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ABSTRACT 28 

 Communities usually possess a multitude of interconnected trophic interactions within 29 

food webs. Their regulation generally depends on a balance between bottom-up and top-30 

down effects. However, if sensitivity to temperature varies among species, rising 31 

temperatures may change trophic interactions via direct and indirect effects. We examined 32 

the critical thermal maximum (CTmax) of 19 species from temperate wetlands (insect 33 

predators, amphibian larvae, zooplankton and amphipods) and determined if they vary in 34 

their sensitivity to warming temperatures. CTmax differed between the groups, with predatory 35 

insects having higher CTmax than amphibians (both herbivorous larval anurans and predatory 36 

larval salamanders), amphipods and zooplankton. In a scenario of global warming, these 37 

differences in thermal tolerance may affect top-down and bottom-up processes, particularly 38 

considering that insect predators are more likely to maintain or improve their performance at 39 

higher temperatures, which could lead to increased predation rates on the herbivores in the 40 

food web. Further studies are needed to understand how the energy flows through 41 

communities, how species’ energy budgets may change and whether other physiological and 42 

behavioral responses (such as phenotypic plasticity and thermoregulation) can buffer or 43 

increase these changes in the top-down regulation of wetland food webs.  44 

 45 

Keywords: critical thermal maximum; top-down regulation; amphibians; insects; 46 

zooplankton; climate change 47 
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1. INTRODUCTION 48 

 Predicting the impacts of climate change and understanding species’ responses to 49 

accelerating environmental changes has been a major challenge for the scientific community. 50 

There is increasing evidence that species’ phenologies and distributions are changing in 51 

response to current climate change (e.g., Parmesan and Yohe 2003, Parmesan 2006). 52 

Renewed interest in thermal physiology has produced large databases that enable a global 53 

perspective of species’ physiological limits and their relation to the environment (e.g., 54 

Deutsch et al., 2008; Duarte et al., 2012; Katzenberger et al., 2014; Sunday et al., 2014;). 55 

These data have given new insights into how species (and some communities) may respond 56 

to current and future climate change and are providing a general assessment of which taxa 57 

may be the most vulnerable.  58 

In spite of increasing information on the responses of species and populations to 59 

climate change, robust models of ecological systems are still badly needed to forecast the 60 

future state of communities and ecosystems under long-term environmental changes (Jochum 61 

et al., 2012; Shurin et al., 2012). However, the multitude of factors that affect ecosystems and 62 

their complex interactions have hindered the development of these models. Predicted 63 

environmental changes include an increase in the frequency of heat waves and other extreme 64 

events (Diffenbaugh and Ashfaq, 2010; Schär et al., 2004). Shifts in UV radiation, 65 

precipitation and temperature patterns are expected to vary geographically (IPCC, 2013). 66 

Furthermore, several aspects of the environment are simultaneously affected by geochemical 67 

cycles and changes in these cycles may influence local environmental conditions 68 

(Christensen et al., 2006; Vinebrooke et al., 2004). Apart from the physical environment data, 69 

models should also incorporate information about species’ physiological and life-history 70 

traits. Differential evolutionary responses of species’ physiological traits to climate change 71 

may also promote shifts in community interactions, food web dynamics and ecosystem 72 



4 
 

processes (Coulson et al., 2011; Gilman et al., 2010). However, current experimental 73 

evidence is limited (Jochum et al., 2012). Moreover, the direct effects on species’ physiology 74 

and demographics may be further altered by indirect effects via ecological interactions in 75 

food webs (Bothwell et al., 1994; Ockendon et al., 2014; Suttle et al., 2007). 76 

The critical thermal maximum (CTmax) is the temperature at which an organism loses 77 

its ability to avoid the conditions that will lead to its death (Cowles and Bogert, 1944). 78 

Thermal performance curves are usually asymmetrical, with the interval between the 79 

optimum temperature and the critical thermal maximum commonly characterized by a steep 80 

decline in performance (Huey and Kingsolver, 1989). However, determining optimum 81 

temperature is usually methodologically more difficult than determining CTmax (e.g., 82 

