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micro NIR spectrophotometer (908-1676 nm). A number of chemometric 
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the aforesaid device. Spectral data have been correlated with red grape 

skin extractable polyphenols (total phenolic, anthocyanins and flavanols) 
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been performed to develop a qualitative analysis of the data (linear 
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Pearson's similarity index). 

After an exhaustive analysis of the obtained results in two different 

seasons, it can be concluded that the use of the portable micro NIR 

device for the "in vineyard" screening of extractable polyphenols in red 

grape skins is hampered by a number of factors. Environmental and 

physiological conditions should be considered to evaluate and remove 

factors that hamper a good sorting the berries according to their 

extractable polyphenol contents. 
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ABSTRACT 

There is substantial variation in levels of extractable phenolic compounds of red grapes 

(Vitis vinifera L.). Therefore, it could be desirable to known the aforesaid parameter at 

least for each vine. Nowadays, interest has shifted toward the development of portable 

vis/NIR systems, innovation in optical system design and miniaturization for its friendly 

use directly in the field. 

Spectra of intact grapes and grapes skins were recorded at harvest time in two different 

vintages (2016 and 2017 respectively) using a portable micro NIR spectrophotometer 

(908-1676 nm). A number of chemometric approaches have been used for spectral 

interrogation and evaluation of the aforesaid device. Spectral data have been correlated 

with red grape skin extractable polyphenols (total phenolic, anthocyanins and flavanols) 

by modified partial least squares regression (MPLS) using a number of spectral 

pretreatments. Moreover, different statistics strategies have been performed to develop a 

qualitative analysis of the data (linear discriminant analysis, discriminant partial least 

square analyses and Pearson’s similarity index). 

After an exhaustive analysis of the obtained results in two different seasons, it can be 

concluded that the use of the portable micro NIR device for the “in vineyard” screening 

of extractable polyphenols in red grape skins is hampered by a number of factors. 

Environmental and physiological conditions should be considered to evaluate and 

remove factors that hamper a good sorting the berries according to their extractable 

polyphenol contents. 

Keywords: extractable polyphenols, red grapes, portable spectroscopy, NIR, 

chemometrics, wine  
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Introduction  

Red grapes (Vitis vinifera L.) contain about four grams of phenolic material per kilo. 

These compounds are secondary metabolites that play crucial roles in the plant 

kingdom. There are substantial variations in levels of phenolic compounds which 

depends on a number of physiologic, agronomic or climatological factors [1, 2]. Wine 

and grape phenolic compounds are grouped into two categories, flavonoids and non-

flavonoids. Wine flavonoids are all polyphenolic compounds, having multiple aromatic 

rings presenting hydroxyl groups [3]. Flavonoids have well-known health benefits. They 

possess ideal structural chemistry for free radical-scavenging activities, and they have 

been shown to be more effective antioxidants in vitro than vitamins E and C on a molar 

basis [4]. 

Most flavonoids in red grapes are found in berry solid parts and they are transferred to 

the wine during the fermentation process. Wine flavonoids (mainly flavonols, flavanols 

and anthocyanins) play a relevant role in the sensory characteristic of red wines. They 

are directly or indirectly responsible for wine color [3, 5, 6] and have a strong influence 

in wine taste (astringency, sourness, bitterness, etc.) [7]. 

Taking into account these aspects, it could be desirable to know the amount of these 

phenols that may be extracted from grapes to wine, at least for each vine. The 

conventional chemical methods used for determination of these parameters are 

destructive and time consuming because they require the extractions of different 

phenols from grape skin using wine simulated macerations [8-10]. Near infrared (NIR) 

spectroscopy has been widely used in the oenological field for grape and wine analysis 

[11]. This technique has shown considerable potential for the nondestructive 

determination of the main families of phenolic compounds in grapes [12, 13]. The use 

of NIR spectroscopy to predict total soluble solids, pH, and total anthocyanins in red 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

