
Certification of the proximal gradient method under
fixed-point arithmetic for box-constrained QP problems?

Pablo Krupaa,∗, Omar Inversob, Mirco Tribastonec, Alberto Bemporadc

aSystems Engineering and Automation Department, Universidad de Sevilla, Seville, Spain.
bGran Sasso Science Institute (GSSI), L’Aquila, Italy

cIMT - School for Advanced Studies, Lucca, Italy

Abstract

In safety-critical applications that rely on the solution of an optimization problem, the certification of the optimization algorithm
is of vital importance. Certification and suboptimality results are available for a wide range of optimization algorithms. However,
a typical underlying assumption is that the operations performed by the algorithm are exact, i.e., that there is no numerical error
during the mathematical operations, which is hardly a valid assumption in a real hardware implementation. This is particularly
true in the case of fixed-point hardware, where computational inaccuracies are not uncommon. This article presents a certification
procedure for the proximal gradient method for box-constrained QP problems implemented in fixed-point arithmetic. The proce-
dure provides a method to select the minimal fractional precision required to obtain a certain suboptimality bound, indicating the
maximum number of iterations of the optimization method required to obtain it. The procedure makes use of formal verification
methods to provide arbitrarily tight bounds on the suboptimality guarantee. We apply the proposed certification procedure on
the implementation of a non-trivial model predictive controller on 32-bit fixed-point hardware.

Keywords: Convex optimization, Embedded Systems, Predictive control, Fixed-point arithmetic, Gradient method, Certification

1. Introduction

Quadratic programming (QP) problems arise in various ar-
eas of systems engineering and control, such as model predic-
tive control (MPC), see Rawlings et al. (2017), or reference
governors, see Garone et al. (2017), to name a few. Various
practical control-related applications, such as the ones listed
above, require solving parameter-dependent QP problems at
regular intervals on embedded hardware, which poses a chal-
lenge due to computational and memory limitations. In recent
years there has been a significant advance in this area due to
the proposal of efficient QP solvers, some of them for generic
QP problems, such as the OSQP solver presented in Stellato
et al. (2020), and some tailored to specific problems, such as
the solvers proposed in Krupa et al. (2021b); Frison and Diehl
(2020), which address MPC optimization problems.

In many practical applications of MPC, such as safety-critical
systems and space applications, the certification of the max-
imum number of iterations required by the optimization al-
gorithm and a guarantee of the suboptimality of its provided
solution are mandatory for real deployment. Most solvers are
based on optimization algorithms with well-known convergence

?This work was supported in part by Grant PDC2021-121120-C21
funded by MCIN/AEI/10.13039/501100011033 and by the “Euro-
pean Union NextGenerationEU/PRTR”, and in part by Grant Mar-
garita Salas (grant number 20122) funded by the Ministerio de Uni-
versidades and the European Union (NextGenerationEU).
∗Corresponding author
Email addresses: pkrupa@us.es (Pablo Krupa),
omar.inverso@gssi.it (Omar Inverso),
mirco.tribastone@imtlucca.it (Mirco Tribastone),
alberto.bemporad@imtlucca.it (Alberto Bemporad)

and suboptimality guarantees. The issue is that these guar-
antees are typically derived considering ideal conditions, e.g.,
under the assumption that the mathematical operations per-
formed by the algorithm are error-free; an assumption, how-
ever, that is no longer valid when the optimization algorithm
is implemented on hardware. This is particularly noticeable on
fixed-point hardware, where quantization and round-off errors
may lead to significant differences with respect to the “exact”
counterpart. The magnitude of this difference depends on the
number of fractional bits, which must be selected large enough
to provide the required guarantees.

In linear-time-invariant (LTI) MPC, the use of explicit MPC
(Bemporad, 2019) instead of an iterative solver provides a di-
rect certification of the computation time. However, explicit
MPC may require a considerable amount of memory to imple-
ment and is only applicable to LTI systems (Bemporad, 2019).

In Patrinos et al. (2015), the authors present a dual gradient-
projection algorithm for MPC tailored to fixed-point arith-
metics. The authors present convergence guarantees and con-
crete guidelines for selecting the fractional precision to obtain
the required suboptimality tolerance. The analysis is done us-
ing the notion of the inexact oracle from Devolder et al. (2014),
which presents a generic framework for analyzing first-order op-
timization algorithms in which the oracle provides inexact in-
formation. This framework can be used to derive convergence
rates when inexact gradient information is available by consid-
ering the maximum error when computing the gradient. It has,
however, two downsides when applied to fixed-point arithmetic.
The first is that it only considers errors in the gradient infor-
mation, i.e., it considers the other operations performed by the
algorithm to be exact, which may not always be the case in
fixed-point precision. Second, the convergence results are pre-

ar
X

iv
:2

30
3.

16
78

6v
1

 [
m

at
h.

O
C

]
 2

9
M

ar
 2

02
3

sented in terms of the average of the iterates of the algorithm
(instead of with respect to the current iterate), whose value is
not generally available in fixed-point arithmetic, since its com-
putation requires dividing by the current number of iterations.

Another approach for analyzing the error propagation is to
use affine arithmetic (Fang et al., 2003; Vakili et al., 2013).
This framework provides less conservative error bounds than
simply considering the worst-case error due to how it handles
error propagation in affine operations (addition, substraction
and multiplication by a constant), although the error bounds
are still conservative in the presence of multiplications between
variables. The bounds can be improved by taking a probabilis-
tic approach, as proposed in Fang et al. (2003), at the expense
of no longer having a guaranteed certification. This frame-
work was used in Nadales et al. (2022) to certify the minimum
number of fractional bits required to satisfy the desired error
bound when performing Lipschitz interpolation for data-driven
learning-based control. In this case a tight certification could
be proposed due to the simplicity of the algorithm, which only
required affine operations. However, its application to iterative
convex optimization algorithms would provide conservative re-
sults, due, precisely, to their iterative nature along with the
presence of multiplication operations.

A non-conservative approach for analyzing error propagation
in fixed-point arithmetic was proposed in Simić et al. (2022).
The technique allows to check arbitrarily tight error bounds
via a bit-vector encoding into integer arithmetics and then into
propositional satisfiability, which allows to use mature SAT-
based technology. The authors use their procedure to calcu-
late accurate error bounds on a first-order optimization algo-
rithm up to a given number of iterations. However, due to
the bit-precise encoding the computational cost of the analysis
becomes prohibitive after only a few iterations, even for small
optimization problems; this is an issue since first-order methods
may require a significant number of iterations to converge.