Katzenberger et al. 2014). Since optimum temperature and CTmax have been established as 83 

co-adaptive traits (Angilletta, 2009; Huey et al., 2009), a species with high CTmax is expected 84 

to also have a high optimum temperature. Hence, determining interspecific variation in CTmax 85 

and warming tolerance (the difference between CTmax and current environmental 86 

temperatures) is a simple way to assess species vulnerability to the direct effects of climate 87 

change (Deutsch et al., 2008; Tewksbury et al., 2008).   88 

Current global warming may promote changes in species interactions and community 89 

structure (Dell et al. 2011), particularly when species have contrasting thermal niches. A 90 

reduction in available niche space for species with low heat tolerance can potentially enhance 91 

density-dependent interactions, whereas species with high heat tolerance could benefit from 92 

the release of competitive pressures (Diamond et al., 2017). Warm-adapted consumers are 93 

also expected to exert increased top-down pressure, leading to a reduction in the biomass of 94 

species from the lower trophic levels if the latter are less heat tolerant (Urban et al., 2017). 95 

Species asymmetries in thermal responses may also affect the dynamics of consumer–96 

producer interactions due to differences in activation energies (the life-dinner principle) 97 
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(Dawkins and Krebs, 1979; Dell et al., 2014, 2011). Top predators may be closer to their 98 

tolerance limits (Pincebourde et al., 2008; Twomey et al., 2012), with carnivores having peak 99 

performances at temperatures 10ºC lower than herbivores (Dell et al., 2014; Voigt et al., 100 

2003). However, much more information is needed to establish a comprehensive 101 

generalization of thermal tolerance across trophic levels. 102 

 Differences in thermal tolerance across trophic levels may also affect top-down and 103 

bottom-up effects in food webs (Relyea and Ricklefs, 2018). Warming can influence trophic 104 

interactions and alter the relative importance of these top-down and bottom-up effects by 105 

increasing the metabolic requirements of species (Dillon et al., 2010). Several studies have 106 

demonstrated that top-down effects increase with warming, strengthening the trophic cascade 107 

from consumers to producers (Hoekman, 2010; Jochum et al., 2012; Kratina et al., 2012; 108 

O’Connor et al., 2009; Shurin et al., 2012). This occurs when the metabolic requirements of 109 

consumers increase faster with temperature than that of producers (Allen et al., 2005), 110 

resulting in an increase in consumer activities (Dillon et al., 2010; Hoekman, 2010; O’Connor 111 

et al., 2009; Shurin et al., 2012). However, metabolic demands can increase faster than 112 

feeding rates (Rall et al., 2010) and increased feeding rates may also lead to resource 113 

competition. Moreover, decreased food intake may also reduce growth rates, reduce optimal 114 

temperatures, and reduce upper thermal limits for growth (Huey and Kingsolver, 2019). 115 

Therefore, in the long-term, consumers may suffer from reduced fitness, lower abundance 116 

and reduced biomass when compared to producers, thereby weakening the top-down effects 117 

(O’Connor et al., 2011). In addition, warming tends to favor organisms that compete better 118 

for nutrients (Falkowski and Oliver, 2007) and smaller organisms (Daufresne et al., 2009; 119 

Yvon-Durocher et al., 2011; Yvon-Durocher and Allen, 2012). Both of these factors should 120 

influence community size structure and alter species composition (Yvon-Durocher et al., 121 

2011).  122 
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We aimed to understand how the current climate-change scenario may affect a 123 

temporary freshwater wetland community by determining the critical thermal maxima of 124 

species from different trophic levels. The species include primary consumers (tadpoles, 125 

zooplankton and amphipods) and secondary and tertiary consumers (salamander larvae and 126 

predatory insects, respectively; Fig. 1). These taxa have been used to study the dynamics of 127 

food web structure and the mechanisms controlling the bottom-up and top-down processes in 128 

temperate wetlands for several decades (Jones et al., 2016; Leibold and Wilbur, 1992; Stoler 129 

and Relyea, 2016; Wilbur, 1997). CTmax values may be phylogenetically constrained (Huey, 130 

1982; Huey et al., 2009; Kellermann et al., 2012), although they are adaptively associated 131 

with environmental temperatures even when controlling for phylogeny (e.g., Duarte et al. 132 

2012). Hence, we expected to find differences in thermal physiology among higher 133 

taxonomic groups (e.g., Duarte et al. 2012; Sunday et al. 2014) and among trophic levels. 134 

Based on previous studies, we expected predatory insect species to have higher CTmax values 135 

than amphibians (e.g., Sunday et al. 2014). We also expected body mass to be a good 136 

predictor of upper thermal resistance across species of ectotherms (Klockmann et al., 2017), 137 

although this relationship may not be evident within species (Duarte et al., 2012). 138 

