This is an Accepted Manuscript of an article published by Slack, Inc. in Journal of Refractive Surgery 35 (11) 740 – 751, on 2019, available at: <u>https://doi.org/10.3928/1081597X-20191010-02</u>. It is deposited under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (<u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

<u>Title</u>

Complications and Explantation Reasons in Intracorneal Ring Segments (ICRS): A Systematic

Review

Authors

	Last Name	First Name	Academic Degree
1	Bautista-Llamas ^a	María-José	OD, PhD
2	Sánchez-González ª	María Carmen	OD, PhD
3	López-Izquierdo ª	Inmaculada	OD, PhD
4	López-Muñoz ª	Alfredo	OD, PhD
5	Gargallo-Martínez ^a	Beatriz	OD, PhD
6	De-Hita-Cantalejo ^a	Concepción	OD, PhD
7	Sánchez-González ^a	José-María	OD, PhD

^a Department of Physics of Condensed Matter, Optics Area, University of Seville, Reina Mercedes S/N, Seville, Spain

Corresponding author

Name: Sánchez-González, José-María, OD, PhD, University of Seville

Address: Reina Mercedes St., Physic Faculty, University of Seville, Seville, Spain

Telephone number: +34 954 55 28 91 / +34 618 20 41 10

E-mail address: jsanchez80@us.es

1 Abstract

2

3 Purpose

To review the intraoperative and postoperative intracorneal ring segment complications and
to report the explantation rate among the available scientific literature.

6 Method

Three different databases, namely, PubMed, Web of Science and Scopus, were assessed
from January 1995 to June 2019. The keywords used were: ring, rings, ICRS (intracorneal
rings segments), segment, segments or Intacs, complication, explantation, explanted, retired
and removal.

11 Results

The selection process of this systematic review study is described in a flow diagram. A total of 39 studies published between 1995 and 2019 were included in this systematic review. Sixteen studies were case reports, twenty-one were case series studies and two were chart analysis works. This study enrolled 1946 subjects, and 2590 eyes were included.

The postoperative complications described in most papers included migration, ring extrusion, corneal thinning, corneal melting and some type of infective keratitis. These complications together with glare, halos, fluctuating vision, neovascularization, foreign body sensation or pain represented most of the causes. The percentage rate of explantation ranged from 0.5 up to 83.3%. If we analyze those articles with a high number of implantations (2124 eyes), an explantation rate between 0% and 1.4% was obtained.

22 Conclusions

The complication rate and explantation ratio in segments of the intracorneal rings analyzed in the available scientific literature are minimal. Therefore, patient selection, surgery planning and postoperative follow-up are critical to the success of surgery.

26 Introduction

Intracorneal ring segments (ICRS) were used in the 1970s¹ for low and moderate myopia 27 correction, and anterior cornea curvature flattening occurred by placing ICRS on the stroma. 28 Previous studies reported that it was a safe, effective and stable method to correct low 29 myopia.² Currently, the method has been extended to various pathologies, such keratoconus 30 (KC), pellucid marginal degeneration (PMD) or iatrogenic corneal ectatic.³ Three types of 31 ICRS are available: INTACS [®] (Addition Technology, Sunnyvale, CA, USA), Ferrara [®] 32 (Mediphacos, Belo Horizonte, Brazil) and Kerarings ® (Mediphacos, Belo Horizonte, Brazil). 33 Classic ICRS channel creation by implanting the segments via mechanical dissection is 34 currently being replaced by femtosecond lasers. In addition to being less annoying to the 35 patient, the use of femtosecond lasers is faster and provides greater control of the depth, 36 37 width and centering of the tunnel as well as increased accuracy. In addition, epithelial tissue changes are minimal, and recovery after surgery is faster.^{4,5} Channel creation by both 38 methods yields similar visual and refractive results. Nevertheless, increased intraoperative 39 complications occurred with mechanical ICRS implantation.6,7 40

ICRS involves intraoperative complications, such incomplete tunnel creation, cornea surface 41 42 perforation or anterior chamber perforation. In the first case, the complication can be resolved by mechanical dissection. The perforation rates are low, which is one of the most 43 serious complications.^{8,9} Another intraoperative complication is vacuum loss, which occurs 44 during femtosecond suction; however, it is possible to recreate the same corneal plane and 45 the intrastromal channel. Among postoperative complications, segment migration can occur, 46 which may be due to an excessive ICRS width in a thin cornea. Coskunseven et al.8 and 47 Mounir et al.¹⁰ reported a high ring migration rate. ICRS implantation near the incision 48 49 implies a great risk of corneal melting, and ICRS should be explanted immediately in these

50 cases.¹¹ Another reason for explantation reported in current literature is poor visual acuity or 51 fluctuations in visual quality. The first to describe an explantation for this reason was Asbell 52 et al.¹² He got glare, halos and fluctuating vision. Recently other authors¹³⁻¹⁹ have also 53 reported poor visual acuity as a reason for explantation.

54 One of the main goals of ICRS surgery is to treat keratoconus or post-LASIK ectasia. The 55 use of a permanent suture at the incision site and avoiding eye rubbing have been 56 proposed.²⁰ Infection risk is noted with ICRS implantation. Multiple microorganisms have 57 been as causative agents of this complication, and both bacteria and fungi can cause 58 infectious keratitis. For example, *Staphylococcus aureus*²¹ appears in up to 25% of cases 59 followed by *Pseudomonas* sp. and *Streptococcus pneumoniae* among others.^{22,23}

60 Several factors have been detected in relation to the onset of this complication, such as previous traumas, use of contact lenses, or systemic diseases, such as diabetes mellitus.²⁴ 61 The most efficient method to treat infectious keratitis after ICRS implantation is topical 62 antibiotic therapy. Bourcier et al.²⁵ reported that topical antibiotic therapy alone was sufficient 63 64 to treat the infection. On the other hand, in some publications, ICRS explantation was 65 considered as the first therapeutic option to treat this complication. Deep corneal neovascularization is another complication that can be caused by the implant and is not 66 associated with the surgical wound. Treatment with topical corticoid agents and surgical 67 removal of the ring may induce vessel regression.²⁶ 68

This systematic review aims to report intraoperative and postoperative intracorneal ring
segment complications and to report explantation rates among the available scientific
literature.

72

73 Methods

74 This review is registered at the PROSPERO International prospective registry. The study

75 was performed according to the PRISMA statement recommendations. PubMed, Web of Science and Scopus data based were searched from January 1995 to June 2019. The 76 keywords used were ring, rings, ICRS (intracorneal rings segments), segment, segments or 77 Intacs, complication, explantation, explanted, retired or removal. Experts identified and 78 79 evaluated the articles selected according by inclusion and exclusion criteria. Two independent reviewers extracted and selected studies. Duplicate articles were assessed by 80 81 authors. Among the inclusion criteria were: (1) Case reports, case series, chart analysis and 82 randomized controlled trials reporting intraoperative and postoperative complication in ICRS implantation; (2) ICRS explantation papers as well as the reasons; (3) There was no 83 84 restrictions on publication type (conference abstract versus full article) and (4) abstracts were included only if they fulfill our eligibility criteria and if no subsequent study has been 85 86 published. Among the exclusion criteria: (5) We excluded narrative reviews, systematic 87 reviews, letters to the editor and correspondences; (6) animal studies were also excluded 88 and (7) non-English publication and non-index publication. The authors designed the tables 89 to extract the study data.