In this article we analyze the implementation of the proximal
gradient method (PGM) (Parikh and Boyd, 2013) under fixed-
point arithmetic applied to strongly convex QP problems with
box constraints; a choice motivated by its simplicity but prac-
tical relevance and by its linear convergence guarantees under
exact arithmetic. We provide convergence guarantees in terms
of the maximum number of iterations of the algorithm as well
as suboptimality guarantees of its output. Our certificate is
based on the formal verification procedure presented in Simić
et al. (2022), which we use to derive arbitrarily tight bounds on
the quantities that determine the convergence and suboptimal-
ity guarantees. The proposed approach provides a procedure
for selecting the minimum fractional precision required to guar-
antee the given suboptimality and computation-time specifica-
tions. Notably, the important difference with respect to Simić
et al. (2022) is that the verification only needs to analyze a sin-
gle iteration of the PGM, thus remaining tractable for a wider
range of problems. The main features of our approach are:
(i) The subptimality guarantees are provided in terms of the
output of the algorithm, instead of for the averaged iterates
used in Patrinos et al. (2015).
(ii) The bounds that determine the suboptimality guarantees
are obtained using the formal verification procedure from Simić
et al. (2022), which allows us to provide a non-conservative
error-bound of the gradient computation, in that the exact
maximum error committed in the computation of the gradi-

ent can be approximated to an arbitrarily large precision.
(iii) The certification results are formal guarantees, instead of
the probabilistic ones that would be obtained using probabilis-
tic affine arithmetic (Fang et al., 2003) or Monte Carlo analysis
(Saracco et al., 2012).
We present the application of our approach on a non-trivial
MPC problem implemented using 32-bit fixed-point arithmetic.

Notation: Given two vectors x, y ∈ Rn, x ≤ (≥) y denotes
componentwise inequalities and 〈x, y〉 is their standard inner
product. The standard Euclidean norm of a vector x ∈ Rn is
denoted by ‖x‖ .

=
√
〈x, x〉. The closed ball of radius r ≥ 0

in Rn is defined as the set Bnr
.
= {x ∈ Rn : ‖x‖ ≤ r}. The

indicator function of a set C is denoted by IC , i.e., IC(x) = 0 if
x ∈ C and IC(x) =∞ if x 6∈ C. The subdifferential of a function
f is denoted by ∂f . We denote by R+ the set of strictly positive
real numbers. We denote by Rn(p.q) ⊂ Rn the set of vectors
whose integer and fractional parts are representable using p and
q binary digits, respectively. This notion readily extends to the
space of matrices Rn×m, where Rn×m(p.q) ⊂ Rn×m represents the
space of matrices whose every element is representable in R(p.q).
For any set C ⊆ Rn, we denote C(p.q) = {x ∈ Rn(p.q) : x ∈ C}. It
is obvious that x ∈ C(p.q) =⇒ x ∈ C, but not vice-versa. It is
also easy to see that C(p′.q′) ⊆ C(p.q) for any p ≥ p′ and q ≥ q′,
and therefore that x ∈ C(p′.q′) =⇒ x ∈ C(p.q).

2. Exact proximal gradient method

We consider the class of strongly-convex QP problems

min
x∈Rn

1

2
x>Qx+ c>x

s.t. ` ≤ x ≤ u,
(P)

where c, `, u,∈ Rn(p′.q′), with ` < u, and Q ∈ Rn×n(p′.q′), for some

finite positive p′ and q′. In this article we are interested in
finding a suboptimal solution of problem (P), using the proxi-
mal gradient method (PGM) (Parikh and Boyd, 2013), for any
given realization of the ingredients of problem (P) satisfying

Q ∈ Q ⊂ Rn×n(p′.q′), c ∈ {c ∈ Rn(p′.q′) : cmin ≤ c ≤ cmax}, (1a)

` ∈ {` ∈ Rn(p′.q′) : `min ≤ ` ≤ lmax}, (1b)

u ∈ {u ∈ Rn(p′.q′) : umin ≤ u ≤ umax}, (1c)

where cmin, cmax, `min, `max, umin, umax ∈ Rn(p′.q′), cmin ≤ cmax,
`max < umin, and Q is a compact set. In particular, we are inter-
ested in providing convergence guarantees when implementing
the PGM in fixed-point arithmetic. To that end, let us start
by recalling the classical “exact” PGM, i.e., its implementation
when operating using exact arithmetic.

We denote by P the set of problems (P) whose ingredients
satisfy (1). Let X .

= {x ∈ Rn : ` ≤ x ≤ u}, f : Rn → R be
given by f(x) = 1

2
x>Qx+c>x, x∗ ∈ Rn be the optimal solution

of problem (P) and f∗ its optimal value, i.e., f∗ = f(x∗). Let
L, σ ∈ R+ be the largest and smallest smoothness and strong
convexity parameters of f for any realization of (P)∈ P, i.e.,
the scalars for which the well-known inequalities

f(x) ≤ f(y) + 〈∇f(y), x− y〉+
L

2
‖x− y‖2,

f(x) ≥ f(y) + 〈∇f(y), x− y〉+
σ

2
‖x− y‖2,

are satisfied ∀x, y ∈ Rn for any given (P)∈ P.

2

Algorithm 1: PGM applied to (P)∈ P
Input: x0 ∈ X 0, 0 < ρ ≤ L−1

1 For each k = 0, 1, 2, . . . repeat

2 xk+1 ← Tρ(xk) = min{u,max{`, xk − ρ∇f(xk)}}

Algorithm 1 shows the PGM applied to a realization of prob-
lem (P)∈ P, where the min and max operators are taken com-
ponentwise and 0 < ρ ≤ L−1. It generates a sequence {xk} ∈ X
starting at an initial point x0 ∈ X 0, where X 0 ⊆ X is the set
of possible initial guesses. Step 2 of the algorithm performs the
operator Tρ : X → X given by

Tρ(x)
.
= arg min

y∈X

1

2
‖y − (x− ρ∇f(x))‖2 ,

which, when particularized to problem (P), is the evaluation of
the proximal operator (Parikh and Boyd, 2013) at x−ρ∇f(x).
Operator Tρ in this setting can also be viewed as the evaluation
of the composite gradient mapping (Nesterov, 2013, §2). Fur-
thermore, Algorithm 1 is equivalent in this case to the projected
gradient method (Parikh and Boyd, 2013, §4,2).

The following theorem recalls the linear convergence of Al-
gorithm 1 when working under “exact” arithmetic. In the fol-
lowing section we will derive a similar result when operating
under fixed-point arithmetic.

Theorem 1 (Theorem 10.29 from Beck (2017)). Let {xk} be
the sequence generated by Algorithm 1 starting at x0 ∈ X 0 ap-
plied to (P)∈ P. Then,

(i) ‖xk − x∗‖2 ≤ (1− ρσ)k ‖x0 − x∗‖2, ∀k ≥ 0,

(ii) f(xk)− f∗ ≤ 1

2ρ
(1− ρσ)k ‖x0 − x∗‖2, ∀k ≥ 1.

