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Abstract: The purpose of this work is to advance in the computational study of connectome graphs
from a topological point of view. Specifically, starting from a sequence of hypergraphs associated
to a brain graph (obtained using the Boundary Scale model, BS2), we analyze the resulting scale-
space representation using classical topological features, such as Betti numbers and average node
and edge degrees. In this way, the topological information that can be extracted from the original
graph is substantially enriched, thus providing an insightful description of the graph from a clinical
perspective. To assess the qualitative and quantitative topological information gain of the BS2

model, we carried out an empirical analysis of neuroimaging data using a dataset that contains the
connectomes of 96 healthy subjects, 52 women and 44 men, generated from MRI scans in the Human
Connectome Project. The results obtained shed light on the differences between these two classes of
subjects in terms of neural connectivity.

Keywords: connectome; hypergraph theory; Betti numbers; topological scale

1. Introduction

The study of brain graphs [1], which represent the brain’s functional and structural
connections through a network of nodes and edges, is of paramount importance to under-
standing the functioning of the human brain and studying potential differences between
individuals. Moreover, the study of brain graphs has helped, in the past, and can currently
help to identify potential bio-markers for various neurological disorders [2,3]. In the last
years, several scientific research studies have been published that develop and propose dif-
ferent methods for describing, studying, and analyzing brain networks, which are referred
to as “connectomes” [4]. Among the most widely used methods for studying brain graphs,
we certainly find those based on the use of graph theory metrics [5,6] and on persistent
homology [7,8]. Some studies have analyzed datasets containing only information from
healthy individuals [9,10], while others have used the developed tools and cited methods
to analyze and compare brain graphs from both healthy and pathological subjects [11–13].

In this work, an innovative software tool developed in Python language is pre-
sented for the analysis of brain graphs, based on the new “Topological Scale Framework”
(TSF) [14,15]. More concretely, the set of algorithms proposed here conforms an iterative
process that uses as initial value the incidence matrix (Figure 1) of the original brain graph,
to gradually generate a sequence of associated hypergraphs parameterized by a scale of
topological nature. This sequence is also called boundary-scale model of the brain graph.
A set of local and global topological numerical indices (such as lists of nodes and edges
degrees and Betti numbers) are collected for each hypergraph component of the model.
This tool also includes some of the most commonly used graph metrics in network neuro-
science [16] in order to compare it with other well-known analysis methods.
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Figure 1. Example of a simple brain graph and its associated incidence matrix. Figure modified
with text, markings, and annotation after adaptation of "Brain” from Servier Medical Art by Servier,
licensed under a Creative Commons Attribution 3.0 Unported Licence. Original photo adapted from
https://smart.servier.com/smart_image/brain-area/, accessed on 17 May 2023.

The database on which the boundary-scale model has been tested consists of 96 undi-
rected and unweighted brain graphs of healthy subjects, 44 males and 52 females, generated
from MRI scans obtained from the Human Connectome Project (HCP) [17]. The developed
tool is then used to evaluate possible sex differences in brain connectivity, adhering to
previous studies [18–21] and opening up new research perspectives in this field.

2. Materials and Methods

This section explains the mathematical background and notation strictly necessary
to understand the nature of the topological space-scale method and describes the dataset
used for the present study.

Let n1 and n2 be two natural numbers with n1 ≤ n2. The interval [n1, n2] means
the set {n ∈ N | n1 ≤ n ≤ n2}. An enumeration function `A : [1, n] → A (for some
n ∈ N) for a finite set A is a bijection. The cardinal of A is |A| = n. Let us denote by ∗
the product of matrices with values in the field Z2 = {0, 1}. If B is a matrix of m files and
n columns (m, n ∈ N), BT denotes the transpose of B of n files and m columns. If m = n,
Bk = B ∗ B ∗ · · · ∗ B︸ ︷︷ ︸

k times

(k ∈ N) and B0 = Im,m, being Im,m the identity matrix of dimensions

m×m.

2.1. Fundamentals of Hypergraph Theory

An (incidence) hypergraph is a tuple G = ((V, `V), (E, `E), I), where (V, `V) and (E, `E)
are enumerated finite sets called vertices and edges, respectively, and I ⊂ V × E is the vertex-edge
incidence relation of G. Let us note that a node-edge incidence relation I can also be identified
with a vertex-edge incidence matrix B(G) = [bi,j] of dimension |V| × |E|with bi,j = 1 if `V(i) = v;
`E(j) = e and (v, e) ∈ I(G), and zero otherwise, for i ∈ [1, |V|], j ∈ [1, |E|]. From now on, we
omit the enumeration functions on vertices and edges and any hypergraph G is defined by the
three-tuple (V, E, B(G)). Note that this definition differs from the classical one where each edge
of a hypergraph is identified with a finite subset of V (Figure 2).