90

Systematic review data were extracted according to studies characteristics and main 91 outcomes measures. Among the first part, extracted data items included (1) authors and 92 publication year; (2) study design (case report or retrospective case series); (3) conflict of 93 94 interest declaration (yes or no; which, if yes); (4) subject inclusion and exclusion criteria; (5) period of total patient follow-up from the first complication to its total resolution expressed in 95 weeks; (6) percentage of male subjects involved in the study; (7) number of subjects and 96 eyes involved in the study; (8) ICRS type, manual or femtosecond implantation and ICRS 97 brand and / or design; (9) number of segments per eye, i.e., one, two or both numbers were 98 provided if one and two ICRS implantations were reported among different subjects; and 99 (10) mean subject age expressed in years. Amongst the outcome's measures, the following 100 data items were reported: (11) previous eye history, such previous treatments, ocular 101 102 pathologies or eye surgeries; (12) intraoperative and (13) postoperative complications were

reported and the percentage of total eyes in this study were expressed in brackets; (14) explantation rate and (15) explantation reasons. Finally, (16) treatment used to resolve the complications was recorded. In this case, the treatment reported was the one that was ultimately effective. In-between unsuccessful treatments were avoided.

107 To determine the individual studies risk of bias, two reviewers with adequate reliability worked independently and blindly to create a summary chart (Table 1) based on the Quality 108 Assessment Tool for Case Series Studies from the National Heart, Lung, and Blood 109 Institute.²⁷ For disputes between the two reviewers, a third non-blinded reviewer resolved the 110 issue. Questions included in the tool were as follows: (1) Was the study question or objective 111 112 clearly stated?, (2) Was the study population clearly and fully described, including a case definition?, (3) Were the cases consecutive?, (4) Were the subjects comparable?, (5) Was 113 114 the intervention clearly described?, (6) Were the outcome measures clearly defined, valid, reliable, and implemented consistently across all study participants?, (7) Was the length of 115 follow-up adequate?, (8) Were the statistical methods well described? and (9) Were the 116 results well described? This analysis did not result in the elimination of any article. Articles 117 with a high risk of bias had a lower weight for data synthesis. The primary summary 118 119 measures used in this systematic review were incidence percentage of complications and explantations among all included studies. Furthermore, the average changes in terms of 120 visual acuity and mean keratometry were also reported. Finally, we also included ICRS 121 122 design and implantation technique with more complications and common treatments used in complication resolution as summary measures. 123

124

125 Results

This systematic review study selection process is described by a flow diagram (Figure 1). A total of 39 studies published between 1995 and 2019 were included in this systematic review. Sixteen studies were case reports, twenty-one were case series studies and only two

were chart analysis works. Only three studies reported conflicts of interest. Chhadva et al.¹⁷ 129 reported that Dr. Yoo is an AMO (Advanced Medical Optics) consultant. Said et al.²⁸ 130 reported that Dr. Ibrahim is a Carl Zeiss Meditec consultant. Nguyen et al.²⁹ reported that Dr. 131 Hersh receives speaker fees from Addition Technology, Inc. The inclusion criteria included 132 133 subjects with grade I, II, and grade III keratoconus; residual myopia post LASIK; ICRS explantation; keratitis infection; post LASIK ectasia; contact lens intolerance; ICRS 134 135 migration; atopic keratoconus or ICRS surgery simultaneously with crosslinking. Regarding exclusion criteria, most studies omitted ICRS implantation cases without complications. 136 Others authors excluded studies for different reasons: corneal scarring³⁰, leucoma³¹, 137 keratitis^{8,32}, non-INTACS ICRS¹⁵, manual ICRS implantation¹⁷ or corneal hydrops^{10,28} in 138 grade IV keratoconus. The post-surgery follow-up ranged from two weeks to two hundred 139 140 and forty weeks. The mean follow-up for the reported studies was 56.9 weeks. This systematic review enrolled 1946 subjects. In total, 62.34% of these subjects were male, and 141 2590 total eyes were included. The mean age of subjects was 33.45 years. Many of the 142 studies report that surgery was performed manually or with a femtosecond and the type of 143 segment but do not report the percentage of each type of surgery. Therefore, a quantitative 144 analysis could not be performed using the studies. Detailed study characteristics were 145 146 reported in Table 2.

147

Table 3 describes the complications caused by the ICRS and the explantation provided in the revised studies. In relation to the previous ocular history of the patients, we found: eight articles with post-LASIK ectasia.^{14,15,19,22,29,30,33,34} Six articles in low and moderate myopia. ^{12,14,18,23,24,35} Two with pellucid marginal degeneration.^{14,33} And only one article with keratoplasty. ¹⁴ In addition, atopic asthma and blepharoconjunctivitis,³⁶ lagophthalmos and dry eye,³⁷ herpetic keratitis³⁸ and blepharitis³⁹ were described in the previous eye history.

154

155 Intraoperative complications were described in five publications: some epithelial damage at 156 the incision site;³⁵ perforation of the anterior chamber (only 5% of the 20 eyes);²⁰ difficult 157 insertion in one case and intraoperative suction loss;²⁸ incomplete tunnel creation, 158 misdirection of the ring segment, perforation into anterior chamber, decentration of ring 159 segments, inverted implanted rings, broken ring segments, broken and orifice of ring;¹⁰ 160 galvanometer lag error and endothelial perforation⁸.

Postoperative complications were described in most papers: migration, ring extrusion, 161 corneal thinning, corneal melting and type of infective keratitis (bacterial, Staphylococcus 162 aureus, Streptococcus mitis, Staphylococcus epidermidis, annular herpetic and Aspergillus 163 164 fumigatus). These complications together with glare, halos, fluctuating vision, neovascularization, foreign body sensation or pain account for 100% of the rings explanted 165 166 in 50% of the articles. The percentage rate of explantation ranged from 0.5 up to 83.3%. If we analyze those articles with a high number of implantations ^{8,10,28,33,40} (2124 eyes), an 167 explantation rate between 0% and 1.4% was obtained. 168

169

According ICRS type reviewed, Ferrara - Keraring ICRS reported a one percent explantation rate, and INTACS reported a nineteen percent explantation rate. Only four papers reported no explantation in the case.^{28,38,41,42} The most commonly used treatments are antibiotics in those articles in which it is described. Some articles do not report it, and two of the articles recommended suture of the incision.^{42,17}

175

176 Risk of bias assessment within the studies was grouped into three outcome levels: low 177 evidence level (between zero and three yeses), medium evidence level (between four and 178 six yeses) and high evidence level (between seven and nine yeses). The following studies 179 obtained a low evidence level: Quantock et al.⁴³, Asbell et al.¹², Bourges et al.²³, McAlister et 180 al.³⁶, Galvis et al.³⁷, Cosar et al.¹¹, Ibáñez-Alperte et al.⁴⁴, Chalasani et al.⁴⁵, Rayward et al.³⁸,