3. Proximal gradient method in fixed-point arithmetic

The maximum number of iterations of Algorithm 1 required
to guarantee a given suboptimality can be certified using The-
orem 1. Indeed, an immediate result of Theorem 1 is that
‖xk − x∗‖2 ≤ ε, for a given ε ∈ R+, is satisfied for every itera-
tion k satisfying

k ≥
log

(
ε

‖x0 − x∗‖2

)
log(1− ρσ)

. (2)

We are now interested in providing an iteration and subop-
timality certification when Algorithm 1 is implemented using
fixed-point arithmetic. Therefore, let us consider Algorithm 1
when working under fixed-point arithmetic for some predeter-
mined choice of integer and fractional precision (p.q) satisfying
p ≥ p′ and q ≥ q′, where we recall that (p′.q′) is the precision
under which the ingredients of (P) are representable. Under
this paradigm, we can view the implementation of the PGM
algorithm as performing an inexact proximal operator, where
the source of inexactness is due to the fixed-point arithmetic
and representation of variables.

Algorithm 2 shows the implementation of Algorithm 1 un-
der fixed-point arithmetic. It generates a sequence of iterates
{x̂k} ∈ X(p.q) starting from an initial point x̂0 ∈ X̂ 0

(p.q) ⊆ X(p.q).

Algorithm 2: PGM applied to (P)∈ P under fixed-
point arithmetic with precision (p.q)

Input: x̂0 ∈ X̂ 0
(p.q), 0 < ρ ≤ L−1, ε̂ ∈ R+

(p.q), kmax ∈ R+

1 For each k = 0, 1, 2, . . . repeat

2 x̂k+1 ← min{u,max{`, x̂k − ĝρ(x̂k)}}
3 until d̂2(x̂k) < ε̂ or k ≥ kmax

Step 2 evaluates the operator ĝρ : X(p.q) → X(p.q), which is de-
fined as the operator that performs the computation of ρ∇f(·)
in the fixed-point paradigm. That is, ĝρ(x̂

k) returns the result
of the evaluation of ρ∇f(x̂k) when performed under fixed-point
arithmetic. Thus, ρ ∈ R+

(p.q) is an obvious requirement of Algo-
rithm 2. Additionally, the algorithm includes an exit condition
given by the satisfaction of the condition d̂2(x̂k) < ε̂, where
d̂2 : X(p.q) → R+

(p.q) ∪ {0} is the operator that performs the

computation of ‖x̂k+1 − x̂k‖2 in fixed-point arithmetic. This
exit condition plays a key role in the suboptimality guarantees
provided in this section.

The value of ĝρ(x̂
k) will generally differ from the exact value

of the expression ρ∇f(x̂k) due to the arithmetic errors that
occur when using fixed-point arithmetic, thus leading to the
source of discrepancy between the sequences generated by Al-
gorithms 1 and 2. The magnitude of this discrepancy, which we
formalize in the following definition, will depend on the value
of the fractional precision q, with higher values of q obviously
leading to smaller errors.

Definition 1. Given a choice of q, we denote by Ω ∈ R+ a
scalar satisfying ‖ρ∇f(x̂)− ĝρ(x̂)‖ ≤ Ω, ∀x̂ ∈ X(p.q), ∀(P)∈ P.

The rest of the operations in Step 2 of Algorithm 2 do not
incur in any additional error, as formally stated in the follow-
ing lemma, so they do not contribute towards the discrepancy
between the “exact” and “fixed-point” implementations.

Lemma 1. Let v, v, x̂, ŷ ∈ Rn(p.q), with v ≤ v, and consider the
set C .

= {v ∈ Rn : v ≤ v ≤ v}. Then, the result of the fixed-
point computations min{v, max{v, x̂+ ŷ}} performed with any
precision (p̂.q̂) satisfying p̂ ≥ p and q̂ ≥ q is the exact Euclidean
projection of x̂+ ŷ onto C if x̂+ ŷ does not result in an overflow.

The proof of the lemma is omitted because the claim is a
direct result of the fact that the min, max and addition opera-
tions do not incur in any error under fixed-point arithmetic as
long as there is no overflow in the addition.

Corollary 1. Variable x̂k+1 obtained from Step 2 of Algo-
rithm 2 is the exact Euclidean projection of x̂k − ĝρ(x̂k) onto
X , assuming that no overflow occurs during the computations.
Therefore, x̂k ∈ X(p.q) ⊂ X , ∀k ≥ 0.

The reader will note that Lemma 1 is only applicable to Algo-
rithm 2 as long as there is no overflow during its execution, i.e.,
if the integer precision p is large enough. The certification tool
presented in Section 4 can be used to compute the minimum
value of p required to avoid overflow. Thus, we henceforth sim-
ply consider that p is chosen so that no overflow occurs during
the execution of Algorithm 2.

Another useful consequence of Lemma 1 is presented in the
following lemma, which states that a scalar Ω satisfying Defi-
nition 1 also bounds the error in the computation of x̂k+1.

3

Lemma 2. Consider Algorithm 2 and let Ω satisfy Defini-
tion 1. Then, ‖x̂k+1 − Tρ(x̂k)‖ ≤ Ω, ∀x̂k ∈ X(p.q), ∀(P)∈ P.

Proof. The claim is a direct consequence of Corollary 1 and the
fact that the projection operator to non-empty closed convex
sets is non-expansive (Ryu and Boyd, 2016, §3.1). �

We now present the main result of this section, where we
characterize the local linear convergence of Algorithm 2, in
terms of the error-bound Ω, when sufficiently far away from
the optimal solution.

Theorem 2. Let {x̂k} be the sequence generated by Algorithm 2
applied to a realization of problem (P)∈ P with starting point
x̂0 ∈ X̂ 0

(p.q) and taking 0 < ρ ≤ L−1, ρ ∈ R(p.q). Choose ε ∈ R+

satisfying ερσ > 4Ω, where Ω ∈ R+ is given by Definition 1.

Then, as long as ‖x̂k+1− x∗‖ ≥ ε

2
, the sequence {x̂k} satisfies:

(i) ‖x̂k − x∗‖2 ≤
(

1− ρσ
1− 4Ωε−1

)k
‖x̂0 − x∗‖2, ∀k ≥ 0.

(ii) f(x̂k)−f∗ ≤ 1−4Ωε−1

2ρ

(
1− ρσ

1−4Ωε−1

)k
‖x̂0 − x∗‖2, ∀k ≥ 1.

Proof. See Appendix A.