4 
 

grapes [14, 15] and other technological parameters useful for classifying grapes [16] 

have been also reported. In a further step, near infrared hyperspectral imaging has been 

used to develop screening methods to measure total or extractable phenols in grapes 

[17, 18]. This methodology may allow sorting the berries according to their extractable 

polyphenol contents and then the same samples could be used in further studies for 

other destructive analyses or purposes. However, despite the fast and effective 

proficiency of near-infrared spectroscopy to predict different parameters in wine sector, 

most of these studies carried out at lab imply sample transportation. To solve this 

problem portable hand-held NIR spectrometers have been recently used to acquire NIR 

spectra in vineyards, directly on-the-vine [19-22]. However, it should be taken into 

account that these portable systems are composed of different elements such lightening 

system, batteries and fiber optic probe in addition to the portable spectrophotometer that 

may difficult their used in field conditions. In a further step, interest has shifted toward 

the development of portable vis/NIR systems using Linear Variable Filter (LVF), 

innovation in optical system design and miniaturization due to the fact that it does not 

need any external components because all the needed parts are incorporated into its 

design. Although limited information is still available with regards to this technology on 

the enology sector, their use could be significantly hindered by the varying conditions 

of field measurements. 

A huge amount of information generated by all these spectroscopic devices has to be 

correctly processed to obtain useful information. Quantitative or qualitative 

chemometric tools are usually applied for the development of calibration or 

classification methods. Partial least square (PLS) regression has been widely used for 

the development of calibration methods for the prediction of different parameters in 

grapes [23]. Moreover, supervised pattern recognition methods, such as discriminant 
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partial least square (DPLS) analysis or linear discriminant analysis (LDA), are usually 

applied to the identification of spatial regions of interest in oenological samples [24, 25] 

or to the classification of grape samples according to some important attribute [26-29]. 

The main aim of this work is to study the feasibility of the use of a portable micro near 

infrared spectroscopy device for the “in vineyard” screening of extractable polyphenols 

in red grape skins. The aforesaid new device does not need any external probes, fiber 

optics or external illumination sources because all the needed parts are incorporated into 

its miniaturized design. Grape skin spectra have been collected in two different seasons 

using two different measurement methodologies to obtain the spectral data. A number 

of samples spectrally representative have been selected and the extractable contents of 

total phenols, flavanols and anthocyanins have been chemically evaluated. Finally, 

different chemometric quantitative and qualitative tools have been interrogated to obtain 

the best approach for the spectral screening of these extractable contents in grape skin. 

To the best of our knowledge, this is also the first time that the aforementioned 

parameters have been jointly evaluated using a portable device. 

Material and methods 

Samples 

Vitis vinifera L. cv. Tempranillo and Syrah red grapes samples from two vineyards 

located in the Condado de Huelva Designation of Origin D.O. (Andalusia, Spain) were 

used in the present study. Both varieties are typically grown in Spain for producing 

quality red wines and being a resistant cultivar to warm climatic conditions [30]. 

In an attempt to optimize the spectra acquisition procedure, it was designed a systematic 

experiment which was divided into two seasons as shown in the Fig. 1. To face this 

task, grapes were collected in two different vintages (2016 and 2017) at harvest time. In 
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both years NIR spectroscopy analysis was carried out “in vineyard” but a modification 

of measurement conditions was performed.  

- In 2016 season grape spectra were collected directly on the bunch, without any sample 

preparation. Samples whose spectra were recorded were then collected for chemical 

analysis, to provide reference values for the measured properties. 

- In 2017 season the engaging grapes were picked from the bunch and just after that 

grape skins were manually separated from the whole grapes and placed at the bottom of 

quartz cuvettes to collect the spectra. Samples were soft-pressed inside the cuvette to 

increase the contact surface. Spectra were recorded from the external surfaces of the 

skins. 

