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Resumen

Título

Control de actitud de E-sails mediante la modulación del voltaje de los cables en operación
asimétrica.

Resumen del trabajo

La Vela Solar Eléctrica (E-sail) es una novedosa tecnología propulsiva sin propelente aplicable
a vehículos espaciales, que genera el empuje necesario a partir de la interacción eléctrica entre
cables (tethers) muy largos cargados eléctricamente y los iones del viento solar. Así pues, el
presente trabajo aborda el problema de control de actitud de las E-sails, con el objectivo principal de
ampliar el rango de validez de trabajos recientes ([1], [2]), que logran realizar maniobras de cabeceo
manteniendo el eje de giro en una alineación próxima con el Sol, y considerando una deformación
simétrica de los tethers. Para tal fin, en este proyecto se propone un modelo de deformación no
simétrico, que permite a los tethers deformarse de forma independiente según la orientación relativa
al Sol y el voltaje aplicado, tal y como sucedería en realidad. Esta propuesta es entonces analizada
bajo control LQR para comprobar su rango de validez y estudiar la respuesta al control de la vela
solar eléctrica, y, después, bajo control LQG para incluir la influencia de las perturbaciones y el
ruido procedente de los sensores en el análisis.

Palabras clave

Vela Solar Eléctrica, E-sail, Control de Actitud, Regulador Cuadrático Lineal, Filtro de Kalman,
Regulador Cuadrático Lineal Gaussiano.

Conclusiones

Durante el proyecto se ha desarrollado e implementado el modelo de deformación asimétrica de los
cables de la E-sail, analizando en primer lugar cómo el aumento del voltaje aplicado y la reducción
del ángulo del cabeceo suponen una mayor deformación de dichos cables. Tras ello, la simulación de
la vela solar bajo control LQR ha permitido analizar la validez de los modelos propuestos, resultando
una respuesta de actitud precisa y estable para ángulos de cabeceo de hasta 28 grados, ampliando el
rango obtenido en trabajos anteriores asumiendo saturación. Finalmente, se ha sometido a la E-sail
con controlador LQG a ruido procedente de perturbaciones e instrumentos de medida, logrando
mantener un comportamiento aceptable en el rango operativo de maniobra.
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Abstract

The Electric Solar Sail (E-sail) is an innovative propellantless propulsion technology for spacecraft,
which generates thrust from interaction of long electrically-charged tethers with solar wind ions.
This thesis addresses the attitude control problem for E-sails, with the main objective of widening
the validity range of recent work ([1], [2]), that are able to perform pitch change maneuvers near
a Sun-facing configuration, assuming a symmetrical deformation of all tethers. For this purpose,
a non-symmetrical deformed shape model is proposed to allow the tethers deform independently
according to relative orientation from Sun and applied voltage, as it would happen in reality. This
proposal is then analyzed under LQR control to check the validity range and study the behaviour of
the E-sail’s control response, and, later, under LQG control to include the effects of disturbances
and sensors’ noise.
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Notation

A,B Linearization matrices
A Auxiliar reference frame
B Main body reference frame
bl Non-dimensional shape coefficient
CB

I Director cosine matrix of reference frame B with respect
to I

dk Deformed shape position vector for tether k [m]
(E ,F ,G ) E-sail’s total torque components [Nm]
fk Deformed shape function for tether k [m]
f Non-dimensional movement equations vector
(Fxk

,Fyk
,Fzk

) Exerted forces on the tether k root [N]
h(t) Heaviside step function at t
(îA, ĵA, k̂A) Unit vectors of auxiliar reference frame
(îB, ĵB, k̂B) Unit vectors of body reference frame
(îk, ĵk, k̂k) Unit vectors of tether k local reference frame
(îI, ĵI, k̂I) Unit vectors of inertial reference frame
Idn Identity matrix of order n
It Transversal inertia [kg m2]
Iz Axial inertia [kg m2]
I Inertia matrix in main body reference frame [kg m2]
J LQR/LQG cost function
k Tether index
K LQR feedback control gain matrix
K f Kalman gain matrix
L Tether longitude
LQE Linear Quadratic Estimator
LQG Linear Quadratic Gaussian regulator
LQR Linear Quadratic Regulator
mp Proton mass [kg]
n Solar wind ion density [m−3]
n̂ Unit normal vector to E-sail’s nominal plane
N Number of tethers
Nn(0,V ) Normal Gaussian distribution with zero mean and co-

variance V
pdyn Dynamic pressure exerted by solar wind [Pa]
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X Notation

Q,Qend ,R LQR weighting matrices
r E-sail’s distance from Sun [AU]
r̂ Sun-spacecraft direction unit vector
sk Tether’s natural curve coordinate [m]
ŝk Tether’s tangential unit vector
t Time [s]
tm Slew maneuver duration [s]
t∗ Non-dimensional time
T Transition time from tracking to regulation phase [s]
u Solar wind velocity [m/s]
∆v Velocity impulse [m/s]
V Noise intensity matrix for disturbance accelerations

[rad/s2]
Vk Tether k voltage [V]
∆Vk Control voltage applied to tether k [V]
Vw Solar wind voltage [V]
W Noise intensity matrix for gyroscopes’ noise [rad/s]
(xk,yk,zk) Tether’s deformed shape coordinates [m]
xrk

Tether root xk coordinate [m]
xtk Tether tip xk coordinate [m]
X Non-dimensional state vector
δX Incremental non-dimensional state vector
αn Pitch angle [rad]
δn Clock angle [rad]
ε0 Vacuum electric permitivity [F/m]
Γk Non-dimensional control coefficient applied to tether k
(φ ,θ ,ψ) Euler angles [rad]
ρ Tethers’ linear mass density [kg/m]
σ Nominal voltage coefficient [kg/(m s)]
σk Control voltage coefficient for tether k [kg/(m s)]
ζk Azimuth angle between tether k and first tether [rad]
ω E-sail’s nominal angular velocity [rad/s]
(ωx,ωy,ωz) Non-dimensional angular velocity components
(Ωx,Ωy,Ωz) Angular velocity components of ΩΩΩ

B
B/I [rad/s]

ΩΩΩ
B
B/I Angular velocity of frame B with respect to I expressed

in frame B
□′ Derivative with respect to xk
□̇ Derivative with respect to time
□̃ Desired state
□re f Reference state



1 Introduction

This chapter introduces all fundamental concepts related to E-sails (Section 1.2), beginning with
a brief context of propellantless propulsion systems and, in particular, solar sails (Section 1.1).

Afterwards, Section 1.3 describes the state of art of E-sails’ architecture and applications, while
Section 1.3.3 is focused on advances in E-sails’ attitude control, which is the core of the project.
Finally, the objective and structure of this work is exposed in Sections 1.4 and 1.5.

1.1 Introduction to solar sails

Last decades, some new propellantless propulsion technologies have been object of study in order
to overcome the limitations of traditional propellant-based systems. As on-board stored propellant
increases total spacecraft mass, this increases overall mission costs. In addition, mission lifetime is
limited since an adequate orbital maintenance would require corrective maneuvers that are directly
linked to propellant availability [1].

Related to this project, two propellantless propulsion technologies are highlighted, namely: pho-
tonic solar sails and magnetic sails. Focusing on solar sails, the generated thrust is produced, in
this case, through momentum exchange with incoming solar photons (i.e. solar radiation pressure),
which are reflected by a thin membrane. A variety of solar sails’ architectures have been proposed,
all sharing the same already mentioned fundamental operating principles [3]. They can be catego-
rized according to two main aspects: the shape of solar sail membranes and the need of supporting
structure.

Thus, on the one hand, rigid solar sails are those that require rigid structural support spars
connected to the membrane edges to maintain them deployed with the desired shape. As an example,
Figure 1.1 shows three different variants of rigid solar sails depending on the membranes shape and
number of spars required. The advantage of this type of sails is that the stuctural supports reduce
membrane flexibility, that are usually considered as disturbances, and are also prone to apply a wide
spectrum of attitude control strategies.

On the other hand, non-rigid solar sails (also known as spin sails) keep the membranes deployed
by means of tension generated by centrifugal forces resulting from the spacecraft spin itself. Two
types of spin sails are mainly mentioned in this category (Figure 1.2): disk-type solar sails consists
of a large sheet of sail membrane deployed around and from a central hub, whereas an heliogyro
solar sail presents long thin strips attached to the hub resembling the rotor blades of a helicopter.
As compared to rigid solar sails, spin sails show a more favourable mass to membrane area ratio,
therefore being able to generate larger accelerations; however, membranes deployment and attitude

1



2 Chapter 1. Introduction

control require a more comprehensive study due to flexibility effects.

To conclude, solar sailcraft technology has succesfully demonstrated its potential by means of
recent solar sail-based missions, such as IKAROS (2010) or LightSail-2 (2019).

Figure 1.1 Rigid solar sail variants: clipper (a), quad (b) and butterfly (c) [3].

Figure 1.2 Non-rigid solar sail variants: disk sail (left) and heliogyro (right) [3].

1.2 The E-sail concept

In this context, the Electric Solar Wind Sail (E-sail) concept was first conceived in 2004 by the
Finnish space physicist, astrobiologist and inventor Pekka Janhunen [4]. An E-sail is a spacecraft
composed by a large grid of tethers maintained at a high positive electrical charge, causing a sur-
rounding electrostatic field which extracts momentum from the incoming solar wind ions (i.e. solar



1.3 State of the art 3

dynamic pressure) and, therefore, leading to generation of continuous thrust. This working principle
is similar to other technologies proposed at that time, in which Janhunen based his original idea,
namely photonic solar sails (specially non-rigid or spin solar sails) and magnetic sail concepts.

Then, which are the strengths of E-sails as compared with their propellantless competitors?
On the one hand, it is known that, at a distance of 1 AU (i.e. the distance from Sun to Earth),
solar dynamic pressure (about 2 nPa) is approximately 5,000 times weaker than solar radiation
pressure (about 9 µPa) [5]. However, if an E-sail is constructed with a mesh of wires with a
separation distance comparable to the Debye length of solar wind plasma (i.e. the distance at
which plasma screens the E-sail electrostatic field) and charged with a high positive electric volt-
age, protons will see an impenetrable surface with greater effective area. As a result, E-sails may
have greater surface areas with lower weights possible, counteracting the previous difference in
thrust generation, and finally leading to comparable accelerations with respect to photonic solar sails.

On the other hand, there is one of the most promising characteristics of E-sails, that makes them
interesting and feasible for interplanetary missions far from Sun. While the thrust generated by
photonic solar sails decays with the inverse of the distance to Sun squared (1/r2), E-sails produce a
thrust proportional to 1/r instead.

1.3 State of the art

Once the E-sail concept has been introduced, the aim of this section is to summarize the current state
of this innovative propulsive technology. For this purpose, the main components will be described,
together with a brief analysis of the orders of magnitude of key performance indicators, such as
consumption and propulsive forces. Besides, this section shows the potential applications under
research and, finally, the different approaches to attitude control techniques for E-sails.

1.3.1 E-sail architecture

As stated in Section 1.2, the working principle of E-sails for thrust generation is based on electrostatic
interaction between positive charged tethers and the ions of solar wind plasma, being the force
acting on each tether proportional to the tether voltage. In order to perform this main feature, several
tether arrangements have been proposed along time, starting from the original Janhunen’s proposal
of a wire mesh as shown in Fig. 1.3.

Additionally, most spacecraft missions require the capability of attitude change in order to adjust
the direction of the thrust vector. On an E-sail, it is possible to take advantage of potential modulation
for each tether, in a synchronous way with the spacecraft rotation, to create the necessary torque
to achieve the desired orientation. However, it is crucial to take into account that the generated
transverse thrust may induce different angular velocity change for each tether, also being affected by
Coriolis forces and solar wind velocity fluctuations. This phenomena increases the risk of tether
collision and led to a reformullation of the original tether arrangement.

At the present, the typical electric solar sail configuration is made up of a number of radial main
tethers, whose tip hosts a remote unit, connected by auxiliary tethers forming an external circle
centered on the spacecraft spin axis. This architecture, depicted on Fig. 1.4, has been found to
be useful to overcome the problem of stability of the complex cable system and risk of collision
between tethers [6].

Beginning with main tethers, they are quite long cables (typically around 2 km) subject to high
positive electrostatic potential, which is maintained through an onboard electron gun, which is
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Figure 1.3 Original wire mesh arrangement for E-sail [1].

capable of repelling the negative charge attracted by interaction with solar wind plasma ions. Each
tether is composed by four cables of conductive material such as aluminum, where one of them is
straight and is surrounded by the three remaining cables with loops, and presents a relatively low
linear mass density (typically ρ = 1.155 ·10−5 kg/m) [2].

As stated before, a remote unit (RU), together with the main tether reel assembly, is located at the
tip of each main tether. These remote units may include small thrusters that produce the required
initial impulse for tether deployment and, also, to control the rotation of the tethers during operation.
In addition, controllers and sensors should be attached around the spacecraft, in order to locate each
RU with its respective main tether, between other functionalities.

