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A B S T R A C T

Decarbonizing the residential building sector by replacing gas boilers with electric heat pumps will dramatically
increase electricity demand. Existing models of future heat pump demand either use daily heating demand
profiles that do not capture heat pump use or do not represent sub-national heating demand variation. This
work presents a novel method to generate high spatiotemporal resolution residential heat pump demand
profiles based on heat pump field trial data. These spatially varied demand profiles are integrated into
a generation, storage, and transmission expansion planning model to assess the impact of spatiotemporal
variations in heat pump demand. This method is demonstrated and validated using the British power system in
the United Kingdom (UK), and the results are compared with those obtained using spatially uniform demand
profiles. The results show that while spatially uniform heating demand can be used to estimate peak and total
annual heating demand and grid-wide systems cost, high spatiotemporal resolution heating demand data is
crucial for spatial power system planning. Using spatially uniform heating demand profiles leads to 15.1 GW
of misplaced generation and storage capacity for a 90% carbon emission reduction from 2019. For a 99%
reduction in carbon emissions, the misallocated capacity increases to 16.9-23.9 GW. Meeting spatially varied
heating load with the system planned for uniform national heating demand leads to 5% higher operational
costs for a 90% carbon emission reduction. These results suggest that high spatiotemporal resolution heating
demand data is especially important for planning bulk power systems with high shares of renewable generation.
1. Introduction

This paper addresses the research question: What are the implications
of spatiotemporal differences in residential heat pump demand for power
system planning? A data-based, high spatiotemporal resolution model of
heating electrification is compared to a spatially uniform model of heat
pump demand.

Decarbonizing residential heating is crucial to reduce greenhouse
gas emissions in many countries: for instance, 17% of emissions in the
UK came from heating homes in 2019 [1]. In countries like the UK,
where gas is the dominant fuel for residential heating, switching to
electric heat pumps is expected to be the dominant strategy for heating
decarbonization [2]. Based on the 2018 and 2019 British generation
mix, switching from a gas boiler to a heat pump can reduce greenhouse
gas emissions from heating a household by at least 65% [3], and this
reduction will only grow as the UK Government has committed to
decarbonize the electricity supply by 2035.

The electrification of residential heat is expected to be a major
driver of the electricity demand increase in the coming decade. The UK
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Climate Change Committee projects 12 million residential heat pumps
by 2035 in their central scenario, which could add 20 GW of peak
demand to a 50 GW peak system by 2035 [2,4]. Lizana et al. [3]
demonstrated that just 10% of British households switching to heat
pumps could increase peak electricity demand by 4.5%. Accounting for
such a large growth in load is crucial for bulk power system planning.
However, detailed heat pump demand data to support a cost-effective
capacity expansion planning is limited in countries transitioning from
a gas-dominated to a heat pump-dominated residential heating sector.
In particular, a lack of data can make it challenging to capture the spa-
tiotemporal variations in heat pump load that are crucial for planning
where to build new weather-driven renewable capacity.

Several methods have been proposed to models heat pump demand
for power system planning. The most common approaches can be
divided into physics-based modeling, degree-day models, and statistical
models [5]. Each of these approaches projects heating electricity load
at different spatial and temporal resolutions; however, they all have
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important limitations for cost-optimal, high spatial resolution power
system planning.

Physics-based building models use detailed building parameters,
historical weather data, and energy balance equations to calculate
building energy consumption. This approach has been used to project
spatial variation in heating demand in Italy [6] and Texas [7]. How-
ever, physics-based modeling requires a large amount of data about
different regional building archetypes and is computationally intensive.
Moreover, calibrating these models using historical energy demand
requires a large amount of data, as demonstrated in the ResStock
project in the United States [8]. For these reasons, spatiotemporally
granular heat demand profiles from physics-based modeling have not
been incorporated into bulk power system planning. Heinen et al.
[9] use a physics-based model in an investment planning problem for
Ireland. However, they only use a single heat demand profile from a
dwelling model and weather data from Dublin, where one-third of the
Irish population lives. For a wider variety of housing stock and weather
conditions, the data requirements for physics-based modeling of heat
pump demand with high spatial granularity quickly become prohibitive
for power system planning.

Degree-day models use regressions of historical heating demand
against heating degree days to model daily heating demand at high
spatial resolution, but their hourly heating profiles do not reflect
geographically-specific heat pump demand patterns. Many degree-
day models use standard German gas profiles from BDEW, a German
energy industry association [10], to generate hourly heat pump demand
profiles for capacity expansion studies. For instance, the BDEW model
is used to develop the When2Heat model [11], which only provides
one profile for each European country. Similarly, the sector-coupled
PyPSA-Eur model [12] uses hourly gas demand profiles from BDEW.
These gas-based profiles tend to overestimate peak heat pump demand
because gas boilers typically have higher thermal capacities than heat
pumps: in the UK, gas boilers typically have a capacity of 20 to
30 kW, but the median heat pump capacity in a British trial was
just 8 kW [13]. This capacity difference leads to peakier gas demand
profiles compared to more continuous heat pump demand profiles,
and Watson et al. [13] found that using gas demand overestimates
peak heat pump demand by 8% compared to using empirical data
from British heat pump trials. Eggimann et al. [14] use population and
heating degree days to spatially and temporally disaggregate heating
demand and use half-hourly heat pump profiles from Love et al. [4]
based on field trials. However, this set of profiles is limited to just
4 day types: a medium winter weekday, medium winter weekend,
cold winter weekday, and cold winter weekend. Recently, Staffell
et al. [5], introduced a global model for hourly heating and cooling
demand at regional resolution. Because they use globally representative
heating demand profiles for temporal upscaling of heating demand, this
approach is likely to lead to less accurate daily heating profiles than
models based on geographically-specific heat pump trials that reflect
national heating patterns.

Statistical models based on heat pump field trial data have also
been developed recently to predict hourly heat pump demand but
do not account for spatiotemporal demand variation. Watson et al.
[13,15] develop temperature-based statistical models of hourly heat
pump demand based on heat pump field trials; however, they do not
spatially disaggregate demand below the national level. Similarly, Ruh-
nau et al. [16] develop statistical models of hourly heating demand
and coefficient of performance (COP) based on temperature and other
weather variables in Britain at the national level. While Canet et al.
[17] provide annual heating demand for 35,000 local areas in England
and Wales to downscale their statistical model of half-hourly heat pump
demand, they only provide a single heating pattern for air-source and
ground-source heat pumps for the entire region. While these studies
accurately represent hourly variation in heating demand, none of them
2

capture sub-national differences in temporal heating demand.
Despite challenges in modeling spatial and temporal variation in
heat pump demand, several studies suggest that these regional differ-
ences will affect power systems planning for the heating transition.
Previous studies have demonstrated spatial variation in demand growth
from residential heating electrification in the UK [14], Italy [6], and
Texas [7]. However, these studies did not investigate the impact of
these spatiotemporal variations on bulk power system planning.

