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Abstract: Hirschsprung disease (HSCR) is a neurocristopathy defined by intestinal aganglionosis
due to alterations during the development of the Enteric Nervous System (ENS). A wide spectrum of
molecules involved in different signaling pathways and mechanisms have been described in HSCR
onset. Among them, epigenetic mechanisms are gaining increasing relevance. In an effort to better
understand the epigenetic basis of HSCR, we have performed an analysis for the identification of
long non-coding RNAs (lncRNAs) by qRT-PCR in enteric precursor cells (EPCs) from controls and
HSCR patients. We aimed to test the presence of a set lncRNAs among 84 lncRNAs in human EPCs,
which were previously related with crucial cellular processes for ENS development, as well as to
identify the possible differences between HSCR patients and controls. As a result, we have determined
a set of lncRNAs with positive expression in human EPCs that were screened for mutations using the
exome data from our cohort of HSCR patients to identify possible variants related to this pathology.
Interestingly, we identified three lncRNAs with different levels of their transcripts (SOCS2-AS,
MEG3 and NEAT1) between HSCR patients and controls. We propose such lncRNAs as possible
regulatory elements implicated in the onset of HSCR as well as potential biomarkers of this pathology.

Keywords: gastrointestinal tract; Hirschsprung disease; enteric nervous system; stem cells;
neural crest cells; enteric precursor cells; epigenetic mechanisms; long noncoding RNA

1. Introduction

Hirschsprung disease (HSCR:OMIM 142623), or congenital megacolon, is the most common
neurocristopathy in humans, and it is considered a rare disease with an incidence of ~1/5000 live
births [1]. HSCR is characterized by the absence of the enteric ganglia due to a failure in proliferation,
survival, migration and/or differentiation of the enteric neural crest cells (ENCCs) avoiding the
colonization of the distal intestine [2]. Up to 5–20% of cases have been described to be familial with
either an autosomal dominant or recessive pattern of inheritance, though most of cases are sporadic,
showing a complex inheritance pattern with low, sex-dependent penetrance and variable expression.
HSCR mainly appears as isolated forms (70%), and the remaining cases (30%) present with other clinical
manifestations (syndromic HSCR). Based on the length of the affected region, different phenotypes have
been established: short-segment (S-HSCR), where aganglionosis is limited up to the upper sigmoid
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colon, and long-segment (L-HSCR), when the aganglionosis exceeds the splenic flexure, including the
total colonic aganglionosis (TCA) and total intestinal aganglionosis (TIA) forms [3].

For most isolated and sporadic forms, a complex genetic basis has been proposed, where the
presence of several genetic variants acting in an additive or multiplicative manner leads to the
disease [4]. The RET proto-oncogene (OMIM 164761) is the main gene associated with HSCR [5–7],
although there are many other genes related to the disease, among which most are involved in the
development of the Enteric Nervous System (ENS) [8].

The development of ENS is a process highly regulated by a large number of molecules,
signaling pathways and different mechanisms. As a consequence, ENS formation requires an exhaustive
control at those different levels, and alterations at any of them may result in the onset of HSCR.
In this sense, the epigenetic mechanisms play an important role on the establishment of the specific
gene expression patterns in many biological processes, constituting an emerging research area in the
study of ENS development and specifically in HSCR [9].

Epigenetic processes are defined as “the structural adaptation of chromosomal regions so as to
register, signal or perpetuate altered activity state” [10]. Changes at this level are mainly stable but,
although they are transmitted along generations, the relevant influence of the environment has also been
shown [11]. Among the different epigenetic mechanisms (DNA methylation, histone modifications,
polycomb repression, ATP-dependent chromatin remodeling, non-coding RNA) [10,12–15], this study
is focused on the analysis on non-coding RNA, specifically long non-coding RNAs (lncRNAs).
LncRNAs are transcripts with a length greater than 200 nucleotides and carry out a crucial regulatory
role on gene expression at different levels (epigenetic, transcriptional, translational, post-transcriptional
and post-translational) in many biological processes through different mechanisms (interacting with
mRNA, DNA, protein and miRNA) [13,16]. These molecules have been widely related to different
pathologies, especially in cancer, and in this case it is worth noting those that affect the nervous system,
as is the case of the ENS that results in the appearance and progression of HSCR. These molecules
have acquired an important role as biomarkers in this pathology, hence the interest in studying
them [9,17–20].