Jarade et al.⁴², García de Oteyza et al.⁴⁶, Oatts et al.¹⁸, Chan and Hersh¹⁹ and Elbaz et al.⁴⁷. 181 The following studies obtained a medium evidence level: Shehadeh et al.²², Güell et al.³⁵, 182 Alió et al.⁴⁸, Hofling-Lima et al.²⁴, Ferrer et al.¹⁴, Mulet et al.³³, Kugler et al.⁴⁰, Shihadeh⁴⁹ Bali 183 et al.¹⁵, Yeung et al.¹⁶, Neira et al.³⁹, López-Ferrando and Medrano-Ruiloba⁴¹ and Nguyen et 184 al.²⁹. The following studies obtained a high evidence level: Kwitko and Severo⁵⁰, 185 Kanellopoulus et al.²⁰, Carrasquillo et al.³⁰, Zare et al.³¹, Alió et al.¹³, Coskunseven et al.⁸, 186 Chhadva et al.¹⁷, Said et al.²⁸, Abdelmassih et al.³², Mounir et al.¹⁰, Iqbal et al.⁵¹ and 187 Tabatabaei et al.³⁴. 188

- 189
- 190

191 Discussion

192 Mechanical technique complications comprise anterior or posterior perforation by manual spreader, epithelial defects, decentration, and incision enlargement to the limbus or central 193 cornea due to surgeon manipulation. Most cases of extrusion and final removal of ICRS 194 were experimental in manual ICRS implantation. During ICRS implantation surgery, 195 keratocyte activation⁵² and apoptosis are noted. Twa et al.⁵³ demonstrated lipid formation 196 and increased keratocyte density following ICRS implantation. Kugler et al.⁴⁰ postulated that 197 additional trauma to the incision and tunnel results in increased keratocyte apoptosis, major 198 tissue degradation, and a subsequently increased number of complications, such corneal 199 melting. Femtosecond laser ICRS channel creation is less aggressive. Femtosecond laser is 200 associated with reduced complications for corneal melting. Corneal confocal microscopy has 201 been used for assessment after manual⁵⁴ and femtosecond⁵⁵ ICRS implantation; however, to 202 203 our knowledge no studies have been reported keratocyte activation scores in femtosecond versus manual techniques. 204

205 Nevertheless, the femtosecond laser introduced new complications to ICRS. All these 206 complications were intraoperative, including incomplete channel creation, galvanometer lag 207 error or vacuum loss. Incomplete tunnel creation was solved by completing the channel

using a mechanical separator; thus, complications of manual segment implantation were 208 also noted. Other authors, such as Coskunseven et al.,⁸ have proposed increasing the 209 energy level of the femtosecond or reducing the space between spots. The false channel 210 causes difficulty in implantation. As described by Jacob et al.⁵⁶ The situation can be 211 212 overcome by removing the segment and turning it around so it is inserted in the opposite direction through the entry incision. It is then advanced using the second segment as an 213 214 intrachannel instrument. On one hand, when galvanometer error does occur, the surgical 215 procedure must be suspended. During the second surgery, the same cone should be used. The tunnel channel depth must be 30 µm above the original tunnel.⁸ If an error occurred 216 217 during incision formation, the cut should be continued with the knife-edge. On the other hand, if vacuum loss occurs during incision, it is possible to create the vacuum again at the 218 219 same conjunctival and corneal plane.8

220 One of the main reasons for the extrusion of the ICRS is segment migration. In this sense, the depth at which the segment is placed is key. Femtosecond laser tunnel creation is faster, 221 222 easier and more reproducible and offers accurate tunnel dimensions (width, diameter and depth).⁵⁷ This implies more control of intraoperative and postoperative complications.⁵⁸ With 223 224 mechanical dissectors, segment depth may be near the corneal surface, which increases late spontaneous ICRS extrusion risk.⁵⁸ The femtosecond procedure generates more precise 225 226 stromal separation compared with manual tunnel creation, which is based on the surgeon's 227 skills. For both manual and femtosecond ICRS implantation, a suture can be placed in cases of segment migration that prevents the segment from migrating again.⁴² 228

Of the thirty-nine articles analyzed in this review, two did not report the type of implanted ring. Specifically, sixteen INTACS (448 eyes), thirteen Keraring or Ferrara (1804 eyes) and eight cases with two both are reported without specifying how many eyes there are of each type. The number of eyes with reported explantation is greater with INTACS (19%) compared with Keraring (1%) despite the fact than INTACS was implanted in a considerably

smaller number of eyes. Most INTACS^{13,15-17,19,29} were explanted for low quality vision
reasons.

Keraring and Ferrara are more effective in the treatment of keratoconus compared with INTACS.⁵⁹ Piñero et al.⁶⁰ reported that astigmatism correction in ectatic cornea was more limited with INTACS, demonstrating that it increases the spherical corneal aberration. This finding implies a worsening of the visual quality, increasing the haloes and glare. This notion is justified by a larger INTACS diameter, which induces minimal corneal central flattening.⁶¹

Among the limitations of this systematic review, the authors of the majority of cases in the case report only indicate the number of segments with complications and do not report the total number of segments implanted successfully. Thus, given that this information is not present in the published literature, it is not possible to establish the real prevalence of intraand postoperative complications.

246

In conclusion, the femtosecond laser has reduced postoperative complications related to migration and corneal melting but has introduced new intraoperative complications, such as incomplete channel or vacuum loss. If patient selection is adequate and exhaustive, surgery planning can be implemented and intraoperative and postoperative complications will be minimized, representing the results of unpredictable surgery in most cases.

252

253 References

1. Fleming JF, Reynolds AE, Kilmer L, Burris TE, Abbott RL, Schanzlin DJ. The

- Intrastromal Corneal Ring: Two Cases in Rabbits. *J Refract Surg.* 1987;3(6):227-232.
 doi:10.3928/1081-597X-19871101-07
- Schwartz AP, Tinio BO, Babayan A, Naikoo HN, Roberts B, Asbell PA. Intrastromal
 Corneal Ring Implantation (360 Degrees Ring) for Myopia: A 5-Year Follow-up. *Eye*

259 Contact Lens Sci Clin Pract. 2006;32(3):121-123.

260 doi:10.1097/01.icl.0000178801.77766.c7

- Piñero DP, Alio JL. Intracorneal ring segments in ectatic corneal disease a review.
 Clin Experiment Ophthalmol. 2010;38(2):154-167. doi:10.1111/j.1442-
- 263 9071.2010.02197.x
- Ganesh S, Shetty R, D'Souza S, Ramachandran S, Kurian M. Intrastromal corneal
 ring segments for management of keratoconus. *Indian J Ophthalmol.* 2013;61(8):451 455. doi:10.4103/0301-4738.116065
- Ratkay-Traub I, Ferincz IE, Juhasz T, Kurtz RM, Krueger RR. First clinical results with
 the femtosecond neodynium-glass laser in refractive surgery. *J Refract Surg.* 19(2):94-103.
- Rabinowitz YS, Li X, Ignacio TS, Maguen E. INTACS inserts using the femtosecond
 laser compared to the mechanical spreader in the treatment of keratoconus. *J Refract Surg.* 2006;22(8):764-771.
- 273 7. Kubaloglu A, Sari ES, Cinar Y, et al. Comparison of mechanical and femtosecond
- 274 laser tunnel creation for intrastromal corneal ring segment implantation in

275 keratoconus. *J Cataract Refract Surg.* 2010;36(9):1556-1561.

