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Abstract Woven bone is a type of tissue that forms mainly during fracture
healing or foetal bone development. Its microstructure can be modelled as a
composite with a matrix of mineral (hydroxyapatite) and inclusions of colla-
gen fibrils with a more or less random orientation. In the present study its
elastic properties were estimated as a function of composition (degree of min-
eralization) and fibril orientation. A self-consistent homogenization scheme
considering randomness of inclusions’ orientation was used for this purpose.
Lacuno-canalicular porosity in the form of periodically distributed void inclu-
sions was also considered. Assuming collagen fibrils to be uniformly oriented in
all directions led to an isotropic tissue with a Young’s modulus E = 1.90GPa,
which is of the same order of magnitude as that of woven bone in fracture cal-
luses. By contrast, assuming fibrils to have a preferential orientation resulted
in a Young’s modulus in the preferential direction of 9 − 16GPa depending
on the mineral content of the tissue. These results are consistent with experi-
mental evidence for woven bone in foetuses, where collagen fibrils are aligned
to a certain extent.

Keywords Woven bone · Multiscale micromechanical model · Homegeniza-
tion · Mineral content

1 Introduction

Woven bone is a type of tissue that appears when osteoblasts produce osteoid
very rapidly. It is typically present in foetuses, in calluses during fracture
healing, in individuals suffering from Paget’s disease and in response to the
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administration of anabolic drugs in high doses (Su et al, 1997; Buckwalter
et al, 1995; Zhou et al, 2001).

Mineralization causes composition changes in woven bone (Remaggi et al,
1998; Frost, 1989a,b; Su et al, 1997), which also experiences microstructural
changes by effect of its replacement by lamellar bone during bone remodelling
(Vetter et al, 2010, 2011; Sfeir et al, 2005; Brighton and Hunt, 1986, 1997).
Like other types of bone tissue, woven bone consists of an inorganic phase (hy-
droxyapatite crystals), an organic phase (type I collagen, mainly) and water.
Before remodelling, woven bone is microstructurally similar to many composite
materials. Thus, it contains a matrix of wet mineral and more or less randomly
oriented wet collagen fibrils (Smith, 1960) (see Fig. 1). The amount of mineral
varies widely given that the newly deposited tissue (osteoid) consists only of
collagen and water and, with time, this tissue mineralizes as water is replaced
with mineral to a volume fraction of about 40%. Regarding the fibrils orienta-
tion, although they are most often assumed to be disordered, Su et al (1997)
found a certain longitudinal alignment in long bones of foetuses.

Fig. 1 Scanning electron micrograph of woven tissue showing disorderly arranged collagen
fibrils. Reproduced from Hunt (Accessed 10 March 2016).

A sound knowledge of the mechanical properties of woven bone is paramount
for some clinical uses such as the design of external fixators. Some fractures
require using a fixator and the ratio between the stiffnesses of the fixator and
the fracture callus has a decisive influence on the stress woven bone must
withstand, which in turn influences how effectively it is remodelled and the
fracture repaired. Designing effective fixators therefore requires knowing not
only the mechanical properties of woven bone, but also the way they change
during fracture healing.

In recent years, a number of authors have developed micromechanical mod-
els of lamelar bone, but none for woven bone as far as we know. Most of the
models for lamellar bone use multiscale homogenization techniques (Deuer-
ling et al, 2009; Dong and Guo, 2006; Ghanbari and Naghdabadi, 2009; Kotha
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and Guzelsu, 2007; Porter, 2004; Sevostianov and Kachanov, 2000; Fritsch and
Hellmich, 2007; Hellmich and Ulm, 2002; Hellmich et al, 2004). Lamellar bone
has a hierarchical organization, from the nano scale (mineral crystals, collagen
fibrils and water) to the micro scale (mineralized collagen fibers and lamella)
that was carefully described by Yoon and Cowin in their micromechanical
model (Yoon and Cowin, 2008b,a). That model was subsequently extended by
Mart́ınez-Reina et al (2011) to include the variation of mineral content during
mineralization.

The primary aim of this work was to develop a multiscale homogenization
model for estimating the mechanical properties of woven bone as a function of
mineral content. For this purpose, we adapted a previously developed model for
lamellar bone (Mart́ınez-Reina et al, 2011) to the particular microstructure of
woven bone. The proposed model was used to assess the influence of potential
alignment of collagen fibrils in preferential directions as previously found by
Su et al (1997) in foetal woven bone. Model-estimated results were compared
with reported experimental values.

2 Materials and Methods

The proposed model is schematized in Fig. 2. There is little knowledge about
the microstructure of woven bone other than that it is more disordered than
lamellar bone by effect of much faster osteoid deposition. For this reason,
we assumed its microstructure not to be as hierarchical as in lamellar tissue;
thus, we considered none of the typical intermediate structures of lamellar
tissue (lamellae, osteons). Rather, the compact woven tissue (before including
the lacuno-canalicular porosity) was assumed to be a composite consisting of
a matrix of wet mineral containing inclusions of wet collagen fibrils with a
given probability distribution. Finally, the compact woven tissue was assumed
to contain the lacuno-canalicular porosity hosting osteocytes, which are also
present in woven bone and in a higher proportion than in lamellar tissue
according to Remaggi et al (1998).

