inclusion or not of a relativistic de-
scription within the Hamiltonian of the system has been
distinguised, and on the other, for the relativistic case, both
coupling choices among orbital angular momentum and par-
ticle spin. It has been found, in most cases, that the closeness
between the Dirac and the Schrödinger solutions strongly
depends on the coupling considered, as also occurs with the
behavior of the computed functionals for larger/smaller val-
ues of the quantum numbers.

For fixed orbital angular momentum, increasing the radial
quantum number gives rise, in general, to more delocalized
density functions, accordingly to the respective increase of
Shannon entropy and decrease of disequilibrium. These mag-
nitudes describes the global behavior, but also the Fisher
information displays an increasing behavior, due to the local
concentration around the origin of the main peak of the den-
sity.

Reverting the role of the quantum numbers, i.e., keeping
fixed the radial one, provides similar behaviors regarding the
global quantifiers: that is, the global spreading increases as
the angular momentum becomes higher. The same comment
applies to the Fisher information (local measure) of the DO
with positive coupling, while the other two systems (i.e., the
other Dirac case and the quantum harmonic oscillator) appear
to be roughly independent of the orbital angular momentum.

The main conclusion, from the present work, is that dif-
ferences between the systems including or not a relativistic
description, as quantified by information-theoretical function-
als of the respective distributions, are revealed in different
ways attending to (i) the specific properties of the measures
employed, (ii) the energetic state of the respective systems,
and (iii) the spin coupling in the Dirac case. Particularly
interesting are the different patterns when considering global
or local functionals. This is justified in accordance with the
structural characteristics of the radial densities studied.

Future work is considered for this system, in an
information-theoretical framework, by considering (i) the to-
tal three-dimensional probability distribution, including the
angular variables through the spherical harmonics, (ii) com-
plexity measures built up as the product of functionals
[30,31,47], and (iii) a comparative study by means of simi-
larity and divergence measures, allowing a direct quantitative
comparison among different distributions.

ACKNOWLEDGMENTS

The authors gratefully acknowledge financial support from
Spanish Projects No. PID2020-113390GB-I00 (MICIN), No.
PY20-00082 (Junta de Andalucía), and No. A-FQM-52-
UGR20 (ERDF University of Granada). J.C.A. belongs to
the Andalusian Research Group FQM-207, and S.L.-R. to
FQM-239.

[1] T. M. Cover and J. A. Thomas, Elements of Information Theory,
2nd ed. (Wiley-Interscience, New York, 2006).

[2] S. López-Rosa, I. V. Toranzo, P. Sánchez-Moreno, and J. S.
Dehesa, Entropy and complexity analysis of hydrogenic Ryd-
berg atoms, J. Math. Phys. 54, 052109 (2013).

[3] R. O. Esquivel, S. López-Rosa, M. Molina-Espíritu, J. C.
Angulo, and J. S. Dehesa, Information-theoretic space from
simple atomic and molecular systems to biological and phar-
macological molecules, Theor. Chem. Acc. 135, 253 (2016).

[4] C. Rong, B. Wang, D. Zhao, and S. Liu, Information-theoretic
approach in density functional theory and its recent applications
to chemical problems, WIREs Comput. Mol. Sci. 10, e1461
(2020).

[5] J. Antolín, S. López-Rosa, and J. C. Angulo, Rényi complexities
and information planes: Atomic structure in conjugated spaces,
Chem. Phys. Lett. 474, 233 (2009).

[6] N. Flores-Gallegos, Informational energy as a measure of elec-
tron correlation, Chem. Phys. Lett. 666, 62 (2016).

022812-11

https://doi.org/10.1063/1.4807095
https://doi.org/10.1007/s00214-016-2002-x
https://doi.org/10.1002/wcms.1461
https://doi.org/10.1016/j.cplett.2009.04.061
https://doi.org/10.1016/j.cplett.2016.10.075


I. LÓPEZ-GARCÍA et al. PHYSICAL REVIEW A 108, 022812 (2023)

[7] R. G. Parr and W. Yang, Density-Functional Theory of Atoms
and Molecules (Oxford University Press, New York, 1994).

[8] C. E. Shannon, A mathematical theory of communication, Bell
Syst. Tech. J. 27, 379 (1948).

[9] S. E. Massen and C. P. Panos, A link of information entropy and
kinetic energy for quantum many-body systems, Phys. Lett. A
280, 65 (2001).

[10] S. Verdú, Fifty years of Shannon Theory, IEEE Trans. Inf.
Theory 44, 2057 (1998).

[11] A. Lesne, Shannon entropy: A rigorous notion at the crossroads
between probability, information theory, dynamical systems
and statistical physics, Math. Struct. Comput. Sci. 24, e240311
(2014).

[12] J. C. Angulo and J. S. Dehesa, Tight rigorous bounds to atomic
information entropies, J. Chem. Phys. 97, 6485 (1992); 98, 9223
(1993).