- 276 doi:10.1016/j.jcrs.2010.04.028
- Coskunseven E, Kymionis GD, Tsiklis NS, et al. Complications of intrastromal corneal
 ring segment implantation using a femtosecond laser for channel creation: a survey of
 850 eyes with keratoconus. *Acta Ophthalmol.* 2011;89(1):54-57. doi:10.1111/j.1755-
- 280 3768.2009.01605.x
- Schanzlin DJ, Abbott RL, Asbell PA, et al. Two-year outcomes of intrastromal corneal
 ring segments for the correction of myopia. *Ophthalmology*. 2001;108(9):1688-1694.
- 10. Mounir A, Radwan G, Farouk MM, Mostafa EM. Femtosecond-assisted intracorneal

284		ring segment complications in keratoconus: from novelty to expertise. Clin
285		<i>Ophthalmol.</i> 2018;12:957-964. doi:10.2147/OPTH.S166538
286	11.	Cosar CB, Sridhar MS, Sener B. Late onset of deep corneal vascularization: a rare
287		complication of intrastromal corneal ring segments for keratoconus. Eur J Ophthalmol.
288		2009;19(2):298-300.
289	12.	Asbell PA, Uçakhan OO, Odrich M. Photorefractive keratectomy after intrastromal
290		corneal ring segment explantation. Am J Ophthalmol. 1999;128(6):755-756.
291	13.	Alió JL, Piñero DP, Söğütlü E, Kubaloglu A. Implantation of new intracorneal ring
292		segments after segment explantation for unsuccessful outcomes in eyes with
293		keratoconus. J Cataract Refract Surg. 2010;36(8):1303-1310.
294		doi:10.1016/j.jcrs.2010.02.017
295	14.	Ferrer C, Alió JL, Montañés AU, et al. Causes of intrastromal corneal ring segment
296		explantation: clinicopathologic correlation analysis. J Cataract Refract Surg.
297		2010;36(6):970-977. doi:10.1016/j.jcrs.2009.12.042
298	15.	Bali SJ, Chan C, Hodge C, Sutton G. Intracorneal Ring Segment Reimplantation in
299		Keratectasia. Asia-Pacific J Ophthalmol. 2012;1(6):327-330.
300		doi:10.1097/APO.0b013e31826e1d30
301	16.	Yeung SN, Lichtinger A, Ku JYF, Kim P, Low SAW, Rootman DS. Intracorneal Ring
302		Segment Explantation After Intracorneal Ring Segment Implantation Combined With
303		Same-Day Corneal Collagen Crosslinking in Keratoconus. Cornea. 2013;32(12):1617-
304		1620. doi:10.1097/ICO.0b013e3182a738ba
305	17.	Chhadva P, Yesilirmak N, Cabot F, Yoo SH. Intrastromal Corneal Ring Segment
306		Explantation in Patients With Keratoconus: Causes, Technique, and Outcomes. J
307		Refract Surg. 2015;31(6):392-397. doi:10.3928/1081597X-20150521-05
308	18.	Oatts JT, Savar L, Hwang DG. Late extrusion of intrastromal corneal ring segments: A

316

report of two cases. Am J Ophthalmol case reports. 2017;8:67-70.

doi:10.1016/j.ajoc.2017.10.004 310

- Chan K, Hersh PS. Removal and Repositioning of Intracorneal Ring Segments: 311 19.
- Improving Corneal Topography and Clinical Outcomes in Keratoconus and Ectasia. 312
- *Cornea*. 2017;36(2):244-248. doi:10.1097/ICO.000000000001075 313
- 314 20. Kanellopoulos AJ, Pe LH, Perry HD, Donnenfeld ED. Modified intracorneal ring segment implantations (INTACS) for the management of moderate to advanced 315 keratoconus: efficacy and complications. Cornea. 2006;25(1):29-33.
- 21. Levy J, Lifshitz T. Keratitis after implantation of intrastromal corneal ring segments 317
- (intacs) aided by femtosecond laser for keratoconus correction: case report and 318

description of the literature. Eur J Ophthalmol. 2010;20(4):780-784. 319

- 22. Shehadeh-Masha'our R, Modi N, Barbara A, Garzozi HJ. Keratitis after implantation of 320 intrastromal corneal ring segments. J Cataract Refract Surg. 2004;30(8):1802-1804. 321 doi:10.1016/j.jcrs.2004.01.034 322
- 23. Bourges J-L, Trong TT, Ellies P, Briat B, Renard G. Intrastromal corneal ring 323 324 segments and corneal anterior stromal necrosis. J Cataract Refract Surg.
- 2003;29(6):1228-1230. 325
- 326 24. Hofling-Lima AL, Branco BC, Romano AC, et al. Corneal infections after implantation of intracorneal ring segments. Cornea. 2004;23(6):547-549. 327
- 25. Bourcier T, Borderie V, Laroche L. Late bacterial keratitis after implantation of 328 intrastromal corneal ring segments. J Cataract Refract Surg. 2003;29(2):407-409. 329
- doi:10.1016/S0886-3350(02)01484-0 330
- 26. Al-Torbak A, Al-Amri A, Wagoner MD. Deep Corneal Neovascularization After 331
- Implantation With Intrastromal Corneal Ring Segments. Am J Ophthalmol. 332
- 2005;140(5):926-927. doi:10.1016/j.ajo.2005.05.020 333

- 334 27. Study Quality Assessment Tools | National Heart, Lung, and Blood Institute (NHLBI).
 335 https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools. Accessed
 336 December 15, 2018.
- 337 28. Said A, Ibrahim O, Elmassry A, Osman I, EL HENNAWI H, Abdalla M. Combined
- 338 femtosecond laser-assisted intracorneal ring segment implantation and corneal
- collagen cross-linking for correction of keratoconus. *Clin Ophthalmol.* 2016;10:521.
- 340 doi:10.2147/OPTH.S97158
- 29. Nguyen N, Gelles JD, Greenstein SA, Hersh PS. Incidence and associations of
- intracorneal ring segment explantation. *J Cataract Refract Surg.* 2019;45(2):153-158.
- 343 doi:10.1016/j.jcrs.2018.09.021
- 344 30. Carrasquillo KG, Rand J, Talamo JH. Intacs for Keratoconus and Post-LASIK Ectasia.
 345 *Cornea*. 2007;26(8):956-962. doi:10.1097/ICO.0b013e31811dfa66
- 346 31. Zare MA, Hashemi H, Salari MR. Intracorneal ring segment implantation for the
- 347 management of keratoconus: safety and efficacy. *J Cataract Refract Surg*.
- 348 2007;33(11):1886-1891. doi:10.1016/j.jcrs.2007.06.055
- 349 32. Abdelmassih Y, El-Khoury S, Dirani A, et al. Safety and Efficacy of Sequential
- 350 Intracorneal Ring Segment Implantation and Cross-linking in Pediatric Keratoconus.
- 351 *Am J Ophthalmol.* 2017;178:51-57. doi:10.1016/j.ajo.2017.03.016
- 352 33. Mulet ME, Pérez-Santonja JJ, Ferrer C, Alió JL. Microbial keratitis after intrastromal
- 353 corneal ring segment implantation. *J Refract Surg.* 2010;26(5):364-369.
- doi:10.3928/1081597X-20090617-06
- 355 34. Tabatabaei SA, Soleimani M, Mirghorbani M, Tafti ZF, Rahimi F. Microbial keratitis
- following intracorneal ring implantation. *Clin Exp Optom*. 2019;102(1):35-42.
- 357 doi:10.1111/cxo.12810
- 358 35. Güell JL, Velasco F, Sánchez SI, Gris O, Garcia-Rojas M. Intracorneal ring segments