2.1 Basic components

Bone tissue consists basically of hydroxyapatite crystals (h), type I collagen
(c) and water (w). Its composition can be described by:

vi =
Vi

Vh + Vc + Vw
with vh + vc + vw = 1 (1)

where vi and Vi are, respectively, the volume fraction and total volume of
component i = h, c, w. The ash fraction, α, is defined as the ratio of the ash
mass (mineral) to dry mass (mineral plus collagen):

α =
ρhvh

ρhvh + ρcvc
(2)



4

canaliculi

26nm

18nm

31nm

lacunae

X ′

Y ′

Z ′

X

Y Z

φ1

φ2

Φ

F
IB
R
IL

Ch Cw

SCS eq.(3a)

Cc

SCS eq.(3b)

Chw Ccw

SCS eq.(13)

Ccomp Pc,comp

Periodic
composite

eq.(16)

Laminates
superposition

eqs.(17)

CLRC
can Pe,LRC

Periodic
composite eq.(20)

Cwb

Hydroxyapatite

mineral
Water Collagen

Wet

mineral

Wet
collagen

Compact

woven bone

Canalicular
porosity

Lacunar
porosity

Woven bone

Fig. 2 Scheme of the proposed multiscale homogenization model.

where ρi designates the densities of the components. The basic components
(mineral, collagen and water) were assumed to be isotropic (Katz, 1968; Crolet
et al, 1993) and their stiffness tensors (Ch, Cc, Cw) were defined in terms
of the Young’s moduli (Ei) and Poisson’s coefficients (νi) given in Table 1.
Water was modelled as in (Yoon and Cowin, 2008b; Mart́ınez-Reina et al,
2011) and assumed to be an elastic material with a compressibility modulus
Kw = 2.3GPa, which is typical of salt water, and a Poisson’s coefficient close
enough to 0.5 for Ew to be several orders of magnitude smaller than Kw, but
not so small as to introduce numerical errors in the calculations.

Elastic constants
Mineral (hydroxyapatite) Eh = 114GPa νh = 0.28
Water Kw = 2.3GPa νw = 0.4999
Collagen Ec = 1.2GPa νc = 0.35

Table 1 Elastic constants of the basic components. Taken from Katz (1968), Crolet et al
(1993) and Yoon and Cowin (2008b).
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2.2 Wet phases

Some water in the extracellular matrix was assumed to be trapped between
the other basic components so to wet the mineral (Farlay et al, 2010) and
the collagen fibrils (Grant et al, 2009). Thus, the wet phases were defined
as in (Yoon and Cowin, 2008b) (viz., as collagen-water and mineral-water
composites). In this work, however, we used a self-consistent scheme (SCS) to
define the properties of the composites. This SCS is used when it is unclear
which phase constitutes the matrix and which the inclusions or when the
proportions of the two phases are similar (Hashin, 1968; Hill, 1965) and the
hypothesis of dilute inclusions does not hold (e.g. in woven bone (Garćıa-
Rodŕıguez, 2014)). The stiffness tensors for the wet mineral, Chw, and wet
collagen Ccw were estimated from:

Chw = Cw + φhw (Ch −Cw)
[
I + ShwC

−1
hw (Ch −Chw)

]−1
(3a)

Ccw = Cw + φcw (Cc −Cw)
[
I + ScwC

−1
cw (Cc −Ccw)

]−1
(3b)

where φhw denotes the proportion of mineral present in the wet mineral
composite and φcw that of collagen in the wet collagen composite. Si de-
notes the Eshelby (Eshelby, 1957) tensor for each phase i. These equations
are implicit and can be solved iteratively for Chw and Ccw. The first iteration
involves assuming C0

hw = Cw on the right-hand side of the equation and al-
lows C1

hw on the left-hand side to be calculated. In the second iteration, the
resulting C1

hw value is substituted on the right-hand side to obtain C2
hw on

the left-hand side. After a few iterations, the process converges to the tensor
Chw. An identical result can be obtained by starting with the assumption
C0
hw = Ch.

Eshelby’s tensors (e.g., Shw) depend on the matrix stiffness tensor. Since
the SCS formulation assumes the matrix to be the composite itself, the stiffness
tensor for each iteration, Ci

hw, is used as the matrix stiffness tensor needed to
calculate Shw. Eshelby’s formulation assumes inclusions to be ellipsoid-shaped
and thus the tensors Si depend on the ellipsoid dimensions. The inclusions of
the wet collagen composite are collagen fibrils that are assumed to be infinitely
long cylinders (b = c and a → ∞, where a, b and c are the semi-axes lengths
of a generic ellipsoid). The inclusions of the wet mineral composite are hy-
droxyapatite crystals, which are parallelepiped in its pure form (Jackson et al,
1978) and preclude use of Eshelby’s approach as a result. However, the lack
of stoichiometry, confirmed by Garćıa-Rodŕıguez (2014) in woven bone, makes
the crystals to be amorphous (Farlay et al, 2010). For this reason, mineral in-
clusions were approximated by ellipsoids whose semi-axes lengths were taken
from measurements of crystals made by Su et al (2003) in human foetal woven
bone: a = 32nm, b = 19nm, c = 3nm.

The proportion of mineral in the wet mineral phase, φhw, was taken as:

φhw =
vh

vh + vwh
(4)
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where vwh is the water volume fraction in the wet mineral phase. If, as pre-
viously assumed by Mart́ınez-Reina et al (2011), water binds to mineral and
collagen in proportion to the volume of each, then:

vwh = vw
vh

vh + vc
(5)

substitution of which into (4) yields:

φhw = 1− vw (6)

A similar procedure can be used to calculate the proportion of collagen in the
wet collagen phase, which coincides with φhw:

φcw = φhw = 1− vw (7)

The composition of woven tissue changes with time. Freshly deposited os-
teoid contains water and collagen only, so vh = 0. As tissue mineralizes, water
is replaced by mineral, deposited between collagen fibrils. As a result, the vol-
ume of organic phase remains constant and identical with its volume within the
osteoid (i.e., vc = constant). The collagen volume fraction used in this work,
vc = 0.593, was measured in sheep distraction calluses (Garćıa-Rodŕıguez,
2014) and assumed to remain constant until remodelling starts. At that point,
the old woven tissue will be progressively resorbed and replaced by fresh lamel-
lar tissue, with a different composition and microstructure. Consequently, the
proposed model is time-limited and will only hold until woven tissue starts to
be remodelled. After that point the model should consider a mixture of woven
and lamellar tissue, which is beyond the scope of this work.