Spatiotemporal variation in heat pump demand seems likely to im-
pact energy systems planning models given the implications of spatial
and temporal resolution highlighted in other studies. Several studies
on the energy transition have demonstrated the importance of high
spatial and temporal resolution for energy system planning models. For
power systems with high shares of renewable generation, Frysztacki
et al. [18] have demonstrated that capacity expansion models with low
spatial resolution that ignore network congestion can underestimate
costs by up to 23%. Similarly, Heuberger et al. [19] find that using
a high spatial resolution network model to plan investments to meet
electric vehicle (EV) loads reduces the need for dispatchable power
capacity and increases the value of energy storage. Crozier et al. [20]
explored spatiotemporal variation in electric vehicle use and electricity
demand in analyzing how EV charging will impact the transmission and
distribution systems. Jalil-Vega and Hawkes [21] have demonstrated
the importance of using high spatial resolution demand and network
topology in an investment model considering different heat supply
technologies and gas, electricity, and heat network infrastructure.

These recent studies have demonstrated that accounting for spatial
and spatiotemporal variation is crucial in energy systems planning
models. Although several publications have modeled heat pump load,
existing models either do not accurately capture hourly heat pump
usage patterns or do not represent sub-national heating demand vari-
ation (research gap 1). Moreover, no previous study has analyzed the
implications of these spatiotemporal variations for bulk power systems
planning for an entire grid region (research gap 2).

This paper presents a novel method for generating heat pump
demand profiles at high spatiotemporal resolution to support power
system planning. This method balances low data requirements with
data from heat pump field trials that more accurately reflects heat
pump demand patterns (addressing research gap 1). Field trial data
are scaled for multi-regional spatial analysis using weather reanalysis
data that is widely available at high spatial and temporal resolution.
The resulting spatially varied demand profiles are integrated into the
electricity-only PyPSA-Eur generation, storage, and transmission expan-
sion planning model [22] to understand power system implications
and compare different planning scenarios (addressing research gap 2).
The method is applied to a case study in Britain, and the results are
compared to a uniform national-level profile under different policy
scenarios to understand the implications of spatiotemporal variations
in heat pump demand for power systems planning. This study builds
on a previous work that investigates the implications of spatiotempo-
ral differences in heating demand for just three urban areas within
Britain [23]. This work expands the methods by improving model ac-
curacy, incorporating transmission expansion, and including the entire
grid area with interconnected countries.

This study has two main research contributions:

• Introducing a high spatiotemporal resolution model of residential
heat pump demand that combines a statistical model based on
field trial data with high spatiotemporal resolution weather data.
This method represents heat pump demand profiles more accu-
rately than existing degree-day models at higher spatial resolution
than existing statistical models (addressing research gap 1). The
data requirements are limited to heat pump trial data and widely
available ERA5 reanalysis weather data.

• Assessing the implications of spatiotemporal differences in heat
pump demand on bulk power systems planning (addressing re-
search gap 2) through an open-source model available on GitHub

as GeoHeat-GB.

https://github.com/clairehalloran/GeoHeat-GB
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Fig. 1. Summary of data sources, methods, and outputs for this study. Outputs for each step are highlighted in orange.
This paper is structured as follows. First, the methods and data are
described in Section 2. In Section 3, results are discussed, starting with
the projected heat pump demand in Section 3.1, then the power systems
planning results for the central policy scenario and additional scenarios
are discussed in Sections 3.2 and 3.3. Finally, conclusions are presented
in Section 4.

2. Methods and data

The methods and data used in this paper are summarized in Fig. 1.
The input data are obtained from five sources: the European Centre for
Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5), the
UK Centre for Ecology and Hydrology, the Watson et al. [13] model,
the England and Wales Census 2021, and the PyPSA-Eur dataset. The
method is divided into five steps: (1) temperature regions, (2) tem-
perature profiles, (3) heating demand, (4) coefficient of performance
(COP) and (5) capacity expansion model. This last step is built on the
electricity-only version of the capacity expansion model PyPSA-Eur to
incorporate exogenous heating demand into power systems planning.
This modified version of the model and additional documentation are
available on GitHub as GeoHeat-GB.

The input data are further described in Section 2.1, and the methods
are detailed in Sections 2.2 through 2.8.

2.1. Input data

This section describes the input data used in this analysis, as sum-
marized in Fig. 1.

The European Centre for Medium-Range Weather Forecasts Reanal-
ysis v5 (ERA5) provides hourly estimates of climate variables at 0.3
degree (approximately 30 km) spatial resolution from January 1940
to present [24]. In this work, the 2 m air temperature and the soil
temperature level 4 variables are used to calculate heating demand and
heat pump coefficient of performance (COP) as described in Section 2.5.
These parameters represent the air temperature 2 m above the surface
and the temperature of the soil between 1 and 3 m below the surface,
respectively. Weather data from the ERA5 dataset is processed into
hourly renewable onshore wind, offshore wind, solar photovoltaic, and
hydropower generation potential at 0.3 degree spatial resolution using
the Atlite toolkit [25].
3

High-resolution spatial UK population data is used from the UK Cen-
tre for Ecology and Hydrology to determine the layout of households
within the British Grid [26]. This 1 km × 1 km population data is based
on the 2011 Census and Land Cover Map 2015.

A constant occupation of 2.4 people per household is assumed across
the whole of Britain, thus neglecting regional differences in household
size. This assumption is based a population-weighted average of the
average household size in England and Wales in both the 2011 and
2021 Census, which was 2.4 people per household [27], and the
average Scottish household size of 2.14 people in 2020 [28]. This
assumption is validated by comparing modeled annual heating demand
with historical heating demand in Section 2.9.

The model from Watson et al. [13,29] is used to generate half-
hourly heat pump thermal demand profiles for British households based
on average daily outdoor air temperature from ERA5. This model has
two components shown in Fig. 2: (a) normalized half-hourly heating
demand profiles for different temperature ranges and (b) a piecewise
linear regression of outdoor air temperature and total heating demand.
The hourly thermal heating demand profiles shown in Fig. 2(a) are
based on data from the UK Renewable Heat Payment Plan (RHPP),
which monitored 700 homes with heat pumps across Britain that were
not connected to the gas grid from August 2011 to March 2014. The
daily temperature and heating demand regression shown in Fig. 2(b) is
based on the RHPP electric heat pump demand data and additional data
from the Energy Demand Research Project (EDRP), which includes half-
hourly thermal demand between May 2009 and July 2010 from over
6600 single-family homes with gas boilers. Watson et al. [13] weight
EDRP data to be socio-economically representative. This regression is
based on a heating pattern breakdown consistent with 25% ground-
source heat pumps (GSHPs) and 75% air-source heat pumps (ASHPs),
as observed in the RHPP trials.