359		after laser in situ keratomileusis. <i>J Refract Surg</i> . 2004;20(4):349-355.
360	36.	McAlister JC, Ardjomand N, Ilari L, Mengher LS, Gartry DS. Keratitis after intracorneal
361		ring segment insertion for keratoconus. J Cataract Refract Surg. 2006;32(4):676-678.
362		doi:10.1016/j.jcrs.2005.09.026
363	37.	Galvis V, Tello A, Delgado J, Valencia F, Gómez AJ, Diaz LA. Late bacterial keratitis
364		after intracorneal ring segments (Ferrara ring) insertion for keratoconus. Cornea.
365		2007;26(10):1282-1284. doi:10.1097/ICO.0b013e3181506142
366	38.	Rayward O, Arriola-Villalobos P, Cuiña-Sardiña R, Diaz-Valle D, Benítez-Del-Castillo
367		JM, García-Feijoo J. Annular Herpetic Keratitis After Intracorneal Ring Segment
368		Implantation. Cornea. 2011;30(11):1286-1286. doi:10.1097/ICO.0b013e31821c9bb8
369	39.	Neira W, Krootila K, Holopainen JM. Atopic dermatitis is a risk factor for intracorneal
370		ring segment extrusion. Acta Ophthalmol. 2014;92(6):e491-2. doi:10.1111/aos.12377
371	40.	Kugler LJ, Hill S, Sztipanovits D, Boerman H, Swartz TS, Wang MX. Corneal melt of
372		incisions overlying corneal ring segments: case series and literature review. Cornea.
373		2011;30(9):968-971. doi:10.1097/ICO.0b013e3182031ca0
374	41.	López-Ferrando N, Medrano-Ruiloba JL. Intracorneal ring segment breaks following
375		uneventful implantation. J Cataract Refract Surg. 2016;42(11):1684-1685.
376		doi:10.1016/j.jcrs.2016.10.003
377	42.	Jarade E, Dirani A, Fadlallah A, Antonios R, Cherfan G. New Technique of
378		Intracorneal Ring Segments Suturing After Migration. J Refract Surg.
379		2013;29(10):722-724. doi:10.3928/1081597X-20130723-01
380	43.	Quantock AJ, Kincaid MC, Schanzlin DJ. Stromal healing following explantation of an
381		ICR (intrastromal corneal ring) from a nonfunctional human eye. Arch Ophthalmol
382		(Chicago, III 1960). 1995;113(2):208-209.
383	44.	Ibáñez-Alperte J, Pérez-García D, Cristóbal J, Mateo AJ, Jiménez-del Río B, Mínguez

384		E. Keratitis after Implantation of Intrastromal Corneal Rings with Spontaneous
385		Extrusion of the Segment. Case Rep Ophthalmol. 2010;1(2):42-46.
386		doi:10.1159/000320585
387	45.	Chalasani R, Beltz J, Jhanji V, Vajpayee RB. Microbial keratitis following intracorneal
388		ring segment implantation. Br J Ophthalmol. 2010;94(11):1541; quiz 1541.
389		doi:10.1136/bjo.2008.148619
390	46.	García de Oteyza G, Laiseca A, Sauvageot P, Álvarez de Toledo J. Methicillin-
391		Resistant Staphylococcus aureus Acute Keratitis After Intracorneal Ring Segment
392		Implantation. Ophthalmol Ther. 2017;6(2):367-371. doi:10.1007/s40123-017-0103-9
393	47.	Elbaz H, Werner L, Spiru B, Sekundo W. Spontaneous breakage of intracorneal ring
394		segments (ICRS) 8 years after implantation. Saudi J Ophthalmol Off J Saudi
395		<i>Ophthalmol Soc</i> . 2018;32(4):341-345. doi:10.1016/j.sjopt.2018.03.005
396	48.	Alió JL, Artola A, Ruiz-Moreno JM, Hassanein A, Galal A, Awadalla MA. Changes in
397		keratoconic corneas after intracorneal ring segment explantation and reimplantation.
398		<i>Ophthalmology</i> . 2004;111(4):747-751. doi:10.1016/j.ophtha.2003.08.024
399	49.	Shihadeh WA. Aspergillus fumigatus keratitis following intracorneal ring segment
400		implantation. BMC Ophthalmol. 2012;12(1):19. doi:10.1186/1471-2415-12-19
401	50.	Kwitko S, Severo NS. Ferrara intracorneal ring segments for keratoconus. J Cataract
402		Refract Surg. 2004;30(4):812-820. doi:10.1016/j.jcrs.2003.12.005
403	51.	Iqbal M, Elmassry A, Tawfik A, et al. Analysis of the Outcomes of Combined Cross-
404		Linking with Intracorneal Ring Segment Implantation for the Treatment of Pediatric
405		Keratoconus. Curr Eye Res. 2019;44(2):125-134.
406		doi:10.1080/02713683.2018.1540706
407	50	Two MD Dualthafan I Kaab DL Caatalla M Cabanalin DJ Histolaaja sushustian af

407 52. Twa MD, Ruckhofer J, Kash RL, Costello M, Schanzlin DJ. Histologic evaluation of
408 corneal stroma in rabbits after intrastromal corneal ring implantation. *Cornea*.

409 2003;22(2):146-152.

- 410 53. Twa MD, Kash RL, Costello M, Schanzlin DJ. Morphologic characteristics of lamellar
 411 channel deposits in the human eye: a case report. *Cornea*. 2004;23(4):412-420.
- 412 54. Ruckhofer J, Böhnke M, Alzner E, Grabner G. Confocal microscopy after implantation
- 413 of intrastromal corneal ring segments. *Ophthalmology*. 2000;107(12):2144-2151.
- 414 55. Siatiri H, Jabbarvand M, Mohammadpour M, Mollazadeh A, Siatiri N,
- 415 Mirmohammadsadeghi A. Confocal biomicroscopic changes of the corneal layers
- 416 following femtosecond laser-assisted MyoRing implantation in keratoconus. *J Curr*

417 *Ophthalmol.* 2017;29(3):182-188. doi:10.1016/j.joco.2016.11.004

- 418 56. Jacob S, Nair V, Prakash G, Ashok Kumar D, Agarwal A, Agarwal A. Turnaround
- 419 technique for intrastromal corneal ring implantation in eyes with false channel

420 dissection. *J Cataract Refract Surg.* 2010;36(8):1253-1260.

- 421 doi:10.1016/j.jcrs.2010.06.002
- 422 57. Monteiro T, Alfonso JF, Franqueira N, Faria-Correia F, Ambrósio R, Madrid-Costa D.
- 423 Predictability of Tunnel Depth for Intrastromal Corneal Ring Segments Implantation
- 424 Between Manual and Femtosecond Laser Techniques. *J Refract Surg*.

425 2018;34(3):188-194. doi:10.3928/1081597X-20180108-01

- 426 58. Monteiro T, Alfonso JF, Freitas R, et al. Comparison of Complication Rates between
- 427 Manual and Femtosecond Laser-Assisted Techniques for Intrastromal Corneal Ring

428 Segments Implantation in Keratoconus. *Curr Eye Res.* July 2019:1-8.

- 429 doi:10.1080/02713683.2019.1635165
- 430 59. Hashemi H, Nabavi A, Bayat R, Mohebbi M. Additional Intrastromal Corneal Ring
- 431 Segments in Keratoconus. *Cornea*. 2018;37(5):574-579.