Two kinds of topological features or indices can be distinguished: local and global.
As an example of local topological features, we have the degree dgr(w, G) of a vertex

(resp. an edge) w, that is, the number of edges (resp. vertices) which are related to the
vertex (resp. the edge). Both features can be derived from the incidence matrix of the
hypergraph, as the sum of 1 s for each column to obtain the vertex degree and the sum of
1 s for each row to obtain the edge degree. The edge degree index allows us to define the
notion of graph. An (incidence) graph G = (V, E, B) is a hypergraph with every edge having
degree two.

Relevant global topological indices of a hypergraph G = (V, E, B) are the Euler and
Betti numbers. The Euler number of a hypergraph G is the integer number χ(G) = |V| \ |E|.
The k-th Betti number βk(G) (k = 0, 1) of G is the dimension of the k-th homology vector
space of G with coefficients in Z2. Both β0(G) and β1(G) are classically computed using the
Smith normal form of the incidence matrix B of G [22]. The Euler number of a hypergraph
G is strongly related to its Betti numbers via this formula: χ(G) = β0(G) \ β1(G). Note that,

https://smart.servier.com/smart_image/brain-area/
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given a graph, Betti numbers have an intuitive interpretation. In this case, β0 corresponds
to the number of connected components and β1 to the number of elementary cycles of
the graph.

Figure 2. First hypergraphs’ components of the BS2-model of a six-vertex graph and their corre-
sponding Betti numbers.

2.2. Boundary-Scale Theory for Hypergraphs

The fundamental limitation of graphs is that merely pairwise interactions are cap-
tured, whereas many real and biological systems exhibit group interactions. In fact, as the
authors of [23] recognize, simplicial complexes and hypergraphs are natural candidates
for describing higher order interactions. The boundary scale model (BS2-model, for short)
provides a tool to transform a graph into a sequence of hypergraphs as a generalization
of the former pairwise interactions, allowing for the exploration of multiple and complex
relations in higher dimensions.

The BS2-model of a hypergraph G = (V, E, B) is a sequence of hypergraphs BS∈(G) =
(BS∈s(G))s≥1, being BS∈s(G) = (V, E, Bs) the hypergraph at scale s, with Bs = (B ∗
BT)s−1 ∗ B, s ≥ 1 (see Table 1). Moreover, this highly redundant representation of G
involves transition maps ρs : BS∈s(G) → BS∈s−1(G), defined by ρs(v) = v ∀v ∈ V
and ρs(e) = BT ∗ B ∗ e∀e ∈ E, ∀s > 1. Note that e is considered here as a vector. They
connect consecutive hypergraph components, preserving homological information [14,15].
Extracting from a BS2-model classical and new (local and global) topological indices is the
method of TSF for topologically discriminating brain graphs.

Table 1. BS2 Intra-analysis Process.

bs21
bs22

bs23 ... bs2i

Incidence
matrix B BBT B B(BT B)2 ... B(BT B)i−1

Global features
β1

0 β2
0 β3

0 ... βi
0

β1
1 β2

1 β3
1 ... βi

1
χ1 χ2 χ3 ... χi

Local features n− deg1 n− deg2 n− deg3 ... n− degi

h− deg1 h− deg2 h− deg3 ... h− degi

An example graphically showing the first three-component hypergraphs (s = 1, 2, 3)
of BS2-model for a simple six-vertex graph is given in Figure 2. Note that the number of
vertices and edges remains unaltered throughout the levels of the model. Only incidence
connections among them are being modified. Vertices are shown using circles of different
colors and they have the same spatial distribution for all the boundary scale indices. Edges
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are indistinctly described by black solid squares. For simplicity’s sake, transition maps are
omitted. Betti numbers (β0 and β1) are presented for each hypergraph of the BS2-model in
Figure 2.

2.3. Topological Brain Network Analysis

We work here with intra-analysis metrics of the BS2-model. That means that, given
a local (resp. global) topological index ind(w, G) (resp. simply ind(G)) of a hypergraph
G, we focus on the sequence (ind(w, Gs))s≥1 (resp. (ind(Gs))s≥1). Inter-analysis of the
BS2-model is based on sequences in which transition functions of the model are involved.
The extended study of brain graphs adding inter-analysis metrics is intended to be in the
near future.