Finally, the remote units are connected by a cable with a longitude nearly equal to that of a
circunference of radius equal to the main tether longitude. This auxiliary tether does not need to
be electrically charged and its objective is to avoid collisions between adjacent main tethers. For
simplification purposes, we will not consider its presence for the spacecraft dynamics.

1.3.2 Potential applications

Related with some characteristics already mentioned about electric solar sails, it can be stated
that this new propulsive method shows the following main advantages: it avoids the limitation of
missions due to outage of propellant and its capability of providing thrust is extended throughout
(almost) all the Solar System. However, there are also some issues related to the tethers’ deployment
and resistance, voltage source and electromagnetic compatibility, between others, which are into
study and implementation.

Consequently, the possible applications that E-sails may have (analized in [7]) are:

Asteroids and terrestrial planets missions

First of all, we can highlight the use of electric solar sails in missions to Venus. This planet, the
closest to Earth, offers relatively easy access in terms of required impulse ∆v. Studies have shown
that E-sails can provide the necessary impulse to place a spacecraft in a Venusian orbit in a time
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Figure 1.4 Typical E-sail configuration with remote units and auxiliary tethers [1].

similar to that required for a Hohmann transfer. This offers the advantage of not requiring fuel and
reducing the overall weight of the mission.

Secondly, the use of electric solar sails on Mars missions also offers significant benefits. For
example, in a transfer to low Mars orbit, the use of an electric solar sail can save 1.1 km/s momentum
and eliminate the need for aerobraking. Additionally, on return-to-Earth missions from Phobos, a
moon of Mars, the use of an electric solar sail can save up to 3.8 km/s in ∆v and allow for smoother
reentry. Compared to electric propulsion, E-sails offer similar or even greater thrust without the
need for propellant, just requiring a reasonable amount of electrical power.

Focusing on the planets near Earth, the impact of the use of E-sails in missions to Mercury can
also be analyzed. Since Mercury is very close to the Sun, the probes that approach this planet
are strongly affected by the solar gravitational field. However, using an electric solar sail as the
propulsion system can reduce transfer time by up to six times compared to missions using chemical
and ion propulsion, such as the BepiColombo mission. In this type of missions close to the Sun, the
tolerance of the materials of the conductive cables (tethers) to high temperatures must be taken into
account, which may require additional cooling systems.
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Non-Keplerian orbits

The use of electric solar sails in space missions offers interesting possibilities in the study of non-
Keplerian orbits, such as Halo orbits around Lagrange points. These sails provide greater thrust
than other methods of propulsion and could replace the need to constantly burn fuel to maintain
unstable orbits. In addition, they allow the study of phenomena such as auroras and the effects of
the solar wind on planets like Jupiter as they are located above the L1 point, avoiding the need to
use multiple vehicles and withstand high levels of radiation.

However, the presence of conductive cables disturbs the measurement of solar plasma, which
requires the development of new measurement systems to overcome this challenge. In summary,
electric solar sails present exciting opportunities and technological challenges in space exploration,
enabling greater efficiency and observation capabilities in non-Keplerian orbits and the study of
space phenomena.

Near Sun missions

Missions near the Sun are usually expensive in terms of impulse ∆v, which can be as much as 15
km/s (depending on the type of target orbit). However, in an E-sail, the thrust increases as the
distance from the Sun decreases. This means that in a mission with a shorter distance from the Sun,
the electric sail can provide more thrust compared to a distance of 1 AU. However, this also increases
the power consumption of the electron gun and the degradation of the solar panels due to high
temperatures. Therefore, incorporating E-sails into these types of missions can pose technological
challenges.

One-way boosting to outer solar system

Due to the nature of the hardware used, the operational range of E-sails in relation to their prox-
imity to the Sun is 0.9-4 AU. However, it is feasible to extend this limit to 0.9-8 AU with minimal
alterations in the component specifications, as long as the electric sail does not have to carry an
excessively heavy load (between 1-1.5 tons) and is Keep the Sun as a power source. In addition, in
the event that the load requires an additional energy source, such as nuclear, this can also be used to
improve the performance of the electric candle. An additional advantage of this propulsion system is
the possibility of increasing the number of launch opportunities, which would allow certain missions
to be carried out more frequently.

Impactors and data clippers

The "data clippers" are defined as space vehicles whose objective is to approach the Earth, carrying
in their memory a large volume of high-resolution scientific data. These scientific data can be
downloaded by terrestrial antennas when these vehicles are in the vicinity of the Earth. The E-sails
can intervene in this type of missions as a propulsion mechanism, minimizing the cost of the
missions by making the trip without consuming propellant.

1.3.3 Attitude control

This project will be focused on the E-sail attitude control, whose main (and essencial for maneuver-
ing) function is to orientate the thrust vector during the space mission. In this subsection, different
strategies for regulation and control of the electric solar sail attitude and its spin rate are briefly
exposed.
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Firstly, Janhunen proposed in 2013 a simple dynamical model of the tether [8], described as a
spherical pendulum rotating under the constant action of the solar wind. Based on this model, he
suggested to apply an auxiliary propulsion to the tips of the main tethers, as for example small
photonic blades, which may be capable of counteracting the Coriolis effect. This idea was shown to
provide enough spin control capability, with the benefit of keeping the spacecraft fully propellantless,
which is one of the key points of E-sails.

Also in 2013, Toivanen and Janhunen [9] studied another strategy for E-sail attitude control,
which consists in individual modulation of the voltage of each tether in order to generate the desired
net torque on the whole E-sail. In subsequent work [10], the authors conceived a model capable of
estimating the thrust and torque vectors through an approximate expression of the tether deformed
shape. These ideas allowed to succesfully compute the necessary voltage modulation for attitude
maintenance under stationary solar conditions, which was shown to be even lower when considering
a flexible tether instead of a rigid one, as well as to estimate the fraction of electron gun power to be
reserved for attitude control.

More recent works continue studying the tether voltage modulation strategy and develop the
initial proposal to more realistic scenarios. Firstly, Bassetto et al. [11]-[12] deepened on the analysis
of tether deformation due to combined effects of solar wind dynamic pressure and centrifugal force,
which was found to generate a disturbing torque. This torque tends to realign the thrust vector
with the Sun-spacecraft line, seriously affecting the maneuvring capabilities of the E-sail, and it is
only zero when the spacecraft is in a Sun-facing condition (i.e., with its spin axis fully parallel to
Sun-spacecraft line).

Finally, we summarize the most recent progress. On the one hand, Li et al. [13] studied an
E-sail model based on the nodal position finite element method in order to analyze the coupling
effects between elastic dynamics of the tethers and the electric field. The author demonstrated that
maneuverability is improved with a greater number of tethers, but decreases in face of an increase
of the tether length, the sail spin rate and the mass of remote units. Besides, Du et al. investigated
the dynamics of high-order modes of flexible elastic wires [14] and the modeling of rigid-flexible
coupling effects on attitude dynamics and control [15]. On the other hand, Huang et al. [16] were
devoted to study the attitude dynamics and control of a barbell E-sail, another E-sail configuration
consisting in two tip satellites connected through long conductive tethers, insulated at the central
point in such a way that their electrical voltages can be controlled independently.

1.4 Objective and scope of the project

The aim of this project is to study the control of an E-sail’s attitude change maneuver, under the
hypothesis and assumptions made in Chapter 2. In more detail, this project is based on the simplified
and analytical model for symmetrical and Sun-facing configuration proposed by Bassetto et al.
[11]-[12] and its LQR control application in [2]. Thus, the main objective is to widen the scope
of these works to non-symmetrical configuration model (i.e., tethers present a different deformed
shape between them depending on the voltage modulation and the attitude) and, then, check its
validy for a greater interval of desired final pich angles.

In this way, the work is orientated in order to obtain two main achievements. On the one hand, to
propose and study a more complete analytical model for tether’s deformed shape for non-symmetrical
configuration, and compare it with the original proposed in [11] in different conditions of voltage
modulation and attitude. On the other hand, to design a control law for a pitch change maneuver,
based on LQR method, applying this new suggested model, and perform a comparative study of the
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obtained results with respect to the simplified model used in [2], in order to check the validity range
of the new proposed model. Additionally, a LQG controller is also considered to study the effects
of noise and disturbances in the E-sail’s control.

1.5 Structure

To conclude this introduction, the subsequent structure of this document is presented, summarizing
the content of each chapter.

Firstly, Chapter 2 is dedicated to perform a thorough exposition of the theoretical concepts
related to the E-sail and attitude dynamaics, divided in two different sections. On the one hand,
the E-sail’s basic model is defined, explaining all the hypothesis, the proposal of tether deformed
shape model in non-symmetrical configuration and, finally, the torque dynamics according to
these assumptions. On the other hand, the second section summarizes the attitude fundamentals;
this is, attitude representation through Euler angles, kinematics and dynamics, particularizing the
equations to E-sail’s model previously defined. Finally, a third section condenses the state and con-
trol variables, together with the applicable movement equations for attitude, in non-dimensional way.

Subsequently, Chapter 3 is related to control law design to achieve a certain final attitude by
performing a pitch change maneuver. For this purpose, two control problems are posed: a Linear
Quadratic Regulator (LQR), which is aimed to follow a certain reference trajectory and, furthermore,
Linear Quadratic Gaussian control (LQG), which fits a Kalman filter to the previous LQR controller
in order to handle noise related to measurements and system disturbances. Besides, as these two
control problems require the system dynamics to be linear with respect to the state and control
variables, then a section is dedicated to this linearization around a certain defined reference.

After that, several results are obtained and presented in Chapter 4 to validate the models previ-
ously defined. Thus, a first section aims to illustrate the non-symmetrical tether deformed shape
model and analyze how the related shape coefficient depends on the attitude and the control power
applied to each tether. Next, the E-sail with LQR controller is simulated under several maneu-
ver with different final pitch angles, in order to check the limits of validity and study the control
response behaviour. Comparably, a certain noise is added to test the LQG controller in similar terms.

Lastly, the main conclusions deduced from the work performed during this project are summarized
in Chapter 5.



2 Theoretical background

All theoretical background regarding general assumptions and dynamics of an E-sail, as well as
attitude concepts, is described in this chapter. On the one hand, Section 2.1 exposes, in the

following order, the general hypothesis, parameters and reference frames used to define the basic
model for the electric solar sail, the tethers’ deformed shape model and, finally, the dynamic model.
On the other, attitude representation, kinematics and dynamics are described in Section 2.2, finally
sumarizing the movement equations and non-dimensional variables in Section 2.3.

2.1 E-sail’s basic model

2.1.1 Reference frames and hypothesis

As general hypothesis during this project, the E-sail-based spacecraft is considered to have a certain
number of tethers, N ≥ 2, which are modelled as two-dimensional cables contained in plane (îk, n̂).
All these tethers, in their undeformed state (i.e., as straight wires), define the sail nominal plane,
from which the vector n̂ is perpendicular.

In this context, k denotes the index corresponding to each tether (integer from 1 to N), and a local
reference frame for each tether k is defined, being: îk pointing towards the tip of tether k, k̂ paral-
lel to n̂, and ĵk completing a right-hand reference frame centered at the spacecraft’s center of mass, S.

In addition, the spacecraft is assumed to behave as a rigid body, initially rotating around normal
unit vector to sail nominal plane, n̂, with a constant angular velocity ω = 0.0758 rad/s. Associated
with this rigid body model, some geometric properties of the E-sail are enumerated below:

• Tether longitude: L = 2000 m.

• Tether linear density: ρ = 1.155 ·10−5 kg/m.

• Inertia matrix in principal body axes, assuming axial symmetry around k̂B (it will be seen
hereunder that is coincident with n̂): It = 1000 kg m2 and Iz = 3000 kg m2, with

I =

 It 0 0
0 It 0
0 0 Iz

 .
Regarding the electric properties from the tethers and the solar wind that actually provide the

propulsive forces in an E-sail, the following is assumed. On the one hand, all tethers will be subject
to a certain nominal potential V = 16.5 kV needed for desired propulsive thrust. At the same time,

9
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a modulation ∆Vk can be applied to each tether for attitude control purposes, as will be analyzed
during this project, leading to a different voltage for each tether: Vk =Vw +∆Vk.

On the other hand, solar wind at a distance of 1 AU from Sun is characterized by a typical electric
potential of Vw = 1 kV and a velocity u = 400 km/s. Taking into account that dynamic pressure
exerted by solar wind at that distance is pdyn = 2 nPa and, together with the previous properties, the
positive ion mass density (particle density n times proton mass mp) is directly estimated from:

pdyn = nmpu2 =⇒ nmp =
pdyn

u2 . (2.1)

Besides, the attitude representation requires the use of the following reference frames:

• Principal body reference frame (B). It is directly linked to the spacecraft, jointly moving
with it, centered at its center of mass S, according to Figure 2.1. The unit vectors that define
this reference frame are: îB aligned with first tether (k = 1) in its undeformed shape, ĵB normal
to the previous unit vector and contained in the sail nominal plane, and k̂B normal to this
plane and coincident with n̂.