432 doi:10.1097/ICO.00000000001519

433 60. Piñero DP, Alió JL, El Kady B, Pascual I. Corneal aberrometric and refractive

- 434 performance of 2 intrastromal corneal ring segment models in early and moderate
- 435 ectatic disease. *J Cataract Refract Surg.* 2010;36(1):102-109.
- 436 doi:10.1016/J.JCRS.2009.07.030
- 437 61. Kaya V, Utine CA, Karakus SH, Kavadarli I, Yilmaz ÖF. Refractive and Visual
- 438 Outcomes After Intacs vs Ferrara Intrastromal Corneal Ring Segment Implantation for
- 439 Keratoconus: A Comparative Study. *J Refract Surg.* 2011;27(12):907-912.
- doi:10.3928/1081597X-20110906-03

442 Figure legends

Figure 1. Study selection process according to the PRISMA statement

444 Table legends

- 445 Table 1. Quality Assessment Tool for Case Series Studies
- 446 Table 2: Study characteristics and patient population
- 447 Table 3: Data extraction for complications and explantations

Table 1. Quality Assessment Tool for Case Series Studies

Author (year)	Q 1	Q 2	Q 3	Q 4	Q 5	Q 6	Q 7	Q 8	Q 9
Quantock et al. ³⁹ (1995)	Yes	Yes	No	No	Yes	No	No	No	No
Asbell et al. ³¹ (1999)	Yes	Yes	No	No	Yes	No	No	No	No
Bourges et al. ¹⁶ (2003)	Yes	Yes	No	No	Yes	No	No	No	No
Shehadeh et al. ¹⁵ (2004)	Yes	Yes	NA	NA	Yes	No	No	NA	Yes
Güell et al. ³³ (2004)	Yes	No	No	Yes	Yes	No	Yes	Yes	Yes
Alió et al.44 (2004)	Yes	Yes	No	Yes	Yes	Yes	No	No	Yes
Hofling-Lima et al. ¹⁷ (2004)	Yes	Yes	No	Yes	No	No	Yes	No	No
Kwitko and Severo ⁴⁸ (2004)	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
Kanellopoulus et al. ¹³ (2006)	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
McAlister et al. ³⁴ (2006)	NA	CD	NA	NA	Yes	Yes	Yes	NA	NA
Galvis et al. ³⁵ (2007)	NA	CD	NA	NA	Yes	Yes	Yes	NA	NA
Carrasquillo et al. ²⁴ (2007)	Yes	Yes	NR	Yes	Yes	Yes	Yes	Yes	Yes
Zare et al. ²⁵ (2007)	Yes	Yes	NR	Yes	Yes	Yes	Yes	Yes	Yes
Cosar et al. ¹¹ (2009)	NA	CD	NA	NA	Yes	Yes	Yes	NA	NA
Ibáñez-Alperte et al.40 (2010)	Yes	Yes	NA	NA	No	No	NR	NA	No
Alió et al. ⁴⁹ (2010)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Ferrer et al. ²⁹ (2010)	Yes	No	No	NR	Yes	Yes	Yes	NA	Yes
Mulet et al. ³⁰ (2010)	Yes	Yes	No	NA	Yes	Yes	No	NA	Yes
Chalasani et al. ⁴¹ (2010)	NA	CD	NA	NA	Yes	Yes	Yes	NA	NA
Kugler et al. ⁴⁵ (2011)	Yes	No	No	No	Yes	No	Yes	NA	Yes
Rayward et al. ³⁶ (2011)	NR	No	NA	NA	No	No	NR	NA	No
Coskunseven et al. ⁸ (2011)	Yes	Yes	No	Yes	Yes	Yes	Yes	No	Yes
Shihadeh ⁴⁶ (2012)	Yes	Yes	NA	NA	No	No	Yes	NA	Yes
Bali et al. ²⁷ (2012)	Yes	Yes	No	No	Yes	Yes	Yes	No	Yes
Yeung et al. ⁴⁷ (2013)	Yes	Yes	No	No	Yes	Yes	Yes	NA	Yes
Jarade et al. ³⁸ (2013)	Yes	No	No	Yes	Yes Yes	NR Yes	CD NR	NA	NR Yes
Neira et al. ¹² (2014) Chhadva et al. ²¹ (2015)	NR Yes	Yes Yes	No No	Yes Yes	Yes	Yes	Yes	NA NA	Yes
López-Ferrando and									
Medrano-Ruiloba ³⁷ (2016)	NR	No	No	No	Yes	Yes	Yes	NA	Yes
Said et al. ²² (2016)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Abdelmassih et al. ²⁶ (2017)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
García de Oteyza et al. ⁴² (2017)	NA	CD	NA	NA	Yes	NA	NA	NA	Yes
Oatts et al. ³² (2017)	NA	CD	NA	NA	Yes	NA	NA	NA	Yes
Chan and Hersh ²⁸ (2017)	NA	CD	NA	NA	Yes	NA	NA	NA	Yes
Mounir et al. ¹⁰ (2018)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Elbaz et al. ⁴³ (2018)	NA	CD	NA	NA	Yes	NA	NA	NA	Yes
Nguyen et al. ²³ (2019)	Yes	No	Yes	NA	Yes	No	NA	NA	Yes
lqbal et al. ⁵⁰ (2019)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Tabatabaei et al. ⁵¹ (2019)	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes
Question 1. Was the study gu	ostion (or ohier	ctive cl	oarly st	2hote	Questi	n 2· M	las the	study

Question 1: Was the study question or objective clearly stated?; Question 2: Was the study population clearly and fully described, including a case definition?; Question 3: Were the cases consecutive?; Question 4: Were the subjects comparable?; Question 5: Was the intervention clearly described?; Question 6: Were the outcome measures clearly defined, valid, reliable, and implemented consistently across all study participants?; Question 7: Was the length of follow-up adequate?; Question 8: Were the statistical methods well-described?; Question 9: Were the results well-described?; Q: Question; CD: Cannot determine; NA: Not applicable; NR: Not reported; Rater #1 initials: MJBLL; Rater #2 initials: JMSG.