At each topological scale s, we deal here with the local index deg(w, Gs) and the global
features χ(G), β0(Gs) and β1(Gs). These parameters are obtained from the incidence matrix
of every hypergraph component.

The Betti numbers β0 and β1 determine the number of homological holes of dimension
0 and 1 of the given hypergraph. In the case in which G is a graph, β0 coincides with the
number of path-connected components of G and β1 identifies the number of independent
loops or circuits within each path-connected component (Figure 3).

Figure 3. Example of Betti numbers β0 and β1 for a graph. Figure modified with markings and
annotation after adaptation of “Brain” from Servier Medical Art by Servier, licensed under a Creative
Commons Attribution 3.0 Unported Licence. Original photo adapted from https://smart.servier.
com/smart_image/brain/, accessed on 17 May 2023.

2.4. Dataset

The data source of this study is the website of the Human Connectome Project at
the address www.humanconnectome.org, accessed on 17 May 2023 [17]. The National
Institutes of Health–funded large Human Connectome Project (HCP) regularly provides its
high-angular resolution diffusion imaging (HARDI) Magnetic Resonance Imaging datasets
of hundreds of healthy human subjects. State-of-the-art computational methods have
made possible the identification of 1015 gray matter areas of the brain (ROI, Region Of
Interest) and the connections between them [24]. Starting from the HARDI, brain graphs
can be obtained: each one of the 1015 ROI sets can correspond to a node (or a vertex)
and the edges of the graphs can be labeled by physical properties of the neural fibers
connecting the corresponding ROIs. Once one brain graph for each subject is obtained,
since the nodes of these graphs correspond to the very same set of 1015 anatomical areas,
one can make comparisons between the brain graphs of individual subjects or groups of
subjects in several ways [25,26]. The brain graphs, analyzed in the present work, can be
downloaded at the site braingraph.org, accessed on 17 May 2023, selecting “Partial set,
96 brains, 20,000 streamlines”. For this study, the data were downloaded in December 2022.

The dataset [27] contains the connectomes of 96 healthy subjects, 52 females and
44 males, between the ages 22 and 35, each with 83, 129, 234, 463, and 1015 node reso-
lution. Each graph is available as a separate GraphML file with a standardized name:
nnnnnn_connectome_scale_xxx.graphML. The first six digits (nnnnnn) refer to the subject’s
ID from the HCP’s public release; and the last digits (xxx), which can be 2 or 3, refer to the
number of vertices in the graph. Scale 33 corresponds to 83 vertices, scale 60–129 vertices,

https://smart.servier.com/smart_image/brain/
https://smart.servier.com/smart_image/brain/
http://www.humanconnectome.org/documentation/S500
https://braingraph.org/cms/download-pit-group-connectomes/
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scale 125–234 vertices, scale 251–463 vertices, and scale 500–1015 vertices [27]. A group of
undirected and unweighted brain graphs have been selected from this dataset.

2.5. Statistical Analysis

The statistical null hypothesis tested is that the graph parameters do not differ between
the male and female groups. The first approach was to apply ANOVA [28]; therefore, as
the first step, we checked the assumption of the said statistical test. These are homogeneity
of variance and normal distribution of data, respectively tested with the Levene’s test [29]
and the Kolmogorov-Smirnov test [30]. When the results of both tests were satisfactory,
ANOVA was applied. Instead, where one or both tests did not lead to a positive result,
a different statistical test was chosen to analyze the data. In particular, data that did
not conform to the assumption of homogeneity of variance were analyzed using Welch’s
alternative to ANOVA [31]; data that did not conform to the normality test were subjected
to a non-parametric test, specifically the Mann–Whitney U test, which is also known as the
Wilcoxon rank sum test [32,33]. In those cases analyzed where the p-value was less than
0.05, it was possible to reject the null hypothesis, meaning that all the corresponding brain
graph parameters differ significantly in sex groups at a significance level of 5%. We used
MATLAB (2022a) for the statistical analysis.

3. Results

The methodologies described in the previous section have yielded results that will be
reported here.

Before addressing the statistical analysis, the gain in local and global topological
information extracted from the BS2 model with regard to that directly obtained from
the original connectome graph can be easily visualized. Bar charts for Betti numbers
of dimensions 0 and 1 of the first three hypergraph components of the BS2 model of
connectome graphs are displayed in Figures 4 and 5. The X-axis of these charts denote the
different integer values of the parameters β0 and β1 and the Y-axis measures the number of
individual having the same Betti number. Charts of women’s frequencies are colored blue,
and men’s frequencies are colored red. Note that the left charts correspond to the original
graph database.