 139 

2. METHODS 140 

2.1. Field collection and animal husbandry  141 

In spring 2010, we collected 11 species of amphibians (egg masses), four species of 142 

aquatic insects, three species of amphipods and one species of zooplankton (Cladocera) from 143 

natural ponds and wetlands. Each species was collected at a single location (Tables 1-2). All 144 

animals were brought to the Pymatuning Laboratory of Ecology (University of Pittsburgh), in 145 

northwest Pennsylvania, USA. Microenvironmental pond temperatures were measured in 146 

seven locations by placing HOBO Pendant® temperature dataloggers in most collection sites 147 
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at the deepest part of the pond (Table 2). When thermal stratification occurs, usually during 148 

sunny days with little to no wind (Boeckman and Bidwell, 2015), these measurements are 149 

assumed to represent the minimum environmental temperatures to which the animals are 150 

exposed during the time period considered; other locations within the pond (shallower 151 

locations or higher in the water column) presumably had higher temperatures (Bancroft et al., 152 

2008; Boeckman and Bidwell, 2015; Oberle et al., 2019; Song et al., 2013). Water 153 

temperature was recorded every 5–15 min during the period in which most species in the 154 

community were present.  155 

The species we used belong to different trophic levels of a wetland food web, 156 

including herbivores, detritivores, and predators (Figure 1). Most of these species overlap in 157 

distribution so they can co-occur (at least partially) and interact. Since feeding preferences of 158 

anuran larvae depend on species and may include multiple resources, such as periphyton, 159 

zooplankton, phytoplankton and detritus  (Altig et al., 2007; Arribas et al., 2015; Carreira et 160 

al., 2016; Montaña et al., 2019), we considered several potential energy pathways for this 161 

group. In the laboratory, the zooplankton and amphipod species were kept in plastic 162 

containers (40 x 25 x 20 cm) with approximately 10 L, to which an aliquot of filtered (397-163 

mm net) local pond water was added as source of algae. Aquatic insects were kept 164 

individually in 500-mL plastic cups (filled with 400 mL of water) and fed tadpoles every 2 d. 165 

Outdoor pools were filled with aged well water to accommodate the amphibian eggs. All egg 166 

masses from the same species were placed together in the same pool. Tadpoles were then fed 167 

rabbit pellets ad libitum and allowed to grow until reaching the desired developmental stage. 168 

Moreover, salamander larvae were fed zooplankton ad libitum. 169 

 170 

2.2. Critical thermal maximum assessment 171 
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 Sets of amphibian aquatic larvae (anuran tadpoles and larval salamanders) were 172 

brought indoors to acclimate for the experiment. Amphibian larvae were tested at a 173 

developmental stage where they were able to swim freely and begin feeding independently. 174 

In most anuran species, this occurs after reaching Gosner stage 25 (Gosner, 1960). Other 175 

organisms were tested at the same developmental stage as they were when collected (Table 176 

3). Amphibian larvae, insects, amphipods and zooplankton were kept at an acclimation 177 

temperature of 20°C (approximately the average temperature experienced in the outdoor 178 

pools), with a 12L:12D photoperiod, for four days, as in previous studies (Duarte et al., 2012; 179 

Gutiérrez-Pesquera et al., 2016; Simon et al., 2015). This allowed to the animals to acclimate 180 

to the lab temperature and stabilize their CTmax (Allen et al., 2012; Brattstrom, 1968; 181 

Buchanan et al., 1988; Hutchison, 1961). After the acclimation period, the species were tested 182 

for their CTmax (Brattstrom, 1968; Hutchison, 1961) using Hutchison’s dynamic method 183 

(Lutterschmidt and Hutchison, 1997a).  184 

The CTmax trials used a water bath which consisted of a 250-mL container filled with 185 

200 mL of dechlorinated water at 20 °C placed within a larger 2-L container, set upon a 186 

magnetic stirrer hotplate. Water temperature was measured in the smaller container, whereas 187 

the magnetic stirrer was placed in the larger container to avoid perturbing the organisms. We 188 

exposed the organisms to a constant heating rate of 1.0 °C min-1, as in previous studies 189 

(Duarte et al., 2012; Simon et al., 2015). This heating rate is fast enough to avoid acclimation 190 

during the CTmax trials but also slow enough to avoid both heat shock and a significant lag 191 

between water and body temperatures (Lutterschmidt and Hutchison, 1997a, 1997b). While 192 

approaching their upper thermal limit, organism first lose their righting response, then go 193 

through a stage of complete immobility before reaching the onset of spasms, which precedes 194 

death (Lutterschmidt and Hutchison, 1997a, 1997b). For tadpoles, the onset of spasms was 195 

considered the experimental endpoint. In the case of the insects, amphipods and zooplankton, 196 
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since spasms could not be observed during the experiment, we used complete immobility as 197 

the endpoint of the critical thermal tolerance experiments. Once CTmax was reached, we 198 

placed all organisms into cooler water (20°C) to allow for complete recovery. Those 199 

individuals unable to recover were excluded for the analyses. All experiments were approved 200 

by the Institutional Animal Care and Use Committee from the University of Pittsburgh 201 