Theorem 2 provides a linear convergence result similar to the
one shown in Theorem 1, but where the convergence constant
degrades by the factor (1 − 4Ωε−1). That is, the convergence
guarantee worsens as Ω increases and as the desired subopti-
mality tolerance ε decreases. Since the theorem only holds as

long as ‖x̂k+1 − x∗‖ ≥ ε

2
, we need to be able to check the sat-

isfaction of this condition during the execution of Algorithm 2.

Lemma 3. ‖x̂− Tρ(x̂)‖ ≤ 2‖x̂− x∗‖, ∀x̂ ∈ X .

Proof. From (Alamo et al., 2019, Property 1.(i)), particularized
to our problem formulation and notation, we have that

f(Tρ(x̂))− f∗ ≤ ρ−1〈x̂− Tρ(x̂), x̂− x∗〉 − 1

2ρ
‖x̂− Tρ(x̂)‖2,

which along with f(Tρ(x̂))− f∗ ≥ 0, leads to

1

2
‖x̂− Tρ(x̂)‖2 ≤ 〈x̂− Tρ(x̂), x̂− x∗〉 ≤ ‖x̂− Tρ(x̂)‖ · ‖x̂− x∗‖

by making use of the Cauchy-Schwarz inequality. �

The previous lemma allows us to guarantee that the condi-

tion ‖x̂k − x∗‖ ≥ ε

2
in Theorem 2 holds for the iterates of Al-

gorithm 2 as long as we can guarantee that ‖x̂k −Tρ(x̂k)‖ ≥ ε.
The following assumption allows us to use the exit condition
of Algorithm 2 as a means to guarantee that the condition

‖x̂k − x∗‖ ≥ ε

2
is satisfied at iteration k.

Assumption 1. The exit tolerance ε̂ of Algorithm 2 satisfies
d̂2(x̂k) ≥ ε̂ =⇒ ‖x̂k − Tρ(x̂k)‖2 ≥ ε2.

In the following section we present a tractable procedure for
certifying the satisfaction of this assumption. In practice, we
find that one can choose ε so that the smallest value of ε̂ satisfy-
ing Assumption 1 is the smallest positive representable number

in precision q, i.e., 2−q. In this case the exit condition of Algo-
rithm 2 becomes d̂2(x̂k) = 0.

Under Assumption 1, the convergence guarantee provided in
Theorem 2 holds as long as the exit condition d̂2(x̂k) < ε̂ is not
satisfied. If it is satisfied at some iteration k, then the conver-
gence guarantee provided by Theorem 2 is only guaranteed to
hold until iteration k − 1. The following theorem provides the
suboptimality guarantees of Algorithm 2 when the exit condi-
tion is satisfied at some iteration k. The result makes use of
the bounds provided in the following definition. The following
section will provide computationally tractable procedures for
computing arbitrarily tight values of said bounds.

Definition 2. Consider Algorithm 2. For a given choice of
fractional precision q and tolerance ε̂, we denote by δ, ω,Θ ∈ R+

the scalars satisfying

‖x̂k − Tρ(x̂k)‖ ≤ δ, ‖x̂k+1 − Tρ(x̂k)‖ ≤ ω, ‖x̂k − x̂k+1‖ ≤ Θ

for all x̂k ∈ X(p.q) satisfying d̂2(x̂k) < ε̂, ∀(P)∈ P.

Theorem 3. Let {x̂k} be the sequence generated by Algorithm 2
applied to a realization of problem (P)∈ P with starting point
x̂0 ∈ X̂ 0

(p.q) and taking 0 < ρ ≤ L−1, ρ ∈ R(p.q). Denote

T
.
= σ−1(ρ−1 + L). Then, if d̂2(x̂k) < ε̂,

(i) ‖x̂k+1 − x∗‖ ≤ ω + δT ,

(ii) f(x̂k+1)− f∗ ≤ ρ−1

(
(Θ + Ω)(ω + δT) +

1

2
Θ2

)
.

Proof. From (Nesterov, 2013, Lemma 3), particularized to our
notation, we have that ‖x̂k − Tρ(x̂k)‖ ≥ T−1‖Tρ(x̂k) − x∗‖,
which leads to ‖x̂k − Tρ(x̂k)‖ ≤ δ =⇒ ‖Tρ(x̂k) − x∗‖ ≤ Tδ.
Claim (i) follows from adding the previous inequality with
‖x̂k+1 − Tρ(x̂k)‖ ≤ ω and applying the triangle inequality. By
the same procedure, we also derive ‖x̂k − x∗‖ ≤ δ(T + 1).
Claim (ii) then follows from particularizing Lemma 5.(i) to
y = x∗, using the Cauchy-Schwarz inequality and then taking
the previous inequalities along with the inequalities presented
in Definitions 1 and 2. �

The following corollary gathers the guarantees that are ob-
tained from Algorithm 2 in terms of the error-bounds and tol-
erances presented throughout this section.

Corollary 2 (Suboptimality guarantee of Algorithm 2). Let

kmax ≥ log
(
ε2

4D

)
/ log(C), where C

.
= 1−ρσ

1−4Ωε−1 and D satisfies

D ≥ maxx̂∈X̂0
(p.q)
‖x̂− x∗‖2. The following hold:

(i) If d̂2(x̂k) ≥ ε̂ for all k = {0, . . . kmax}, then

‖x̂kmax − x∗‖ ≤ ε

2
and f(x̂kmax)− f∗ ≤ (ε2 − 4Ωε)

8ρ
.

(ii) If d̂2(x̂k) < ε̂ then ‖x̂k+1 − x∗‖ ≤ ω + δT and

f(x̂k+1)− f∗ ≤ ρ−1

(
(Θ + Ω)(ω + δT) +

1

2
Θ2

)
.

Remark 1. From Lemma 2 we have that the bound ω from
Definition 2 can be substituted by Ω from Definition 1. We
find that for high fractional precision there can be an insignif-
icant difference between the two quantities, thus not meriting
the additional computation time required to compute ω.

4

Algorithm 3: Example of input algorithm for formal
verification

Parameters: (p.q), b ∈ R(p.q), â ∈ R+, ξ ∈ R, χ ∈ R+

Non-deterministic: a ∈ A = {a ∈ Rm : ||a||∞ ≤ â}
1 r = 〈a, a〉
2 µ = br
3 if |err(r)| > χ then FAIL

4 if exact(µ) < ξ then FAIL

4. Obtaining error-bounds for Algorithm 1

This section presents procedures for obtaining arbitrarily
tight values of the bounds Ω, δ, ω and Θ introduced in Defini-
tions 1 and 2 as well as a procedure for checking the satisfaction
of Assumption 1. The procedures consist on the application
of the formal verification procedure presented in Simić et al.
(2022) to check the conditions provided in the definitions and
assumption. We first introduce the formal analysis technique
for fixed-point arithmetic, and then show how it fits within our
certification process.