Mineralization in lamellar tissue is initially fast during the so-called “pri-
mary” mineralization phase and then slows down as the tissue becomes satu-
rated with mineral in the “secondary” mineralization phase. The process can
last 6 months to several years (Parfitt, 1987) until complete saturation, which
occurs at about α = 0.7 (Hernandez et al, 2001b; Garćıa-Aznar et al, 2005).
Regarding woven tissue, its saturated ash fraction and mineralization rate are
unknown, though it is probably remodelled prior to saturation. In fact, Vetter
et al (2010) found signs of remodelling just 8 weeks after formation. Therefore,
the aforementioned time limitation of the model makes it inapplicable well be-
fore the tissue is saturated with mineral. For generality, however, we assumed
vh to range from 0 to vh,sat. The latter value was estimated from the constant
vc = 0.593 under the assumption that the amount of water remaining in the
tissue was virtually negligible: vw,min = 0.01.

vh,sat = 1− vc − vw,min = 0.406 ⇔ αsat = 0.603 (8)

where (2) was used.
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2.3 Stiffness tensor of compact woven tissue

Woven tissue was modelled as a composite formed by wet mineral and wet
collagen phases, the stiffness tensors of which, Chw and Ccw, were used to
estimate the properties of compact woven tissue (before including the lacuno-
canalicular porosity). With normal ash fraction values, the volume fractions
of the two phases are typically very similar (Garćıa-Rodŕıguez, 2014). This
precludes discriminating between the matrix and its inclusions in most cases
and accepting the hypothesis of dilute inclusions underlying the Mori-Tanaka
homogenization method in virtually all cases. We therefore had to use a self-
consistent scheme (SCS) instead.

In woven tissue, collagen fibrils are more or less randomly oriented and min-
eral fills the gaps between fibrils. Some authors have used the Mori-Tanaka
method to describe the elastic behaviour of composite materials consisting
of a matrix and non-aligned inclusions (Benveniste, 1990; Pettermann et al,
1997; Ferrari and Johnson, 1989) in terms of orientation distribution functions
(ODFs) or length distribution functions (LDFs). Ferrari and Johnson (1989)
proposed using an averaged stiffness tensor depending on the probability den-
sity of the orientation of inclusions. Thus, for a generic tensor F(g) in a given
direction represented by (g), they defined the average tensor F as:

F =

∮
F(g)ρ(g)dg = (9)

=
1

ρ̄

∫ 2π

0

∫ π

0

∫ 2π

0

F(g)ρ(g) sinΦ dφ1 dΦ dφ2

which uses Euler angles g = {Φ ∈ (0, π), φ1 ∈ (0, 2π), φ2 ∈ (0, 2π)} to orien-
tate inclusions (viz., collagen fibrils) as shown in Fig. 3. F(g) represents the
generic tensor F upon rotation in the direction defined by g, ρ(g) a probability
function for fibril orientation and ρ̄ a constant defined later on. If the represen-
tative volume element (RVE) is assumed to have point symmetry, then ρ(g)
will be independent of φ1 and φ2. In addition, ρ(g) should fulfil the following
condition (Ferrari and Johnson, 1989; Bunge, 1982):∮

ρ(g)dg = 1 (10)

In this work, we assumed collagen fibrils to be oriented with a uniform
probability density function in the RVE, i.e.,

ρ(g) =

{
ρ = constant ∀Φ ∈ [γ1, γ2]

0 elsewhere
(11)

so that:
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∮
ρ(g)dg =

1

ρ̄

∫ 2π

0

∫ π

0

∫ 2π

0

ρ(Φ) sinΦ dφ1 dΦ dφ2 =

=
4ρπ2

ρ̄

∫ γ2

γ1

sinΦ dΦ = 1 (12)
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Fig. 3 Schematic depiction of fibril orientation showing the local axes (X′Y ′Z′), global axes
(XY Z) and the angles between them. The ellipsoid represents a fibril with an orientation
g = {Φ, φ1, φ2}.

which can be easily solved for ρ̄. The constituents water, mineral and collagen
were assumed isotropic, then the wet phases will also be isotropic. As a result,
rotating a fibril about φ2 will have no effect on the previous equations, so (9)
can be rewritten as:

F =
1

2π(cos γ1 − cos γ2)

∫ 2π

0

∫ γ2

γ1

F(g) sinΦ dφ1 dΦ (13)

Ferrari and Johnson (1989) used the previous averaging procedure in the
Mori-Tanaka method to estimate concentration tensors and hence stiffness
tensors. In this work, we applied this procedure to a self-consistent scheme
(SCS), analogously to what has been done in other works (Fritsch et al, 2006,
2013). Selection of the particular phases to be used as matrix and inclusions in
the first iteration was crucial with non-aligned inclusions, for its strong impact
on the results. In woven tissue, wet collagen fibrils are randomly oriented
and appear to be surrounded by mineral filling the gaps left by the fibrils;
therefore, it seems more reasonable to use wet collagen fibrils as inclusions
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and wet mineral as the matrix. In this way, similarly to Ferrari and Johnson
(1989), the stiffness tensor for compact woven tissue, Ccomp, can be defined
as:

Ccomp = Chw + ξ (Ccw −Chw)Acomp (14)

where the bar over (Ccw −Chw)Acomp means that this tensor is averaged
using eq. (13). The concentration tensor is given by:

Acomp =
[
I + ScompC

−1
comp (Ccw −Ccomp)

]−1
(15)

where ξ is the volume fraction of inclusions (wet collagen) in the tissue and
Scomp is the Eshelby tensor corresponding to ellipsoidal inclusions within a
matrix of compact woven tissue. Again, calculating Ccomp requires using an
iterative procedure because the matrix in (15) is assumed to be the composite
itself. This makes Ccomp to appear in both sides of equation (14) (also in Scomp
which depends on the matrix). The wet collagen inclusions are assumed to be
cylinders of infinite length (b = c and a→∞). Their volume fraction is given
by:

ξ = vc + vwc =
vc + vwc

vh + vwh + vc + vwc
=

vc
vh + vc

(16)

where (5) and (7) have been used.