Figure 2.1 Body reference frame and main geometry of E-sail’s tethers [12].

• Inertial reference frame (I ). It is actually a inertial reference frame with origin at the
E-sail’s center of mass, whose base of unitary vectors (îI, ĵI, k̂I) is coincident with those of
body reference frame B at initial state (when the spacecraft is assumed to have a sail nominal
plane perpendicular to solar wind).

• Auxiliary reference frame (A ). This non-inertial reference system is used to express the
pitch angle (αn) evolution during the attitude change maneuver, between I and B. For this
aim, unit vector ĵA is always coincident with ĵI ; and the other vectors îA and k̂A result from a
rotation of reference frame I around ĵI with an angle αn.

Finally, it is important to define three angles directly involved in E-sail’s dynamics model and
repeteadly used throughout this document. On the one hand, azimuth angles ζk quantifies the angle
between tether k and the first tether k = 1 (or equivalently xB), measured counterclockwise inside
the sail nominal plane:
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Figure 2.2 Definition of pitch and clock angles [12].

ζ ≜

(
2π

N

)
(k−1). (2.2)

These azimuth angles allow to stablish a relationship between local unit vectors for each tether
and body axes, and viceversa:

îB = cosζk îk − sinζk ĵk,

ĵB = sinζk îk + cosζk ĵk,

k̂B = k̂k.

(2.3)

On the other hand, the E-sail orientation is defined by two angles with respect to local solar wind
velocity direction r̂, according to Figure 2.2. First, sail pitch angle αn ∈ [0,π/2] rad is the angle
between Sun direction r̂ and the spacecraft axis zB:

αn ≜ arccos(r̂ · k̂B). (2.4)

Secondly, clock angle δn ∈ [0,2π) rad is the angle between xB axis and the projection of Sun
direction r̂ on the sail nominal plane, and is computed from:

δn ≜


arccos

(
r̂ · îB

||r̂× k̂B||

)
if r̂ · ĵB ≥ 0,

2π − arccos

(
r̂ · îB

||r̂× k̂B||

)
if r̂ · ĵB < 0.

(2.5)

Hence, the unit vector describing the local solar wind direction can be expressed, in body axes,
depending on these two orientation angles:
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r̂ = sinαn cosδn îB + sinαn sinδnĵB + cosαnk̂B. (2.6)

2.1.2 Tether deformed shape model

One of the main points of this project is to assume that tethers are able to deform due to interaction by
means of different forces. In this context, many works are aimed to analyze the tethers’ deformation,
either numerically or analytically.

Figure 2.3 Geometry of a planar tether deformed shape [11].

From now on, the general geometry described in Figure 2.3 is to be considered for a tether k
deforming in its plane (xk,zk), neglecting any transversal displacement yk. In order to clarify in a
simple way the new magnitudes involved, they are enumerated below:

• Tether’s root xk coordinate (xrk
). A tether is typically attached to the spacecraft really close to

its center of mass, and the distance to S, as compared to the great tether’s length (in the order
of kilometers), allows to neglect it, hence: xrk

≃ 0.

• Tether’s tip xk coordinate (xtk ). Specially in a Sun-facing configuration, tethers’ deformation
in zk is quite small (in the order of meters) as compared to tethers’ length (in the order of
kilometers), so it will be considered that xtk ≃ L. However, to expose the deformed tether
shape model in this section, it is kept.

• Deformed shape function fk(xk). It describes the displacement of a tether’s point located at
xk in direction zk.

• Position vector dk. This vector has its origin at spacecraft’s center of mass S and ends on
each point of the deformed shape’s curve:

dk = xk îk + fkk̂k. (2.7)

• Tether’s natural curve coordinate (sk). It is the distance from the root sk = 0 to each point of
the tether’s deformed curve. Each differential segment of the curve is analyzed as a differential
dsk, related with fk throughout the following expression:
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dsk =
√

1+( f ′k)
2dxk. (2.8)

• Tether’s tangential unit vector (ŝk). It can be computed from the differential of the position
vector ddk divided by the differential curve distance dsk:

ŝk =
ddk

dsk
=

dxk îk +d fkk̂k√
1+( f ′k)

2dxk
=

îk + f ′kk̂k√
1+( f ′k)

2
. (2.9)

For our puroposes, we will focus on one particular model, proposed in [11], whose application is
valid for an axisymmetric E-sail with a Sun-facing configuration (i.e., with a reduced pitch angle
αn). However, with the aim of widening the application to non-symmetric operation, it will be
considered that each tether has its own deformed shape function, differing from the original model,
where all tethers would show the same deformation.

This model consists in a simple logarithmic function for fk(xk), modulated by a non-dimensional
shape coefficient blk for each tether describing the tether slope at the root xk = 0:

fk(xk) = blk L ln
(

1+
xk

xtk

)
, (2.10)

f ′k(xk) =
blk

1+ xk
xtk

, (2.11)

f ′k(xk = 0) = blk . (2.12)

In order to complete the model based on Equations (2.10)-(2.12), it is necessary to compute both
the shape coefficients (blk ) and tip coordinates (xtk ) for each tether. To do so, a system of equations
is solved numerically, containing two groups of equations:

• For xtk calculation, we use the definition of total lenght in curve coordinates; however, this
will only be used to check the hypothesis xtk ≃ L and, after this system of equations, that
consideration is to be applied to subsequent expressions:

L =
∫ sk(xtk )

sk(0)
dsk(xk) =

∫ xtk

0

√
1+( f ′k)

2dxk =
∫ xtk

0

√√√√1+

(
blk

1+ xk
xtk

)2

dxk. (2.13)

• In the case of shape coefficients, the procedure and considerations followed in [11] are applied,
but not enforcing Sun-facing conditions. Therefore, assuming that the tether does not have
bending stiffness, only internal tension acts tangential to its neutral axis. Consequently,
the tangent vector on any point P of the tether has the same direction of the integral of
the differencial force from P to the tether tip. Translated to tether slope in x = 0 (which is
equivalent to the shape coefficient) and, neglecting the transversal forces, blk are computed
from:

blk = f ′k(xk = 0) =
Fzk

Fxk

, (2.14)

where the forces are:
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Fxk
=
∫ Fxk (xtk )

Fxk (0)
dFxk

(xk),

Fzk
=
∫ Fzk (xtk )

Fzk (0)
dFzk

(xk).

(2.15)

To finalize, it is fundamental to define a proper model for the forces acting on a tether. Between
all forces (gravity, structural bonding to spacecraft, elastic and damping forces, that are not assumed
in this project, as done in [11]), two interactions are mainly considered to affect the tether shape
and its dynamics:

• Inertial forces due to Coriolis’ effect associated to spin around zk axis:

dFωk
= ρdskxkω2 îk, (2.16)

• Coulomb forces due to electrostatic interaction of charged tethers with solar wind ions
(dynamic pressure provoked by solar wind), according to Janhunen and Toivanen’s recent
works of (at a approximate distance of 1 AU from Sun) [17]:

dFsk
= σku⊥kdsk, (2.17)

where σk is a coefficient computed from difference of potential between the tether (Vk) and
solar wind (Vw), and u⊥k is the component of solar wind velocity perpendicular to the tether’s
local tangent unit vector, assuming a purely radial solar wind u = ur̂:

σk = 0.18max(0,Vk −Vw)
√

ε0mpn, (2.18)

u⊥k = u(ŝk × r̂)× ŝk. (2.19)

Therefore, the total force exerted on a tether’s infinitesimal arc-length dsk would be the sum of
these two interactions:

dFk = dFωk
+dFsk

, (2.20)

Expressing the infinitesimal force vector expressed in Equation (2.20) into its three components
in local tether coordinates, one obtains the following:

dFxk
(xk) =

{
ρω2xk +σku [sinαn cosδn sinζk + sinαn sinδn sinζk

−
cos(δn −ζk)sinαn + f ′k cosαn

1+( f ′k)
2

]}√
1+( f ′k)

2dxk,
(2.21)

dFyk
(xk) = σku [−sinαn cosδn sinζk + sinαn sinδn cosζk]

√
1+( f ′k)

2dxk, (2.22)

dFzk
(xk) = σku

[
cosαn −

cos(δn −ζk)sinαn f ′k +( f ′k)
2 cosαn

1+( f ′k)
2

]√
1+( f ′k)

2dxk. (2.23)

Then, it is possible to integrate these magnitudes between the tether root (xk = 0) and tip (xk ≃ L)
to compute the components of the total force acting on a tether k:
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Fxk
= ρω2L2g1(blk)+σkuL

{
sinαn cosδn cosζkg2(blk)+ sinαn sinδn sinζkg2(blk)

−cos(δn −ζk)sinαng3(blk)− cosαng4(blk)
}
,

(2.24)

Fyk
= σkuL(−sinαn cosδn sinζk + sinαn sinδn cosζk)g2(blk), (2.25)

Fzk
= σkuL

{
cosαng2(blk)− cos(δn −ζk)sinαng4(blk)−g5(blk)

}
, (2.26)

where five auxiliar functions containing the integrals and only depending on shape coefficient
blk have been defined in order to facilitate comprehension and future calculations (e.g., derivatives
with respect to shape coefficient), and considering variable change x = xk/L:

g1(blk) =

∫
1

0
x

√
1+
(

blk
1+ x

)2

dx =
(

1
2
(1+ x)

√
(1+ x)2 +b2

lk

+
b2

lk
2

ln

∣∣∣∣∣1+ x+
√
(1+ x)2 +b2

lk

blk

∣∣∣∣∣+ blk
2

ln

∣∣∣∣∣
√
(1+ x)2 +b2

lk

blk
+1

∣∣∣∣∣
−

blk
2

∣∣∣∣∣
√
(1+ x)2 +b2

lk

blk
−1

∣∣∣∣∣−√(1+ x)2 +b2
lk

x=1

x=0

,

(2.27)

g2(blk) =

∫
1

0

√
1+
(

blk
1+ x

)2

dx =

−
blk
2

ln

∣∣∣∣∣
√
(1+ x)2 +b2

lk

blk
+1

∣∣∣∣∣
+

blk
2

∣∣∣∣∣
√
(1+ x)2 +b2

lk

blk
−1

∣∣∣∣∣+√(1+ x)2 +b2
lk

x=1

x=0

,

(2.28)

g3(blk) =

∫
1

0

dx√
1+
(

blk
1+ x

)2
=
(√

(1+ x)2 +b2
lk

]x=1

x=0
, (2.29)

g4(blk) =

∫
1

0

blk
1+ x√

1+
(

blk
1+ x

)2
dx =

(
blk ln

∣∣∣∣∣ 1
blk

(x+1+
√
(1+ x)2 +b2

lk

∣∣∣∣∣
]x=1

x=0

, (2.30)

g5(blk) =

∫
1

0

(
blk

1+ x

)2

√
1+
(

blk
1+ x

)2
dx =

(
blk ln

∣∣∣∣∣ tan
(

1
2

arctan
(

1+ x
blk

)) ∣∣∣∣∣
]x=1

x=0

. (2.31)

At this point, all the elements needed to solve Equations (2.13) and (2.14) and, thus, to compute
both shape coefficients and tethers’ tip xk coordinate, have been exposed.
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Finally, it is important to remark that, in an initial Sun-facing configuration, all tethers would
have the same deformed shape, thus being:

σ = 0.18max(0,V −Vw)
√

ε0mpn,

bl =
2σu

ρω2L
.