With the aim of achieving representative sample sets, the grapes were selected from the 

top, middle and bottom of the bunch and in the sunlight and shade side of vines located 

in different rows within the vineyard. Edge rows and the first two vines in a row were 

avoided. A total of 200 spectra were collected in each season, 100 Tempranillo spectra 

and 100 Syrah spectra. 

Once the spectrum was registered, the samples (whole grapes from 2016 and grapes 

skins from 2017) were placed in stoppered plastics bags, labelled, refrigerated at 4 °C 

and immediately carried to the laboratory. Therefore, in this study, a total of 400 grape 

samples have been taken into account (200 samples in 2016 and 200 samples in 2017, 

i.e. 100 samples per variety and season). Upon arrival at the lab, grapes were frozen and 

stored at -20 ºC until analyses were performed. Prior to each chemical measurement, 

grape skins belonging to vintage 2016 were separated manually from the whole grapes 

and they were weighted. All samples were allowed to stabilize at laboratory temperature 

(25 °C) before the chemical analysis. 
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Spectral data acquisition 

In-situ acquisition of spectra was performed using a portable NIR spectrophotometer 

(MicroNIR Pro Lite 1700, VIAVI, Santa Rosa, California, USA), an instrument 

designed to measure diffuse reflectance in the NIR region of the electromagnetic 

spectrum. The MicroNIR owes its small size to the novel thin-film linearly variable 

filter (LVF) used as the dispersive element. The LVF is directly coupled to a linear 

detector array (128-pixel uncooled InGaAs photodiode array), covering the spectral 

range between 908 and 1676 nm (spectral resolution of 6.2 nm). The filter coating in the 

LVF is wedged in one direction and as a result of the varying film thickness; the 

wavelength transmitted through the filter varies linearly in the direction of the wedge. 

The LVF makes each pixel of the detector respond to a different wavelength. This ultra-

compact spectroscopic engine is coupled with a tungsten lamps diffuse illumination 

system. An illustration of the MicroNIR spectrometer and MicroNIR´s optical designed, 

adapted from VIAVI user manual, is provided in Fig. S1. 

Spectra were recorded using the instrument acquisition software MicroNIR
TM

 Pro v.2.2 

(VIAVI, Santa Rosa, California, USA). A two-point reflectance calibration was used. A 

Spectralon
®
 ceramic tile was used as a white reference (100% reflectance), whereas 

dark current (0% reflectance) was recorded by taking a measurement placing the device 

about 0.5 meters from any object. Because measurements were made on the vineyard, 

sample temperature was not controlled beforehand; mean temperature on measurement 

days ranged from 30 to 35 °C, typical extreme temperature of warm climates in August 

and September. Spectral acquisition was performed in shade using a light-tight box. 

Reference parameters 

Reference parameters taken into account were extractable total phenolic content, 

extractable flavanol content and extractable anthocyanin content in grape skin (EPC, 
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EFC and EAC respectively). To perform these determinations, grape skins were 

immersed in a model wine hydroalcoholic solution (4 gL
-1

 tartaric acid, 12.5% ethanol, 

adjusted at pH 3.6 with NaOH 0.5 M) for a maceration period of 72 h. Grape skins were 

added to extraction media in a 1:20 ratio. Then, supernatants were used into the 

subsequent analyses.  

Extractable total phenolic content was determined using the Folin–Ciocalteu method 

[31]. Gallic acid was used as a standard for construction of the calibration curve and the 

concentration of total phenols was expressed as gallic acid equivalent in mg g
−1

 of grape 

skin. 

Extractable flavanol content was determined following a modification of Vivas et al. 

[32]. Twenty microliters of model wine extractions were mixed with 180 μL of 

methanol respectively and 1 mL of DMACA reagent. The DMACA (4-

dimethylaminocinnamaldehyde) reagent was prepared immediately before use, 

containing 0.1% (w/v) DMACA in a mixture of HCl:methanol (1:10, v/v). After a ten-

minute period, the absorbance at 640 nm was measured for each sample. A calibration 

curve of (+)–catechin was used for quantification and results were expressed as (+)–

catechin equivalent in mg g
−1

 of grape skin. 