4.1. Formal verification for fixed-point arithmetic

Simić et al. (2022) consider the problem of estimating the nu-
merical accuracy of algorithms in fixed-point arithmetic with
variables of arbitrary precision and possibly non-deterministic
values. The idea is to re-compute in a greater precision the re-
sult of each fixed-point operation, so that the numerical error
can be estimated based on the difference between the two val-
ues; at the same time, the different errors are in turn accounted
for and propagated through the re-computations. When suf-
ficient precision is used to store the re-computed values, this
yields an accurate error tracking for each variable at any point
of the computation. The techniques relies on a bit-precise en-
coding to transform the sequences of operations under analysis
into operations in integer arithmetic over vectors of bits; these
are in turn encoded as a SAT formula that is satisfiable if and
only if the algorithm under analysis exceeds a given bound on
the numerical error. The technique is quite accurate in that
it allows to formally verify arbitrarily tight bounds on the nu-
merical error up to a given number of iterations. On the other
hand, as observed by the authors, the required program un-
folding pass along with the bit-vector encoding ends up intro-
ducing considerable overhead; the analysis can become quickly
intractable, even for small problems and a few iterations.

We now provide an illustrative example to introduce the
concepts and notation relevant to this article. Consider Al-
gorithm 3 working under a given fixed-point precision (p.q),
where r is a fixed-point variable, exact{r} is its “exact” coun-
terpart and err{r} is its error, i.e., exact{r} = r + err{r}.
The same applies for the other variables, such as µ, whose ex-
act value will generally differ from its value computed in fixed-
point arithmetic due to the multiplication operations. The er-
ror of r is propagated when computing the error of µ, i.e.,
exact{µ} will contain the value of 〈a, a〉. We can perform as-
sessments on the fixed-point variables, their errors and their
exact values (as shown in Steps 3 and 4) for all possible values
of the non-deterministic inputs (variable a in this case). If all
the assessments are satisfied for all possible values of the non-
deterministic variables then the procedure will return a PASS.
Otherwise, it will return a FAIL.

Algorithm 4: Algorithm for asserting Assumption 1

Parameters: (p.q), Q, u, l, cmin, cmax, ε̂, ε2

Non-deterministic: x̂0 ∈ X(p.q), (P)∈ P
1 x̂k+1 ← min{u,max{`, x̂k − ĝρ(x̂k)}}
2 d← 〈x̂k − x̂k+1, x̂k − x̂k+1〉
3 if d ≥ ε̂ and exact{d} < ε2 then FAIL

Algorithm 5: Algorithm for deriving Ω

Parameters: (p.q), Q, u, l, cmin, cmax, Ω2

Non-deterministic: x̂0 ∈ X(p.q), (P)∈ P
1 ĝ ← ρ(Qx̂0 + c)
2 e← err{ĝ}
3 v ← 〈e, e〉
4 if exact{v} > Ω2 then FAIL

Algorithm 6: Algorithm for deriving Def. 2 bounds

Select: b ∈ {δ2, ω2,Θ2}
Parameters: (p.q), Q, u, l, cmin, cmax, ε̂
Non-deterministic: x̂0 ∈ X(p.q), (P)∈ P

1 x̂k+1 ← min{u,max{`, x̂k − ĝρ(x̂k)}}
2 if 〈x̂k − x̂k+1, x̂k − x̂k+1〉 < ε̂ then
3 switch b do

4 case δ2 do s← x̂k − x̂k+1

5 case ω2 do s← err{x̂k+1}
6 case Θ2 do

7 err{x̂k+1} ← 0

8 s← x̂k − x̂k+1

9 end case

10 end switch

11 end if
12 v ← 〈s, s〉
13 if exact{v} > b then FAIL

Example 1. We run the verification procedure presented in
Simić et al. (2022) on Algorithm 3 with p = 8, q = 8, m = 20,
â = 0.125, b = 1.5, ξ = 0, and χ = 0.069580078125. We
obtain a PASS, that is, there is no value of a inside the box
defined by â for which the assertions stated in Steps 3 and 4
of Algorithm 3 are violated. The result of this example high-
lights one of the main benefit of this procedure, which is the
bound χ = 0.069580078125. Variable r is the inner product of
a by itself. As stated in Patrinos et al. (2015), the standard
theoretical bound for the maximum error committed by an in-
ner product is given by err(〈a, a〉) ≤ 2−qm, which is equal to
0.078125 for the values of q and m in this example. However,
the formal verification procedure has found that this theoretical
bound can be improved to err(〈a, a〉) = 0.069580078125, which
is a 12.28% improvement. That is, the procedure may lead to
tighter bounds on the errors committed by the fixed-point algo-
rithm than the ones obtained by simply evaluating its execution
under the theoretical worst-case scenario. Interestingly, consid-
ering the dimension of a (m = 20), the value of q, and the size
of the box, thanks to our specific formulation of the problem at
hand we were able to obtain this verification verdict in a very
small amount of time and with limited hardware resources (5ms
using a standard machine with an Intel i5 processor).

5

4.2. Verification procedure for Algorithm 2

The application of the verification tool presented in the pre-
vious subsection to Algorithm 4 certifies if the given ε̂ and ε2

satisfy Assumption 1. Its application to Algorithms 5 certi-
fies if the provided value of Ω satisfies the condition presented
in Definition 1. A PASS indicates that the given Ω2 satisfies
the condition ‖Tρ(x̂k) − x̂k+1‖2 ≤ Ω2, ∀x̂k ∈ X(p.q), ∀(P)∈ P,
whereas a FAIL indicates that there is at least one combination
of x̂k ∈ X(p.q) and (P)∈ P for which the condition is not sat-
isfied. Note that the condition is asserted with respect to Ω2,
since the verification tool does not allow the use of the square-
root operation. Similarly, for a given value of ε̂, Algorithm 6
is used to certify if the bounds δ, ω or Θ satisfy the conditions
presented in Definition 2. Arbitrarily tight values of Ω, δ, ω or
Θ can be obtained by applying the bisection method to Algo-
rithms 5 and 6. Note that Algorithms 4, 5 and 6 only execute a
single iteration of Algorithm 2. Thus, the proposed verification
procedure remains tractable for moderately-sized problems, in
contrast with the approach taken in Simić et al. (2022).

Remark 2. The verification tool from Simić et al. (2022) can
be configured to return a FAIL in the event of a numerical over-
flow. Thus, we can verify that no overflow occurst in Algo-
rithm 2 for a given choice of the integer precision p if the tool
does not fail due to an overflow when applied to Algorithm 4.