This model was also used to assess the influence of orientation in the col-
lagen fibrils and their potential alignment in a specific direction, as previously
observed by Su et al (1997) in foetal long bones, on the properties of woven
tissue. In foetal long bones collagen fibrils are approximately aligned with the
longitudinal direction. To take this into account revolution symmetry about
an axis (X in Fig. 3) was assumed along with γ1 = 0 (see Fig. 4a which con-
verts into Fig. 4b for this special case). In addition, the orientation probability
function was assumed uniform ρ(g) = ρ = constant in subdomain Φ ∈ [0, γ2]
(see Fig. 4b). If the collagen fibrils had no preferential orientations, but rather
were uniformly distributed throughout the entire space, then γ2 = π/2; on the
other hand, if the fibrils were totally aligned in a preferential direction, then
γ1 = γ2 = 0.

2.4 Properties of woven tissue including pores

In this step, the lacuno-canalicular porosity was included in the material. These
pores are occupied by osteocytes which have a central body in the lacuna and
processes in the canaliculi. Since lacunae and canaliculi differ in shape, they
were dealt with separately as in previous studies (Mart́ınez-Reina et al, 2011;
Yoon and Cowin, 2008a).
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Fig. 4 Collagen fibrils with revolution symmetry about theX axis and a uniform probability
function in the region Φ ∈ [γ1, γ2] in the most general case (a) and in the particular case
dealt with here γ1 = 0 (b).

2.4.1 Canalicular porosity

In this step, we estimated the properties of a composite with a matrix con-
sisting of compact woven tissue of stiffness Ccomp and void inclusions repre-
senting the canaliculi. These canaliculi were modelled as cylinders of infinite
length periodically distributed in the longitudinal, radial and circumferential
directions (Yoon and Cowin, 2008a). The method of Nemat-Nasser and Hori
(Nemat-Nasser and Hori, 1999) for composites with periodic inclusions, of null
stiffness in this case, provides:

Ck
can = Ccomp

[
I− pwovcan

(
I−Pkc,comp

)−1
]

(17)

where pwovcan denotes canalicular porosity, which is calculated below; Pkc,comp
is a 6x6 periodic tensor operator for infinitely long cylindrical inclusions (see
Nemat-Nasser and Hori, 1999) embedded in a matrix of compact woven tissue
described in Section 2.3; and Ck

can is the stiffness tensor including canalicu-
lar porosity in the k direction, which can be longitudinal (L), radial (R) or
circumferential (C).

Following Yoon and Cowin (2008a), we superimposed three tissue lami-
nates with canalicular porosity in the three directions (L, R and C), using
the formulation of Chou et al (1972) for laminar composites. Thus, once the
volume fraction for each laminate, V k, is known, the stiffness tensor of the
tissue with canalicular porosity, CLRC

can , can be determined. The components
of this tensor are:

CLRCcan,ij =

3∑
k=1

V k

{
C k
can,ij −

C k
can,i3C

k
can,i3

C k
can,33

+

+
C k
can,i3

∑3
Ω=1

V ΩC Ω
can,3j

C Ω
can,33

C k
can,33

∑3
Ω=1

V Ω

C Ω
can,33

 ∀ i, j = 1, 2, 3, 6

(18a)
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CLRCcan,ij =

∑3
k=1

V k

∆k
C k
can,ij∑3

k=1

∑3
Ω=1

V kV Ω

∆k∆Ω
Γ kΩ

∀ i, j = 4, 5 (18b)

where
∆k = C k

can,44C
k
can,55 − C k

can,45C
k
can,54 (19a)

Γ kΩ = C k
can,44C

Ω
can,55 − C k

can,45C
Ω
can,54 (19b)

corresponding the subscripts k,Ω = 1, 2, 3 to the L, R and C directions,
respectively. Since pwovcan in (17) was taken the same ∀k, the proportion of
canaliculi in each direction must be considered in equations (18a) and (18b)
through V k (Yoon and Cowin, 2008b; Beno et al, 2006).

The procedure used to estimate V k is described in (Yoon and Cowin,
2008b). Canaliculi are assumed to run from the osteocyte normal to the lacuna
and in no preferential direction. As a result, the number of canaliculi oriented
in a given direction depends on the shape, dimensions and orientation of the
lacuna. A lacuna is approximated to an ellipsoid aligned with the LRC di-
rections and having the semi-axes lengths 2bL = 13µm, 2bC = 12µm and
2bR = 9µm in woven tissue (Remaggi et al, 1998). This allows the propor-
tions V k to be approximated to the ratios between the ellipsoid sections with
the planes normal to each LRC direction. Thus,

V L =
bC bR

bC bR + bC bL + bL bR
= 0.283 (20)

A similar procedure yielded V C = 0.307 and V R = 0.409.

2.4.2 Lacunar porosity

Canalicular porosity was estimated by using an equation similar to (17) but
applied to void ellipsoidal inclusions (lacunae):

Cwb = CLRC
can

[
I− pwovlac (I−Pe,LRC)

−1
]

(21)

where Cwb is the final stiffness tensor for woven tissue -total porosity included-
, pwovlac is the lacunar porosity, and Pe,LRC is the tensor operator for periodic
ellipsoidal voids (see (Nemat-Nasser and Hori, 1999)) embedded in a matrix
consisting of tissue with canalicular porosity.