(2.32)

2.1.3 E-sail torque

Before describing the E-sail’s attitude dynamic model, it is fundamental to introduce the torque
components acting on each tether, which are directly influenced by the previous shape model.
According to the assumptions made before, the infinitesimal force acting on a infinitesimal segment
of tether k mainly comes from two interactions: Coriolis effect and solar wind dynamic pressure.
Hence, the resulting infinitesimal torque at the spacecraft’s center of mass (S) is computed from the
cross product between the position vector dk and that force:

dTk = dk ×dFk = dEk îB +dFk ĵB +dGk k̂B, (2.33)

where [dEk,dFk,dGk] are the infinitesimal torque components in principal body reference frame
(B):

dEk =

{
xk sinζk

[
σkucosαn −

f ′kσku(sinαn cos(δn −ζk)+ f ′k cosαn)

1+( f ′k)
2

]
− fk sinζk

[
ρxkω2 −

σku(sinαn cos(δn −ζk)+ f ′k cosαn)

1+( f ′k)
2

]
− fkσkusinαn sinδn

}√
1+( f ′k)

2dxk,

(2.34)

dFk =

{
−xk cosζk

[
σkucosαn −

f ′kσku(sinαn cos(δn −ζk)+ f ′k cosαn)

1+( f ′k)
2

]
+ fk cosζk

[
ρxkω2 −

σku(sinαn cos(δn −ζk)+ f ′k cosαn)

1+( f ′k)
2

]
+ fkσkusinαn cosδn

}√
1+( f ′k)

2dxk,

(2.35)

dGk = σkuxk sinαn sin(δn −ζk)
√

1+( f ′k)
2dxk. (2.36)

In order to obtain the total E-sail’s torque in its center of mass, it is necessary to integrate
[dEk,dFk,dGk] along local coordinate xk to compute the total torque due to tether k and, finally, one
has to sum the contributions of all N tethers:

Tk =
∫ Tk(L)

Tk(0)
dTk(xk), (2.37)

T =
N

∑
k=1

Tk. (2.38)

This torque model is valid for general E-sail attitude configurations (within the hypothesis
described in Section 2.1.1 and Section 2.1.2); however, the integration and derivation of Equations
(2.34), (2.35) and (2.36) require the use of numerical methods. Since these computations are
necessary afterwards for control law design; for this purpose only, we will consider also the
simplified analytical expressions for torque components in [12]:
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Ek = uL2σk

{
blk sinαn [cos(δn −ζk)sinζk(ln8−2)− sinδn(ln4−1)]+

cosαn sinζk

2

}
, (2.39)

Fk = uL2σk

{
blk sinαn [cosδn(ln4−1)− cos(δn −ζk)cosζk(ln8−2)]− cosαn cosζk

2

}
, (2.40)

Gk = uL2σk

{
sin(δn −ζk)sinαn

2

}
. (2.41)

These expressions were initially proposed for Sun-facing conditions and symmetrical operation
(all tethers have the same deformed shape and, thus, equal shape coefficient). Nevertheless, we have
already introduced blk instead to have an approach to non-symmetrical operation.

2.2 Theory of attitude dynamics

This section summarizes all the concepts related to attitude representation, kinematics and dynamics
[18], particularly focusing on the E-sail’s attitude using Euler angles, according to the model exposed
in Section 2.1.

2.2.1 Attitude representation

A spacecraft’s (or any other vehicle or object) attitude is defined as its relative orientation with
respect to a certain reference frame. In this particular case, the E-sail attitude is the orientation
of the principal body reference frame with respect to the inertial reference frame, considering the
spacecraft as a rigid body.

Attitude can be represented using many mathematical constructions defined by a given number
of parameters, such as: Euler angles, Director Cosine Matrix (DCM), Euler’s angle and axis, quater-
nions, Rodrigues parameters, etc. Each representation has different particularities and there exist
transformation relationships between them; hence, one may choose an attitude representation whose
characteristics better fits in the problem to be solved.

In this context, it is important to remark that an attitude representation method may show two
particularities. On the one hand, a representation is said to present ambiguities when at least two
different combinations of parameters actually represent the same attitude. On the other hand, mini-
mal representations (i.e., representations that use only 3 parameters) always have singularities. Both
the ambiguities and singularities can be avoided by reducing the total possible set of parameters to
the so-called "shadow set".

Regarding E-sail attitude representation, in this project we will use Euler angles {φ ,θ ,ψ} with
the following rotational sequence 3(ψ)→ 1(φ)→ 2(θ), as done in [12]:

I
ψ−→
zI

S1
φ−→

xS1

S2
θ−→

yS2

B, (2.42)

where, to obtain the attitude, we rotate the inertial axes I around its zI axis with an angle ψ ,
reaching a first auxiliar reference frame, S1. The same is done with this reference frame, rotating
around its axis xS1

with an angle φ and, finally rotating the resulting S2 around its yS2
axis with an

angle θ to reach body axes, B.
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The director cosine matrices associated to each of these three basic rotations are:

CS1
I =

 cosψ sinψ 0
−sinψ cosψ 0

0 0 1

 , CS2
S1
=

 1 0 0
0 cosφ sinφ

0 −sinφ cosφ

 , CB
S2
=

 cosθ 0 −sinθ

0 1 0
sinθ 0 cosθ

 .
(2.43)

Therefore, using the composition property of DCMs, we can obtain the DCM associated to our
proposed set of Euler angles, through the following matrix product:

CB
I =CB

S2
CS2

S1
CS1

I , (2.44)

CB
I =

 cosθ cosψ − sinθ sinψ sinθ cosθ sinψ + sinθ sinφ cosψ −sinθ cosφ

−cosφ sinψ cosψ cosφ sinφ

sinθ cosψ + sinφ cosθ sinψ sinθ sinψ − sinφ cosθ cosψ cosθ cosφ

 . (2.45)

In addition, it is possible to relate these Euler angles to the previously defined E-sail’s orientation
angles αn and δn. So, taking into account that:

I
αn−→
yI

A
δn−→
zA

B, (2.46)

the following relationships are deduced:

cosαn = cosφ cosθ ,

sinαn sinδn = sinφ , (2.47)
sinαn cosδn =−cosφ sinθ .

2.2.2 Attitude kinematics and dynamics

Once we have defined and exposed all basic hypothesis, reference frames, the different selected
models for E-sail deformed shape and dynamics and, recently, the attitude representation; we have
set all conditions needed to set the differential equations that govern the spacecraft’s rotational
motion. As it will be seen, this movement is described by a system of three attitude kinematic
equations and three dynamic equations, six in total, that allow to compute the six corresponding
state variables (Euler angles and rotation velocity components).

Attitude kinematic equations

Firstly, the attitude kinematics is represented using Euler angles, with the previously defined
sequence. To do so, it is known that the body reference frame’s angular velocity (the same as the
spacecraft’s) with respect to the inertial reference frame, and expressed in body axes, is equal to the
sum of the angular velocities of the three basic rotations defining the Euler angles’ sequence:

ΩΩΩ
B
B/I = ΩΩΩ

B
B/S2

+ΩΩΩ
B
S2/S1

+ΩΩΩ
B
S1/I. (2.48)

All these velocities, expressed in their respective reference frames, are defined as:

ΩΩΩ
B
B/I =


Ωx
Ωy
Ωz

 , ΩΩΩ
B
B/S2

=


0
θ̇

0

 , ΩΩΩ
S2
S2/S1

=


φ̇

0
0

 , ΩΩΩ
S1
S1/I =


0
0
ψ̇

 .

(2.49)
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However, we need all of them to be expressed in the same reference frame, actually, in body axes.
This is easily done using the corresponding DCM transformations, as follows:

ΩΩΩ
B
B/I = ΩΩΩ

B
B/S2

+CB
S2

ΩΩΩ
S2
S2/S1

+CB
S2

CS2
S1

ΩΩΩ
S1
S1/I. (2.50)

Finally, developing Equation (2.50) and inverting matrices, we reach to the following matrix
expression that define the attitude kinematic equations for the selected Euler angles:

φ̇

θ̇

ψ̇

=

 cosθ 0 sinθ

tanφ sinθ 1 − tanφ cosθ

−sinθ secφ 0 cosθ secφ


Ωx
Ωy
Ωz

 . (2.51)

Attitude dynamic equations

The attitude dynamic in a rigid solid is described from Euler equations, that relate the time-evolution
of the angular velocity and the action of the external torque applied to the solid:

IΩ̇ΩΩ+ΩΩΩ× (IΩΩΩ) = T. (2.52)

The general expression in Equation (2.52) is particularized and simplified to the hypothesis
formulated in Section 2.1 for E-sail case (axial symmetry for inertia matrix and previously described
torque components), obtaining the differential equations for attitude dynamics:

Ω̇x =
It − Iz

It
ΩyΩz +

E

It
,

Ω̇y =
Iz − It

It
ΩxΩz +

F

It
, (2.53)

Ω̇z =
G

Iz
.

2.3 Non-dimensional variables and movement equations

This final section aims to summarize the movement equations that are going to be used from now
on to study E-sail’s attitude change maneuvers, but also to introduce the non-dimensional variables
to be used:

X =



φ

θ

ψ

ωx
ωy
ωz


=



φ

θ

ψ

Ωx/ω

Ωy/ω

Ωz/ω


, ΓΓΓ =



Γ1
Γ2
...
Γk
...
ΓN


=

1
σ



σ1
σ2
...
σk
...
σN


, t∗ = ωt, (2.54)

where X is the vector of state variables, ΓΓΓ is the vector of control variables (which depend on the
voltage modulation) and t∗ is the non-dimensional time. The reason to use these non-dimensional
variables is to reduce possible numerical errors due to the spread of very high values.
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f1 ≡
dφ

dt∗
= ωx cosθ +ωz sinθ ,

f2 ≡
dθ

dt∗
= ωy − (ωz cosθ −ωx sinθ),

f3 ≡
dψ

dt∗
= (ωz cosθ −ωx sinθ)secφ ,

f4 ≡
dωx

dt∗
=

It − Iz

It
ωyωz +

E

Itω2 , (2.55)

f5 ≡
dωy

dt∗
=

Iz − It
It

ωxωz +
F

Itω2 ,

f6 ≡
dωz

dt∗
=

G

Itω2 .

As a result, the movement equations, joined up and expressed in terms of non-dimensional
variables, are shown in Equation (2.55). Here we can directly identify all state variables, but it
is important to remark that the torque components appearing depend both on state and control
variables.



3 Control law design

The aim of this chapter is to present the attitude control problem that wants to be solved and
propose an appropriate control law. Then, Section 3.1 describes, for an E-sail, the attitude

change maneuver that will be studied and, afterwards, Sections 3.2-3.4 expose all the necessary
expressions and developments to design a controller suitable for the desired maneuver, which will
be based in LQR method. Finally, a LQG-based controller is designed according to Section 3.5, in
order to manage noise in measurements and disturbances.

3.1 Problem statement

Given an electric solar sail described by assumptions and dynamic model presented in Chapter 2,
we will consider that it is initially in a Sun-facing configuration (i.e., pitch angle αn0

= 0) shown in
Figure 3.1, and rotating around its symmetry axis zB with an angular velocity ω . This yields to the
following initial conditions, expressed by the non-dimensional state variable vector:

X0 = X(t∗ = 0) =



φ0
θ0
ψ0
ωx0

ωy0

ωz0


=



0
0
0
0
0
1


. (3.1)

Indeed, this initial attitude corresponds to body axes coincident with inertial reference frame,
defined in Section 2.1.1. Another initial condition to be fixed is the E-sail’s distance with respect
to the Sun, as Coulomb forces due to solar wind acting on the tethers actually decay with 1/r.
Therefore, in order to use expression 2.17, that distance is set to 1 AU for our analysis.

Starting from this initial orientation, we want the E-sail to perform a pitch change maneuver from
αn0

= 0 to a certain desired value of pitch angle αn f
, that will lead to a final attitude represented in

Figure 2.2. This maneuver can be performed throughout different strategies; for example, Bassetto
et al., in [12], propose an active control law; whereas Pérez et al., in [2], use LQR control instead.

The design methodology used in this project is fundamentally based on these two references.
Thus, according to [2], the maneuver is divided into two well-differentiated phases where LQR
method is applied: firstly, a tracking phase until maneuver time t∗m where the E-sail is controlled to
follow a certain desired evolution of the pitch angle along time (α̃n(t∗)) and, afterwards, a regulation
phase from t∗m to the end of operation or simulation t∗f aimed to stabilize the spacecraft around the

21
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final desired attitude.

Figure 3.1 Initial attitude situation [12].

From reference [12] we take the reference evolution of pitch angle for tracking phase, which
assumes an E-sail rotation around yB axis with value αn (which is expressed by auxiliary reference
frame A defined in Section 2.1.1). This desired evolution (and its derivatives with respect to time)
is expressed in Equations (3.2-3.4) and corresponds to a slew maneuver that allows to rotate the
spacecraft from Sun-facing configuration to αn f

in a time t∗m.

α̃n(t∗) =
6αn f

2(t∗m)2

[
(t∗)2 − 2

3
(t∗)3

t∗m

]
(h(t∗)−h(t∗− t∗m))+αn f h(t∗− t∗m), (3.2)

˙̃αn =
dα̃n

dt∗
(t∗) =

6αn f

(t∗m)2

[
t∗− (t∗)2

t∗m

]
(h(t∗)−h(t∗− t∗m)) , (3.3)

¨̃αn =
d2

α̃n

dt∗2 (t∗) =
6αn f

(t∗m)2

[
1− 2t∗

t∗m

]
(h(t∗)−h(t∗− t∗m)) , (3.4)

where h(t∗) is the Heaviside step function, used to maintain the pitch constant at final value after
the slew maneuver ends at t∗m.

However, as stated in 1.4, our dynamic model is extended to non-symmetrical configuration,
where each tether is allowed to have a different shape coefficient blk and, thus, a different deformed
shape depending on the orientation from Sun and the voltage modulation applied to each of them
independently.