(Protocol #12050451). 202 

 203 

2.3. Statistical analysis 204 

To determine how the upper thermal limits varied across species, we conducted a 205 

generalized linear model (log-linked gamma distribution) using CTmax as the dependent 206 

variable, species as a categorical factor and mass as a covariate (including the interaction 207 

between species and mass). Although it is recommended to incorporate phylogenetic 208 

information (Felsenstein, 1985; Garland Jr. et al., 1992), we could not implement a PGLS 209 

analysis since the number of species (n=19) is below the recommended threshold of >20 210 

(Blomberg et al., 2003). Therefore, to account for the non-independence of species, we also 211 

conducted a generalized linear mixed model (log-linked gamma distribution), that included 212 

the taxonomic levels (from species to phylum) as nested, random effects (Seebacher et al., 213 

2015), We then compared both models using the Akaike information criterion (AIC) (Akaike, 214 

1974), to determine if the inclusion of higher taxonomic levels improved our model. Next, we 215 

conducted Tukey HSD post-hoc tests to see which species differed from each other. To 216 

examine the potential link between body size and CTmax, we also assessed the relationship 217 

between CTmax and mass, within each species, using Pearson’s correlation coefficient. 218 

Our second analysis examined the effects of trophic level on CTmax. For each species, 219 

trophic level was determined as the longest chain length from a consumer to a basal species, 220 

plus one (Pimm, 1980). The obtained trophic levels were then used as a grouping variable in 221 
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subsequent analysis (Table 3). Amphipods and zooplankton were grouped together 222 

(Zoo/Apod group) since they represent the main phytoplankton and periphyton consumers. 223 

Similar to the previous analyses, we conducted two models to determine how the upper 224 

thermal limits varied across trophic levels:  1) a generalized linear model (log-linked gamma 225 

distribution) using CTmax as the dependent variable, trophic group as a categorical factor and 226 

mass as a covariate (including the interaction between trophic group and mass); and 2) a 227 

generalized linear mixed model (log-linked gamma distribution), that included the taxonomic 228 

levels (from species to phylum) as nested, random effects. Again, both models were 229 

compared using AIC, to determine if the model can be improved by including taxonomic 230 

levels as random factors. Tukey HSD post-hoc tests were then conducted to see which trophic 231 

groups differed from each other. All analyses were performed in R version.3.6.5 (R 232 

Development core team, 2020) and conducted at the significance level of α=0.05. 233 

 234 

3. RESULTS 235 

 Critical thermal maximum differed among species (F18,163=306.3, p<0.001, Table 3), 236 

with a significant positive effect of body mass (F1,163=4.8, p=0.030), as well as a significant 237 

interaction between species and body mass (F17,163=1.9, p=0.019). The addition of taxonomy 238 

as a random factor did not improve the model (without taxonomy, AIC=312.5; with 239 

taxonomy, AIC= 326.5) and results were similar for the effects of species, body mass and 240 

their interaction on CTmax (Table 4). When assessing the correlation between CTmax and body 241 

mass within each species, only R. pipiens (Pearson’s r=0.677, p=0.006) and P. triseriata 242 

(Pearson’s r=0.644, p=0.01) had a positive correlation while E. simplicollis (Pearson’s r=-243 

0.937, p=0.018) had a negative correlation. 244 

 The CTmax values (means ± 1 SE) differed between trophic levels (F3,192=337.3, 245 

p<0.001), with predatory insects (45.2 ºC ± 0.1) showing higher values than larval anurans 246 
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(39.3 ºC ± 0.1), larval salamanders (37.5 ºC ± 0.1)  and zooplankton/amphipods (39.5 ºC ± 247 

0.2, all p<0.001). Anurans and zooplankton/amphipods did not differ in their CTmax 248 

(p=0.886); however, larval salamanders presented lower CTmax values than either of these 249 

two groups (p<0.001). However, there was no relation between CTmax and either body mass 250 