5. Numerical case study

We apply the verification procedures presented in the pre-
vious section to certify the fixed-point implementation of the
PGM to solve the optimization problem of a linear MPC con-
troller for a discrete-time, time-invariant system given by a
state-space model x̃(t) = Ax̃(t) +Bũ(t), where x̃(t) ∈ Rnx and
ũ(t) ∈ Rnu are the state and control input at sample time t.

In particular, we consider the system of three masses con-
nected by springs presented in (Krupa et al., 2021a, §3), where
we take the mass all three objects equal to 1kg and the spring
constants as 1N/m. The 6-dimensional system state is given
by the position and velocity of each of the three objects, while
the control input is given by the two external forces applied to
the outer objects. We take the following MPC formulation:

min

Np−1∑
i=0

(
‖x̃i−x̃r‖2Wx

+‖ũi−ũr‖2Wu

)
+ ‖x̃Np − x̃r‖

2
P (3a)

s.t. x̃0 = x̃(t) (3b)

x̃i+1 = Ax̃i +Bũi, i ∈ ZNp−1
0 (3c)

ũi = ũNc−1, i ∈ ZNp−1

Nc
(3d)

ũ− ≤ ũi ≤ ũ+, i ∈ ZNc−1
0 , (3e)

where Nc ∈ R+ is the control horizon; Np ≥ Nc is the pre-
diction horizon; Wx, P ∈ Rnx×nx and Wu ∈ Rnu×nu are pos-
itive definite; (xr, ur) are the state and input references; and
ũ−, ũ+ ∈ Rnu satisfying ũ− ≤ ũ+ define the bounds on the
control input. We take Nc = 2, Np = 5, ũ+ = (0.5, 0.5),
ũ− = −ũ+, Wx = 0.5Inx , Wu = 0.25Inu and P as the solution
of the associated discrete algebraic Riccati equation. Problem
(3) can be transformed into (P) by eliminating the states and
rewriting it in condensed form, see e.g., Richter (2012); Jerez
et al. (2011), leading to a (nuNc)-dimensional QP problem.
In this case, ingredients Q, ` and u of problem (P) are fixed,

whereas the value of c will depend on the value of the reference
(xr, ur) as well as the current state x̃(t). We compute cmin

and cmax by assuming that the position of the objects belong
to the interval [−0.5, 0.5]m and the velocities to [−1, 1]m/s. A
non-deterministic Q would be taken if we allowed the possi-
bility of changing the weight Wu online or if we considered a
time-varying model of the system.

We now certify the PGM applied to the resulting condensed
MPC problem when implemented in fixed-point arithmetic on
a 32-bit device, where we take p = 10 for the integer precision
and q = 21 for the fractional precision (the remaining bit is
used for storing the sign). We store the matrices of the QP
problem in the selected precision. The resulting problem has
L = 4.9645 and σ = 0.3532. We take ρ as the largest number
representable in R(p.q) that satisfies ρ ≤ 1/L.

In our formal verification procedure we used the prototype
tool of Simić et al. (2022) for generating the bit-vector encod-
ing, CBMC 5.4 (Clarke et al., 2004) for generating the SAT
formula from the bit-vector encoding and MiniSat (Eén and
Sörensson, 2004) to check for the satisfiability of the SAT for-
mula. All computations are performed on an Intel i5 processor
running at 1.6GHz. We start by computing the value of Ω by
selecting an initial value of Ω2 and then applying the bisec-
tion method on the verification of Algorithm 5 with an exit
tolerance of 10−14, i.e., until the difference between the largest
and smallest values of Ω2 resulting in a FAIL and a PASS, re-
spectively, is smaller than 10−14. Table 1 shows the value of
Ω obtained from this procedure, along with the selected exit
tolerance, initial guess of Ω2, number of tests resulting in a
PASS, number of tests resulting in a FAIL, average computation
times of calls resulting in a PASS or FAIL, and total computa-
tion time of the bisection method. We take ε̂ = 2−q, which is
the smallest value it can take, and then find the largest value
of ε satisfying Assumption 4 by applying the bisection method
on Algorithm 4. The results are presented in Table 1, where we
note that the value of ε satisfies ε > 4Ω/(ρσ) = 9.6195 · 10−5.
Therefore, we can use the exit condition d̂2(x̂k) = 0. Finally,
we obtain the bounds δ and Θ following the same bisection
procedure used to compute Ω. The results are also presented
in Table 1. We take ω = Ω, as stated in Remark 1.

Plugging the results into Corollary 2.(ii), we obtain the fol-
lowing: kmax = 250, if d̂2(x̂k) = 0 then ‖x̂k+1 − x∗‖ ≤ 0.0389
and f(x̂k+1) − f∗ ≤ 2.7165 · 10−4, are the best suboptimality
bounds that can be guaranteed, since the ones from Corol-
lary 2.(i) are smaller. The value of kmax required to obtain the
same ε/2-suboptimality under exact arithmetic is 217, c.f., (2).

6. Conclusions

This article has presented a procedure for certifying the im-
plementation of the PGM under fixed-point arithmetic when
applied to strongly-convex box-constrained QP problems. We
have proven that the PGM maintains a linear convergence guar-
antee when sufficiently far away from the optimal solution, in-
dicated by the choice of ε, whose value can be reduced up to
a maximum bound given by the fixed-point error-bound. We
have then presented a procedure based on recent formal veri-
fication tools to obtain a arbitrarily tight values of this error-
bound and the other bounds that characterize the suboptimal-
ity of the output of the PGM. Finally, we have shown that the
computation times of the proposed verification procedures are
tractable for a non-trivial MPC example.

6

Bound b Value b2 Tol. # P/F Av. PASS time [s] Av. FAIL time [s] Total time [s]

Ω 1.711 · 10−6 2−2q 10−14 4/8 218.1 982.8 8738.8

ε 6.8949 · 10−4 (4Ω/(ρσ))2 10−9 11/4 73.8 75.2 1117.4

δ 1.383 · 10−3 2−q 10−9 10/4 84.7 90.8 1215.0

Θ 1.381 · 10−3 δ2 10−9 3/8 12.1 28.3 266.6

Table 1: Bounds obtained from the verification procedures for the three-mass-spring case study.

Appendix A. Proofs and auxiliary lemmas

We start by providing two lemmas whose results are used in
the proofs of Theorems 2 and 3.

Lemma 4. Consider Algorithm 2. For any α ∈ R+,

α
(
x̂k − x̂k+1 − ĝρ(x̂k)

)
∈ ∂IX (x̂k+1), ∀k ≥ 0.

Proof. The claim follows from x̂k+1 being the Euclidean projec-
tion of x̂k− ĝρ(x̂k) onto X (see Corollary 1) along with the op-
timality condition of the projection operator (Bertsekas, 2009,
Prop. 5.4.7) and the equivalence between the subdifferential of
the indicator function of a non-empty convex set and its normal
cone (Bertsekas, 2009, Example 5.4.1). �

The following lemma particularizes (Alamo et al., 2019, Prop-
erty 1) to the fixed-point PGM paradigm.