Both Folin–Ciocalteu and DMACA analyses were performed on an Agilent 8453 UV–

visible spectrophotometer (Palo Alto, USA), equipped with diode array detection 

(DAD). The extract volumes were appropriately modified for samples which needed it. 

Extractable anthocyanin content was determined by means of chromatographic analysis 

following a modification of the method of García-Marino et al. [33] as described 

elsewhere in Hernández-Hierro et al. [17]. Model wine extractions were diluted 1:2 with 

0.1 M HCl, filtered through 0.45 μm pore size filters and directly injected into the 
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chromatographic system. Results were expressed as mg of malvidin-3-O-glucoside 

equivalents per gram of grape skin. 

Chemometric analysis 

Quantitative analysis 

Before the quantitative analysis, principal component analysis (PCA) was used as 

unsupervised pattern recognition technique to get information about the latent structure 

of spectral matrix. This method provides not only information related to spectral outliers 

and the distribution of samples in the newly-created space, but it is also an important 

source of knowledge with which to create cross-validation groups used in the 

calibration process [34, 35]. PCA was also used to select representative samples from 

the spectral data set. Mahalanobis distances (H) for each sample were calculated and 

samples were grouped according their neighborhood H values (NH). 

For each season, using the raw spectral data, testing different spectral pretreatments and 

allocating the corresponding EPC, EFC and EAC to each sample, calibrations were 

performed by modified partial least squares regression (MPLS). In this method, the 

group of calibration samples is divided into a series of subsets to perform cross-

validation to set the number of PLS factors, reduce the possibility of overfitting [35] and 

remove chemical outliers. Using the T≥2.5 criterion, samples that presented a high 

residual value when they were predicted were eliminated from the set.  

The software used was Win ISI
®
 (v1.50) (Infrasoft International, LLC, Port. Matilda, 

PA, USA). This software allowed the data pretreatment, principal components analysis 

and sample selection and development of quantitative models. 

Qualitative approaches 

For each reference parameter, grape samples allocated into the calibration and 

validation sets were respectively split in two different classes according to their 
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extractable content. The statistical median value of each reference parameter in the 

calibration set was used to develop these classifications. In this way, samples were 

identified as samples with low or high EPC, EFC or EAC. These new categorical 

variables were used in conjunction with spectral data for the development of different 

qualitative chemometric methods. These methods usually indicate whether samples fall 

into pre-defined classes, how well, and what causes this separation. 

Qualitative analyses were carried out for each reference parameter and season. Linear 

discriminant analysis (LDA) and discriminant partial least square analysis (DPLS) were 

applied to the spectral matrixes in order to develop different classification methods. The 

objective of developing these methods is to obtain fast tools for the classification of 

grape samples according their extractable contents of phenolic compounds (EPC, EFC 

or EAC). LDA was carried out via SPSS 22.0 for Windows software package (SPSS, 

Inc., Chicago, IL, USA). Prior probabilities of classification were used in this analysis 

taking into account each class size. The prediction ability was estimated considering the 

percentage of samples correctly classified by the rules developed with the training set 

using an internal validation procedure and the external validation set available. The 

variables used were all the scores of the PCs used in the sample selection for each 

season.  

Moreover, DPLS were also carried out. Essentially, a PLS method attempts to 

concentrate the relevant information contained in the variables measured in a lower 

number of variables without losing of relevant information. Regression is carried out 

with these new variables, simplifying the calibration model and interpretation of the 

results. Win ISI
®
 (v1.50) (Infrasoft International, LLC, Port. Matilda, PA, USA) was 

used for carried out DPLS analyses and they were performed using, as independent 

variables (X), grape skin spectra allocated into the calibration sets. In addition, 
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developed models were tested with spectra allocated into the validation sets and the 

percentages of samples correctly classified in external validation were obtained. 