The PyPSA-Eur model dataset was used as part of the electricity-
only PyPSA-Eur capacity expansion model [22]. PyPSA-Eur uses Corine
Land Cover data to calculate land availability for renewable expansion
and excludes natural protection areas based on Natura 2000 [30,31].
Offshore wind locations for each country are limited to their exclusive
economic zones [32], and bathymetric data from GEBCO 2014 is used
to limit development where the seabed is too deep [33]. Information
on the European power grid was obtained from the European Network
of Transmission System Operators for Electricity (ENTSO-E) interactive

https://github.com/clairehalloran/GeoHeat-GB
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Fig. 2. (a) Half-hourly thermal heating demand profiles normalized to integrate to
1 unit-day and (b) daily heating demand per dwelling and daily mean temperature
piecewise linear regression model recreated from Watson et al. [13,29] data based on
British heat pump trials and gas boiler operation data. Data used under a CCBY4.0
license.

map [34] using GridKit [35]. This dataset includes existing buses, lines,
links, generators, transformers, and converters. Hydroelectricity gener-
ation and storage capacities from Kies et al. [36],Pfluger et al. [37] are
used along with hydroelectricity generation per country and year from
the US Energy Information Administration for 2000–2014 [38]. Hourly
demand data for each European country is compiled from a variety
of electricity system operators [39]. Demand data for 2019 is used
since it was the most recent representative period before COVID-19,
which significantly altered demand patterns. This demand is spatially
allocated across NUTS3 regions from Eurostat [40] within each country
based on population and gross domestic product.

2.2. Temperature regions

To assess the impact of heating demand spatiotemporal resolu-
tion on power system planning, two approaches are considered for
analysis: (1) a novel multi-regional approach based on 30 tempera-
ture zones within Britain; and (2) a single, countrywide approach.
The latter approach results in a single heating demand profile for all
of Britain, similar to the data provided in Ruhnau et al. [11]. The
analysis performed using the 30 temperature zones is referred to as
‘‘multi-regional’’, and the analysis using the single, national tempera-
ture region is referred to as ‘‘national’’. The boundaries of these two
sets of regions are shown in the regional boundaries box of Fig. 1.
4

For the multi-regional approach, the borders are derived by using
the hierarchical agglomerative clustering (HAC) of the high-voltage
transmission network. The approach developed by Frysztacki et al.
[41], which groups buses in areas with similar hourly onshore wind and
solar capacity factors, is used because it improves the accuracy of ca-
pacity siting and power flows in models with high shares of renewable
energy compared to other methods. The minimum number of regions
that capture the transmission constraints of the British system, per the
2022 National Grid Electricity Ten Year Statement [42], is found to be
30.

2.3. Temperature profiles

For each temperature region in the national and multi-regional ap-
proaches, weighted hourly air and ground temperatures are calculated.
Specifically, assuming that more populated areas will have a larger
impact on heating demand, a population-weighted average of the soil
and air temperatures from ERA5 [24] is taken using 1 km by 1 km
population data based on Census 2011 and Land Cover Map 2015 [26].

2.4. Heating demand

The Watson et al. [13] model is used to calculate hourly thermal
heating demand for each region using its mean daily air tempera-
ture. Thermal heating demand and coefficient of performance (COP)
are modeled separately rather than modeling electric heating demand
directly; this enables updating the COP model to reflect heat pump
efficiency improvements and analyzing different sink temperature as-
sumptions such as the effect of high-temperature radiators or under-
floor heating. For the national heating demand approach, demand is
distributed to each region proportionally to its population. To establish
the maximum possible impact of heat pump use on the power system,
it was assumed that all households in Britain use heat pumps for space
and water heating, with 75% of households in each region using ASHPs
and 25% using GSHPs.

Changes in electric heating demand in countries with high voltage
direct current (HVDC) connections to Britain are beyond the scope of
this work. Because every country is constrained to produce 95% of its
own demand on average over a year, as discussed in Section 2.6, ignor-
ing potential electricity demand changes due to heat pump adoption in
other countries should have little effect on planning the British grid in
this model.

While the Watson et al. [13] model is based on a limited heat pump
demand dataset, as discussed in Section 2.1, high spatial granularity
weather reanalysis data from ERA5 Copernicus European Centre for
Medium-Range Weather Forecasts [24] for each region is leveraged
as the input to the model to attain high spatiotemporal granularity
heating demand data. Watson et al. [13] suggest that their model can be
used for either national or regional projections of heat pump demand
within Britain by using the appropriate population-weighted temper-
ature. Furthermore, Anderson et al. [43] have already demonstrated
good agreement between a temperature-based model trained on the
RHPP trial data and local heat pump demand profiles from a small trial
in London.

This spatial interpolation of demand profiles based on local tem-
perature is subject to several assumptions. There must be sufficient
households within each region for load diversification to occur. The
least populous region used in the multi-regional analysis has 10,880
households, which is well above the threshold for heat pump load
diversification of 275 households identified by Love et al. [4]. It
is assumed that all temperature regions have enough households to
include nationally representative diversity in housing stock and heat-
ing demand patterns. Due to a lack of spatially granular heat pump
trial data, similar heating response to outdoor temperature is assumed
among all regions.

https://creativecommons.org/licenses/by/4.0/
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,

2.5. Coefficient of performance

ASHP and GSHP COP are calculated based on quadratic regres-
sions of the temperature difference 𝛥𝑇 between the heat source and
sink [11]:

𝐶𝑂𝑃 =

{

6.08 − 0.09 ⋅ 𝛥𝑇 + 0.0005 ⋅ 𝛥𝑇 2 ASHP
10.29 − 0.21 ⋅ 𝛥𝑇 + 0.0012 ⋅ 𝛥𝑇 2 GSHP

(1)

All sinks are assumed to be radiators, and their outlet temperature
is calculated based on the outdoor air temperature, following Ruhnau
et al. [11]:

𝑇 𝑠𝑖𝑛𝑘 = 40 ◦C − 1.0 ⋅ 𝑇 𝑜𝑢𝑡 (2)

As in Ruhnau et al. [11], a minimum temperature difference of 15
◦C is imposed to avoid unrealistically small temperature differences at
warm outdoor temperatures.

𝛥𝑇 =

{

15 ◦C 𝑇 𝑠𝑖𝑛𝑘 − 𝑇 𝑠𝑜𝑢𝑟𝑐𝑒 < 15◦C
𝑇 𝑠𝑖𝑛𝑘 − 𝑇 𝑠𝑜𝑢𝑟𝑐𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3)

This process produces hourly COP profiles for ASHPs and GSHPs
in each temperature region using hourly air and soil temperatures,
respectively, as the source temperature.