Author (year)	Design	Confli ct	Inclusion criteria	Exclusion criteria	Follow-up (weeks)	Subjects (% Male)	N (eyes)	ICRS Type	ICRS per eye	Age
Quantock et al. ³⁹ (1995)	CR	No	NA	NA	32	1(100%)	1	Manual Keraring	1	46
Asbell et al. ³¹ (1999)	CR	No	NA	NA	40	1 (NR)	1	Manual Keraring	2	28
Bourges et al. ¹⁶ (2003) Shehadeh et al. ¹⁵	CR	No	NA	NA No	240	1 (0%)	1	Manual INTACS	2	41
(2004)	CR	No	Ectasia	complications	12	1 (100%)	1	Manual INTACS	2	53
Güell et al.33 (2004)	CS	No	Myopia PL	NA	12-40	8 (NR)	13	Manual INTACS	2	NR 32, 51
Alió et al.44 (2004)	CA	No	ICRS explanted	NA	48	4 (NR)	5	Manual INTACS	1/2	(50%) NR)
Hofling-Lima et al. ¹⁷ (2004)	CS	No	Keratitis	NA	88	8 (37.5%)	8	Ferrara (87.5%) INTACS (12.5%)	NR	32
Kwitko and Severo ⁴⁸ (2004)	CS	No	KC	NA	52	47 (NR)	51	Manual Ferrara	2	NR
Kanellopoulus et al. ¹³ (2006)	CS	No	КС	NA	48	15 (40%)	20	Manual INTACS	2	30.2
McAlister et al. ³⁴ (2006)	CR	No	NA	NA	3	1(100%)	1	Manual Ferrara	2	34
Galvis et al.35 (2007)	CR	No	NA	NA	16	1(0%)	1	Manual Ferrara	2	42
Carrasquillo et al. ²⁴ (2007)	CS	No	KC and PLE	Corneal scarring	6-49	29(55%)	33	50% Manual 50% FS INTACTS	1/2	39
Zare et al.25 (2007)	CS	No	KC and CLI	Leucoma	24	22 (77%)	30	FS INTACTS	1/2	26
Cosar et al.11 (2009)	CR	No	NA	NA	144	1 (100%)	1	Manual INTACS	2	33
Ibáñez-Alperte et al.40 (2010)	CR	No	КС	NA	≈7	1 (NR)	1	Manual INTACS	2	36
Alió et al. ⁴⁹ (2010)	CS	No	KC and ICRS explanted	NR	24	21 (NR)	21	Manual / FS INTACTS and Keraring	1/2	36
Ferrer et al. ²⁹ (2010)	CS	No	ICRS explanted	NR	336	47 (51%)	57	Manual / FS INTACTS and Keraring	1/2	37
Mulet et al. ³⁰ (2010)	CS	No	Keratitis	NR	4	149 (59%)	212	Manual / FS INTACTS and Keraring	1/2	35
Chalasani et al. ⁴¹ (2010)	CR	No	NA	NA	12	1 (0%)	2	Ferrara	1	40
Kugler et al. ⁴⁵ (2011)	CS	No	Ectasia	Non complications	≈28	279 (NR)	279	FS INTACS	1/2	44.25
Rayward et al. ³⁶	CR	No	KC G II	NA	2	1 (100%)	1	NR	1	26
(2011) Coskunseven et al. ⁸ (2011)	СА	NR	KC G II – III CT > 350 μm	Herpes or keratitis	NR	531 (NR)	850	FS Keraring	NR	28.32
Shihadeh ⁴⁶ (2012)	CR	No	KC moderate myopia	NA	≈ 20	1 (100%)	2	NR	1	34
Bali et al.27 (2012)	CS	No	KC (4) Ectasia	Non INTACTS surgeries	48	9 (66.6%)	10	FS INTACTS	1/2	44.5
Yeung et al.47 (2013)	CS	No	(6) KC	NA	12	3 (66.6%)	6	INTACTS	2	21.6
Jarade et al.38	CS	No	ICRS	No surgery	24	2 (NR)	2	INTACTS /	1	NR
(2013)	0.0	INO	Migration	complications	24	2 (INIT)	2	Keraring	1	
Neira et al. ¹² (2014)	CS	NR	Atopic Dermatitis AKC	No surgery complications	NR	5 (40%)	5	Manual INTACS	1/2	32.6
Chhadva et al. ²¹ (2015)	CS	Yes ^a	кс	Manual Implantation	48.5	8 (50%)	10	FS INTACTS	2	38
López-Ferrando and Medrano-Ruiloba ³⁷ (2016)	CS	NR	КС	NA	36-168	35 (NR)	50	Manual Ferrara	1/2	NR
Said et al. ²² (2016)	CS	Yes ^b	KC, CLI CT> 450 μm	Haze Hydrops Infection	24	100 (43%)	160	FS Keraring	1/2	21,77
Abdelmassih et al. ²⁶ (2017)	CS	No	ICRS + CXL	Keratitis or IOL	24-208	12 (83.35%)	17	FS Keraring and INTACS	1/2	12.3
García de Oteyza et al. ⁴² (2017)	CR	No	NA	NA	NR	1 (100%)	1	FS Ferrara	2	13
Oatts et al.32 (2017)	CR	No	NA	NA	84-240	2 (50%)	3	Manual INTACS	2	33
Chan and Hersh ²⁸ (2017)	CR	No	NA	NA	8-104	3 (33%)	3	FS INTACS	1/2	49,67
Mounir et al. ¹⁰ (2018)	CS	No	KC G II – III CT > 350 μm	PLE Hydrops KC G IV	52	417 (49,4%)	623	FS Keraring	1/2	22,27
Elbaz et al. ⁴³ (2018) Nguyen et al. ²³ (2019)	CR CS	No Yes °	NA KC PLE	NA NA	16 NR	1(100%) 31 (71,4%)	1 35	Manual Ferrara FS INTACTS	2 1/2	37 41
lqbal et al. ⁵⁰ (2019)	CS	No	KC G I, II or III	NA	72	37(NR)	63	FS Keraring	1/2	9-17
Tabatabaei et al. ⁵¹ (2019)	CR	NR	NA	NA	26	11 (72,7%)	11	Keraring, Intacs, Myoring and AICI	NR	29
	g segments	; CR: Cas	e report; NA: N	Not applied; CS: Ca	ase series; NR		; PL: Post LASI	(; CA: Chart analysis; K	C: Kerato	conus;

ICRS: Intracorneal ring segments; CR: Case report; NA: Not applied; CS: Case series; NR: Not Reported; PL: Post LASIK; CA: Chart analysis; KC: Keratoconus; PLE: Post-Lasik ectasia; FS: Femtosecond; CLI: Contact lens intolerant; G: Grade; CT: Corneal thickness; AKC: Atopic keratoconjunctivitis; CXL: Crosslinking; IOL: Intraocular lens; AMO: Advanced Medical Optics. ^a Dr. Yoo is AMO consultant. ^b Dr. Ibrahim is Carl Zeiss Meditec Consultant. ^c Dr. Hersh receives speaker fees from Addition Technology, Inc.