(F1,192=0.02, p=0.885) or the interaction of trophic level with body mass (F3,192=0.8, p=0.506) 251 

in this model. The inclusion of taxonomy as a random factor improved the model (without 252 

taxonomy, AIC=573.5; with taxonomy, AIC= 345.7) and also allowed us to identify a 253 

significant effect of body mass on CTmax but not of the interaction between trophic level and 254 

body mass (Table 5). However, there is collinearity among taxonomy and trophic level; since 255 

the predators feeding at the highest trophic level (i.e. 5) were all insects. Although these 256 

insect species were also amongst the largest in size, their CTmax is higher than amphibian 257 

species of similar body mass (Table 3). 258 

 259 

4. DISCUSSION 260 

 In our tests of CTmax among 19 species, we discovered that thermal responses differed 261 

among trophic levels, with insect predators exhibiting much higher CTmax values than the 262 

lower trophic levels represented by larval anurans, larval salamanders, zooplankton, and 263 

amphipods. These findings are similar to a previous study on terrestrial insect communities 264 

(Franken et al., 2018) but differ from others on marine aquatic communities (Noyola Regil et 265 

al., 2015; Vinagre et al., 2019, 2018), where differences in thermal sensitivities of top 266 

predators versus other consumers were not evident. Our CTmax estimates are within the range 267 

published for tadpoles (Duarte et al., 2012; Gutiérrez-Pesquera et al., 2016; Katzenberger et 268 

al., 2018; Miller and Packard, 1977), cladocerans (Brans et al. 2017), and predatory insect 269 

species (Dallas and Rivers-Moore, 2012; Martin et al., 1976; May, 1978; Op de Beeck et al., 270 

2017). The collinearity between taxonomy and trophic level hinders the interpretation of 271 



12 
 

which of these factors (or the combination of both) is more important in determining CTmax. 272 

Therefore, further conclusions on this topic should be taken carefully. Nevertheless, this does 273 

not change the observed CTmax pattern for this community with low species richness. 274 

Body mass was a good predictor of CTmax and the insect species that presented the 275 

highest CTmax were amongst the largest species in this study (Table 3). While we 276 

incorporated phylogeny in our analyses because mass can be confounded with phylogeny, its 277 

inclusion did not improve the model fit. The insect species with the highest CTmax, Erythemis 278 

simplicollis, had a similar body size to several anuran larvae with much lower CTmax, which 279 

suggests that while mass matters, other factors may also affect CTmax values. Moreover, 16 of 280 

the 19 species showed no relation between body mass and CTmax, perhaps due to the range of 281 

body mass within species being to small. A disparity in the effect of size on CTmax between 282 

intraspecific and community-level analysis was also found in some tropical ant communities 283 

(Nowrouzi et al., 2018). Among the aquatic insect families, Notonectidae and Libellulidae are 284 

known to exhibit high thermal tolerance (Dallas and Rivers-Moore, 2012), indicating that 285 

those phylogenetic lines may be well adapted to cope with higher environmental 286 

temperatures. Moreover, there is a general understanding that the body size of many 287 

organisms is declining due to climate warming (Ohlberger, 2013) and that body size may 288 

constrain their thermal tolerance (Klockmann et al., 2017; Peck et al., 2009).  289 

Air breathing may ameliorate the effects of low oxygen availability in the water 290 

associated with high environmental temperatures. As a result, the ability of our aquatic 291 

species to breathe air could play an important role in tolerating high temperatures. Terrestrial 292 

(air-breathing) arthropods (Franken et al., 2018) have higher CTmax values than other aquatic 293 

arthropods (Vinagre et al. 2019). Among our four insect species, the L. americanus and 294 

Notonecta sp. get their oxygen from atmospheric air whereas the larvae of A. longipes and E. 295 

simplicollis use tracheal gills to obtain the oxygen dissolved in the water (Triplehorn et al., 296 
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2005). Despite these two different methods of obtaining oxygen, all four insect species had 297 

high thermal tolerance. Moreover, many species of tadpoles (including some species studied 298 

here), larval salamanders, and some species of snails can engage in a “bubble-sucking” 299 

behaviour, which allows these species to circumvent water’s surface tension and also breathe 300 

air (Schwenk and Phillips, 2020). 301 

Although a complete thermal performance curve would provide a full assessment of 302 

thermal tolerance, the biological significance of CTmax and its relationship with optimum 303 

temperature allows us to infer species vulnerability to global warming (Angilletta, 2009; 304 

Huey et al., 2012, 2009). The IPCC (2013) predicts an increase in average air temperature of 305 

4ºC in the region during the next 80 years, with an associated increase in the frequency and 306 

duration of heat waves (Schär et al., 2004). While current environmental temperatures are not 307 

close to the upper thermal limits of the 19 species, some of these species already experience 308 

maximum environmental temperatures very close or above their optimum temperature for 309 

locomotor performance (Katzenberger, 2014). Moreover, if aquatic habitats suffer similar 310 

thermal changes to those predicted in air temperature models, many species will probably be 311 

exposed to temperatures that approach their physiological limits, where performance steeply 312 

declines due to the asymmetrical nature of the thermal performance curves (Huey and 313 