Enteric precursor cells (EPCs) isolated from human postnatal intestinal tissue is a robust tool for
studying the development of ENS. These cells grow in clusters known as neurosphere-like bodies
(NLBs) and include stem cells with their progeny derived from the neural crest. It has been described
that the EPCs contained in the NLBs can be transplanted into the aganglionic intestine to restore their
contractile properties [21,22]. In addition, in previous studies we validated EPC cultures for the study
of the ENS and HSCR through different methodological approaches [23,24]. Therefore, the use of
human EPCs is a “more physiological” tool than cell lines and a better system than gut tissue to study
the regulatory mechanisms and implicated molecules during embryonic ENS development.

It would be worthy to note that the current tests for the diagnosis of HSCR have both advantages
and disadvantages in availability, technique difficulty, radiation exposure and invasiveness [25].
In this sense, new diagnostic tools, such as the use of biomarkers, are being developed to try to solve
such inconvenience, lncRNAs being one of the molecules analyzed in HSCR context [26].

In this study, unlike other previous assays, we have used EPCs from HSCR patients and controls
for the first time to perform an analysis by qRT-PCR of a set of 84 lncRNAs, in order to identify new
lncRNAs associated with ENS development and to evaluate their potential role in this pathology.

2. Results

2.1. LncRNA in Human EPCs

From the 84 lncRNAs analyzed with the Human Cell Development & Differentiation RT2 lncRNA
PCR Array, 13 of them (DANCR, GAS5, IPW, HOTAIRM1, MEG3, NEAT1, NR2F1-AS1, NCBP2-AS2,
OIP5- AS1, SNHG8, TUG1, ZFAS1, SOCS2-AS1) showed a presence of their transcripts (Figure 1)
in human EPCs (Table 1). Except for MEG3, all the remaining lncRNAs had not been previously
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described to be associated to HSCR. This result led us to consider that these 13 lncRNAs could play a
role in ENS formation and therefore in HSCR.
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Figure 1. Long non-coding RNAs (LncRNAs) significantly present in human enteric precursor cells
(EPCs). Representative heat map of the qRT-PCR experiments in human EPCs. The heat map shows
the positive (red) or negative (blue) expression levels of lncRNA in human EPCs. Arrow and asterisk
indicate the 13 lncRNA with a statistically significant presence. The color scale represents the ∆Ct plus,
shown on the right side. Cycle threshold (Ct) = 34.
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Table 1. LncRNAs identified in human EPCs.

LncRNA Function Associated Diseases Bibliography

DANCR Negative regulator of
cell differentiation Bone Disease and Osteoporosis. [27–30]

GAS5 Cellular growth arrest and
apoptosis/Embryonic development

Inflammatory Bowel Disease and
Autoimmune Disease. [31–34]

IPW
Role in the imprinting
process/Differentiation

and development

Prader–Willi Syndrome and
Chromosomal Disease. [35,36]

HOTAIRM1 Cell-fate programming
and reprogramming

Leukemia and Pancreatic
Ductal Adenocarcinoma. [37–39]

MEG3

Cell-fate programming and
reprogramming/Mesenchymal stem

cells and osteoblast
differentiation/Skeletal
muscle development

Hirschsprung disease,
Kagami–Ogata Syndrome and

Functionless Pituitary Adenoma.
[40–43]

NEAT1

Transcribed from the multiple
endocrine neoplasia locus/Skeletal
muscle development/Embryonic

stem cell pluripotency and
differentiation/Neurogenesis

Dengue Disease and
Relapsing-Remitting
Multiple Sclerosis.