Table 3: Data extraction for complications and explantations

Author (year)	Previous eye history	Intraoperative complications	Postoperative complications	Explantation Yes / No (%)	Explantation reason	Treatment used
Quantock et al. ³⁹ (1995)	Nonfunctional eye or glaucoma	None	Crescentic iron line	Yes (100%)	Study protocol	NR
Asbell et al. ³¹ (1999)	Муоріа	None	Faint haze in stromal channel	Yes (100%)	Glare, halos, fluctuating vision	Tobramycin / dexamethasone
Bourges et al. ¹⁶ (2003)	Муоріа	None	Lamellar channel deposits	Yes (100%)	Stromal thinning, extrusion	Bacitracin / polyvinyl alcohol
Shehadeh et al. ¹⁵ (2004)	PLE	None	Bacterial keratitis	Yes (100%)	Staphylococcus	Cefamezin / gentamicin
Güell et al.33 (2004)	Residual myopia PL	Epithelial damage	Progressive stromal lysis	Yes (7.7%)	Progressive stromal lysis	NR
Alió et al.44 (2004)	кс	None	Migration (100%), partial extrusion (80%), moderate melting (80%), corneal thinning (20%)	Yes (100%)	Segment migration and partial extrusion	NR
Hofling-Lima et al. ¹⁷ (2004)	KC and low myopia	None	Infectious keratitis	Yes (62.5%)	Infectious keratitis	NR
Kwitko and Severo ⁴⁸ (2004)	кс	None	Ring decentration (3.9%), extrusion (19.6%), disciform keratitis (1.9%), bacterial keratitis (1.9%)	Yes (3.9%)	Extrusion after trauma	NR
Kanellopoulus et al. ¹³ (2006)	KC	AC Perforation (5%)	Movement, exposure and corneal thinning (30%), CM and infiltrate (5%)	Yes (35%)	Repeated exposure and / or corneal thinning	NR
McAlister et al. ³⁴ (2006)	KC Atopic asthma and BC	None	White infiltrate and deposit formation	Yes (100%)	Infection keratitis	Dexamethasone chloramphenicol
Galvis et al. ³⁵ (2007)	KC, lagophthalmos and dry eye	None	Staphylococcus aureus	Yes (100%)	Infection keratitis	Vancomycin, imipenem, amphotericin B and moxifloxacin
Carrasquillo et al. ²⁴ (2007)	KC and PLE	None	Neovascularization and fungal infection	Yes (3%)	Herpes simplex keratitis	NR
Zare et al. ²⁵ (2007)	КС	None	ICRS exposure	Yes (13%)	Extrusion (13%), bacterial keratitis (3%)	NR
Cosar et al. ¹¹ (2009)	КС	None	Neovascularization	Yes (100%)	Neovascularization	FML / ciprofloxacin
Ibáñez-Alperte et al. ⁴⁰ (2010)	NR	None	Corneal ulcer and hypopyon	Yes (100%)	Extrusion / bacterial keratitis	Vancomycin / ceftazidime
Alió et al.49 (2010)	Keratoconus	None	ICRS extrusion and vascularization	Yes (100%)	Extrusion (33%), VA (57%), neovascularization (10%)	NR
Ferrer et al. ²⁹ (2010)	KC (79%), PLE (12%), PMD (5%), KP (2%) and myopia (2%)	None	ICRS migration, keratitis, CM and corneal perforation	Yes 100%	Extrusion (48%), VA (38%), keratitis (7%), CM (5%) and perforation (2%)	NR
Mulet et al. ³⁰ (2010)	KC (81%), irregular astigmatism (10%), PLE (5%) and PMD (4%)	None	Streptococcus mitis and aureus	Yes (1%)	Infection keratitis	Ceftazidime / amikacin, ofloxacin / vancomycin
Chalasani et al.41 (2010)	Keratoconus	None	Staphylococcus epidermidis	Yes (50%)	Infection keratitis	Vancomycin / tobramycin
Kugler et al. ⁴⁵ (2011)	NR	None	Corneal melt (1.4%)	Yes (1.4%)	Incision overlapping	BCL / steroids
Rayward et al. ³⁶ (2011)	RGP CL and herpetic Keratitis	None	Annular herpetic keratitis	No (100%)	NA	Acyclovir / antibiotics
Coskunseven et al. ⁸ (2011)	None	Incomplete channel (2.6%), galvanometer lag (0.6%), endothelial perforation (0.6%), channel entrance (0.2%), vacuum (0.2%)	ICRS migration (0.8%), corneal Melting (0.2%) and corneal abscess (0.1%)	Yes (0.5%)	Melting comeal	Antibiotics
Shihadeh ⁴⁶ (2012)	CL intolerance	None	Aspergillus fumigatus	Yes (100%)	Microbiological infection	Gatifloxacin / itraconazole
Bali et al. ²⁷ (2012)	KC and PLE	None	Epithelial ingrowth (20%)	Yes (100%)	Poor VA / epithelial ingrowth	NR

Yeung et al.47 (2013)	NR	None	ICRS migration (33.3%)	Yes (83%)	Poor VA / ICRS Migration	CXL		
Jarade et al. ³⁸ (2013)	NR	None	ICRS Migration	No (100%)	NA	Incision Suturing		
Neira et al. ¹² (2014)	Atopic Dermatitis, AKC, blepharitis and GPC	None	Corneal melting (100%)	Yes (100%)	Corneal melting	Topical steroids		
Chhadva et al. ²¹ (2015)	NR	None	VA (80%), overlapping and VA (20%)	Yes (100%)	Overlapping and Visual quality	Incision suturing / PKP		
López-Ferrando and Medrano-Ruiloba ³⁷ (2016)	Eye Rubbing	None	Late breaks (6%), ICRS migration (4%), overlapping (2%)			NR		
Said et al. ²² (2016)	KC	Vacuum loss	ICRS broke / inverted ICRS	No (100%)	NA	Moxifloxacin / prednisolone		
Abdelmassih et al. ²⁶ (2017)	KC	None	Vascularization and corneal thinning	Yes (5,9%)	ICRS migration	Tobramycin / gatifloxacin		
García de Oteyza et al. ⁴² (2017)	КС	None	Whitish infiltrate, hypopyon, CM	Yes (100%)	Staphylococcus aureus keratitis	Vancomycin, ceftazidime, moxifloxacin, tobramycin, dexamethasone and loteprednol		
Oatts et al.32 (2017)	Муоріа	None	Epithelial defect, thinned cornea and extrusion	Yes (100%)	FBS, photophobia and VA	NR		
Chan and Hersh ²⁸ (2017)	KC and PLE	NR	VA, diplopia and haloes	Yes (83,3%)	Low vision quality	Antibiotic and corticosteroid		
Mounir et al. ¹⁰ (2018)	018) KC Vacuum loss, incomplete tunnel ICRS migration, extrusion, Incision opacification, steroid-induced glaucoma, infectious keratitis, perforation, inverted ICRS, broken ICRS		Yes (0,8%)	ICRS migration, infectious keratitis and perforation into the anterior chamber	Moxifloxacin / prednisolone			
Elbaz et al. ⁴³ (2018)	KC	None	Spontaneous in situ breakage	Yes (100%)	Pain, redness and FBS	Antibiotics and corticosteroid		
Nguyen et al. ²³ (2019)	KC and PLE	NR	Microbial keratitis, photophobia, FBS and VA	Yes (6%)	Refractive / topographic considerations	Gatifloxacin and vancomycin		
lqbal et al. ⁵⁰ (2019)	KC	NR	Migration (1,6%), extrusion (4,7%) and KC progression (6,4%)	Yes (6,3%)	ICRS migration and Extrusion	Gatifloxacin / prednisolone		
Tabatabaei et al. ⁵¹ (2019)	PLE	NR	Keratitis	Yes (100%)	Keratitis	Cefazolin / amikacin / vancomycin		
NR: Not reported; PLE: Post-LASIK ectasia; PL: Post LASIK; KC: Keratoconus; AC: Anterior chamber; CM: Corneal melting; BC: Blepharoconjunctivitis; ICRS: Intracorneal ring segment; FML: Fluorometholone; VA: Visual acuity; PMD: Pellucid marginal degeneration; KP: Keratoplasty; BCL: Bandage contact lens; RGP: Rigid gas permeable; CL: Contact lens; CXL: Crosslinking; AKC: Atopic keratoconus; GPC: Giant papillary conjunctivitis; PKP: Penetrant keratoplasty; FBS: Foreign body sensation								