Figure 4. 0-Betti number bar charts computed for the first 3 iterations of the model.

Figure 5. 1-Betti number bar charts computed for the first 3 iterations of the model.

Now, the results of the statistical analysis for each feature and the corresponding
statistical test applied have been reported in Table 2, where:

- node_deg_xxx is the average degree of the nodes, xxx can assume different values: or
if it is referred to the original graph; 1it, 2it, 3it if it is referred to the first, second,
third iteration, respectively.
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- edge_deg_xxx is the average degree of the edges, xxx can assume different values:
1it, 2it, 3it if it is referred to the first, second, third iteration, respectively.

- beta0_xxx is the Betti number β0 of the graph at the first, second, and third iterations.
- beta1_xxx is the Betti number β1 of the graph at the first, second, and third iterations.

In addition, those p-values that were individually less than the threshold have been
highlighted in bold.

Table 2. Results of the statistical analysis of the different parameters (average degree of nodes and
edges, β0 and β1) computed for the 83-vertex, 129-vertex, 234-vertex, 463-vertex, and 1015-vertex
brain graphs.

Feature Statistical Test Applied p-Value

83-nodes resolution

node_deg_or ANOVA 0.00027118
node_deg_1it ANOVA 0.00017121
node_deg_2it ANOVA 0.00046663
node_deg_3it ANOVA 0.00025789
edge_deg_1it WANOVA 0.0021
edge_deg_2it ANOVA 0.0181
edge_deg_3it WANOVA 0.0218

beta0_1it MW-U test 0.0677
beta0_2it MW-U test 0.1124
beta0_3it MW-U test 0.1801
beta1_1it ANOVA 0.00012318
beta1_2it ANOVA 0.00021162
beta1_3it ANOVA 0.0001278

129-nodes resolution

node_deg_or ANOVA 0.0211
node_deg_1it ANOVA 0.0001994
node_deg_2it ANOVA 0.00043659
node_deg_3it ANOVA 0.00049557
edge_deg_1it ANOVA 0.00007947
edge_deg_2it ANOVA 0.0011
edge_deg_3it ANOVA 0.0024

beta0_1it MW-U test 0.5185
beta0_2it MW-U test 0.7152
beta0_3it MW-U test 0.9758
beta1_1it ANOVA 0.002
beta1_2it ANOVA 0.0031
beta1_3it ANOVA 0.0021

234-nodes resolution

node_deg_or MW-U test 0.0005184
node_deg_1it ANOVA 0.00023928
node_deg_2it ANOVA 0.00022495
node_deg_3it ANOVA 0.00058833
edge_deg_1it ANOVA 0.0000049857
edge_deg_2it ANOVA 0.000010999
edge_deg_3it ANOVA 0.000077484

beta0_1it MW-U test 0.7544
beta0_2it MW-U test 0.8749
beta0_3it ANOVA 0.8761
beta1_1it MW-U test 0.00041007
beta1_2it MW-U test 0.00054039
beta1_3it MW-U test 0.00039878
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Table 2. Cont.

Feature Statistical Test Applied p-Value

463-nodes resolution

node_deg_or ANOVA 0.3238
node_deg_1it MW-U test 0.000050071
node_deg_2it ANOVA 0.0014
node_deg_3it ANOVA 0.0018
edge_deg_1it ANOVA 0.000010282
edge_deg_2it ANOVA 0.000004063
edge_deg_3it ANOVA 0.0000054781

beta0_1it ANOVA 0.4886
beta0_2it ANOVA 0.558
beta0_3it ANOVA 0.5718
beta1_1it ANOVA 0.2746
beta1_2it ANOVA 0.2781
beta1_3it ANOVA 0.2762

1015-nodes resolution

node_deg_or ANOVA 0.5788
node_deg_1it MW-U test 0.0189
node_deg_2it ANOVA 0.006
node_deg_3it ANOVA 0.0092
edge_deg_1it ANOVA 0.000125
edge_deg_2it ANOVA 0.000015016
edge_deg_3it ANOVA 0.000047532

beta0_1it ANOVA 0.1716
beta0_2it ANOVA 0.1616
beta0_3it ANOVA 0.1644
beta1_1it MW-U test 0.4186
beta1_2it MW-U test 0.425
beta1_3it MW-U test 0.4271

Among all the computed and analyzed parameters, the Average Nodes Degree (AND)
and the Average Hyperedges Degree (AHD) successfully pass the statistical test for all five
analyzed nodal resolutions. The β0, which identifies the number of connected components,
does not pass the statistical tests for any nodal resolution. On the other hand, the β1 passes
the statistical tests for lower resolutions (83, 129, 234 nodes), but for higher resolutions,
starting from 463 nodes, the associated p-value begins to be greater than 0.05, meaning that
the parameter does not pass the test.