[44–49]

NR2F1-AS1 Promoted cell proliferation and
migration/Embryonic development

Rhabdomyosarcoma and
Hepatocellular Carcinoma. [50–52]

OIP5-AS1 Maintains cell proliferation in
embryonic stem cells/Neurogenesis Hepatoblastoma and Glioma. [53–56]

SNHG8 Cellular growth and
migration/Neurogenesis

Epstein–Barr Virus-Associated
Gastric Carcinoma and Malignant

Pleural Mesothelioma.
[57–59]

TUG1

Epigenetic regulation of
transcription through interaction

with the polycomb repressor
complex/Embryonic stem cell

pluripotency and
differentiation/Neurogenesis

Intrahepatic Cholangiocarcinoma
and Relapsing-Remitting

Multiple Sclerosis.
[60–63]

ZFAS1 Differentiation and development Breast Ductal Carcinoma and
Rheumatoid Arthritis. [64–66]

SOCS2-AS1 Neurogenesis Prostate Cancer. [67–69]

NCBP2-AS2 Embryonic development Lung cancer and Osteoporosis [70–72]

2.2. LncRNAs with Differential Leves in EPCs from HSCR Patients

Among the 13 lncRNAs identified in the human EPCs (controls), we wanted to look for possible
alterations at their transcript levels in the EPCs from HSCR patients (HSCR-EPCs). With this aim,
we performed a comparative qRT-PCR analysis between EPCs from HSCR patients and controls.
Three of them showed a different profile between HSCR patients and controls (SOCS2-AS1, MEG3 and
NEAT1) (Figure 2).

2.3. Identification of lncRNA Variants in the Exomes from HSCR Patients

To evaluate the involvement of these molecules in HSCR by alternative mechanisms other than
their expression level, the search of potential pathogenic sequence variants was performed in the
lncRNAs expressed in EPCs, through the analysis of the Whole Exome Sequencing (WES) data from
56 HSCR patients from our cohort. As a result, a group of rare variants with minor allele frequency
(MAF) ≤ 0.01 in MEG3, NEAT1 and ZFAS1 was identified in four different unrelated patients (Table 2).
The remaining variants are available under request.
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Figure 2. LncRNAs with different transcript levels in Hirschsprung disease enteric precursor cells
(HSCR-EPCs). (A) The Heat map represents the differential transcript levels of the lncRNA in
HSCR-EPCs, the upregulation (red) and downregulation (blue) are shown. The color scale indicates the
∆Ct plus, shown on the right side. Ct = 34. (B) Graphics show the percentages of transcript level of each
lncRNA (SOC2-AS1, MEG3 and NEAT1) in EPCs from HSCR patients and controls. * p value < 0.05,
** p value < 0.01 and *** p value < 0.001.
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Table 2. Sequence variants (MAF ≤ 0.01) determined in lncRNAs identified in human EPCs.

Patient ID Genes RefSeq Variants (Genomic Location) Variants (Gene Location) rs Phenotype Variants in Other
HSCR-Genes

8079
MEG3 NR_002766.1 chr14: g.101324644C > T n.1242-2384C > T rs11624207

S-HSCR
-

ZFAS1 NR_003604.2 chr20: g. 47905844 A > C n.*47A > C (downstream) - -

4217
ZFAS1,KCNB1 XM_001716063.1 chr20:

g.47956681_47956683delATA
c.1050-176_1050-174delATA

(intergenic) -
S-HSCR

NTF3 (NM_002527)
c.226G > A (rs540320780)

MEG3 NR_002766.2 chr14: g.101302678G>T n.1183 + 41G >T (intronic) rs147149937

16987 NEAT 1 NR_002802.1 chr11:
g.65211817_65211818insG n.*4662_*4663insG -

EDNRB: (NM_000115)
c.466 C > T

(CM100206/7)

4678 ZFAS1,KCNB1 XM_001716063.1
chr20:

g.47956675_47956683del
ATAATAATA

c.1050-182_1050-174del
ATAATAATA (intergenic) rs530512526 S-HSCR -
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3. Discussion

Much evidence suggests a relationship between lncRNAs and HSCR, all based on the comparative
expression assays of specific lncRNAs in bowel tissue from HSCR patients and controls [73–78]. In our
study we have performed a differential qRT-PCR assay in the EPCs from HSCR patients and controls,
which has allowed us to identify new lncRNAs as potential regulatory elements implicated in ENS
development and HSCR onset.