Additionally, we will consider that the E-sail’s state cannot be directly measured, but estimated
from gyroscopes measurements. These sensors only provide a measurement for the angular veloci-
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ties, from which the full state composed by Euler angles and angular velocities has to be estimated.
Nevertheless, in reality, the sensors show uncertainty and the dynamic system itself may suffer
disturbances, that introduce noise.

This problem will be solved in Section 3.5, introducing a Linear Quadratic Estimator (LQE),
or Kalman filter, which is able to estimate the E-sail’s state from gyroscopes measurements and
filter the noise sources mentioned. This estimator is used together with LQR controller, jointly
constituting a Linear Quadratic Gaussian controller (LQG).

3.2 Linearization

As stated in Section 3.1, the objective is to design a control law making use of LQR method
[18]. For this purpose, it is fundamental to linearize the system of differential equations expressed
in Equation (2.55) that govern the E-sail’s rotational movement. Specifically, this linearization
process is performed for each of the two phases defined in Section 3.1: a first tracking phase where
linearization is done around a reference trajectory that allows to maneuver from initial to final
desired attitude and, finally, a regulation phase aimed to maintain the attitude close to the final
attitude, with state variables reaching steady state.

3.2.1 Reference values

Reference values in regulation phase

In the case of regulation, reference values for state variables are obtained by fixing some of the
variables according to desired final state, being all of them constant in steady state, except from
Euler angle ψ , as the spacecraft would continue rotating around its spin axis at constant velocity. In
this way, we first fix the reference pitch angle to the desired final value α

re f
n = αn f

, together with
two more variables that are also imposed: φre f = 0 and ωzre f

=1, assuming a dynamic equilibrium
where the spacecraft continues spinning around zB axis in steady state.

Using these conditions and, just applying Equation (2.47), reference clock angle would be
δ

re f
n = π rad and, also, θre f = α

re f
n . After that, the three missing state variables are obtained from

kinematic differential equations ( f1, f2 and f3 in Equation 2.55) with time-derivatives set to zero:
ωyre f

= 0, ωxre f
= − tanθre f and ψ̇re f = ω/cosθre f , from which ψre f = t∗/cosθre f . As a result,

reference state variables for regulation phase are summarized in Equation (3.5).

Xre f =



φre f
θre f
ψre f
ωxre f

ωyre f

ωzre f


=



0
αn f

t∗/cosθre f
− tanθre f

0
1


. (3.5)

Furthermore, reference values for control variables Γ
re f
k are obtained minimizing function Φ(ΓΓΓ)

in Equation 3.6:

min Φ(ΓΓΓ) = Γ2
1 +Γ2

2 +Γ2
3 + ...+Γ2

N , (3.6)

subject to dynamic Euler equations ( f4, f5 and f6 in Equation 2.55), particularized using reference
state variables and expressed in steady state:
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G1(ΓΓΓre f )≡
It − Iz

It
ωyre f

ωzre f
+

E (ΓΓΓre f )

Itω2 = 0,

G2(ΓΓΓre f )≡
Iz − It

It
ωxre f

ωzre f
+

F (ΓΓΓre f )

Itω2 = 0, (3.7)

G3(ΓΓΓre f )≡
G (ΓΓΓre f )

Izω
2 = 0.

To perform the minimization, Lagrange’s multipliers theorem is applied, introducing Lagrange’s
multipliers [κ1,κ2,κ3] and the N equations in (3.8):

∂Φ(ΓΓΓre f )

∂Γ
re f
k

−κ1
∂G1(ΓΓΓre f )

∂Γ
re f
k

−κ2
∂G2(ΓΓΓre f )

∂Γ
re f
k

−κ3
∂G3(ΓΓΓre f )

∂Γ
re f
k

= 0 with k = 1,...,N (3.8)

So, solving N +3 equations (3.7)-(3.8) we can compute the N reference control variables Γ
re f
k

plus the 3 Lagrange’s multipliers. However, unlike it would happen with simplified deformed shape
model, where the system of equations is completely linear [2], in this project there are non-linear
dependencies inside the torque components.

In more detail and, according to Equations (2.39)-(2.41), torque components depend on the control
variables Γk apparently linearly; however, we are assuming a shape coefficient model depending
also on σk = σΓk, breaking linearity. Therefore, a special numerical process has to be defined to
solve system of equations (3.7)-(3.8) used for minimization:

1. Compute shape coefficients blk using α
re f
n and δ

re f
n , expressing them as function of control

variables Γ
re f
k , which are unknowns.

2. Calculate torque components as functions of Γ
re f
k , using equations (2.39)-(2.41).

3. Compute the first derivatives of torque components with respect to σ
re f
k , according to Appendix

B.1, as functions of Γ
re f
k

4. Calculate the first derivatives of Φ, G1, G2 and G3 with respect to Γ
re f
k , as functions of Γ

re f
k ,

using Equation 3.9:
∂Φ(ΓΓΓ)

∂Γ
re f
k

= 2Γ
re f
k ,

∂G1(ΓΓΓre f )

∂Γ
re f
k

=
σ

Itω2

∂Ek(ΓΓΓre f )

∂σk
,

∂G2(ΓΓΓre f )

∂Γ
re f
k

=
σ

Itω2

∂Fk(ΓΓΓre f )

∂σk
,

∂G3(ΓΓΓre f )

∂Γ
re f
k

=
σ

Izω
2

∂Gk(ΓΓΓre f )

∂σk
.

(3.9)

5. Solve numerically the system of equations (3.7)-(3.8) with Γ
re f
k and Lagrange’s multipliers as

unknowns.

Reference values in tracking phase

Regarding the tracking phase, the selected reference movement corresponds to the slew maneuver
defined in Section 3.1, which allows to change the pitch angle from zero (Sun-facing configuration)
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to the final desired orientation. As a consequence, this phase is a transient regime where many of
the reference values for state and control variables will depend on time.

Specifically, the reference pitch angle is selected to have the same evolution as the slew maneu-
ver described in Equation (3.2), i.e. α

re f
n (t∗) = α̃n(t∗). Besides, the same reference values as in

regulation phase are assigned to variables φ and ωz, this is: φre f = 0 and ωzre f
= 1.

On the one hand, after imposing these reference values, a similar deduction is performed to obtain
the rest of reference state variables. Thus, δ

re f
n = π rad and θre f (t∗) = α

re f
n (t∗) are computed from

Equation (2.47), where θre f now depends on time as αnre f
does. Due to this fact, the remaining

reference state variables will vary also with time, as they are deduced from kinematic differential
equations in (2.55). All these values are gathered in Xre f (t∗):

Xre f (t∗) =



φre f (t∗)
θre f (t∗)
ψre f (t∗)
ωxre f

(t∗)
ωyre f

(t∗)
ωzre f

(t∗)


=



0
α̃n(t∗)∫ t∗

0 1/cosθre f (t ′)dt ′

− tanθre f (t∗)
˙̃αn(t∗)

1


. (3.10)

On the other hand, reference control variables (ΓΓΓre f (t∗)) are also computed by minimizing the
function expressed in Equation (3.11), which is solved throughout the algebraic system of equations
composed by dynamic differential equations (3.12) and applying Lagrange’s multipliers theorem
(3.13):

min Φ(ΓΓΓ,t∗) = Γ2
1(t

∗)+Γ2
2(t

∗)+Γ2
3(t

∗)+ ...+Γ2
N(t

∗), (3.11)

G1(ΓΓΓre f , t∗)≡
It − Iz

It
ωyre f

(t∗)ωzre f
(t∗)+

E (ΓΓΓre f , t∗)
Itω2 − ω̇xre f

(t∗) = 0,

G2(ΓΓΓre f , t∗)≡
Iz − It

It
ωxre f

(t∗)ωzre f
(t∗)+

F (ΓΓΓre f , t∗)
Itω2 − ω̇yre f

(t∗) = 0, (3.12)

G3(ΓΓΓre f , t∗)≡
G (ΓΓΓre f , t∗)

Izω
2 − ω̇zre f

(t∗) = 0,

∂Φ(ΓΓΓre f ,t∗)

∂Γ
re f
k

−κ1(t∗)
∂G1(ΓΓΓre f ,t∗)

∂Γ
re f
k

−κ2(t∗)
∂G2(ΓΓΓre f ,t∗)

∂Γ
re f
k

−κ3(t∗)
∂G3(ΓΓΓre f ,t∗)

∂Γ
re f
k

with k= 1,...,N.

(3.13)
In particular, this system of equations has to be solved using the reference values for the state

variables at each time instant during the tracking maneuver. Besides, the first derivatives of non-
dimensional angular velocities with time are appearing now in dynamic equations (as compared to
regulation, where they are constant and, hence, their derivatives are null), so they are calculated
from derivation of (3.10):

ω̇xre f
(t∗) =−sec2 α̃n(t∗) ˙̃αn(t∗),

ω̇yre f
(t∗) = ¨̃αn(t∗), (3.14)

ω̇zre f
(t∗) = 0.
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3.2.2 Linearization process

Once the reference values for state and control variables have been determined, to perform the
linearization of movement equations f (2.55) we apply Taylor’s theorem to approximate the non-
linear functions by Taylor’s polynomials of first order around the mentioned reference values. In
general, these linearized equations are expressed in terms of matrices A and B, containing the first
derivatives of each movement equation with respect each variable, multiplied by their corresponding
incremental variables.

Linearized equations in regulation phase

In regulation phase, the linearized differential movement equations are expressed by Equation (3.15):

δ Ẋ(t∗) = AδX(t∗)+BδΓΓΓ(t∗), (3.15)

where A is the 6x6 matrix consisting of the first derivatives of movement equations with respect
to non-dimensional state variables (Euler angles and angular velocities):

A =
∂ f(Xre f ,ΓΓΓre f )

∂X
, (3.16)

B is the 6xN matrix consisting of the first derivatives of movement equations with respect to
non-dimensional control variables:

B =
∂ f(Xre f ,ΓΓΓre f )

∂ΓΓΓ
, (3.17)

and, finally, δX and δΓΓΓ represent the incremental variables for both state and control variables,
with respect to their reference values:

δX = X−Xre f , δΓΓΓ = ΓΓΓ−ΓΓΓre f . (3.18)

All derivatives appearing in Equations (3.16)-(3.17) are defined in Appendix C for regulation
phase. At this point, it is important to remark that ψre f depends on time but, as the derivatives
corresponding to this Euler angle are all zero, it is possible to affirm that matrices A and B are
compose of constant values. This fact will allow to apply later on Section 3.3.1 the LQR method
with infinite horizon for regulation case.

Linearized equations in tracking phase

The linearized spacecraft dynamics around the slew maneuver in tracking phase is characterized by
Equation (3.19):

δ Ẋ(t∗) = A(t∗)δX(t∗)+B(t∗)δΓΓΓ(t∗), (3.19)

where now A and B linearization matrices are dependent on time, as they are again computed
from derivation of differential movement equations (2.55) and particularized for reference values of
state and control variables, which vary with time for tracking phase. Their expressions are described
in Equations (3.20)-(3.21):

A(t∗) =
∂ f(Xre f (t∗),ΓΓΓre f (t∗))

∂X
, (3.20)

B(t∗) =
∂ f(Xre f (t∗),ΓΓΓre f (t∗))

∂ΓΓΓ
, (3.21)

where all the derivatives to compute A and B are again explained in Appendix C.
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Finally, the expressions for incremental state and control variables now contain the time evolution
of references:

δX(t∗) = X(t∗)−Xre f (t∗), δΓΓΓ(t∗) = ΓΓΓ(t∗)−ΓΓΓre f (t∗). (3.22)

3.3 LQR control

Linear Quadratic Regulator (LQR) is an active control method that pretends to stabilize a dynamic
system around a certain desired reference trajectory and minimizing a certain quadratic cost function.
For this purpose, LQR provides the methodology to find the values of the gain matrix K that is able
to minimize deviations between actual problem variables and their reference values (i.e. incremental
variables δX and δΓΓΓ), hence proposing a linear feedback control law for closed-loop control.

Subsequent sections look into LQR control in more detail, providing specific conditions for
determining the control law and the system controllability, in each of the two phases considered in
this project. Thus, infinite horizon LQR will be applied to regulation phase, where linearization
matrices A and B do not depend on time and the objective is to stabilize the system around the final
attitude; whereas finite horizon LQR is used for tracking phase, where there exists a dependence on
time, as the objective is to follow a certain reference trajectory.

3.3.1 Infinite horizon LQR (regulation phase)

Infinite horizon LQR method applies to linear dynamic systems, whose linearization matrices are
independent on time, as it is the case of our E-sail model in regulation phase, expressed in linearized
differential equations 3.15. Therefore, the objective is, given those equations, to find a feedback
control law that minimizes the following potential:

min J =
∫

∞

0

(
δXT (t∗)QδX(t∗)+δΓΓΓ

T (t∗)RδΓΓΓ(t∗)
)

dt∗, (3.23)

where Q and R are assumed to be two symmetrical matrices, being Q definite positive and R
semidefinite positive. They represent the relative weights assigned to state and control variables,
respectively, and their choice would greatly influence the quality of the controller, provoking either
a smoother or more aggresive response from the dynamic system and hence, a different demand
from control input. In this project, Q and R are determined to be, after a trial and error process:

Q = Id6, R =
1010

V 2
w

IdN , (3.24)

where Idn means the identity matrix of order n.