Kingsolver, 1989).  Amelioration of the possible direct negative effects of increasing 314 

environmental temperatures will depend on species’ abilities to avoid harmful temperatures 315 

(e.g., behavioural thermoregulation) or to change their physiological limits by either 316 

phenotypic plasticity or rapid evolution (e.g., Logan et al. 2014; Seebacher et al. 2015). 317 

However, since CTmax can be phylogenetically constrained (Araújo et al., 2013; Huey, 1982; 318 

Kellermann et al., 2012) and if species with low CTmax cannot disperse, their reliance on 319 

behavioral thermoregulation and other mechanisms might prompt energetic imbalance and 320 

other physiological costs (Sinervo et al., 2010), including performance reduction (Gilbert and 321 
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Miles 2017). Moreover, faster pond desiccation associated with higher environmental 322 

temperatures may affect organism developmental rates and incur in additional stress (Gomez-323 

Mestre et al., 2013). 324 

Several studies have demonstrated shifts in community structure associated with 325 

climate change and its effect on the strength of top-down and bottom-up processes (Anderson 326 

and Piatt, 1999; Kratina et al., 2012; Litzow and Ciannelli, 2007; O’Connor et al., 2009; 327 

Shurin et al., 2012; Yvon-Durocher et al., 2010). Metabolic theory predicts that top predators 328 

should be most vulnerable to environmental warming, due to energetic and morphological 329 

constraints on trophic position (Arim et al., 2007; O’Gorman et al., 2019). Some microcosm 330 

experiments support this prediction (Petchey et al., 1999). Such effects could lead to 331 

truncated food chains because of greater local extinction rates by top predators. However, 332 

phenological mismatches between organisms and their food (Both et al., 2009), potential 333 

changes in species feeding preferences (Carreira et al., 2016) and different thermal 334 

physiology limits among the community components (this study; Peck et al. 2009), may also 335 

affect the importance of top-down and bottom-up processes. Additional changes in preferred 336 

body temperature and other thermal physiology traits may occur as a result of low resource 337 

availability (Gilbert and Miles, 2016), further affecting community dynamics.  338 

Predicting impacts on the food web may also depend on population location. Several 339 

studies show intraspecific variation in thermal physiology parameters across populations 340 

(Brattstrom, 1968; Huang and Tu, 2008; Hutchison, 1961; Richter-Boix et al., 2015; 341 

Terblanche et al., 2006; Winne and Keck, 2005), although this variation in CTmax was 342 

generally much lower than the variation we found (approx. 6°C) between predatory insects 343 

and the other trophic levels. However, whether this indicates that some populations are less 344 

vulnerable to global warming than others still depends on how close each population’s CTmax 345 

is to each population’s environmental temperatures. Nevertheless, variation in the thermal 346 
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profiles among populations can be quite significant (Table 2; Duarte et al. 2012; Richter-Boix 347 

et al. 2015; Gutiérrez-Pesquera et al. 2016). Hence, predicted effects of global warming on 348 

this food web may vary substantially according to habitat characteristics and location, 349 

ranging from no impact to strong impacts on the community structure and the strength of top-350 

down/bottom up processes. 351 

 352 

5. CONCLUSIONS 353 

 Our study indicates that the insect predators have a substantially higher CTmax (> 5ºC) 354 

than all other consumers. We cannot unconfound whether this is due to trophic level, 355 

phylogeny, body mass or their interaction, and future studies on communities with high 356 

species richness could provide further insights on this topic. Regardless, in warmer 357 

environmental conditions, these predators are more likely to improve or maintain their 358 

performance at higher temperatures, which could lead to a stronger top-down regulation. 359 

However, predictions based solely on physiological data, although important, may not tell the 360 

full story regarding each species’ ability to cope with global warming. Thermal physiology 361 

should be complemented with additional data on behavioral responses, phenotypic plasticity 362 

of traits and evolutionary potential. A better understanding of trait variation across 363 

populations is also instrumental to improve the extrapolation potential of multi-species 364 

studies (Dowd et al., 2015; Herrando-Pérez et al., 2019). In addition, current knowledge 365 

regarding the impact of temperature changes at a community level is still limited (Kratina et 366 

al., 2012; Montoya and Raffaelli, 2010; Urban et al., 2017; Walther, 2010). Long-term 367 

monitoring of freshwater communities and experimental approaches under natural or semi-368 

natural conditions (e.g., mesocosms) with diverse food webs are needed to determine if these 369 

physiological results translate to field observations. In this way, we can more fully 370 
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understand the temporal and spatial dynamics of these freshwater food webs under the 371 

current and future global warming. 372 
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Table 1. Collection sites, number of organisms used (N), life-stage and food web groups of the 19 studied species from a freshwater community. 672 