[13] J. Pipek and I. Varga, Universal classification scheme for the
spatial-localization properties of one-particle states in finite, d-
dimensional systems, Phys. Rev. A 46, 3148 (1992).

[14] J. S. Dehesa, I. V. Toranzo, and D. Puertas-Centeno, Entropic
measures of Rydberg-like harmonic states, Int. J. Quantum
Chem. 117, 48 (2017).

[15] R. A. Fisher, Theory of statistical estimation, Math. Proc.
Cambridge Philos. Soc. 22, 700 (1925); Reprinted in Collected
Papers of edited by J. H. Bennet (University of Adelaide Press,
South Australia, 1972), pp. 15–40.

[16] M. T. Martin, J. Pérez, and A. Plastino, Fisher information and
nonlinear dynamics, Physica A 291, 523 (2001).

[17] S. López-Rosa, R. O. Esquivel, J. C. Angulo, J. Antolín, J. S.
Dehesa, and N. Flores-Gallegos, Fisher information study in po-
sition and momentum spaces for elementary chemical reactions,
J. Chem. Theory Comput. 6, 145 (2010).

[18] B. R. Frieden, Science from Fisher Information (Cambridge
University Press, Cambridge, 2004).

[19] T. Yamano, Relative Fisher information for Morse potential
and isotropic quantum oscillators, J. Phys. Commun. 2, 085018
(2018).

[20] S. J. C. Salazar, H. G. Laguna, and R. P. Sagar, Statistical
correlation measures from higher-order moments in quantum
oscillator systems, Adv. Theory Simul. 4, 2000322 (2021).

[21] S. J. C. Salazar, H. G. Laguna, and R. P. Sagar, Pairwise and
higher-order statistical correlations in excited states of quantum
oscillator systems, Eur. Phys. J. Plus 137, 19 (2022).

[22] S. J. C. Salazar, H. G. Laguna, and R. P. Sagar, Higher-order
statistical correlations in three-particle quantum systems with
harmonic interactions, Phys. Rev. A 101, 042105 (2020).

[23] N. Aquino and R. A. Rojas, Accurate calculations of ra-
dial expectations values for confined hydrogen-like atoms and
isotropic harmonic oscillator, Few Body Syst. 61, 16 (2020).

[24] N. Aquino and E. Cruz, The 1-dimensional confined harmonic
oscillator revisited, Rev. Mex. Fis. 63, 580 (2017).

[25] H. E. Montgomery Jr., G. Campoy, and N. Aquino, The con-
fined N-dimensional harmonic oscillator revisited, Phys. Scr.
81, 045010 (2010).

[26] A. Ghosal, N. Mukherjee, and A. K. Roy, Information en-
tropic measures of a quantum harmonic oscillator in symmetric
and asymmetric confinement within an impenetrable box,
Ann. Phys. 528, 796 (2016).

[27] N. Mukherjee and A. K. Roy, Information-entropic measures in
confined isotropic harmonic oscillator, Adv. Theory Simul. 1,
1800090 (2018).

[28] D. Nath and A. K. Roy, Average energy and Shannon entropy
of a confined harmonic oscillator in a time-dependent moving
boundary, J. Math. Chem. 61, 1491 (2023).

[29] H. G. Laguna and R. P. Sagar, Quantum uncertainties of the
confined harmonic oscillator in position, momentum and phase-
space, Ann. Phys. 526, 555 (2014).

[30] P. Maldonado, A. Sarsa, E. Buendía, and F. J. Gálvez, Rela-
tivistic effects on complexity indexes in atoms in position and
momentum spaces, Phys. Lett. A 374, 3847 (2010).

[31] P. A. Bouvrie, S. López-Rosa, and J. S. Dehesa, Quantifying
dirac hydrogenic effects via complexity measures, Phys. Rev. A
86, 012507 (2012).

[32] J. Antolín, J. C. Angulo, S. Mulas, and S. López-Rosa, Rel-
ativistic global and local divergences in hydrogenic systems:
A study in position and momentum spaces, Phys. Rev. A 90,
042511 (2014).

[33] T. Yamano, Fisher information of radial wavefunctions for
relativistic hydrogenic atoms, Chem. Phys. Lett. 731, 136618
(2019).

[34] O. L. de Lange, Algebraic properties of the Dirac oscillator,
J. Phys. A 24, 667 (1991).

[35] O. L. de Lange and R. E. Raab, Operator Methods in Quantum
Mechanics (Clarendon Press, Oxford, 1991).

[36] J. Benítez, R. P. Martínez-y-Romero, H. N. Núñez-Yépez, and
A. L. Salas-Brito, Solution and hidden supersymmetry of a
Dirac oscillator, Phys. Rev. Lett. 64, 1643 (1990); Erratum: ibid.
65, 2085 (1990).

[37] R. P. Martínez-y-Romero, H. N. Núñez-Yépez, and A. L. Salas-
Brito, Relativistic quantum mechanics of a Dirac oscillator,
Eur. J. Phys. 16, 135 (1995).