In a periodic composite each inclusion is assumed to be contained in a
periodically repeated cell unit of matrix (Nemat-Nasser and Hori, 1999). In
lacunae, the unit cell is assumed to be a cube of edge length 2Lwovcell (Yoon and
Cowin, 2008b). Parameter pwovlac is obtained from the dimensions of the lacuna
and unit cell. The former was approximated in Section 2.4.1 to an ellipsoid of
volume

V wovlac =
4

3
π · bL · bR · bC = 735.1µm3 (22)

The dimensions of the unit cell were estimated by following Remaggi et al
(1998), who used histomorphometric measurements to determine the aver-
age osteocyte density in woven bone from various species and found Awov =
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1050 osteocytes/mm2 for humans. Based on this value, 2Lwovcell = 1/
√
Awov =

30.86µm (Beno et al, 2006), and hence the unit cell volume is V wovcell = (2Lwovcell )
3 =

29391µm3. Together with (22), this allowed lacunar porosity to be estimated
as pwovlac = V wovlac /V wovcell = 0.0250, which is much greater than the identically
estimated value for lacunar porosity in human lamellar tissue: plamlac = 0.0082.

The absence of reported values for pwovcan led us to estimate it under some
assumptions. Thus, lacuno-canalicular porosity was split into two terms:

pwovlc = pwovlac + pwovcan (23)

The total pore volume of the unit cell, V wovlc , is

V wovlc = V wovlac + V wovcan = pwovlc V wovcell (24)

where V wovlac and V wovcan are, respectively, the lacunar and canalicular volume
within the unit cell. Osteoblasts in woven and lamellar bone are assumed to
be identical in size. When osteoblasts are buried in the bone matrix and dif-
ferentiated to osteocytes, they change shape and leave a cell body and several
cell processes that interconnect osteocytes to one another. As a result, the
osteocyte volume distributes between the lacunar volume (cell body) and the
canalicular volume (cell processes). Although the difference between pwovlac and
plamlac suggests that porosity of lamellar and woven tissue may be unequally
distributed, in this work we assumed the total pore volume, Vlc, to be the
same in both if their osteoblasts are of the same size, as assumed above, i.e.,

V lamlc = V wovlc ⇔ plamlc · V lamcell = pwovlc · V wovcell (25)

A combination of (23) and (25) yields

pwovcan = pwovlc − pwovlac = plamlc
V lamcell

V wovcell

− pwovlac = 0.1103 (26)

The previously estimated V wovcell and pwovlac were substituted in the last equation,
together with the value plamlc = 0.05, which was taken after (Yoon and Cowin,
2008a; Cowin, 1999; Wang et al, 1999; Zhang and Cowin, 1994; Zhang et al,
1998). Finally, the dimension of the unit cell in lamellar tissue 2Llamcelda = 43µm,
estimated by Beno et al (2006) from the results of Remaggi et al (1998) for
lamellar tissue in cortical bone, yields V lamcell = (2Llamcelda)3 = 76507µm3, which
allowed to estimate pwovcan in (26).

It should be noted that the lacuno-canalicular porosity in woven tissue,
pwovlc = 0.1353, is considerably greater than in lamellar tissue of cortical bone
(plamlc = 0.05). The difference can be ascribed to the nature of woven tissue,
which contains much more collagen than lamellar tissue (Garćıa-Rodŕıguez,
2014) as the likely result of having a higher concentration of osteoblasts. One
can therefore expect the amount of osteoblasts buried in the bone matrix and
differented to osteocytes to be greater in woven tissue than in lamellar tissue,
which is consistent with the experimental osteocyte density measurements of
Hernandez et al (2004) and Remaggi et al (1998).
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2.5 Volumetric composition of woven tissue

Applying the equations of the proposed model entails knowing the volumet-
ric composition of woven tissue. In a previous study, 11 sheep (merino breed,
3 to 5 years old) were subjected to metatarsal bone transport (Mora-Maćıas
et al, 2016). During the healing period the woven tissue mineralizes and is
remodelled (and replaced with lamellar tissue) in the long term. The sheep
were sacrificed at different stages of the healing process and two woven tissue
specimens obtained from the gap zone of each animal. One of the two speci-
mens was analyzed histomorphometrically in order to discard those sheep with
signs of bone remodelling (López-Pliego et al, 2015). The other specimen from
those sheep exhibiting no such signs was used to determine the volumetric
composition of woven tissue according to Garćıa-Rodŕıguez (2014). A lamellar
tissue specimen from the cortical layer of the contralateral metatarsus was also
obtained for comparison. The latter was extracted at the same position of the
gap of the operated metatarsus in such sheep. Table 2 compares the average
volumetric composition results with previously reported values of Gong et al
(1964) for lamellar tissue from human cortical bone. The mineral content of
tissue is usually measured with the ash fraction, which is also shown in the
table, and calculated as

α =
mm

mm +mo
=

ρm vm
ρm vm + ρo vo

(27)

where m, v and ρ represent mass, volume and density, respectively, and the
subscripts m and o denote mineral and organic phase, respectively. The values
ρm = 3.12 g/cm3 and ρo = 1.43 g/cm3 were used (Lees et al, 1979).

Mineral Organic phase Water Ash fraction
vh vc vw α

Woven bone
0.280 0.584 0.136 0.511

(Sheep) a

Lamellar bone
0.398 0.392 0.210 0.689

(Sheep) a

Lamellar bone
0.395 0.354 0.251 0.709

(Human) b

Table 2 Volumetric composition and ash fraction of various types of woven tissue. Results
from (a) Garćıa-Rodŕıguez (2014), (b) Gong et al (1964).