Species Common name N¥ 
Food Web 

Group 
Life-stage Pond 

Ambystoma laterale Blue-spotted salamander 12 (10) amphibian larvae Edwin S. George Reserve 

Anaxyrus americanus American toad 15 (12) amphibian larvae Oberdick 

Hyla versicolor Gray treefrog 15 (9) amphibian larvae Mallard Pond B 

Pseudacris crucifer Spring peeper 15 (10) amphibian larvae Trailer Pond 

Pseudacris feriarum Upland chorus frog 15 (20) amphibian larvae Seven Island Reserve 

Pseudacris triseriata Western chorus frog 15 (23) amphibian larvae Edwin S. George Reserve 

Rana catesbeiana American bullfrog 15 (10) amphibian larvae Love Pond 

Rana clamitans Green frog 15 (11) amphibian larvae Oberdick 

Rana palustris Pickerel frog 10 (5) amphibian larvae Seven Island Reserve 

Rana pipiens Northern leopard frog 15 (7) amphibian larvae Mallard Pond B 

Rana sylvatica Wood frog 15 (10) amphibian larvae Mallard Pond A 

Anax longipes Comet darner 15 insect larvae Edwin S. George Reserve 

Erythemis simplicollis Common pondhawk 5 insect larvae Geneva Pond A 

Lethocerus americanus Giant water bug 5 insect adult Geneva Pond B 

Noctonecta sp. Common backswimmer 5 insect adult Geneva Pond A 

Daphnia magna Waterflea 5 zooplankton adult Love Pond 

Hyalella sp. Sideswimmer (scud) 5 amphipod adult Lake LeBoeuf 

Hyalella spinicauda Sideswimmer (scud) 5 amphipod adult Lake LeBoeuf 

Hyalella wellborni Sideswimmer (scud) 5 amphipod adult Lake LeBoeuf 
¥ For amphibians, number of clutches collected is shown in parentheses.  673 
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Table 2. Location, altitude (meters) and thermal profile (in ºC) of the ponds where the 19 studied species were collected. The time period considered 675 

encompasses the months of 2010 (number of days in parentheses), from the collection of organisms and placing of dataloggers until the water 676 

bodies dried out or most of the species in the community were absent.  677 

Pond Location Latitude/ Longitude Alt£ Tmax
 Tavg Tmin DTFmax DTFavg DTFmin period 

E.S. George Res. Livingston County, MI 42°27'30.03"N, 84° 0'41.20"W 304 20.8 14.7 6.7 5.2 1.8 0.1 April-June (66) 

Geneva Pond A Crawford County, PA 41°35'18.02"N, 80°14'41.01"W 325 - - - - - - - 

Geneva Pond B Crawford County, PA 41°35'17.10"N, 80°14'29.91"W 327 - - - - - - - 

Lake LeBoeuf Crawford County, PA 41°55'59.64"N, 79°58'58.01"W 357 - - - - - - - 

Love Pond Crawford County, PA 41°41'08.60"N, 80°30'48.26"W 311 31.0 24.6 10.7 10.7 1.7 0.3 May-October (126) 

Mallard Pond A Crawford County, PA 41°41'30.09"N, 80°30'02.91"W 318 28.9 17.0 7.1 15.4 7.2 1.1 April-June (60) 

Mallard Pond B Crawford County, PA 41°41'27.96"N, 80°29'57.07"W 317 29.5 18.1 7.0 13.8 4.4 0.8 April-July (87) 

Oberdick Crawford County, PA 41°41'16.33"N, 80°25'33.89"W 333 25.7 20.2 9.7 8.3 3.2 0.4 April-October (187) 

Seven Island Res. Blount County, TN 35°37'35.96"N, 83°41'00.53"W 482 27.3 20.7 14.1 7.0 4.7 1.9 April-May (34) 

Trailer Pond¥ Crawford County, PA 41°34'08.60"N, 80°27'09.03"W 371 26.1 16.3 5.6 8.8 4.0 0.6 April-July (104) 
¥ data from Katzenberger et al. 2018 678 