[38] B. H. Bransden and C. J. Joachain, Quantum Mechanics, 2nd ed.
(Pearson - Prentice Hall, Englewood Cliffs, New Jersey, 1991).

[39] R. J. Yáñez, W. Van Assche, and J. S. Dehesa, Position and mo-
mentum information entropies of the D-dimensional harmonic
oscillator and hydrogen atom, Phys. Rev. A 50, 3065 (1994).

[40] J. Sañudo and R. López-Ruiz, Some features of the statistical
complexity, Fisher-Shannon information and Bohr-like orbits
in the quantum isotropic harmonic oscillator, J. Phys. A 41,
265303 (2008).

[41] P. Hohenberg and W. Kohn, Inhomogeneous electron gas,
Phys. Rev. 136, B864 (1964).

[42] C. Arndt, Information Measures (Springer, Berlin, 2013).
[43] S. R. Gadre, In Reviews of Modern Quantum Chemistry: A

Celebration in the Contributions of Robert G. Parr, Vol. 1. (World
Scientific, Singapore, 2003).

[44] J. S. Dehesa, S. López-Rosa, and D. Manzano, Entropy and
complexity analyses of d-dimensional quantum systems, In
K. D. Sen, editor, Statistical Complexities: Applications in Elec-
tronic Structures (Springer, Berlin, 2010).

[45] M. Molina-Espíritu, Química de la Información: Aspectos clási-
cos y cuánticos de fenómenos moleculares, 2015, Ph.D. thesis,
Universidad Metropolitanan de Mexico-Iztapalapa.

[46] R. Nalewajski, Quantum Information Theory of Molecu-
lar States (Nova Biomedical Books, Hauppauge, New York,
2016).

022812-12

https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1016/S0375-9601(01)00030-5
https://doi.org/10.1109/18.720531
https://doi.org/10.1017/S0960129512000783
https://doi.org/10.1063/1.463710
https://doi.org/10.1063/1.465120
https://doi.org/10.1103/PhysRevA.46.3148
https://doi.org/10.1002/qua.25315
https://doi.org/10.1017/S0305004100009580
https://doi.org/10.1016/S0378-4371(00)00531-8
https://doi.org/10.1021/ct900544m
https://doi.org/10.1088/2399-6528/aacd8f
https://doi.org/10.1002/adts.202000322
https://doi.org/10.1140/epjp/s13360-021-02215-z
https://doi.org/10.1103/PhysRevA.101.042105
https://doi.org/10.1007/s00601-020-01549-1
https://www.redalyc.org/pdf/570/57053213012.pdf
https://doi.org/10.1088/0031-8949/81/04/045010
https://doi.org/10.1002/andp.201600121
https://doi.org/10.1002/adts.201800090
https://doi.org/10.1007/s10910-023-01471-x
https://doi.org/10.1002/andp.201400156
https://doi.org/10.1016/j.physleta.2010.07.052
https://doi.org/10.1103/PhysRevA.86.012507
https://doi.org/10.1103/PhysRevA.90.042511
https://doi.org/10.1016/j.cplett.2019.136618
https://doi.org/10.1088/0305-4470/24/3/025
https://doi.org/10.1103/PhysRevLett.64.1643
https://doi.org/10.1103/PhysRevLett.65.2085
https://doi.org/10.1088/0143-0807/16/3/008
https://doi.org/10.1103/PhysRevA.50.3065
https://doi.org/10.1088/1751-8113/41/26/265303
https://doi.org/10.1103/PhysRev.136.B864


INFORMATION-THEORETICAL ANALYSIS OF DIRAC AND … PHYSICAL REVIEW A 108, 022812 (2023)

[47] R. López-Ruiz, H. L. Mancini, and X. Calbet, A statistical
measure of complexity, Phys. Lett. A 209, 321 (1995).

[48] R. Carbó, L. Lleyda, and M. Arnau, How similar is a molecule
to another? An electron density measure of similarity between
two molecular structures, Int. J. Quantum Chem. 17, 1185
(1980).

[49] O. Onicescu, Theorie de l’information. Energie informationelle,
C. R. Acad. Sci. Paris A 263, 841 (1966).

[50] R. Catalán, J. Garay, and R. López-Ruiz, Features of the ex-
tension of a statistical measure of complexity to continuous
systems, Phys. Rev. E 66, 011102 (2002).

[51] J. C. Angulo, J. Antolín, and K. D. Sen, Fisher-shannon plane
and statistical complexity of atoms, Phys. Lett. A 372, 670
(2008).

[52] A. Rényi, On Measures of Information and Entropy, Vol. 1
(University of California Press, Oakland, 1961).

022812-13

https://doi.org/10.1016/0375-9601(95)00867-5
https://doi.org/10.1002/qua.560170612
https://doi.org/10.1103/PhysRevE.66.011102
https://doi.org/10.1016/j.physleta.2007.07.077