Lemma 5. Consider Algorithm 2 and let vk ∈ BnΩ be the vec-
tors that satisfy ρ∇f(x̂k) = ĝρ(x̂

k)+vk for every k ≥ 0. Denote
sk

.
= x̂k − x̂k+1. Then,

f(x̂k+1)− f(y) ≤ ρ−1〈sk + vk, x̂k+1 − y〉+
1

2ρ
‖sk‖2 (i)

= ρ−1〈sk, x̂k − y〉 − 1

2ρ
‖sk‖2 + ρ−1〈vk, x̂k+1 − y〉 (ii)

=
1

2ρ
‖x̂k − y‖2− 1

2ρ
‖x̂k+1 − y‖2 + ρ−1〈vk, x̂k+1 − y〉 (iii)

Proof. From Lemma 4 we have that ρ−1(x̂k− x̂k+1− ĝρ(x̂k)) ∈
∂IX (x̂k+1). Therefore, from the definition of the subdifferential
(Parikh and Boyd, 2013, §2.3), we have that

IX (y) ≥ IX (x̂k+1) + ρ−1〈x̂k − x̂k+1 − ĝρ(x̂k), y − x̂k+1〉,

where taking y ∈ X and recalling that x̂k+1 ∈ X (see Corol-
lary 1), leads to

0 ≥ ρ−1〈x̂k − x̂k+1 − ĝρ(x̂k), y − x̂k+1〉. (A.4)

From the convexity of f we have that

f(y) ≥ f(x̂k) + 〈∇f(x̂k), y − x̂k〉. (A.5)

Additionally, from the L-smoothness of f and since ρ ≤ L−1,
we have that

f(x̂k) ≥ f(x̂k+1)− 〈∇f(x̂k), x̂k+1 − x̂k〉 − 1

2ρ
‖sk‖2. (A.6)

Claim (i) follows from adding (A.4), (A.5) and (A.6) along
with the definition of vk. Claims (ii) and (iii) then follow from
simple algebraic manipulations; c.f. Property 1.(i) in Alamo
et al. (2019). �

We now present the proof of Theorems 2, which closely fol-
lows the proofs of (Beck, 2017, Theorem 10.16 and Theorem
10.29), although various modifications have to be made to ex-
tend the results to the fixed-point arithmetic paradigm.

Proof of Theorem 2. Let sk
.
= x̂k+1 − x̂k and γk

.
= x̂k − x∗.

Consider the function ψ : X → R given by

ψ(y) = f(x̂k) + 〈∇f(x̂k), y − x̂k〉+ IX (y) +
1

2ρ
‖y − x̂k‖2.

Since ψ is an ρ−1-strongly convex function, it follows from
(Beck, 2017, Theorem 5.24) that

ψ(y)− ψ(x̂k+1) ≥ 〈µ, y − x̂k+1〉+
1

2ρ
‖y − x̂k+1‖2, (A.7)

∀x̂k+1 ∈ X(p.q), ∀µ ∈ ∂ψ(x̂k+1). Since ρ ≤ L−1, we have
that f(·) satisfies the well-known descent lemma (Beck, 2017,
Lemma 5.7)

f(x̂k+1) ≤ f(x̂k) + 〈∇f(x̂k), x̂k+1 − x̂k〉+
1

2ρ
‖x̂k+1 − x̂k‖2,

∀x̂k+1 ∈ X(p.q), ∀y ∈ X , which along with the definition of ψ
and noting that IX (x̂k+1) = 0 by virtue of Corollary 1, leads to

ψ(x̂k+1) = f(x̂k) + 〈∇f(x̂k), sk〉+
L

2
‖sk‖2 ≥ f(x̂k+1),

∀x̂k+1 ∈ X(p.q). Thus, we can rewrite (A.7) as

ψ(y)− f(x̂k+1) ≥ 〈µ, y − x̂k+1〉+
1

2ρ
‖y − x̂k+1‖2, (A.8)

∀x̂k+1 ∈ X(p.q),∀µ ∈ ∂ψ(x̂k+1). The subdifferential of ψ evalu-
ated at x̂k+1 is given by

∂ψ(x̂k+1) = ∇f(x̂k) + ρ−1(x̂k+1 − x̂k) + ∂IX (x̂k+1). (A.9)

From Definition 1 we have that for each k ≥ 0 there exists a
vector vk ∈ BnΩ satisfying ρ∇f(x̂k) = ĝρ(x̂

k) + vk. Therefore,
we can rewrite (A.9) as

∂ψ(x̂k+1) = ρ−1(vk + ĝρ(x̂
k) + x̂k+1 − x̂k) + ∂IX (x̂k+1).

From Lemma 4 we have 0 ∈ ρ−1(ĝρ(x̂
k)+x̂k+1−x̂k)+∂IX (x̂k+1),

thus ρ−1vk ∈ ∂ψ(x̂k+1). This allows us to rewrite (A.8) as

ψ(y)− f(x̂k+1) ≥ 〈Lvk, y − x̂k+1〉+
1

2ρ
‖y − x̂k+1‖2,

∀x̂k+1 ∈ X(p.q), for some vk ∈ BnΩ. Undoing the expression of
ψ(y) and particularizing to y = x∗ ∈ X leads to

f(x̂∗)− f(x̂k+1) ≥ 1

2ρ
‖γk+1‖2 − 1

2ρ
‖γk‖2 + f(x̂∗)− f(x̂k)

− 〈∇f(x̂k), x̂∗ − x̂k〉+ ρ−1〈vk, x̂∗ − x̂k+1〉.

7

Since f is a σ-strongly convex function, we have that (Beck,
2017, Theorem 5.24.(ii))

f(x̂∗)− f(x̂k)− 〈∇f(x̂k), x̂∗ − x̂k〉 ≥ σ

2
‖x̂∗ − x̂k‖2.

Thus,

f(x̂∗)−f(x̂k+1) ≥ 1

2ρ
‖γk+1‖2− ρ

−1 − σ
2

‖γk‖2−ρ−1〈vk, γk+1〉.

(A.10)
By definition of x̂∗, we have that f(x̂∗)− f(x̂k+1) ≤ 0. There-
fore, the right hand side of (A.10) must also be less or equal to
0, which leads to

1

2
‖x̂k+1 − x̂∗‖2 ≤ 1− ρσ

2
‖x̂k − x̂∗‖2 + 〈vk, x̂k+1 − x̂∗〉

(∗)
≤ 1− ρσ

2
‖x̂k − x̂∗‖2 + ‖vk‖ · ‖x̂k+1 − x̂∗‖

(∗∗)
≤ 1− ρσ

2
‖x̂k − x̂∗‖2 + 2Ωε−1‖x̂k+1 − x̂∗‖2,

where in (∗) we are making use of the Cauchy-Schwarz inequal-

ity and in (∗∗) of the fact that ‖vk‖ ≤ Ω and ‖x̂k+1− x̂∗‖ > ε

2
.