3 Results

Table 3 shows the stiffness results for sheep woven tissue as estimated from
volumetric composition data under the assumption that collagen fibrils were
oriented with an identical probability in all directions (γ2 = π/2). Formally,
the proposed method provides an orthotropic stiffness tensor Cwb which, how-
ever, is quasi-isotropic with γ2 = π/2. This fact was exploited by using the
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symmetrization method of Cowin and coworkers (Yang et al, 1998; Cowin et al,
1999; Yoon et al, 2002), who proposed an isotropic estimate of the stiffness
tensor obtained by averaging the classical estimates of Voigt and Reuss. This
approximation yields the Young’s modulus and Poisson’s coefficient shown in
Table 3 for γ2 = π/2.

Orthotropic constants Isotropic constants
E1 1.8318 GPa
E2 1.9647 GPa E 1.9041 GPa
E3 1.8605 GPa
ν12 0.3552
ν13 0.3410
ν21 0.3520

ν 0.3431
ν23 0.3565
ν31 0.3355
ν32 0.3375
G4 0.7114 GPa
G5 0.7086 GPa G 0.7088 GPa
G6 0.7207 GPa

Table 3 Estimated elastic constants for woven tissue before (orthotropic) and after
(isotropic) symmetrization with the method of Cowin et al (1999). The volumetric com-
position is that given in Table 2 for woven bone and γ2 = π/2.

We also examined the variation of Cwb with composition during the min-
eralization process. Fig. 5 shows the variation of the elastic constants with
the ash fraction in the equivalent isotropic material obtained by symmetrizing
Cwb. The figure also shows various fitted elastic constant-ash fraction curves.
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−15, 00α5 + 9, 23α6 (R2 = 1)

Fig. 5 Variation of Young’s modulus and Poisson’s coefficient of the equivalent isotropic
material with the ash fraction, α, for γ2 = π/2.

The influence of alignment of collagen fibrils was assessed by examining
the variation of the stiffness tensor Cwb with angle γ2 for the sheep volumetric
composition (α = 0.511, see Table 2) and for other three greater values of α.
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The tensor was orthotropic and the Young’s moduli in the three orthotropic
directions are shown in Fig. 6, where X, Y and Z in Fig. 3 correspond to E1,
E2 and E3, respectively. As can be seen, clustering of collagen fibrils in a given
direction (i.e., a decrease in γ2) led to increased stiffness in that direction but
had virtually no effect on the stiffness in the other orthotropic directions. The
symmetry of the estimated stiffness tensor for woven tissue is very close to
transverse isotropy, which is consistent with the expectations because, as can
be seen from Fig. 3 and Eq. (13)), the model does not depend on φ1. The
above-mentioned symmetrization technique (Yang et al, 1998; Cowin et al,
1999; Yoon et al, 2002) allowed us to obtain an equivalent transversely isotropic
material with a stiffness tensor CTI

wb . Table 4 shows the Young’s moduli in the
longitudinal direction X, termed El, and in the transversal direction of the
symmetry plane, Et, at different α and γ2 values. The fact that Cwb was quasi-
transversely isotropic was confirmed by calculating the following parameter
that measures the difference between the original and the symmetrized tensors:

dif(%) =
||CTI

wb −Cwb||
||Cwb||

· 100 (28)

where the norm of the tensor is defined as

||C|| =
√
C : C =

√√√√ 6∑
i=1

6∑
j=1

C2
ij (29)

It was checked that dif never exceeded 2% being these differences due only
to the numerical integration of equations such as (13).

γ2
α = 0.511 α = 0.530 α = 0.555 α = 0.580
El Et El Et El Et El Et

π/18 9.31 1.70 10.76 1.89 13.14 2.19 16.15 2.56
π/6 3.25 1.73 3.75 1.93 4.61 2.26 5.74 2.67
π/3 2.06 1.84 2.34 2.07 2.79 2.46 3.39 2.96
π/2 1.86 1.93 2.10 2.18 2.49 2.60 2.99 3.16

Table 4 Longitudinal (El) and transverse (Et) Young’s modulus, in GPa, of the equivalent
transversely isotropic material.

Fig. 7 shows the variation of El and Et with α in the equivalent isotropic
material with quasi-aligned fibrils. Specifically, γ2 was assumed to be π/18,
which is small enough to simulate quasi-aligned fibrils but allowed the integrals
in Eq. (13) to be solved in the case γ1 = 0 without numerical problems.

4 Discussion

The elastic properties of composites containing randomly arranged inclusions
-which is the case with woven bone in most cases-, are usually worked out
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with a rule of mixtures in order to considerably reduce the numerical effort.
Using the average composition of woven tissue as measured in sheep (see Ta-
ble 2) provided a Voigt estimation (weighted volume average of the stiffness
of constituent phases) EV oigt = 32.7GPa, which is an upper bound of the
Young’s modulus for the composite. On the other hand, the Reuss estimation
(weighted volume average of the compliance of constituent phases) provided
EReuss = 0.01GPa, which is a lower bound. Some authors have proposed
using the average of the two bounds as an estimation of composite’s elastic
modulus (Yoon and Cowin, 2008b); however, this makes no sense here owing
to their large difference -a result of the also large difference in stiffness between
constituents. Rather, woven tissue requires using a more complex choice such
as the proposed model, which considers the microstructure of the composite
and the more or less random orientation of the inclusions.

The proposed micromechanical model predicts an orthotropic behaviour
for woven tissue. However, as can be seen from Table 3, the results suggest a
quasi-isotropic behaviour for γ2 = π/2. The reason for this symmetry is the
way wet collagen fibrils are assumed in that case, with a uniformly random
distribution throughout the entire space.