As stated in Section 3.3 introduction, there exists a linear feedback control law that solves
the optimization problem in Equation (3.23), subject to the linearized dynamic system equations
expressed in Equation (3.15):

δΓΓΓ(t∗) = KδX(t∗). (3.25)

The feedback gain, K, is a matrix of constant elements that is computed from Equation (3.26),
where P matrix results from solving the Algebraic Riccati Equation (3.27):

K =−R−1BT P, (3.26)
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Q+AT P+PA−PBR−1BT P = 0. (3.27)

Finally, it is also fundamental to check the controllability condition for our dynamic system
before solving LQR problem to ensure that it is resolvable. In our E-sail case, with 6 state variables,
the system would be controllable if C = [B AB A2B A3B A4B A5B] matrix has full row rank (if the
number of tethers is N, then the rank should be N).

3.3.2 Finite horizon LQR (tracking phase)

Finite horizon LQR is applied to tracking phase in order to have a more precise control over the
maneuver duration and the resulting attitude evolution, in contrast to regulation phase, when stabi-
lization after reaching the final attitude is the main purpose. In this case, the linearization matrices
A and B depend on time, as they describe a transient regime expressed in Equation (3.19).

Again, the objective is to find a feedback control law that minimizes a certain potential; however,
the dependence on time changes the objective of control problem and, therefore, its solution strategy.
In this case, the potential is computed until a defined time horizon, that is coincident with the desired
tracking phase duration T ∗:

min J = δXT (T ∗)QendδX(T ∗)+
∫ T ∗

0

(
δXT (t∗)Q(t∗)δX(t∗)+δΓΓΓ

T (t∗)R(t∗)δΓΓΓ(t∗)
)

dt∗, (3.28)

where, appart from the previously introduced matrices Q and R representing the relative weights
assigned to state and control variables, respectively, a new matrix Q f in is defined (being also
symmetrical and definite positive), determining the relative weight assigned to the final state. In
this case, these matrices can vary with time, so we will take advantage of this property to make R
increase linearly until reaching the regulation value. As a result, the weight matrices are defined as:

Qend = Id6, Q(t∗) = Id6, R(t∗) =
1010 −104(1− t∗/T ∗)

V 2
w

IdN , (3.29)

The finite horizon LQR problem posed in Equation (3.28), and subject to the linearized dynamic
differential equations (3.19), can be solved using the linear feedback control law in Equation (3.30).
Besides, this control problem does not require a controllability hypothesis, as compared to infinite
horizon LQR, but problems may arise due to controllability loss at some time instant.

δΓΓΓ(t∗) = K(t∗)δX(t∗). (3.30)

The gain matrix K depends on time for tracking and comes from Equation (3.31):

K(t∗) =−R−1BT (t∗)P(t∗), (3.31)

where P matrix is now also dependent on time and results from solving the Riccati Differential
Equation (3.32). This differential equation needs to be solved backwards on time from t∗ = T ∗ to
t∗ = 0, as the boundary condition is given at the end of the maneuver (P(t∗m) = Qend). This is easily
done by applying the variable change t ′ = T ∗− t∗.

−Ṗ(t∗) = Q+AT (t∗)P(t∗)+P(t∗)A(t∗)−P(t∗)B(t∗)R−1BT (t∗)P(t∗), P(T ∗) = Qend . (3.32)
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3.4 Transition from tracking to regulation phase

At this point, the control strategy for both stages of the attitude change maneuver has been defined.
However, if we consider that, at the instant t∗m when the slew maneuver ends, the tracking finite
horizon LQR transfers the control to infinite horizon LQR, there may be a sudden step change in
control variables, that may lead to overshooting in the attitude response, as it is studied in [2].

This issue can be solved in two different ways, that are applied combined in this project:

Delayed transition

This idea is based on extending the tracking phase beyond the slew maneuver duration t∗m, comprising
both the slew maneuver and some determined time interval after, when αnre f

is permanent regime.
Therefore, tracking phase is applied until a selected time T ∗ greater or equal to t∗m, when regulation
control begins.

As the reference pitch angle after t∗m is constant, the tracking controller after that instant behaves
in a more similar way to the regulation phase, as it was a permanent regime. As a consequence, this
helps to stabilize the subsequent regulation phase, because the sudden change of reference variables
and control between phases is reduced.

First order filter

Additionally, a first order filter can be introduced just after the transition instant T ∗ to turn the step
change in control variables into a smooth variation. Then, the feedback control gain matrix for
regulation is modified using the filter expressed in Equation (3.33):

Kmodi f ied
regulation(t

∗) = Ktracking(T ∗)e−c(t∗−T ∗)+Kregulation
(
1− e−c(t∗−T ∗)

)
, (3.33)

where Ktracking(T ∗) is the last gain matrix of tracking phase, which is faded by a rate e−c(t∗−T ∗),
with c = 1000 inversely proportional to the transition duration, while Kregulation gains weight at the
same rate.

3.5 LQG control

In this section, the E-sail control dynamics is modelled according to the control diagram in Figure
3.2. In contrast to Section 3.3, where the system was only composed by a feedback loop using LQR
method, now we consider that the E-sail state (X) cannot be measured directly and there are two
sources of noise.

On the one hand, it is known that the E-sail dynamics is defined, in the ideal case, by Equations
(2.55). However, now we assume that some disturbances appear in terms of angular accelerations
(which may come from neglected gravitational and centrifugal terms, for example). Thus, these
disturbances are modelled as a white gaussian noise with mean zero and covariance V : v ∼ Nn(0,V ).

On the other hand, the E-sail state has to be deduced from sensors measurements y. In our case,
we assume that the E-sail has one optical gyroscope per body axis (three in total) incorporated,
which are able to provide the measurement for angular velocities ΩΩΩ at each instant, with a certain
white gaussian noise with mean zero and covariance W : w ∼ Nn(0,W ).

As a result, the system is defined by:
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Figure 3.2 Linear Quadratic Gaussian control diagram.

Ẋ(t∗) = f (X,ΓΓΓ,t∗)+v(t∗), (3.34)
y(t∗) =CX(t∗)+w(t∗), (3.35)

where C matrix establishes the relationship between the measurements and the system state
variables:

C =

 0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (3.36)

The control problem defined by Equations (3.34)-(3.35) can be solved using Linear Quadratic
Gaussian control (LQG), as the system dynamics can be linearized (as done in Section 3.2) and
it is driven by additive white Gaussian noise. This type of controller combines a Kalman filter to
estimate the state from the measurements and a LQR controller that uses that estimation to determine
a feedback law that is able to minimize a certain quadratic cost function [19].

Therefore, considering the linearized dynamics represented in Equations (3.37), where A and B
linearization matrices are computed according to Section 3.2, the objective of LQG problem is to
minimize the potential J, which is now given in terms of the stochastic expected value ("E[X ]"), as
per Equation (3.38).

δ Ẋ(t∗) = A(t∗)δX(t∗)+B(t∗)δΓΓΓ(t∗)+v(t∗), (3.37)

min J = E
[

δXT (T ∗)QendδX(T ∗)+
∫ T ∗

0

(
δXT (t∗)Q(t∗)δX(t∗)+δΓΓΓ

T (t∗)R(t∗)δΓΓΓ(t∗)
)

dt∗
]

(3.38)
The LQG controller that is able to minimize the cost function J is defined by a LQR controller

with feedback gain matrix K, which is computed as explained in Section 3.3, but where the control
variables are computed from an estimation of the state, denoted by X̂:

ΓΓΓ = K(X̂−Xre f )+ΓΓΓre f . (3.39)

The estimates of the state are given, at each time instant, by a Kalman filter defined by Equation
(3.40):
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˙̂X(t∗) = f (X̂,ΓΓΓ,t∗)+K f (t∗)
(
y(t∗)−CX̂(t∗)

)
. (3.40)

The associated Kalman gain matrix, K f , is optimal minimizing the propagation error of the
stochastic process defined in Equation (3.34), with measurements y. This gain is computed from the
following Riccati differential equation that solves a Linear Quadratic Estimation problem (LQE),
where S = E[X(t∗)XT (t∗)] is the propagation error matrix (covariance of state variables):

Ṡ(t∗) = A(t∗)S(t∗)+S(t∗)AT (t∗)−S(t∗)CTW−1CS(t∗)+V, (3.41)
S(0) = E[X(0)XT (0)].

Solving this differential equation from t∗ = 0 to t∗ = T ∗, S(t∗) is obtained, from which Kalman
gain is finally computed:

K f (t∗) = S(t∗)CTW−1. (3.42)

To conclude, some particularities are remarked. On the one hand, matrices C, V and W can
depend on time, but in this project will be defined as constant values; this fact allows to compute
K in regulation phase using the algebraic Riccati equation instead of the differential one, as all
the matrices involved must be constant (A is constant in regulation phase) to do so. Indeed, for
regulation, the cost potential J is integrated to T ∗ → ∞ and the term of Qend is neglected. On the
other hand, the LQG controller is subject to the separation principle, which allows to design both
the Kalman filter and the LQR controller independently.





4 Results

This chapter contains all the results that allow to validate the applicability and study the behaviour
of the proposed E-sail model, the LQR control and the LQG control with noise. Firstly, Section

4.1 illustrates the non-symmetrical tethers’ deformed shape model. After that, Sections 4.2-4.3 are
dedicated to study LQR and LQG controllers, respectively, analyzing the operating range limited by
saturation, the theoretical limits of the dynamic model and, also, the response under measurements
affected by noise.

4.1 Shape coefficient analysis

One of the main points of innovation in this project is the proposed model for the tethers’ deformed
shape, allowing each tether to deform asymmetrically depending on the E-sail orientation and the
applied voltage. In order to illustrate this idea, two main results are presented hereunder.

On the one hand, Figures 4.1-4.2 represent the dependencies of the shape coefficient with pitch
angle (assuming constant nominal σ = 9.2818 ·10−13 kg/(m s)) and the voltage parameter σ (as-
suming constant pitch αn = 0), studying the first tether (the one aligned with xB) with δn = π rad.

As explained in Section 2.1, the shape coefficient is defined as the tether’s deformed shape slope
at the root and it is directly related to the applied forces. Thus, when increasing the pitch angle,
the perpendicular component of the solar wind diminishes, directly decreasing the electric forces
exerted on the tether; in contrast, these forces are increased with the voltage applied on tethers
(related to parameter σ ). As a consequence, the shape coefficient decreases with the pitch and
linearly increases with σ , as seen in Figures 4.1-4.2.

On the other hand, the actual deformed shape according to our model with non-symmetrical
configuration is depicted in Figures 4.3-4.4, where it is compared to the symmetrical model where
all tethers would deform identically. Variables αn and σk are taken from successive simulations in
Section 4.2, representing a pitch change maneuver to reach 5 and 20 degrees, under LQR control.

Analyzing the resulting deformed shape, we can observe that the symmetrical model provides
exactly the same shape, so it can be used as reference for comparison. Thus, the tethers under
non-symmetrical model experience the expected behaviour: the tethers subject to higher voltage
suffer more deformation and all the tethers reduce their slope when increasing the pitch angle.

To conclude, the symmetrical deformed shape model is defined assuming a Sun-facing configura-
tion, with null pitch angle, so it is logical that both models compared produce similar results at low

33
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pitch angles (until 10 degrees approximately), but differ at higher pitch angles, where Sun-facing
hypothesis is no longer valid as first order approximation. This difference is specially remarkable at
60 degrees (Figure 4.5), where the tethers at lower voltage show a negative deformation due to the
effect of obliquity from Sun.
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Figure 4.1 Shape coefficient blk as function of the pitch angle αn.
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Figure 4.2 Shape coefficient blk as function of the parameter σ .
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Figure 4.3 Tethers’ deformed shape in permanent regime of maneuver until αn f = 5◦ using LQR
control.
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Figure 4.4 Tethers’ deformed shape in permanent regime of maneuver until αn f = 20◦ using LQR
control.

4.2 LQR control results

Hereunder, in this section, the LQR controller designed in Section 3.3 is tested directly on our E-sail
model with 16 tethers. The main objective is to simulate several scenarios with different desired
final pitch angles (αn f ) from 5 to 70 degrees, in order to validate the limits of both the tethers’
non-symmetrical shape model and the LQR control under these assumptions, as compared to the
symmetrical case studied by Pérez et al. [2]
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Figure 4.5 Tethers’ deformed shape in permanent regime of maneuver until αn f = 60◦ using LQR
control.