Note that these COP values do not account for auxiliary systems
such as defrosters for ASHPs or potential backup heaters. It is also
assumed that ground thermal energy is restored on an annual basis for
GSHPs. Any energy that may be used in a reverse cycle to replenish
thermal energy in the ground over the course of the year is neglected.
The COP sensitivity analysis performed in Appendix demonstrates that
neither the extra electricity consumed by auxiliary systems nor poten-
tial future improvements in heat pump efficiency significantly alter the
key results of this work.

2.6. Capacity expansion model

The PyPSA-Eur electricity-only capacity expansion model v.0.6.1 [22
44] is expanded to include exogenous heat pump demand. This model
optimizes investment in and operation of generation, storage, and trans-
mission to minimize cost while meeting inelastic electricity demand.
Because power systems planners have little control over individual
households’ choice of heating system, heat pump adoption is deter-
mined exogenously. This approach contrasts with the sector-coupled
PyPSA-Eur v.0.8.0 [45,46] and higher, which endogenously determines
the share of heat pumps by co-optimizing power systems planning and
heating decarbonization. Despite this difference, the scripts in GeoHeat-
GB that model additional demand from heat pumps are inspired by
their analogues in PyPSA-Eur 0.8.0.

As mentioned in Section 2.2, the British transmission system is
modeled using 30 nodes and their corresponding regions. Countries and
regions with existing and planned HVDC connections with Britain are
modeled with a single node per synchronous region in each country
to approximate future electricity trade. Thus 9 additional nodes are
included for France, Ireland, Northern Ireland, East and West Denmark,
Germany, Belgium, Norway, and the Netherlands. Each of these addi-
tional nodes are characterized by their own demand, generation, and
renewable potential data. This approach differs from that of Heuberger
et al. [19], who modeled interconnectors as generators or storage units
demanding on historical trade patterns, because new connections have
unknown trade behavior, and historical trade patterns across existing
interconnections may change during the transition to low-carbon power
systems across Europe.

To avoid distorting the optimization by excluding any demand
changes from transitioning to heat pumps outside of Britain, each
country is constrained to meet 95% of their own electricity demand
on average over the year. This figure was selected because about 5%
of British electricity consumption was met by net electricity imports
5

Fig. 3. Matrix of policy scenarios developed in this study.

from 2015 to 2021 [47]. Notably, this represents an absolute increase
in British electricity imports due to increased electricity demand from
heat pumps. This constraint on electricity trade also limits the distorting
effect of assuming there is a single grid planner for all countries
interconnected with Britain.

In this capacity expansion model, thermal heating demand is added
to a ground-source and air-source heating bus for each temperature
region. Hourly thermal heating loads from the Watson et al. [13] model
for GSHPs and ASHPs are added to these respective buses based on
regional temperature. Heat pumps are added as links between their
respective thermal buses and the electricity bus for each region. The
hourly efficiency of these links is set as the COP based on the hourly
temperature in that region. A cost for heat pump capacity is not
included because they are likely to be household expenses, rather than
power system expenses.

2.7. Operational regret analysis

To assess the practical consequences of planning a power system
with national heating demand data, an operational optimization with
multi-regional heating demand is performed on the systems planned
in the capacity expansion model. The uniform national heating de-
mand profiles and COP values are replaced with their multi-regional
equivalents. Then, the hourly operation of the planned power system
is optimized for the same weather-year for which it was planned. To
maintain problem feasibility, load shedding is allowed at a cost of
e6900 per MWh, in line with the value of lost load established in
the UK of £6000 per MWh [48]. The requirement for each country to
produce 95% of their own electricity demand on average over the year
is also removed to maintain problem feasibility.

2.8. Transmission and carbon budget scenarios

To explore the impact of high spatiotemporal resolution heating
demand on power system planning under a variety of future poli-
cies, different scenarios are analyzed. These scenarios were defined by
the maximum allowable transmission expansion and the power sector
carbon budget, as shown in Fig. 3.

These two axes are chosen for their high impact on power sys-
tems planning and high uncertainty. Transmission expansion has faced
policy and permitting hurdles and currently requires nearly a decade
of permitting. Different carbon budgets in the power sector reflect
the uncertainty about the availability of firm generation compared to
the availability of gas generation today [49]. High-carbon scenarios
represent a future in which the heating sector switches to electricity
as its primary fuel, but the power system undergoes a less dramatic
transition. In these scenarios, existing fossil fired capacity remains op-
erational, but all new electricity demand from heat pumps is met with
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zero-carbon generation. Alternatively, policy could push the power sec-
tor to be more reliant on weather-dependent renewable generation and
other zero-carbon generation sources, as reflected in the low-carbon
scenarios.

Transmission expansion is limited based on the proportional in-
crease in GW-km from the existing system. A maximum of 30% trans-
mission expansion is estimated from National Grid Electricity Ten Year
Statement 2022 power flow diagrams [42]. This figure represents a
liberal expansion of transmission infrastructure. Conversely, low trans-
mission expansion scenarios are considered in which no additional
capacity is added. The central scenario includes 15% transmission
expansion.

A range of carbon reductions relative to 2019 power sector emis-
sions are also considered. For all modeled countries, 2019 carbon
dioxide equivalent emissions from the public electricity and heat pro-
duction sector [50] are used as the baseline. The central scenario
value of a 90% carbon reduction is chosen in line with the UK CCC
central scenario emissions for the power sector for 2035 [2]. For the
low-carbon and high-carbon scenarios, 99% and 0% reductions are
chosen, respectively. Notably, the 0% carbon reduction still represents
a reduction in per-MWh emissions because of increased electricity
demand from heat pumps compared to 2019 while the carbon budget
remains constant.

2.9. Model validation

To validate the use of national and multi-regional temperature pro-
files in the Watson et al. [13] model, the total annual heating demand
and peak electrical heating demand are compared with other sources.
The historical annual heating demand is only available in thermal terms
because the majority of heating in Britain currently uses thermal fuels.
However, the peak electrical heating demand is a key quantity for
planning the power system and has been estimated in several papers.

The total annual heating demand for all of Britain is compared
with the historical demand for space and water heating. The Energy
Consumption in the UK dataset [51] gives the total annual final energy
consumption for domestic space and water heating for different fuels.
This final energy consumption is converted to thermal demand using
typical efficiencies of different heating technologies from the IEA [52].
The prevalence of different boiler types in England from the English
Housing Survey Headline Report [53] is used to calculate a weighted
average efficiency for boilers. The average efficiency of 95% is applied
to natural gas and oil final energy consumption. The solid fuel and
bioenergy and waste categories are assumed to be burned in pellet
stoves with 85% efficiency, and both electricity- and heat-based heating
systems (such as district heating) are assumed to have 100% efficiency.
This method gives a historical thermal energy demand of 337.9 TWh
for domestic space and water heating in 2019. The total annual thermal
demand calculated from the national approach (335.5 TWh) and multi-
regional approach (340.3 TWh) only deviate by −0.7% and +0.7%,
respectively.