Among the 13 identified lncRNAs in human EPCs, 10 of them (DANCR, GAS5, IPW, HOTAIRM1,
NR2F1-AS1, NCBP2-AS2, OIP5-AS1, SNHG8, TUG1 and ZFAS1) did not show differential levels
in the HSCR-EPCs. Despite this fact, most of them have been related to crucial cellular processes
for ENS formation (proliferation, survival, migration and differentiation) [27,31,35,50,53,57,60,64].
In addition, TUG1 is a lncRNA that binds to Polycomb Repressive Complex 1 and 2 (PRC 1 and 2) [62,63].
In this sense, AEBP2 and EED are components of PCR2, and both proteins have been related to HSCR.
The heterozygous Aebp2 mutant mice showed HSCR-like phenotype, while EED was observed to be
upregulated in HSCR patients [79,80]. Taking all this information into account, such lncRNAs might
be considered as regulatory elements in ENS development and could be implicated in the onset of
HSCR, although additional studies are needed to demonstrate this hypothesis.

More interestingly, SOCS2-AS1, MEG3 and NEAT1 showed different transcript levels between
EPCs from HSCR patients and controls. Particularly, SOCS2-AS1 was significantly downregulated in
HSCR patients. This lncRNA has been described in relation with prostate cancer and retinal Müller
cell immune responses and has also been identified as a biomarker in coronary artery disease [67–69].
In this sense, SOCS2-AS1 would be a good candidate for further consideration as a gene related to the
onset of HSCR and, therefore, of great interest to continue investigating in this line.

Regarding MEG3 (significantly upregulated in our study), it has already been described as
a potentially related lncRNA with HSCR. In contrast with our results, in another study it was
downregulated in gut tissue from HSCR patients, although it was not specified if authors used
ganglionic or aganglionic tissues [40]. In our study we have used HSCR-EPCs from the ganglionic gut
region of HSCR patients, which could explain such different outcomes.

In addition, we have identified two variants n.1242-2384C > T (rs11624207) and n.1183 + 41G > T
(rs147149937) in MEG3 in two different S-HSCR patients. Both patients also carried variants in specific
regions (downstream and intergenic) of another identified lncRNA in human EPCs, ZFAS1 (n.*47A > C
and c.1050-176_1050-174delATA respectively). Moreover, a variant was previously located in one of
these patients in a HSCR-related gene, NTF3 (c.226G > A; G76R) [81]. These variants alone do not
justify the HSCR phenotype, but our results (different transcript levels/sequence variants) may point
out the implication of MEG3 in ENS development and the onset of HSCR.

Finally, NEAT1 was upregulated in our study, and a previously not described variant
(n.*4662_*4663insG) was identified in its sequence in one S-HSCR patient. This patient carries another
variant in a HSCR-related gene, EDNRB (c.466C > T; P156S) [82]. Specifically, this lncRNA has been
widely related with cancer and, to a lesser extent, with neurogenesis [45]. This process, which involves
the generation of neurons, is essential for the correct formation of ganglions during ENS development.
Therefore, all this evidence leads us to suggest that NEAT1 may have a role in the HSCR context.