Pearson’s similarity index was also applied to discriminate spectral samples according 

to their extractable contents. Average spectra of samples allocated into the calibration 

set with low or high extractable content were respectively obtained. Next, a Pearson’s 

linear regression was performed between each spectral sample and the average spectrum 

of low extractable content class and the same procedure was repeated for the high class. 

Following, the Pearson’s similarity indexes were calculated as: 

                 
 

    
 

Indexes were compared and samples were classified according this procedure in the 

group that has obtained the higher index (i.e. low or high extractable content), obtaining 

the percentages of samples correctly classified in internal validation. Last, validation set 

was used to obtain the percentages of samples correctly classified in external validation. 

This procedure was repeated for each reference parameter (EPC, EFC and EAC) and for 

each season and it was carried out via Win ISI
®

 (v1.50) (Infrasoft International, LLC, 

Port. Matilda, PA, USA). 

Finally, percentages of samples correctly classified obtained in each qualitative 

chemometric analysis were jointly plotted in ROC curves via SPSS 22.0 for Windows 

software package (SPSS, Inc., Chicago, IL, USA). 

Results and discussion 

Sample selection 

Sample selection was made to reduce the number of samples maintaining as much 

spectral variety as possible as described elsewhere in Nogales-Bueno et al. [18]. The 

selection was carried out from a PCA. Using all spectral samples and SNV 2,5,5,1 

pretreatment, three and five principal components were taken into account in 2016 and 
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2017 season respectively. More than ninety five per cent of the spectral variability of 

original spectral matrix was explained in both cases. Ten and eight spectral outliers 

(H>3) were found respectively and removed from each spectral matrix respectively. In 

these new three-dimensional and penta-dimensional spaces created, the samples were 

grouped according their neighborhood H values (NH). One sample from every group 

was allocated in the calibration set. In addition, to create the validation set, another 

sample from every group was selected. So, 32 samples were selected to develop a 

calibration process in 2016 season. Only 27 samples were allocated in the validation set 

because some groups created had not more than one sample. Following a similar 

procedure in 2017, 23 and 18 samples formed the calibration and validation set 

respectively. 

Quantitative calibrations 

Quantitative calibrations were developed by modified partial least squares (MPLS) 

regression. These calibrations were performed using, as independent variables (X) the 

grape skin spectra allocated into the calibration sets (i.e., 32 and 23 spectral samples for 

2016 and 2017 seasons respectively). Reference parameters (EPC, EFC and EAC) 

previously determined for grape skin samples in each season were used as dependent 

variables (Y). The statistical parameters of the final calibration equations are shown in 

Table 1 where N is the number of samples used to obtain the calibration equation after 

removing samples for chemical reasons (T criterion). The mathematical treatment 

applied (i.e., the best of the different tried treatment), the range of application, and 

standard deviations are also shown for each reference parameter. 

External validations were carried out for each selected model. In 2016, two samples 

presented reference values outside of the applicability range of the obtained model in 

the case of EAC. In 2017, one sample presented reference values outside of the 
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applicability range of the obtained models in the cases of EPC and EAC. These samples 

were removed from their respective validation sets and the validation procedures were 

carried out taking into account only samples which presented reference values within 

the applicability range of the obtained models. As result of the external validation, the 

standard errors of prediction (SEP) were obtained for each reference variable, these 

values were also included in Table 1. 

Comparatively, these errors are higher than those obtained in our previous study 

developed using a bench top instrument [36] but in accordance with the high errors 

previously obtained by Guidetti et al. [20] for the estimation of extractable anthocyanins 

and polyphenols in grapes using a portable device. With regard to the aforesaid bench 

top study, near infrared hyperspectral imaging, with a similar InGaAs sensor, was used 

for the prediction of the same reference parameters. Hyperspectral imaging was applied 

to similar samples than ones used in the present study, that is, Syrah and Tempranillo 

grapes collected in the same region at harvest time and the whole grapes were used for 

the spectral data acquisition. Moreover, a similar chemometric methodology was 

applied. Therefore, it is proven that the methodologies applied here, the measurement of 

whole grapes or grape skins in field with the MicroNIR system, is not as efficient as the 

in-lab hyperspectral methodology applied in our previous study. 