To further validate the use of different temperature profiles in the
model, the peak electricity demands for both approaches are compared
to previous projections. Using national temperature profiles leads to
a peak electric heating demand of 41.4 GW and using multi-regional
temperature profiles leads to 42.3 GW. These peak values agree with
those of the When2Heat model [11] for 2019 with a COP weighted
as 75% ASHP with radiators and 25% GSHP with radiators for space
heating and a COP weighted as 75% ASHP to water and 25% GSHP
to water for hot water. Using this approach gives a peak heating
demand of 40.4 GW, which is just 1.0 GW lower than the peak obtained
using the national approach and 1.9 GW lower than that obtained
using the multi-regional approach. These figures are much lower than
the peak demand projections from Watson et al. [15] of 62 GW for
a cold year in the 2020s with very good heat pump performance
6

(seasonal performance factor (SPF)> 3). This difference arises from the
use of different weather-years and different heat pump performance
assumptions. Both winter 2018–19 and winter 2019–2020 were milder
than average [54,55], so it is expected that the 2019 peak demand
to be less than that of a cold year in the 2020s. Moreover, the SPF
for both GSHPs and ASHPs is above 4 in every region, so heat pump
performance is much better than that considered in Watson et al. [15]
based on the RHPP trials. Overall, the peak electricity demand used in
this work is in line with recent estimates for a mild winter with high
performance heat pumps.

2.10. Study limitations

The scope of this work is limited to the residential sector space heat-
ing and hot water demand. This paper focuses on a high-penetration
end state for residential heat pumps to understand the maximum
possible effect on power system planning, so spatial differences during
the heating electrification transition are not considered. Only a single
weather-year of heating demand and renewable generation data is
analyzed to demonstrate the impact of high-resolution heating de-
mand data, but robust power system planning should consider multiple
weather years of data. The impact of climate change on heating demand
is not considered. Other growing electricity loads, such as EV charging,
are outside the scope of this analysis, but should be considered in power
systems planning.

3. Results and discussion

In this section, the results and their implications for bulk power
systems planning with residential heat pump demand are discussed.
First, projected heat pump demand is discussed in Section 3.1. Next,
the results of the capacity expansion model are discussed for the central
scenario in Section 3.2 and for the additional scenarios in Section 3.3.

3.1. Projected heat pump demand

This section explores projected heat pump demand. Section 3.1.1
connects spatial differences in temperature and heating demand differ-
ences between the national and multi-regional approach. Section 3.1.2
discusses the change in national peak electricity demand based on both
models. Finally, Section 3.1.3 analyzes spatiotemporal differences in
heating demand between the two approaches.

3.1.1. Spatial differences in temperature and heating demand
The spatial differences in temperature and heating demand between

the national and multi-regional approaches are illustrated in Fig. 4.
Fig. 4(a) and (b) shows the spatial differences in mean temperature

and temperature standard deviation used in the multi-regional analysis.
Although both approaches provide good reliability in comparison with
total historical thermal heating demand, temperature differences across
regions are notable.

Using the national approach, the hourly temperature profile for
2019 showed a population-weighted mean temperature of 10.5 ◦C and
a standard deviation of 5.3 ◦C. With the multi-regional approach, the
mean annual temperature by region, shown in (a), ranges from 8.0
◦C in the north of Britain to 11.4 ◦C in the south. Generally, the mean
temperature increases from the northwest to the southeast. Fig. 4(b)
shows the standard deviation in hourly temperature, which ranges from
3.9 ◦C on the northeast coast to 5.9 ◦C inland in the south. The hourly
temperature standard deviation is generally lower in coastal areas and
the north and higher inland and south. This result is explained by
the high thermal capacity of oceans and seas, which keeps coastal
temperatures steady when the temperature varies inland.

Figs. 4(c) and (d) compare the heat pump load differences in
total heating demand (c) and peak heating demand (d) when using
the national approach. This analysis highlights the significant spatial

differences in the heat pump demand.
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Fig. 4. Maps summarizing spatial differences in temperature data and comparing homogeneous and heterogeneous heating demand profiles in each region. Maps of (a) the mean
and (b) standard deviation of hourly temperature in 2019. Map (c) displays the ratio of total heating demand using the national approach compared to the multi-regional approach.
Map (d) shows the peak demand ratio comparing the regional heating demand at the peak system demand time when using the national approach compared to the multi-regional
approach.
Fig. 5. Map illustrating the spatiotemporal inconsistencies between uniform heating demand per household based on national temperature (shown with dotted blue lines) and
spatially varied heating demand based on multi-regional temperature (shown with solid orange lines) in four regions. Hourly electrical heating demand is shown for five days,
including the peak heating demand day.
The results in Fig. 4(c) demonstrate that using a national temper-
ature region overestimates annual electrical heating demand by up
to 26% in the south of Britain and underestimates by up to 21% in
the north compared to the multi-regional approach. These errors are
closely correlated with mean temperature: regions with lower mean
temperatures have their demand overestimated when using a homo-
geneous heating demand profile. Temperature standard deviation has
a secondary effect on the total heating demand estimate ratio: coastal
regions in the south with low standard deviation in temperature have
consistently higher temperatures, so they have some of the highest
overestimates in homogeneous heating demand.

The results in Fig. 4(d) displays the ratio of the regional heating
demand at the peak system demand time. It was found that using
national temperature to model heating demand overestimates the peak
consumption in coastal regions, particularly in the south, by up to 51%
and underestimates peak consumption inland by up to 20%. This result
is explained by the lower temperature standard deviation in coastal
areas, which suggests that the temperature in those regions will drop
less than the temperature inland on cold days.

3.1.2. National peak electricity demand
Whether a spatially homogeneous or heterogeneous heating demand

profile is used, switching all current British households to heat pumps
nearly doubles the 2019 total peak demand of 51.4 GW. Using a spa-
tially homogeneous heating demand profile leads to little difference in
7

the total peak demand: peak demand is 91.0 GW with a homogeneous
heating profile and 91.4 GW with the heterogeneous heating profile. No
matter the spatial resolution of the heating demand used, the heating
demand peaks at 8 am on 31 January 2019. This peak time is one hour
earlier than the historical electric peak demand, which occurred at 9
am on 31 January 2019. At the new peak time, there is 49.6 GW of
historical electrical demand as well as 41.4 GW of heating demand
when using homogeneous heating demand profiles and 42.3 GW of
heating demand when using heterogeneous heating demand.