In summary, we report here the presence of a set of lncRNAs in human EPCs, as well as propose the
possible role of two of them (SOX2-AS1 and NEAT1) in the initiation of HSCR. Furthermore, our results
support the involvement of MEG3 in this pathology. Numerous studies about lncRNAs as biomarkers
for the molecular diagnosis of different human diseases can be found in the existing bibliography.
In this sense, SOCS2-AS1 and NEAT1 may serve as new biomarkers for molecular diagnosis in this
pathology, as well as MEG3 previously related with HSCR. It is interesting to highlight that this study
has contributed to the knowledge of the epigenetic basis of HSCR and has again shown the important
role that epigenetic regulators play in the development of ENS and the initiation of HSCR.
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4. Material and Methods

4.1. Enteric Precursor Cells Culture Obtained from Human

Enteric precursor cells were extracted from human postnatal tissues of the ganglionic gut region
from 16 sporadic, non-related patients diagnosed with HSCR (2 L-HSCR, 13 S-HSCR, 1 TCA; 12 male,
4 female) as well as from 5 controls (3 male, 2 female) who were patients without ENS alteration,
and the gut resection was necessary (anorectal malformations). The isolation of EPCs from both types
of patients was performed following the protocol established by Ruiz-Ferrer et al. [23]. Human EPCs
were cultured as neurosphere-like bodies. From all the human participants or their guardians,
written informed consent for surgery, clinical and molecular genetic studies was obtained. The Ethics
Committee for Research of the University Hospital Virgen del Rocío, Seville, Spain, approved
this study (Project identification code: 1509-N-16 (December 2015), 2149-N-19 (December 2019)
and 20191220134633-1 (October 2019, which complies with the tenets of the declaration of Helsinki.

4.2. Analysis of lncRNA Expression in Human EPCs

The qRT-PCR assay was used to quantify the expression level of the lncRNAs from human EPCs.
RNA was isolated and cDNA was synthesized using µMACS mRNA Isolation Kit and µMACS cDNA
Synthesis Kit in a thermo MAKSTM Separator (MACS Miltenyi Biotech, Bergisch Gladbach, Germany)
and RNAeasy Micro kit and RT2 First Strand kit (Qiagen, Dusseldorf Germany). Expression study was
performed on RT2 lncRNA PCR Array Human Cell Development & Differentiation using individual
assays of the selected lncRNAs (Qiagen, Dusseldorf, Germany)) in an Applied Biosystems 7900HT
and 7500HT systems respectively (Life Technologies, USA) with Sybr green method. Data analysis
was carried out using the RQ Manager Software (Life Technologies, New York, NY, USA). ACTB or
GAPDH was used as endogenous control. Following the software recommendations, the upper limit
of the cycle threshold (Ct) was set to 34. We considered positive expression exclusively when Ct values
were lower than such value.

4.3. Analysis of lncRNA Coding Sequence in HSCR Patients

The sequence of lncRNAs expressed in human EPCs was analyzed in the exomes from 56 HSCR
patients (39 sporadic and 17 familial cases) for the identification of variants related to this pathology [83].
The resulting variants in relation with HSCR (Single Nucleotide Variants, SNVs, and short insertions
or deletions, Indels) were annotated using Annovar (hg19 Refgene) (http://wannovar.wglab.org/index.
php). The MAF value of the variants was searched in a Spanish population variant server web page
(CIBERER Spanish Variant Server, CSVS, publicly available http://csvs.babelomics.org/) [84].

4.4. Statistical Analysis

Expression data are presented as the mean ± SEM (Standard Error Mean) of values obtained from
at least three experiments. Comparisons between values of expression level obtained in EPCs from
controls and HSCR patients were analyzed using the Student’s t test. Differences were considered
significant when p value < 0.05.
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Abbreviations

LncRNA Long non-coding RNA
ENS Enteric Nervous System
EPCs Enteric Precursor Cells
HSCR Hirschsprung disease
L-HSCR Long-segment HSCR
S-HSCR Short-segment HSCR
TCA Total Colonic Aganglionosis
TIA Total Intestinal Aganglionosis
ENCCs Enteric Neural Crest Cells
PRC Polycomb Repressive Complex
qRT-PCR Quantitative real-time PCR
mRNA Messenger RNA
Ct Cycle Threshold
∆Ct Plus Delta Ct Plus global control mean
WES Whole Exome Sequencing
MAF Minor Allele Frequency
SNVs Single Nucleotide Variants
Indels Short Insertions or Deletions
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