The elastic properties of woven tissue are clearly dependent on its min-
eral content, as can be seen from Fig. 5. Mineralization markedly increases
stiffness and decreases Poisson’s coefficient as a result of mineral replacing
water initially present in the tissue. Moreover, mineralization in woven tissue
is especially fast (Garćıa-Rodŕıguez, 2014), likely by effect of its high content
in type I collagen, which favours deposition of mineral. Therefore, based on
the proposed model, bone callus may recover its stiffness very rapidly during
fracture healing, which is a functionally optimal result.

As can also be seen from Fig. 5, the polynomial equation was the best
option to fit the Young’s modulus versus the ash fraction (the degree 6 was
the lowest providing R2 ' 1). The other two curves in the figure were used
for comparison with the experimental results of Hernandez et al (2001a), who
obtained:

E (GPa) = 84.37v2.58b α2.74 (30)

The exponential regression curves with a constant term (E = AαB + C,
where constants A, B and C were fitted) resulted in slightly better fitting than
a simple exponential regression equation (E = AαB); interestingly, however,
the exponent of the latter coincided with that of the correlation of Hernandez
et al (2001a), which also lacks a constant term, despite the fact that these
authors tested lamellar tissue. Therefore, the elastic properties of both types
of tissue must be similarly influenced by the mineral phase.

Very few authors have reported experimental measurements of stiffness in
woven tissue. Among the few are Leong and Morgan (2008), who performed
nanoindentation tests on fracture calluses in rat femurs. Their results were
widely variable with location within the callus (26.92 − 1010MPa). Gardner
et al (2000) estimated the Young’s modulus of woven tissue during healing of a
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tibial fracture in a 20-year-old individual by using inverse finite element char-
acterization. They split the fracture region into very wide zones and obtained
Young’s modulus ranging from 500 to 3600 MPa depending on the particu-
lar zone and the time after fracture. These values exceed those of Leong and
Morgan, possibly because the measurements of Gardner et al. included late
healing stages where the fracture might already have undergone remodelling
in some regions and, thus, mineralized lamellar tissue had appeared. However,
both ranges of values are consistent with our estimates, especially with those
for the average composition of sheep woven tissue and for quasi-isotropic tissue
(i.e., tissue with randomly oriented fibrils).

As regards the influence of alignment in collagen fibrils, from Fig. 6 and
Table 4 it follows that the longitudinal elastic modulus increased markedly
-but the transverse modulus decreased very slightly- with grouping of collagen
fibrils in a specific direction (i.e., at low γ2 values). Therefore, woven tissue
becomes stiffer in the longitudinal direction as collagen fibrils align. Fibril
alignment has been observed in woven tissue of human foetuses (Su et al,
1997), but not in bone callus. As can also be seen from Fig. 6, tissue stiffness
increased with increasing ash fraction as a result of water being gradually
replaced with a stiffer material (hydroxyapatite mineral).

Su et al (1997) examined femur diaphyses in human foetuses of variable
gestational age (14-26 weeks). This tissue is microstructurally similar to woven
tissue forming on bone callus after a fracture (McKibbin, 1978; Frost, 1989a,b;
Wen et al, 1995), so it allows extrapolation of the results obtained with the
proposed micromechanical model. The longitudinal Young’s modulus for 26-
week-old foetuses ranged from 9 GPa in the periosteum to 16 GPa in the
endosteum. The difference arose from the way tissue forms during foetal bone
development: from the inside to the outside. Thus, the endosteum is older and
contains greater amounts of mineral as a result (Su et al, 1997). The proposed
model estimated El ranging from 9 GPa at α = 0.511 to 16 GPa at α = 0.580,
the former value being consistent with the experimentally found composition
in sheep (Garćıa-Rodŕıguez, 2014) and the latter being a moderate estimate of
mineral content. No higher mineral contents were analysed as they are unlikely
to be reached by so young foetuses. As can be seen from figs. 6 and 7, stiffness
in the longitudinal direction increased markedly with increasing ash fraction,
much more markedly than in the transverse direction. In any case, the Young’s
modulus of foetal woven tissue is smaller than that of lamellar tissue; in fact,
the latter ranges from 18 to 25 GPa depending on the mineral content, which
can be much higher in old lamellar tissue.

This result raises an interesting question: why is the stiffness of woven
bone so small compared to that of lamellar tissue? and, more precisely, from
all the microstructural differences between both, which are the most influential
factors? Probably, the composition and the orientation of collagen fibrils. Let
us study the composition first. Mineral is the stiffest phase in bone and the
mineral contents analyzed in this paper were much lower than the typical
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values for lamellar tissue.1 However, it can be thought that, even when woven
tissue gets saturated with mineral, it will be less rigid than lamellar tissue,
given that its collagen concentration is higher (recall Table 2).

The special microstructure of woven bone has also an important effect on its
stiffness. This microstructure, modelled in the present paper, was compared
with that of lamellar tissue considered in a previous work (Mart́ınez-Reina
et al, 2011). This was done by applying the present model with the volumet-
ric composition of human lamellar tissue (see Table 2) and comparing the
results with those obtained in that previous work (with the composition and
microstructure of lamellar tissue). The latter provided an orthotropic mate-
rial with Young’s moduli: E1 = 17.2GPa, E2 = 19.7GPa, E3 = 22.0GPa
(Mart́ınez-Reina et al, 2011). Meanwhile, a quasi-isotropic (γ2 = π/2) woven
bone with the same composition would have a Young’s modulus E = 3.65GPa,
i.e. stiffer than woven bone with its actual composition (E = 1.90GPa), but
much more flexible than lamellar bone. This difference highlights the impor-
tance of the hierarchical and well organized microstructure of lamellar bone
in its mechanical features and is explained by two reasons. On the one hand,
the high stiffness of the mineralized collagen fibril in the longitudinal direc-
tion as compared with the transverse direction. On the other hand, a uniform
distribution of the fibril orientation gives more weight to the most flexible di-
rection, in the sense of a Reuss average. Thus, a uniform distribution in the
three directions (γ2 = π/2) yields a quasi-isotropic material with a flexibility
similar to that of the collagen fibril in the transverse direction.