3.1.3. Spatiotemporal differences in heating demand
Using a spatially homogeneous heat demand profile leads to spa-

tiotemporal inconsistencies with local temperature-based heating de-
mand in different regions throughout the year, as illustrated in Fig. 5.
This figure shows hourly electric heating demand per household in 4
sample regions from 28 January to 2 February 2019, which includes the
peak heating demand at 8 am on 31 January. Regions are labeled based
on their clustered electrical bus number, as described in Section 2.2.

The shape of the heating demand profiles are similar in all regions
for the days shown in Fig. 4 because occupancy patterns determine
hourly heating patterns during the heating season. However, there are
important daily differences in the magnitude of heating demand based
on the regional temperature. At Bus 19, an inland region in northern
Britain, both morning and evening heating peaks and total heating
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Fig. 6. Generation and transmission planned capacity differences when using heating
demand based on national temperature vs. multi-regional temperatures for the central
scenario. Infrastructure with an oversized capacity when using uniform, national
temperature-based heating demand is shown in red, and infrastructure with an
undersized capacity is shown in blue. The legend displays transmission and generation
and storage capacities for scale.

demand are underestimated when using the national approach. In con-
trast, using a national temperature-based approach at Bus 12, a coastal
region in northern Britain, tends to overestimate morning and evening
peaks but underestimates total heating demand. Bus 7 is an inland
region in southern Britain where using the national approach heating
demand underestimates morning and evening peaks and overestimates
the annual total heating. Because Bus 7 has the highest population
of any region in Britain, it has the smallest inconsistencies between
multi-regional temperature-based heating demand and heating demand
based on a national, population-weighted temperature profile. For Bus
17, a coastal region in southern Britain, it was found that using a
homogeneous heating profile overestimated both morning and evening
peaks and total heating demand.

3.2. Central scenario capacity expansion results

This section discusses the results of capacity expansion for the
central policy scenario (described in Section 2.8) using the national and
multi-regional approaches.

Using spatially varied heating demand profiles leads to a 1.0%
higher total system cost than using spatially uniform heating demand
profiles, resulting in a net present system cost of e60.6 billion per year
compared to e59.7 billion.

Despite similarities in total system costs, using spatially varied
and uniform heating demand profiles leads to different spatial alloca-
tions of power system infrastructure. Fig. 6 displays the differences in
generation, battery storage, and transmission capacity when planning
with the national approach compared to multi-regional approach for
modeling heating demand. Infrastructure with an oversized capacity
8

when using a national temperature-based approach is shown in red,
and infrastructure with an undersized capacity is shown in blue.

Compared to using multi-regional temperatures, using heating de-
mand based on the national temperature for capacity siting leads to
widespread undersizing of generation and battery storage. The total
absolute error for generation and storage, which represents the amount
of spatially misallocated capacity with respect to the multi-regional
approach, is 15.1 GW, which corresponds to 1.3% of planned capacity
in Britain. In the each region, the misplacement ranges from 2.25 GW
of oversizing at Bus 11 to 2.25 GW of undersizing at Bus 28.

Using spatially uniform heating demand leads to smaller spatial
misallocation of transmission infrastructure: the total absolute error for
transmission is just 600 MW, and the total absolute percent error is
0.18%. The largest portion of errors are concentrated at just a few lines,
with line-specific errors ranging from 190 MW of oversizing to 10 MW
of undersizing.

There is no clear relationship between spatial differences in heating
demand, shown in Fig. 4, and power system infrastructure misplace-
ment because of the complex interactions between heating demand,
renewable availability, and transmission network topology. As Fig. 6
shows, undersizing of generation and storage capacity is widespread
across Britain, with significant undersizing in coastal areas. Oversizing
of generation and storage capacity occurs across central and northern
Britain, with smaller oversizing in the south. The lack of a clear heuris-
tic for predicting the impact of spatiotemporal differences in heating
demand underlines the importance of using high resolution demand for
spatial planning of power system infrastructure.

Fig. 7 shows the breakdown of generation and storage capacity
differences between capacity expansion planning using the national
and multi-regional approach for modeling heating demand at each bus
by technology type. Technologies with higher capacity when using
the multi-regional approach are positive, and technologies with lower
capacity when using the multi-regional approach are negative.

The most pronounced difference when using the multi-regional
heating demand model is higher battery storage capacity. The largest
increase in battery storage capacity is at Bus 28, a coastal region in
the southwest of Britain where peak demand is slightly higher under
the multi-regional approach. This extra battery storage capacity may
be used to meet increased peaks in heating demand locally and in
neighboring inland regions. The largest decrease in battery capacity is
at neighboring Bus 11, where peak demand decreases under the multi-
regional approach, reducing the need for local capacity. In several
regions in coastal Britain, including Buses 15, 17, 18, and 29, using
uniform heating undersizes both onshore wind and battery capacity.
This finding is consistent with the work of Heuberger et al. [19], who
find that spatially granular modeling increases the value of energy
storage when planning for EV adoption. This increased battery capacity
may be used to store extra onshore wind generation to meet inland
local demand peaks when coastal demand peaks are lower than under
the national approach. Battery capacity decreases and solar capacity
increases at Bus 21, possibly to complement the increased onshore wind
and battery capacity at adjacent Bus 15. Battery capacity also increases
significantly at Bus 12, a coastal region with HVDC connections to
Northern Ireland where peak temperature decreases, enabling storage
of imported electricity to meet increased peak demand at neighboring
buses.

3.3. Capacity expansion results for additional scenarios

This section discusses the results of capacity expansion planning
for the remaining policy scenarios (described in Section 2.8) using the
national and multi-region approaches, including the costs and siting
errors.
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Fig. 7. Breakdown of generation and storage differences at each bus between the national heating demand and multi-regional heating demand capacity expansion plans by
technology. Undersized capacity in the national case is shown as positive, and oversized capacity is shown as negative. Regional map inset for reference.
Table 1
National vs. multi-regional heating demand net present value system costs.

Scenario National cost [Be] Multi-regional cost [Be] National error [%]

Central 59.7 60.6 −1.5
Localized transition 78.1 79.1 −1.2
National green grid 69.4 70.3 −1.3
Capacity for carbon 54.7 55.6 −1.6
Carbon stagnation 55.0 55.9 −1.6
3.3.1. System costs
Table 1 compares the annualized system costs for the two ap-

proaches in each scenario.
In all of the scenarios considered, using the national model of

homogeneous heating demand underestimates total annualized systems
costs by 1%–2% with respect to the multi-regional model, as shown in
Table 1. This result suggests that using high spatiotemporal resolution
heating demand data is not necessary to estimate total systems costs
within the range of policy scenarios considered.