In a further step, other qualitative approaches have been carried out to link the phenolic 

extractable contents in grape skins to their spectral features in the near infrared region. 

Qualitative analysis 

For qualitative analysis, the calibration sets of samples are the same described above for 

the quantitative one. Calibration sets were used to develop internal validations and the 

validation sets described above were used to develop external validations in this 

qualitative approach. As results of the qualitative analyses carried out (LDA, DPLS and 
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Pearson’s similarity index), different models for the prediction the extractable content 

level of phenolic, flavanolic and anthocyanic compounds (EPC, EFC and EAC) were 

obtained. The percentages of samples correctly classified in internal and external 

validation for each reference parameter and season are shown in Table 2. 

Similar to quantitative results, the different approaches carried out for the 

discriminations of samples according to their level of extractable compounds show 

unremarkable results. Only internal validations in 2017 season show fairly good results 

(especially for LDA). However, these results are not consistent in the external validation 

procedure and percentages of correctly classified samples fall even more than in 2016 

season. To easily compare the different chemometric tools applied, ROC (Receiver 

Operating Characteristic) curves have been plotted (Fig. 2). 

ROC curves confirm the trends deduced from Table 2. The measurement of grape skin 

in quartz cuvettes, carried out in 2017 season, resulted in a slight improvement in the 

percentages of samples correctly classified according their EPC, EFC and EAC levels. 

However, this improvement does not seem to be enough for taking into account these 

models as useful ones. 

 Discussion 

The influence of different error sources related to the varying conditions of field 

measurements should be considered. The environmental conditions of the vineyard 

(extreme temperature conditions in most of cases in a warm climate) maybe played a 

critical role on the obtained results. This factor is also a critical one not only in portable 

devices, but also for the benchtop ones. Although the sample collections were carried 

out early in the morning, there is an important gap between the initial and final 

temperatures in the same collection session. Moreover, other factors that directly affect 

the performance of the spectroscopic system such as the berry size variation, the 
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minimum number of berry samples to build the model, the heterogeneous phenolic 

distribution inside the berry or the range of the parameter to be assessed could influence 

the obtained results. The size and geometry of grapes combined with their low spectral 

reflectance can also be the factors responsible of these results. Grapes are small and 

spherical samples and therefore, they have a high curvature. Small size differences in 

the grapes can produce large differences in their curvature and, in consequence, in the 

reflectance that the MicroNiR device can measure. These might be the causes of the 

results obtained in 2016 season. 

As mentioned above, to reduce this problem, a new measurement methodology was 

carried out in 2017 season. Grapes skins were placed at the bottom of quartz cuvettes 

for the spectra acquisition trying to minimize the differences in grape curvature. New 

models showed better results, although they were not good enough for considering them 

useful models. The different thickness of the grape skins samples might be contribute to 

as new source of these errors, especially when bare skins of reduced number of grapes 

are used as sample. It is well known that NIR radiation penetrates a millimeter or so into 

the sample, thus, differences in the thickness of the skins should have some influence on 

the collected spectra. In consequence, grapes, unlike other bigger or grounded samples, 

do not seem to be susceptible of being correctly measured by portable NIR 

spectroscopes such as the described in this study. 

Conclusion 

A number of spectral pretreatments and MPLS calibrations were interrogated to develop 

quantitative models. Moreover, different chemometric strategies were performed to 

develop a qualitative analysis of the data. However, the procedure reported here does 

not present enough accuracy for the “in vineyard” screening of extractable polyphenols 

in red grape skins, although promising results have been obtained in our lab for other 
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matrix [37] and for the same matrix using a similar benchtop methodology [18]. 