In addition, a quasi-aligned woven bone (γ2 = π/18) with the composi-
tion of lamellar tissue would be very stiff in the longitudinal direction (El =
27.1GPa) and very flexible in the transversal direction (Et = 2.59GPa).
In this case, the uniform distribution of fibrils’ orientation in the transverse
plane (implicit in the present model by assuming ρ(g) to be independent of
φ1) yields a transversely isotropic material with a very low transverse stiff-
ness. In contrast, the longitudinal modulus, El = 27.1GPa, would be higher
than any modulus in the lamellar tissue since, in the latter, the lamellae were
superimposed in layers by rotating the orthotropic lamellar tissue in three per-
pendicular directions (see Mart́ınez-Reina et al (2011) for details). Again, this
superimposition results in an averaged stiffness that reduces the differences
between the stiffest and the most flexible directions.

The predominance of the most flexible direction in the homogenization pro-
cess also explains the little variation of the transverse stiffness with gamma2
(see fig. 6). In the quasi-aligned case the transverse stiffness of the tissue al-
most coincides with that of the fibrils, very low. As gamma2 rises, some fibrils
begin to be aligned with the transverse direction, contributing with their high
longitudinal stiffness to the transverse stiffness of the composite. However, the
stiffness of those fibrils is overshadowed by the high transverse flexibility of

1 This was so due to the commented time limitation of the model, which makes it inap-
plicable well before the tissue is saturated with mineral.

Particular
Inserted Text
by
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the other fibrils, aligned with the longitudinal direction, so that the increase
in transverse stiffness is negligible.

Other features that are different between woven and lamellar tissue are
the porosity and the aspect ratio of mineral crystals. The typical dimensions
of mineral crystals are different though quite similar: a = 32nm, b = 19nm,
c = 3nm in human foetal woven bone (Su et al, 2003) versus a = 50nm,
b = 25nm, c = 3nm (Rho et al, 1998) in lamellar bone, which translates
into a minimal influence in the modelled stiffness. The porosity could indeed
play a distinguishing role, but despite being different, its value is so small in
both tissues that its influence on the stiffness is negligible as well. Dwelling
on this idea, the vascular porosity was not included in the model in spite of
being present in the woven tissue, as analyzed in a related work (Mora-Maćıas,
2016). It was excluded because the incipient vessels are so scarce at the time
interval this model is valid that its effect would be negligible.

The Young’s modulus of collagen adopted here (in the order of 1 GPa, see
Table 1) is roughly ten times lower than that measured by Cusack and Miller
(1979) in rat-tail tendons and used in some similar works (Hellmich et al, 2004;
Tiburtius et al, 2014). Given that collagen is the most abundant constituent
in woven tissue, (see Table 2), increasing its stiffness by a factor of 10 leads
to an increase in the composite’s stiffness by approximately the same factor.
This would result in an abnormally high stiffness of woven bone, no matter the
homogenization scheme followed, and not matching the experimental evidence.
This suggests that the stiffness measured by Cusack and Miller (1979) was
likely overestimated and that the collagen stiffness must be in the order of
1 GPa as other works have proposed (see Bonfield and Li (1967); Currey
(1969); Geoffrey (1972); Mitchel and Burr (1988); Sasaki et al (1989); Crolet
et al (1993); Yoon and Cowin (2008b) among many others.)

The main limitation of the proposed model arises from the assumed mi-
crostructure of woven tissue. In fact, collagen fibrils are known to be highly
disordered, probably because the tissue forms very rapidly; however, the ex-
act orientation of the fibrils is unknown. In this work, we assumed fibrils
to be uniformly randomly arranged, which was a major simplification. Also,
the geometry of hydroxyapatite crystals was greatly simplified by assuming
an ellipsoidal shape, an acceptable simplification given that the presence of
impurities make crystals highly amorphous and rather variable in morphol-
ogy. Other major limitations of the proposed micromechanical model include
assuming that (a) water partitioning between collagen and mineral to form
the wet phases (see Eq. (7)) and (b) the combined volume of the lacuna and
canaliculi in each unit cell (see Eq. (26)), are identical in woven and lamellar
tissue. These simplifications were imposed by the lack of specific information
for woven tissue and the need to replace it with known data for lamellar tis-
sue (Mart́ınez-Reina et al, 2011). Nevertheless, they have little effect on the
results.
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5 Conclusions

To the authors’ knowledge, no multiscale micromechanical model for the elas-
tic properties of woven bone tissue has been reported to date. The proposed
model depends on the composition of woven tissue, which changes during min-
eralization, and on the potential alignment of collagen fibrils as observed in
foetal woven tissue (Su et al, 1997).

The model was used to estimate the elastic constants of callus woven tissue
(specifically, callus resulting from sheep bone transport, the composition of
which was determined in a previous work). The stiffness tensor obtained was
quasi-isotropic and the Young’s modulus, 1.9 GPa, similar to the experimental
values for fracture calluses in other species.

The model was also used to estimate the elastic constants of foetal woven
tissue, where collagen fibrils are slightly aligned. The resulting stiffness tensor
was quasi-transversely isotropic and the longitudinal Young’s modulus ranged
from 9 to 16 GPa depending on the mineral content. These values are smaller
than those for lamellar tissue but similar to those found by Su et al (1997) in
human foetuses.
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