4.2.1 Analysis with control saturation

Firstly, the pitch change maneuver is studied at low pitch angles, where LQR controller should
behave stable and close to the given reference, with a minimal demand of control voltage (repre-
sented by coefficients σk). Besides, the control power is assumed to be feasible until the saturation
limit σmax = 1.15σ = 1.07 · 10−12 kg/(m s), remarking that σk will represent in this chapter the
increment of voltage with respect to the nominal σ . Hence, the aim is also to verify which is the
maximum pitch angle that can be reached due to this saturation limit.

Consequently, three cases are now studied, taking into account control saturation: maneuver
until final pitch αn f = 5◦, αn f = 20◦ and αn f = 30◦. In general, simulations are performed for a
time-interval of 8 minutes, being the slew maneuver time tm = 2 min and the transition time from
tracking to regulation T = 4 min.

Starting with the most remarkable result, the E-sail response on pitch angle, we know from
reference [2] that, in a symmetrical model where all tethers have the same deformed shape, the
maneuver is limited by saturation at approximately αn f = 15◦. Regarding our model, where each
tether shape is independently determined by the applied voltage and attitude, it is possible to observe
that saturation limit is extended to, approximately, αn f = 28.2◦, as shown in Figures 4.8 and 4.18.

Thus, Figures 4.6-4.7 show a smooth pitch angle response, without overshooting when reach-
ing the desired angle nor appreciable oscillations in permanent regime. Indeed, on the one hand,
αn f = 5◦ response is practically the same as the one obtained in [2], as both models should provide
comparable dynamics until a pitch angle of 10 degrees, where they can be approximated as a Sun-
facing configuration. On the other, αn f = 20◦ response is acceptable and validates the extension of
this project’s E-sail model to a wider range of pitch angles.

However, this operative range finds its limit when simulating a maneuver to αn f = 30◦, which
leads to control power saturation (see Figure 4.9). As a consequence, the maximum pitch angle
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reached with the technological limit set is αnmax
= 28.2◦, demonstrated in Figures 4.8 and 4.18. This

improvement directly enhances the E-sail’s thrust vector orientation capabilities, as an example.
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Figure 4.6 Pitch angle αn evolution using LQR to reach a final pitch αn f = 5◦.
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Figure 4.7 Pitch angle αn evolution using LQR to reach a final pitch αn f = 20◦.
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Figure 4.8 Pitch angle αn evolution using LQR to reach a final pitch αn f = 28.2◦.
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Figure 4.9 Pitch angle αn evolution using LQR to reach a final pitch αn f = 30◦.

Regarding the E-sail state variables, on the one hand, the Euler angles θ and ψ show the expected
reference behaviour and φ suffers some oscillations until reaching a permanent regime with a value
close to the reference (Figures 4.10-4.12).

On the other hand, angular velocities around x and y axes behave as reference state, but the
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nominal angular velocity Ωz experiences a slight increase that can be associated to different dynamic
equilibrium at the new attitude (Figures 4.13-4.15). In fact, this velocity gain is increased when
increasing final pitch, at least inside the current interval of study.
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Figure 4.10 Attitude evolution using LQR to reach a final pitch αn f = 5◦.
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Figure 4.11 Attitude evolution using LQR to reach a final pitch αn f = 20◦.



40 Chapter 4. Results

As additional remark, control saturation effects can be observed in attitude and angular velocity
of αn f = 30◦ case, as some oscillations appear due to the fact that the E-sail’s control power is not
enough to reach the reference state.
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Figure 4.12 Attitude evolution using LQR to reach a final pitch αn f = 30◦.
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Figure 4.13 Angular velocity evolution using LQR to reach a final pitch αn f = 5◦.
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Figure 4.14 Angular velocity using LQR to reach a final pitch αn f = 20◦.
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Figure 4.15 Angular velocity using LQR to reach a final pitch αn f = 30◦.

Finally, the control input resulting from LQR controller is analyzed. In Figures 4.16-4.17, all
the tethers’ voltages stay below the saturation limit and characterized by a smooth evolution to
reach the permanent regime value at the end of the slew maneuver. As expected, the control power
demand increases when asking to reach a bigger final pitch angl. However, this increase is stopped
at saturation limit, as it can be seen in the case of αn f = 30◦ (Figure 4.19), where 6 tethers are
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affected by saturation and cannot achieve the voltage that LQR controller is requiring.
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Figure 4.16 Control variables evolution using LQR to reach a final pitch αn f = 5◦.
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Figure 4.17 Control variables using LQR to reach a final pitch αn f = 20◦.
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Figure 4.18 Control variables using LQR to reach a final pitch αn f = 28.2◦.
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Figure 4.19 Control variables using LQR to reach a final pitch αn f = 30◦.
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4.2.2 Analysis beyond control saturation

The previous section studies are limited by an imposed technological constraint that limits the
maximum voltage which can be applied to a tether in reality. However, we could disregard the
control saturation to analyze the theoretical limits of our E-sail model, just in case those technical
limits are surpassed in future developments. Hence, we perform again the same simulations, but
increasing the desired pitch angles to 45, 60 and 70 degrees, in order to represent the particular
E-sail behaviour at big pitch angles.

Again, beginning with the pitch angle response, Figures 4.20-4.22 represent three paradigmatic
cases:

• When increasing the desired pitch angle to αn f = 45◦, the controller loses some accuracy at
permanent regime, providing a pitch close to the reference but 1 degree lower and, also, with
some non-damped oscillation.

• Around αn f = 60◦, the E-sail’s response is just the expected, like in the cases studied in
Section 4.2.1.

• In the case of αn f = 70◦, the controller does not work anymore as expected, obtaining pitch
angles 10 degrees over the desired one.

As a conclusion, we could affirm that the theoretical validity for the E-sail controller model is
extended until a pitch angle of 65 degrees approximately, which is inside the E-sail’s practical limit
that current studies and simulations are deducing (60-70 degrees) [5].
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Figure 4.20 Pitch angle αn evolution using LQR to reach a final pitch αn f = 45◦.
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Figure 4.21 Pitch angle αn evolution using LQR to reach a final pitch αn f = 60◦.
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Figure 4.22 Pitch angle αn evolution using LQR to reach a final pitch αn f = 70◦.

This behaviour in pitch response can be explained by analyzing the resulting attitude and angular
velocity. Looking into Figures 4.26-4.28, the main difference is observed in Ωz evolution: this
angular velocity increases in αn f = 45◦ case as happened in Section 4.2.1, but remains constant
for αn f = 60◦ and, by contrast, decreases when αn f = 70◦. This evolution impacts directly on ψ

increase rate, as it is shown in Figures 4.23-4.25, and could be related to the pitch response accuracy.
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Figure 4.23 Attitude evolution using LQR to reach a final pitch αn f = 45◦.
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Figure 4.24 Attitude evolution using LQR to reach a final pitch αn f = 60◦.
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Figure 4.25 Attitude evolution using LQR to reach a final pitch αn f = 70◦.
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Figure 4.26 Angular velocity evolution using LQR to reach a final pitch αn f = 45◦.
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Figure 4.27 Angular velocity using LQR to reach a final pitch αn f = 60◦.
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Figure 4.28 Angular velocity using LQR to reach a final pitch αn f = 70◦.

Finally, the control input variables σk are represented in Figures 4.29-4.22, where the typical
behaviour is observed and the maximum values get specially excessive in the case of αn f = 70◦,
where it reaches one order of magnitude above nominal σ .

.
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Figure 4.29 Control variables evolution using LQR to reach a final pitch αn f = 45◦.
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Figure 4.30 Control variables using LQR to reach a final pitch αn f = 60◦.
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Figure 4.31 Control variables using LQR to reach a final pitch αn f = 70◦.

4.3 LQG control results

The aim of this section is to perform a similar study to that performed in Section 4.2, but now
introducing a white Gaussian noise for system disturbance, with standard deviation σv = 10−4 rad/s2,
as well as for gyroscopes’ measurements, with deviation σw = 5 ·10−4 rad/s. In this case, the Linear
Quadratic Gaussian control designed in Section 3.5 is applied, and analyzed during a simulation
time of 12 minutes.

4.3.1 Noise effects on operative maneuver range

Simulating the maneuver with noise inside the pitch operating range deduced in Section 4.2 (i.e.,
from 0 to 28 degrees), the objective is to check if this range is still applicable when applying the
LQG control. Therefore, three cases are studied: final pitch αn f = 5◦ and αn f = 20◦ to verify the
correct behaviour inside the model’s validity pitch interval and, also, the case of αn f = 30◦ to check
saturation limit.

Beginning with pitch angle response, shown in Figures 4.32-4.34, we can state that the LQG
controller is generating an accurate maneuver, filtering the possible mean perturbations, although a
slight (nearly negligible) and stable oscillation around the reference is appreciated at permanent
regime.

At final pitch angle 30 degrees, it is possible to observe again control saturation, that causes a
larger oscillation in permanent regime, altough stably maintained around the saturation limit located
around 28 degrees.

If we look into the simulated gyroscopes’ measurements, represented in Figures 4.35-4.34, it is
possible to compare the noisy angular velocities measurements with the smooth estimates performed
by Kalman filter, which are close to real angular velocities. Here we can observe also how the
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previously commented slight low-frequency oscillation is not completely filtered, specially when
saturation occurs.
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Figure 4.32 Pitch angle αn evolution using LQG to reach a final pitch αn f = 5◦.
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Figure 4.33 Pitch angle αn evolution using LQG to reach a final pitch αn f = 20◦.
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Figure 4.34 Pitch angle αn evolution using LQG to reach a final pitch αn f = 30◦.
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Figure 4.35 Angular velocity measurements evolution for LQG to reach a final pitch αn f = 5◦.
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Figure 4.36 Angular velocity measurements evolution for LQG to reach a final pitch αn f = 20◦.

0 100 200 300 400 500 600 700 800

-0.04

-0.02

0

0 100 200 300 400 500 600 700 800

0

5

10
10

-3

measurement

actual state

0 100 200 300 400 500 600 700 800

0.075

0.08

Figure 4.37 Angular velocity measurements evolution for LQG to reach a final pitch αn f = 30◦.

As the attitude is estimated from the instruments’ measurements using the Kalman filter, the
oscillation effects are propagated to the Euler angles, altough the overall behaviour is comparable to
that studied in Section 4.2.

.
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Figure 4.38 Attitude evolution using LQG to reach a final pitch αn f = 5◦.
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Figure 4.39 Attitude evolution using LQG to reach a final pitch αn f = 20◦.
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Figure 4.40 Attitude evolution using LQG to reach a final pitch αn f = 30◦.

Finally, the tethers’ control coefficients exhibit an analogous behaviour to that of LQR control in
Section 4.2, so they are only depicted in Figures 4.41-4.43.
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Figure 4.41 Control variables evolution using LQG to reach a final pitch αn f = 5◦.
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Figure 4.42 Control variables evolution using LQG to reach a final pitch αn f = 20◦.
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Figure 4.43 Control variables evolution using LQG to reach a final pitch αn f = 30◦.
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4.3.2 Noise effects on great pitch maneuvers

Once the LQG control has been validated inside the operative limits (due to control saturation) of
the E-sail pitch change maneuver, the following step is to test it under great values of the pitch angle,
near to the previously defined theoretical limit of 65 degrees.

Thus, simulating a maneuver until αn f = 60◦, it is possible to observe in Figure 4.44 that this
desired pitch is reached and the final attitude stays close to the reference. Nevertheless, the oscillation
appearing at low pitch angles happens in this case with a greater frequency, although keeping a low
assumable error amplitude.
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Figure 4.44 Pitch angle αn evolution using LQG to reach a final pitch αn f = 60◦.

This stable oscilatory motion in permanent regime is also observed in the state variables and the
measurements, but always being around the defined reference values. In the case of the control
variables, no distinguishable behaviour can be seen.

.
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Figure 4.45 Angular velocity measurements evolution for LQG to reach a final pitch αn f = 60◦.
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Figure 4.46 Attitude evolution using LQG to reach a final pitch αn f = 60◦.
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Figure 4.47 Control variables evolution using LQG to reach a final pitch αn f = 60◦.

4.3.3 Influence of sensor quality on LQG controller response

As an additional study, it is interesting to test the E-sail’s LQG control response under different noise
intensity. Indeed, we have been analyzing a gyroscope with standard deviation σw = 5 ·10−4 rad/s,
but we should study which is the behaviour when using a worse quality sensor in terms of white
Gaussian noise standard deviation.