The scenario systems costs shown in Table 1 also highlight the value
of transmission expansion in low carbon budget scenarios. Increasing
transmission expansion from 0% to 30% leads to approximately e9
billion of net present value savings for 99% carbon reduction but
less than e1 billion in savings for 0% carbon reduction. Note that
these costs are for the entire modeled system, including interconnected
countries.

3.3.2. Generation and storage locations
Fig. 8 illustrates the generation, storage, and transmission planned

capacity differences between the national and multi-regional models.
Table 2 compares error metrics for the spatial misallocation of storage
and generation capacity using the national heating demand approach
with respect to the multi-regional heating demand approach in each
scenario for the regions within Britain.

Using spatially uniform heating demand leads to non-optimal siting
of generation and storage capacity within Britain for meeting multi-
regional heating demand in all scenarios, with larger differences in
non-central scenarios. The largest total absolute errors (TAE) shown
in Table 2 are 25.6 GW for the carbon stagnation scenario and 23.9
9

GW for the localized transition scenario, which suggests that high spa-
tiotemporal resolution heating demand is key when planning systems
with limited transmission expansion no matter the carbon budget. The
total absolute percent error (TAPE) values for placement within Britain
are greater than or equal to the central scenario TAPE value, which
indicates that these higher total misplacement values are not solely due
to differences in total capacity in Britain. These results suggest that high
spatiotemporal resolution heating demand is crucial for spatial power
system planning under a wide variety of policy futures.

The range of errors in generation and storage capacity with respect
to the multi-regional approach shown in Table 2 demonstrates that
spatial misallocation of storage and generation is highly concentrated
at a few buses. This pattern can be observed in Fig. 8 as well. Capacity
misplacement is concentrated in a few regions for the high-carbon
scenarios, carbon stagnation and capacity for carbon. In both high-
carbon scenarios, nearly identical magnitude over- and undersizing
is seen at adjacent buses, which could indicate that using spatially
uniform heating demand leads to misplacement of high-capacity fossil
fuel plants within an area of Britain. In low-carbon scenarios, localized
transition and national green grid, the spatial mis-sizing of generation
and storage capacity is more evenly distributed among the buses.
This difference arises due to the weather dependence of renewable
generation: a high-renewable system relies on overcapacity and storage
to meet demand, so planning with the incorrect demand profiles has a
widespread impact on the spatial distribution of generation and storage.

As in the central scenario, no clear heuristic emerges in the addi-
tional scenarios for the differences in storage and generation capacity
siting when using national heating demand in power system planning
compared to multi-regional heating demand. As Fig. 8 shows, the loca-
tion of over- and undersized assets changes depending on the carbon
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Table 2
Generation and storage capacity errors.

Scenario TAE [GW] Max. bus error [GW] Min. bus error [GW] TAPE [%]

Central 15.1 2.25 −2.25 1.3
Localized transition 23.9 3.06 −5.91 1.5
National green grid 16.9 1.12 −3.02 1.3
Capacity for carbon 23.2 4.09 −3.83 2.3
Carbon stagnation 25.6 3.83 −8.27 2.6
Fig. 8. Generation and transmission planned capacity differences using heating demand
based on national temperature vs. local temperature for four different transmission
expansion and carbon budget scenarios. Infrastructure with an oversized capacity
when using uniform, national temperature-based heating demand is shown in red,
and infrastructure with an undersized capacity is shown in blue. The legend displays
transmission and generation and storage capacities for scale.

budget, which reflects the influence of firm generation availability on
storage and generation capacity needs. In the high-carbon scenarios,
the largest differences are in coastal Britain. In the low-carbon sce-
narios, the capacity differences are spread across Britain with large
differences near the coasts and significant differences inland. These
results demonstrate that using high spatiotemporal resolution heating
demand data changes the optimal generation and storage placement
under a wide variety of transmission expansion and carbon budget
constraints.
10
3.3.3. Transmission expansion locations
Table 3 shows the error metrics with respect to the multi-regional

heating demand approach for the spatial allocation of transmission
capacity when using spatially uniform heating demand in each of the
scenarios considering transmission expansion.

Under all scenarios, planning with spatially uniform heating de-
mand profiles leads to sub-optimal placement of transmission system
upgrades to meet spatially varied heating demand. The TAE and TAPE
for transmission capacity are slightly higher in the capacity for carbon
scenario than in the central scenario. Both of these errors are much
higher in the national green grid scenario: the TAE and TAPE are
about 3 times higher than under the central scenario at 2.2 GW and
0.63%. While the magnitude of capacity misallocation is smaller for
transmission than for storage and generation, the long timeline for
transmission expansion makes these differences crucial.

This analysis of generation, storage, and transmission capacity dif-
ferences underlines the importance of using high spatiotemporal resolu-
tion heating demand data in bulk power systems planning. In all carbon
budget and transmission expansion scenarios, using the multi-regional
model of heating demand leads to different spatial distributions of
infrastructure than using the national model. Moreover, using spatially
varied heating demand leads to higher differences in infrastructure
placement under low carbon budget scenarios compared to the cen-
tral scenario, which demonstrates that high spatiotemporal resolution
heating demand is crucial for spatial planning to achieve power sector
decarbonization goals.

3.4. Operational regret analysis

Operating a power system planned based on a uniform national
heating demand to meet multi-regional heating demand is more ex-
pensive than operating a system planned to meet multi-regional heating
demand. Table 4 compares the operational costs to meet multi-regional
heating demand for a power system planned based on national heating
demand and a multi-regional heating demand. Under the central sce-
nario, planning with uniform national demand increases operational
costs by e500 million per year, which is 5% higher than the system
planned with multi-regional demand. These additional costs primarily
come from increased use of biomass, combined-cycle gas, and nuclear
generators. The difference in operational costs is much higher under
the low-carbon scenarios: the localized transition national system op-
erational costs are 323% higher and the national green grid costs are
25% higher due to increased load shedding in both scenarios.

Low-carbon power systems planned with uniform national heating
demand experience more load shedding under multi-regional heating
load than the systems planned to meet multi-regional heating demand.
While no significant load shedding occurs in the central and low-
carbon scenarios, large amounts of load shedding occur in both of
the low-carbon scenarios, as shown in Table 5. The vast majority
of this load shedding occurs outside of Britain, which reflects the
limitations of planning a high-renewable system without including the
entire European grid. Enforcing a 99% carbon reduction for countries
outside Britain without considering connections to other regions causes
marginal power prices to exceed e6900 per MWh and triggers load
shedding even for the system planned with multi-regional heating
demand under the national green grid scenario. However, increased
load shedding outside of Britain for the national system indicates that
British electricity exports have higher costs.
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Table 3
Transmission capacity errors.