Although the aforesaid device has been developed for its use out of lab, vineyard 

environmental conditions (extreme temperature conditions in most of cases in a warm 

climate) maybe play a critical role on its use. This factor is also a critical one not only in 

portable devices, but also for the benchtop ones. Furthermore, heterogeneity of analyzed 

grapes and the own features of the berries (size, geometry or skin grape thickness) may 

also have influence on the obtained data and especial attention should be paid for further 

studies. 
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Figure captions¹ 

Fig.1. Schematic representation of the experimental design. 

Fig.2. Receiver operating characteristic (ROC) curves of different chemometric tools 

applied (LDA, DPLS and Pearson’s similarity index) for each parameter (extractable 

total phenolic content, extractable flavanol content and extractable anthocyanin content) 

and each season (2016 and 2017). Internal and external validation results are shown. 

 

1 NOTE: All figures should be in color on the Web and in black-and-white in print.
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Table 1. Main statistical descriptors for the MPLS models developed in the NIR zone close to 908-1676 nm in 2016 and 2017 seasons.  

Season Spectral pretreatments Reference Parameters
 
T outliers PLS factors Na Est. Min SDb Est. Max SECc RSQd SECVe SEPf 

2016 

None 2,7,7,1 EPCg 1 2 31 0.39 1.82 11.29 1.62 0.20 1.72 2.66 

MSC 2,5,5,1 EFCh 1 2 31 0.00 0.50 2.57 0.42 0.32 0.49 0.60 

Detrend 2,13,13,1 EACi 2 4 30 0.00 0.47 2.15 0.33 0.49 0.43 0.43 

2017 

Detrend 1,5,5,1 EPCg 0 2 23 0.00 3.45 18.71 3.04 0.22 3.41 4.04 

MSC 2,5,5,1 EFCh 0 5 23 0.00 0.51 2.66 0.28 0.70 0.44 0.64 

SNV 0,0,1,1 EACi 0 2 23 0.00 0.44 2.48 0.34 0.42 0.36 0.60 
a
N: number of samples (calibration set); 

b
SD: standard deviation; 

c
SEC: standard error of calibration; 

d
RSQ: coefficient of determination (calibration set); 

e
SECV: standard error of cross-validation (2016: 7 cross-validation groups; 2017: 8 cross-validation groups); 

f
SEP: standard error of prediction (external validation); 

g
EPC: 

extractable total phenolic content (mg g
-1

 of grape skin, expressed as gallic acid equivalents); 
h
EFC: extractable flavanol content (mg g

-1
 of grape skin, expressed as catechin 

equivalents); 
i
EAC: extractable anthocyanin content (mg g

-1
 of grape skin, expressed as gallic acid equivalents). 

  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

24 
 

Table 2. Percentages of samples correctly classified as samples with low or high extractable contents of total phenols, flavanols and 

anthocyanins in seasons 2016 and 2017 by different chemometric tools. 

Season 
Chemometric 

tool 

EPCa EFCb EACc 

Internal (%) External (%) Internal (%) External (%) Internal (%) External (%) 

2016 

LDAd 
65.6 48.1 68.8 59.3 59.4 55.6 

DPLSe 56.3 40.7 75.0 40.7 75.0 48.1 

Pearsonf 68.8 59.3 46.9 37.0 59.0 59.0 

2017 

LDAd 
87.0 44.4 91.3 44.4 91.3 33.3 

DPLSe 69.6 50.0 87.0 55.6 78.3 66.7 

Pearsonf 73.9 50.0 56.5 72.2 73.9 61.1 
a
EPC: extractable phenolic content; 

b
EFC: extractable flavanol content; 

c
EAC: extractable anthocyanin content; 

d
LDA: linear discriminant analysis; 

e
DPLS: discriminant 

partial least square; 
f
Pearson: Pearson’s similarity index. 
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