For this purpose, the E-sail maneuver is simulated under noise deviation σw = 10−2 rad/s and
desired pitch angle of 20 degrees, obtaining the pitch response shown in Figure 4.48. In this case,
the measurement is so corrupted with noise, that the Kalman filter estimation of the E-sail’s state
variables is not so accurate as before. As a result, the final pitch is around half a degree lower from
the desired one.
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Figure 4.48 Pitch angle αn evolution using LQG to reach a final pitch αn f = 20◦, with sensor typical
deviation σw = 10−2 rad/s.
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Figure 4.49 Angular velocity measurements evolution for LQG to reach a final pitch αn f = 20◦,
with sensor typical deviation σw = 10−2 rad/s.
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Figure 4.50 Attitude evolution using LQG to reach a final pitch αn f = 20◦, with sensor typical
deviation σw = 10−2 rad/s.
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Figure 4.51 Angular velocity evolution using LQG to reach a final pitch αn f = 20◦, with sensor
typical deviation σw = 10−2 rad/s.
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Figure 4.52 Control variables evolution using LQG to reach a final pitch αn f = 20◦, with sensor
typical deviation σw = 10−2 rad/s.



5 Conclusions

A new tether deformed shape model has been proposed in this project, in order to study the
E-sail dynamics under non-symmetrical configuration in which each tether is able to deform

independently depending on the applied voltage and the relative orientation.

Firstly, the electric solar sails’ state of art has been reviewed to understand the basic architecture
and potential applications of this innovative propellantless propulsive technology, focusing on the
current advances in terms of attitude control. Following the related works performed by Bassetto et
al. [1] and Pérez et al. [2], where their symmetrical model allows attitude control (using direct and
LQR control, respectively) valid for low pitch angles near to Sun-facing configuration, the objective
of this project has been set to achieve controllability for a higher pitch range.

For this purpose, the non-symmetrical model for tethers’ deformation has been defined in Section
2.1, based on the same logarithmic function for the deformed shape, but now proposing a procedure
to compute the shape coefficient depending on the attitude and the applied voltage, independently
for each tether. As a consequence, the expressions for the E-sail’s torque components have been
reformulated to include the new deformed shape model.

This model has been first analyzed in Section 4.1, looking into the dependencies of the shape
coefficients, deducing two different behaviours: on the one hand, the tethers’ deformation increases
with the control voltage applied, as the solar wind forces would be higher; and, on the other, this
deformation decreases when increasing the pitch angle, as the forces diminish when perpendicular
component of solar wind velocity is lower, being the maximum deformation produced at Sun-facing
configuration.

After that, LQR control is applied and several maneuvers are simulated to study the E-sail be-
haviour (Section 4.2. First of all, assuming control saturation, we have determined the maximum
pitch angle that can be reached when applying LQR to our non-symmetrical E-sail model. This
operative limit is located at 28 degrees, approximately, which is bigger to that reached on the
reference [2], at 15 degrees. Besides, inside this practical maneuvering range, the E-sail response in
terms of attitude, angular velocity and control voltage has been observed to be stable and accurate,
near to the stablished reference trajectory.

Obviating saturation, LQR control has been tested at high final pitch angles, to set the theoretical
validity limits in case that propulsive technology is developed in the future and would allow a higher
control voltage that the one considered. Therefore, a maximum feasible pitch angle of 65 degrees is
theoretically obtained, being the demand on control power increased when increasing the desired
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final pitch. Besides, at intermediate pitch angles, around 40 and 50 degrees, a slight but stable
oscillation appears on the attitude response, losing a bit of accuracy, but staying close to the desired
reference.

Finally, the E-sail state is considered to be estimated from gyroscopes measurements with a
certain white gaussian noise, as well as a noise that disturbs the system dynamics. In this context,
LQG control is applied (Section 4.3, which is capable of filtering the noise in mean and providing
an accurate attitude response at the maneuvering ranges studied for LQR. However, a low frequency
oscillation not filtered from the noise is propagated to the state estimates and, then, to the pitch
response, altough its amplitude can be considered negligible at low pitch angles, being more relevant
at higher pitch angles. Additionally, by worsening the standard deviation quality of the sensors, we
have observed how the accurate of the controller is affected.

To conclude, several related future works that could be performed are commented. On the one
hand, appart from the maneuvering feasibility that has been analyzed in this project according to
the control capabilities, the operative range should be studied in terms of mechanical and structural
capabilities, and test the actual behaviour with a prototype in reality. On the other hand, a deeper
analysis of perturbations and instrumental errors can be performed, using detailed models of the
disturbances sources (e.g. gravitational gradients or neglected centrifugal terms) and more complete
models of the gyroscopes, including noise combined with bias.



A Shape coefficient derivatives

This first appendix is dedicated to the computation of the first derivatives of shape coefficient with
respect to the state and control variables needed for subsequent calculations used for linearization
of dynamic differential equations in Section 3.2.

A.1 Derivatives of shape coefficient with respect to control variables

Firstly, derivating the shape coefficient definition in Equation (2.14) with respect to control variables
σk, with k from 1 to N, the following result is reached:

∂blk
∂σk

=
Fxk

∂Fzk
∂σk

−Fzk

∂Fxk
∂σk

F2
xk

, (A.1)

where the derivatives of the local forces acting on tether k root with control variable σk can be
expressed, using chain rule for derivation and clearing the derivative that wants to be computed, as:

∂Fxk

∂σk
= a1

∂blk
∂σk

+a2, (A.2)

∂Fzk

∂σk
= a3

∂blk
∂σk

+a4, (A.3)

with coefficients a1 to a4 developed in Equations (A.4)-(A.7):

a1 = ρω2L2 ∂g1

∂blk
+σkuL

{
sinαn cosδn cosζk

∂g2

∂blk
+ sinαn sinδn sinζk

∂g2

∂blk
(A.4)

−cos(δn −ζk)sinαn
∂g3

∂blk
− cosαn

∂g4

∂blk

}
,

a2 = uL{sinαn cosδn cosζkg2 + sinαn sinδn sinζkg2 − cos(δn −ζk)sinαng3 − cosαng4} , (A.5)

a3 = σkuL
{

cosαn
∂g2

∂blk
− cos(δn −ζk)sinαn

∂g4

∂blk
− ∂g5

∂blk

}
, (A.6)

a4 = uL
{

cosαng2(blk)− cos(δn −ζk)sinαng4(blk)−g5(blk)
}
. (A.7)
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As a result, we can introduce the linear expressions (A.2)-(A.3) in Equation (A.1), obtaining a
simple analytical expression to compute the derivative of the shape coefficient with respect to the
control variable of tether k:

∂blk
∂σk

=
a4Fxk

−a2Fzk

F2
xk
−a3Fxk

+a1Fzk

. (A.8)

Finally, the derivatives of auxiliar functions with respect to shape coefficient are shown:
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(A.10)
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A.2 Derivatives of shape coefficient with respect to Euler angles

The strategy in this case is similar to that stated in A.1, but we now need to describe the derivatives
of sine and cosine of angles αn and δn with respect to Euler angles φ and θ , as those are the angles
appearing in torque calculations.

Then, working with Equation (2.47) we have that cosαn = cosφ cosθ and sinδn = sinφ/sinαn.
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Besides, it is known that sinαn =
√

1− cos2 αn and cosδn =
√

1− sin2
δn. Therefore, derivating

these expressions and properly applying the chain rule, the derivatives of sine and cosine of the
orientation angles are obtained:

∂ cosαn

∂φ
=−sinφ cosθ , (A.14)

∂ cosαn

∂θ
=−cosφ sinθ , (A.15)

∂ sinαn

∂φ
=

−cosαn√
1− cos2 αn

∂ cosαn

∂φ
, (A.16)

∂ sinαn
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=

−cosαn√
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, (A.17)

∂ sinδn
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∂ sinαn

∂φ

sin2
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, (A.18)

∂ sinδn

∂θ
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∂ sinαn

∂θ
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, (A.19)

∂ cosδn

∂φ
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−sinδn√
1− sin2

δn

∂ sinδn

∂φ
, (A.20)

∂ cosδn

∂θ
=

−sinδn√
1− sin2

δn

∂ sinδn

∂θ
. (A.21)

Additionally, in Equations (2.34)-(2.36) also appears the cosine and sine of the substraction δn−ζk.
Therefore, we have to get the corresponding derivatives of δn from derivation of the relationship
δn = arcsin(sinδn) with chain rule and, then, it is possible to use these values to compute the
derivatives of cos(δn −ζk) and sin(δn −ζk):

∂ cos(δn −ζk)

∂φ
=−sin(δn −ζk)

∂δn

∂φ
, (A.22)

∂ cos(δn −ζk)

∂θ
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, (A.23)
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∂φ
, (A.24)

∂ sin(δn −ζk)
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= cos(δn −ζk)

∂δn

∂θ
, (A.25)
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∂δn
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∂ sinδn

∂φ
, (A.26)

∂δn

∂θ
=

1√
1− sin2

δn

∂ sinδn

∂θ
. (A.27)

Once all these preliminary calculations are performed, then we apply the same procedure as in
A.1 to compute the first derivative of the shape coefficient with respect to the Euler angles. Below
only expressions for φ derivatives are shown; actually, for θ it is only needed to substitute them by
θ derivatives. So, derivating Equation (2.14):

∂blk
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=
Fxk

∂Fzk
∂φ

−Fzk

∂Fxk
∂φ

F2
xk

, (A.28)

where the derivatives of the local forces acting on tether k root with Euler angle φ can be expressed,
using chain rule for derivation and clearing the derivative that wants to be computed, as:

∂Fxk

∂φ
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∂blk
∂φ

+a6, (A.29)

∂Fzk
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with coefficients a5 to a8 developed in Equations (A.31)-(A.34):
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(A.34)

Again, we can introduce the linear expressions (A.29)-(A.30) in Equation (A.28), obtaining a
simple analytical expression to compute the derivative of the shape coefficient with respect to the
Euler angles:
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∂blk
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B Torque components derivatives

Once the derivatives of shape coefficient have been exposed in Appendix A, this appendix is
dedicated to develop the expressions of the partial derivatives of torque components with respect to
both control variables and Euler angles. They are expressed in terms of the torque contribution of a
each tether k; being the total torque the sum from k = 1 to N.

B.1 Derivatives of torque components with respect to control variables

The torque components derived with respect to control variables σk are:

∂Ek

∂σk
=

Ek

σk
+uL2σk sinαn [cos(δn −ζk)sinζk(ln8−2)− sinδn(ln4−1)]

∂blk
∂σk

, (B.1)
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∂blk
∂σk

, (B.2)

∂Gk

∂σk
=

Gk

σk
, (B.3)

where ∂blk/∂σk are computed according to Appendix A.1.

B.2 Derivatives of torque components with respect to Euler angles

The torque components derived with respect to Euler angle φ are:

∂Ek

∂φ
= uL2σk
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where ∂blk/∂φ are computed according to Appendix A.2.

To compute the torque components derived with respect to Euler angle θ , the expressions are
similar, just substituting φ derivations by θ derivations.



C Linearization matrices

This appendix is dedicated to show the components of matrices A and B appearing in linearized
movement equations used for LQR method. In the case of regulation phase, these matrices do not
depend on time, and each column is the result of derivation of equations 2.55 with respect to the
state and control variables, as appropriate. As computations for tracking phase share the same
expressions, but being them particularized for each time instant, this appendix will show only the
results obviating time.

C.1 Matrix A

On the one hand, matrix A is composed of the first derivatives of equations f with respect to non-
dimensional state variables, hence obtaining the components represented in Equations (C.1)-(C.36).

In Equations (C.4)-(C.6) and (C.10)-(C.12), the first derivatives of torque components with
respect to Euler angles φ and θ are computed according to Appendix B.2. It is also important
to remark that Euler angle ψ does not appear in Equation (2.55) and torque components are not
dependent of it, so the derivatives with respect to ψ are all null.

• Matrix A components resulting from φ derivation:

A11 =
∂ f1(Xre f ,ΓΓΓre f )

∂φ
= 0, (C.1)

A21 =
∂ f2(Xre f ,ΓΓΓre f )

∂φ
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A31 =
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2
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• Matrix A components resulting from θ derivation:
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• Matrix A components resulting from ψ derivation:
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• Matrix A components resulting from ωx derivation:
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= 0. (C.24)
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• Matrix A components resulting from ωy derivation:

A15 =
∂ f1(Xre f ,ΓΓΓre f )

∂ωy
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= 0. (C.30)

• Matrix A components resulting from ωz derivation:
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A66 =
∂ f6(Xre f ,ΓΓΓre f )

∂ωz
= 0. (C.36)

C.2 Matrix B

On the other hand, matrix B results from derivation of equations f with respect to each non-
dimensional control variable Γk (with k from 1 to N), where the derivative of torque components
with respect to Γk are computed according to Appendix B.1:
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B1k =
∂ f1(Xre f ,ΓΓΓre f )

∂Γk
= 0, (C.37)

B2k =
∂ f2(Xre f ,ΓΓΓre f )

∂Γk
= 0, (C.38)

B3k =
∂ f3(Xre f ,ΓΓΓre f )
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= 0, (C.39)
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σ
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, (C.41)

B6k =
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σ

Izω
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. (C.42)
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