Figures 6–10 show, for illustrative purposes, the empirical cumulative distribution
functions (ECDFs) [34] related to the four parameters studied, all of them computed for the
highest nodal resolution, that is, 1015 nodes.

In Figures 6–10, the parameter value (x) is plotted on the x-axis, and the fraction of
subjects F(x) which has the value of that parameter at most x, is plotted on the y-axis. In
other terms, for each value of x, on the horizontal axis, the curves demonstrate the male
(blue curve) and female (red curve) fraction of subjects with the value of the parameter
under analysis at most x. For example, with reference to Figure 8, for x = 30, 16% of the
females have the Average Node Degree value less than x, while about 57% of the males
have the same value less than x.
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Figure 6. ECDF of the AND parameter computed for the original graph.

Figure 7. ECDF of the AND parameter computed for the first iterations of the BS2 iterative process.
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Figure 8. ECDF of the AHD parameter computed for the first iteration of the BS2 iterative process.

Figure 9. ECDF of the β0 parameter computed for the first iteration of the BS2 iterative process.
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Figure 10. ECDF of the β1 parameter computed for the first iteration of the BS2 iterative process.

4. Discussion

Among all the computed parameters, in particular, the AND and the AHD (with
reference to Figures 7 and 8) were found to be significantly different in statistical terms
between women and men, for all iterations of the BS2 process and for all analyzed nodal
resolutions. Specifically, both parameters turned out to be higher in female connectomes
rather than in male ones, leading to the conclusion that female brain graphs are more
connected than the connectome of males.

The Average Nodes Degree parameter computed for high nodal resolution is of partic-
ular interest and demands focused consideration because, while the statistical difference
between sexes was not significant in the evaluation of the original graph, it was found to be
statistically significant when analyzed for the different iterations of the BS2 process. This
result is of particular importance because it highlights the potential power and relevance of
applying this theory to brain graphs.

However, other considered parameters, such as the β0 and the β1, from the conducted
analysis have not been found to be characteristic of the two sexes; the first one for all nodal
resolutions analyzed and the second one only for high nodal resolutions. In fact, since they
did not pass the statistical tests, we cannot conclude, from this preliminary application of
the tool, that they are an efficient and significant indicator of the difference between the
female and male sexes in terms of brain connectivity. This may have arisen from the fact
that the brain graphs of women and men do not actually differ in terms of the number of
connected components and the number of cycles, or from the limited number of graphs
examined in the present analysis.

The analysis conducted has provided new parameters such as the Average Nodes
Degree, and the Average Hyperedges Degree, which have turned out to be metrics that
highlight the difference in brain connectivity between the two sexes. On the other hand,
the β0 and the β1 have been found to be insensitive to the sex difference in terms of
brain connectivity.

Finally, the authors would like to emphasize that the aim of the work presented is to
extend the information that can be analyzed for a given network through the application
of the BS2 model. We acknowledge that, if the present study had a clinical objective, it
would have been imperative to expand both the dataset and the number of iterations for
the BS2 model.
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5. Conclusions

The work was carried out with the aim of applying a Boundary Scale-Space model to
brain graphs. A preliminary application of the proposed tool has been conducted on the de-
scribed database, studying the differences in terms of neural connectivity between the two
sexes, adhering to previous scientific studies that have carried out a similar analysis [18–20].
Indeed, this initial application of the tool was carried out on healthy subjects with the
aim of identifying a group of subjects that could serve as a control group in future studies
where differences, not based on sex as conducted in this study, will be analyzed between
pathological and physiological subjects or between brain graphs of the same patient but at
different stages of the disease.

The results presented here demonstrate that the use of the boundary scale model for
the analysis of brain graphs has led to a significant expansion of the results of Szalkai
B. et al. (2015) [21]. Note that only a small part of the information that can be obtained
through the BS2 sequence has been employed in this work. We are convinced that the future
development of improved scale-space topological methods to quantify the topology of brain
networks will provide models capable of describing basic interactions between neuronal
ensembles and to predict network topological alterations correlated to cognitive/motor
behavior and disease. In fact, due to the generic nature of the mathematical software
associated to TSF representations, its impact could be significant in other areas of Biomedical
Data Science, like Radiomics Analysis [35] or Knowledge Graphs [36].
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