Scenario TAE [GW] Max line error [GW] Max line error [GW] TAPE [%]

Central 0.6 0.19 −0.10 0.18
National green grid 2.2 0.17 −0.23 0.63
Capacity for carbon 1.0 0.08 −0.24 0.31
Table 4
Operational costs for meeting multi-regional heating demand.

Scenario National system (eB) Multi-regional system (eB) National additional cost [%]

Central 8.6 8.1 5
Localized transition 10.9 2.6 323
National green grid 91.0 73.0 25
Capacity for carbon 10.7 10.4 3
Carbon stagnation 11.5 11.1 3
Table 5
Load shedding to meet multi-regional heating demand.

Scenario National system load shed [TWh] Multi-regional system load shed [TWh]

Cental 0 0
Localized transition 1.20 0
National green grid 12.58 9.99
Capacity for carbon 0 0
Carbon stagnation 0 0
The majority of the load shedding in Britain affects inland popu-
ation centers. For the national system under the localized transition
cenario, 245 GWh of load shedding occurs at Bus 7, the most populous
us in the country that includes London. For both the national and
ulti-regional systems under the national green grid scenario, 18 GWh

f load shedding occurs in Britain, primarily inland in central Britain
t Buses 8 and 23, which include the Manchester and Birmingham
rban areas. Even in the multi-regional system, the lack of renewable
eneration overcapacity compared to the localized transition scenario
eads to marginal prices exceeding e6900 that trigger load shedding.
his result suggests the need to increase the value of lost load in
igh-renewable systems with high shares of electrified heating.

. Conclusions

This paper analyzes the implications of spatiotemporal differences
n residential heat pump load for bulk power system planning. This
uestion is addressed using the novel approach of modeling residential
eat pump demand by scaling data from field trials with high spa-
iotemporal resolution temperature data to generate spatially varied
eat demand profiles. The results of capacity expansion planning using
hese multi-regional profiles are compared with those based on a single
ational heating profile for a case study in Britain. Large regional
ifferences in total and peak heat demand are identified between the
wo approaches. These differences lead to significant differences in
he spatial planning of generation and storage capacity, especially in
ow-carbon scenarios.

Comparing the multi-regional model with the national model re-
eals regional differences in peak demand and total annual heating
emand. While both the national and multi-regional approaches only
eviate by −0.7% and +0.7% from the historical annual heating de-
and on the national level, respectively, the multi-regional model

ccounts for spatial differences in heating demand. In comparison, the
ational temperature-based model overestimates total heating demand
n southern regions by up to 26% and underestimates demand in north-
rn regions by up to 21%. In the hour when peak system-wide heating
emand occurs, using national temperature overestimates the electric
eating demand in coastal areas by up to 51% and underestimates
t inland by up to 20% compared to the multi-regional approach.
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Using multi-regional temperatures to model heating demand reveals
significant regional differences in Britain, a medium-sized country with
a temperate climate, and could have an even more substantial impact
in larger countries with more variable climates.

High spatiotemporal resolution heating demand is necessary to
correctly site generation and storage capacity in bulk power system
planning. Under a central scenario for carbon reduction and transmis-
sion capacity expansion in the British power system in 2035, using
a spatially uniform heating demand profile leads to a total absolute
error in the spatial allocation of generation and storage of 15.1 GW
(1.3%) compared to a high-resolution demand pattern based on local
temperatures. These capacity differences are spatially concentrated in
a few locations and primarily reflect the need for more battery storage
capacity to meet regional heating peaks when using high spatiotem-
poral resolution heating demand. For low carbon budget scenarios, the
total absolute error increases to 16.9 GW (1.3%) with 30% transmission
expansion and 23.9 GW (1.5%) with no transmission expansion. This
trend suggests that high spatiotemporal resolution heating demand data
is even more important for spatial planning of bulk power systems
with very high shares of renewable generation. As countries transition
from gas boilers to heat pumps for residential heating, high spatiotem-
poral resolution data about residential heat pump demand is cru-
cial for power system planners striving for ambitious decarbonization
targets.

Spatial misplacement of power system infrastructure due to low
spatial resolution heating demand projections increases operational
costs and leads to load shedding under the low-carbon scenarios. Under
the central scenario, operational costs increase 5% when operating a
system planned with national heating demand to meet multi-regional
heating demand. Under the low-carbon scenario with 30% transmission
expansion, increased load-shedding outside of Britain indicates higher-
cost British electricity exports for a system planned with national
demand. For the low carbon scenario with no transmission expansion,
operating a system planned with uniform national demand leads to 245
GWh of load shedding in the most populous region.

This study reveals several areas for future research. Incorporating
residential building renovations into the heating demand model may
provide options for reducing the power system impact of widespread
heat pump adoption. Including the heating demand time series in the
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network clustering algorithm can identify the necessary level of heating
demand spatial resolution for power systems planning. Finally, using
high spatial resolution demand data reveals an increased need for
battery storage capacity in many locations, and heat pump flexibility
has the potential to replace some of this storage. Future work will
explore the regional availability of heating flexibility and its role in
power systems planning.
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Appendix. COP sensitivity analysis

A sensitivity analysis of COP values is performed to understand
the impact of this parameter on the results for the central scenario.
The lower sensitivity is set to 85% of the time-varying COP values
calculated in Section 2.5 based on the correction factor of 0.85 used
in Ruhnau et al. [11] to account for the electricity consumption of aux-
iliary systems including defrosters. The upper sensitivity is set to 115%
of the baseline COP values to reflect potential future improvements in
heat pump efficiency.

The key results for this sensitivity analysis are shown in Table A.1.
As expected, the national and multi-regional peak demand decrease as
COP values increase. Despite the change in peak demand, the spatial
misplacement metrics are within the same order of magnitude. The
relative changes in key indicators are shown in Fig. A.1. At 115% of
the baseline COP values, spatial misplacement metrics increase signifi-
cantly: generation and storage TAE increase by 23% and transmission
TAE increases by 217%. These results suggest that using high spa-
tiotemporal resolution heat pump demand is crucial for spatial power
systems planning even as heat pump efficiency improves.
Table A.1
Key indicators for COP sensitivity analysis.

85% COP 100% COP 115% COP

Multi-regional peak demand [GW] 49.7 42.3 36.8
National peak demand [GW] 48.7 41.4 36
Generation TAE [GW] 11.3 15.1 18.5
Generation TAPE [%] 0.99 1.3 1.6
Transmission TAE [GW] 0.6 0.6 1.9
Transmission TAPE [%] 0.2 0.18 0.6
Fig. A.1. Relative change in key indicators for COP sensitivity analysis.
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