Since by construction ρσ ≤ 1, the assumption 4Ωε−1 < ρσ

implies 2Ωε−1 <
1

2
. Thus, we derive

‖x̂k+1 − x̂∗‖2 ≤
(

1− ρσ
1− 4Ωε−1

)
‖x̂k − x̂∗‖2,

which leads to claim (i) if applied recursively, where we note
that the assumption 4Ωε−1 < ρσ guarantees that the sequence
is convergent.

We now prove claim (ii) by rearranging (A.10) and proceed-
ing as follows:

f(x̂k+1)−f(x̂∗) ≤ ρ−1 − σ
2

‖γk‖2 − 1

2ρ
‖γk+1‖2 + ρ−1〈vk, γk+1〉

≤ ρ−1 − σ
2

‖γk‖2 − 1

2ρ
‖γk+1‖2 + 2ρ−1Ωε−1‖γk+1‖2

≤ ρ−1 − σ
2

‖γk‖2 + ρ−1

(
2Ωε−1 − 1

2

)
‖γk+1‖2

(∗)
≤ 1− ρσ

2ρ
‖γk‖2 =

1− 4Ωε−1

2ρ

(
1− ρσ

1− 4Ωε−1

)
‖γk‖2

(∗∗)
≤ 1− 4Ωε−1

2ρ

(
1− ρσ

1− 4Ωε−1

)k+1

‖x̂0 − x̂∗‖2,

∀x̂k+1 ∈ X(p.q), ∀k ≥ 0, where (∗) holds since 2Ωε−1 <
1

2
and

(∗∗) follows from claim (i). �

References

Alamo, T., Krupa, P., Limon, D., 2019. Restart FISTA with global
linear convergence, in: 2019 18th European Control Conference
(ECC), IEEE. pp. 1969–1974.

Beck, A., 2017. First-Order Methods in Optimization. Society for
Industrial and Applied Mathematics.

Bemporad, A., 2019. Explicit Model Predictive Control. Springer
London.

Bertsekas, D.P., 2009. Convex Optimization Theory. Athena Scien-
tific.

Clarke, E., Kroening, D., Lerda, F., 2004. A tool for checking ANSI-
c programs, in: Jensen, K., Podelski, A. (Eds.), Tools and Al-
gorithms for the Construction and Analysis of Systems. Springer
Berlin Heidelberg. volume 2988, pp. 168–176. Series Title: Lecture
Notes in Computer Science.

Devolder, O., Glineur, F., Nesterov, Y., 2014. First-order methods
of smooth convex optimization with inexact oracle. Mathematical
Programming 146, 37–75.

Eén, N., Sörensson, N., 2004. An extensible SAT-solver. Lecture
notes in computer science 2919, 502–518.

Fang, C., Rutenbar, R., Tsuhan Chen, 2003. Fast, accurate static
analysis for fixed-point finite-precision effects in DSP designs, in:
International Conference on Computer Aided Design, IEEE. pp.
275–282.

Frison, G., Diehl, M., 2020. HPIPM: a high-performance quadratic
programming framework for model predictive control. IFAC-
PapersOnLine 53, 6563–6569.

Garone, E., Di Cairano, S., Kolmanovsky, I., 2017. Reference and
command governors for systems with constraints: A survey on
theory and applications. Automatica 75, 306–328.

Jerez, J.L., Kerrigan, E.C., Constantinides, G.A., 2011. A condensed
and sparse QP formulation for predictive control, in: IEEE Con-
ference on Decision and Control and European Control Confer-
ence, IEEE. pp. 5217–5222.

Krupa, P., Jaouani, R., Limon, D., Alamo, T., 2021a. A sparse
ADMM-based solver for linear MPC subject to terminal quadratic
constraint. arXiv:2105.08419 .

Krupa, P., Limon, D., Alamo, T., 2021b. Implementation of model
predictive control in programmable logic controllers. IEEE Trans-
actions on Control Systems Technology 29, 1117–1130.

Nadales, J.M., Manzano, J.M., Barriga, A., Limon, D., 2022. Effi-
cient FPGA parallelization of lipschitz interpolation for real-time
decision-making. IEEE Transactions on Control Systems Technol-
ogy 30, 2163–2175.

Nesterov, Y., 2013. Gradient methods for minimizing composite
functions. Mathematical Programming 140, 125–161.

Parikh, N., Boyd, S., 2013. Proximal algorithms. Foundations and
Trend in Optimization 1, 123–231.

Patrinos, P., Guiggiani, A., Bemporad, A., 2015. A dual gradient-
projection algorithm for model predictive control in fixed-point
arithmetic. Automatica 55, 226–235.

Rawlings, J.B., Mayne, D.Q., Diehl, M., 2017. Model predictive
control: theory, computation, and design. 2nd edition ed., Nob
Hill Publishing.

Richter, S., 2012. Computational complexity certification of gradient
methods for real-time model predictive control. Ph.D. thesis. ETH
Zurich.

Ryu, E.K., Boyd, S., 2016. A primer on monotone operator methods.
Appl. comput. math. 15, 3–43.

Saracco, P., Batic, M., Hoff, G., Pia, M.G., 2012. Uncertainty
quantification (UQ) in generic MonteCarlo simulations, in: 2012
IEEE Nuclear Science Symposium and Medical Imaging Confer-
ence Record (NSS/MIC), IEEE. pp. 651–656.

Simić, S., Bemporad, A., Inverso, O., Tribastone, M., 2022. Tight
error analysis in fixed-point arithmetic. Formal Aspects of Com-
puting 34, 1–32.

Stellato, B., Banjac, G., Goulart, P., Bemporad, A., Boyd, S., 2020.
OSQP: An operator splitting solver for quadratic programs. Math-
ematical Programming Computation 12, 637–672.

Vakili, S., Langlois, J.M.P., Bois, G., 2013. Finite-precision error
modeling using affine arithmetic, in: 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, IEEE.
pp. 2591–2595.

8

	1 Introduction
	2 Exact proximal gradient method
	3 Proximal gradient method in fixed-point arithmetic
	4 Obtaining error-bounds for Algorithm 1
	4.1 Formal verification for fixed-point arithmetic
	4.2 Verification procedure for Algorithm 2

	5 Numerical case study
	6 Conclusions
	A Proofs and auxiliary lemmas