£ Alt, altitude in meters; Tmax, maximum environmental temperature; Tavg, average environmental temperature; Tmin, minimum environmental 679 

temperature; DTFmax, maximum diel temperature fluctuation; DTFavg, average diel temperature fluctuation; DTFmin, minimum diel temperature 680 

fluctuation. 681 

 682 
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Table 3. Critical thermal maximum (CTmax; °C ± SE), mass (mg ± SE), food web group, 684 

trophic level, and Tukey HSD results for 19 species from a temperate wetland food web. 685 

Each letter of Tukey HSD corresponds to a potential grouping of species according to the 686 

post-hoc test results. Order of species was changed to ease visualization of Tukey HSD 687 

grouping.  688 

 689 

Species 
Food Web 

Group 

Trophic 

Level  

Tukey HSD 

grouping 

CTmax 

(°C) 
Mass (mg) 

Ambystoma laterale amphibian 4 a 37.5 ± 0.1 79.1 ± 7.7 

Rana pipiens amphibian 3 ab 38.0 ± 0.1 119.3 ± 13.4 

Rana sylvatica amphibian 3 abc 38.2 ± 0.1 214.2 ± 16.1 

Rana catesbeiana amphibian 3 d 38.7 ± 0.1 43.9 ± 3.8 

Hyalella spinicauda amphipod 2 cde 38.9 ± 0.1 0.302 ± 0.008 

Hyalella wellborni amphipod 2 de 39.2 ± 0.2 0.316 ± 0.032 

Daphnia magna zooplankton* 2 de 39.2 ± 0.2 0.179 ± 0.018¥ 

Pseudacris crucifer amphibian 3 de 39.3 ± 0.1 84.6 ± 11.1 

Pseudacris feriarum amphibian 3 de 39.2 ± 0.1 133.6 ± 8.8 

Pseudacris triseriata amphibian 3 de 39.2 ± 0.1 129.0 ± 6.4 

Rana palustris amphibian 3 bcde 39.4 ± 0.1 875.9 ± 105.3 

Rana clamitans amphibian 3 ef 39.7 ± 0.1 37.6 ± 3.4 

Hyla versicolor amphibian 3 f 40.3 ± 0.1 134.2 ± 14.1 

Hyalella sp. amphipod 2 fg 40.5 ± 0.1 0.405 ± 0.047 

Anaxyrus americanus amphibian 3 g 41.0 ± 0.2 56.0 ± 4.1 

Noctonecta sp. insect 5 h 43.9 ± 0.2 113.2 ± 5.5 

Anax longipes insect 5 hi 45.2 ± 0.1 2249.9 ± 58.9 

Lethocerus americanus insect 5 hi 45.9 ± 0.2 900.6 ± 168.4 

Erythemis simplicollis insect 5 i 46.0 ± 0.1 247.1 ± 20.2 
* Daphnia magna was grouped with amphipods for community analysis (Zoo/Apod group). ¥ 690 

Mass values for Daphnia magna were obtained from Simcic and Brancelj (1997). 691 
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Table 4. Generalized linear mixed model (log-link gamma distribution) to determine the 693 

effects of species, body mass and their interaction on CTmax. Taxonomic levels from species 694 

to phylum were included as nested, random effects to account for the non-independence of 695 

related species. 696 

 697 

Fixed effects df Sum sqt Mean Sq F p 

species 18 0.6346 0.0353 306.3 < 0.001 

mass 1 0.0006 0.0006 4.8 0.030 

species*mass 17 0.0038 0.0002 1.9 0.019 

Random effects Variance ± SD 

phylum 0.00000 ± 0.00000 

class 0.00000 ± 0.00000 

order 0.00000 ± 0.00000 

family 0.00000 ± 0.00000 

genus 0.00000 ± 0.00000 

species 0.00000 ± 0.00000 

Residual 0.00012 ± 0.01073 
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Table 5. Generalized linear mixed model (log-link gamma distribution) to determine the 701 

effects of trophic level, body mass and their interaction on CTmax. Taxonomic levels from 702 

species to phylum were included as nested, random effects to account for the non-703 

independence of related species. 704 

 705 

Fixed effects df Sum sqt Mean Sq F p 

trophic 3 0.0820 0.0273 150.2 < 0.001 

mass 1 0.0011 0.0011 5.8 0.017 

trophic*mass 3 0.0003 0.0001 0.6 0.636 

Random effects Variance ± SD 

phylum <0.00001 ± <0.00001 

class <0.00001 ± 0.00004 

order <0.00001 ± 0.00005 

family <0.00001 ± 0.00011 

genus 0.00002 ± 0.00426 

species 0.00010 ± 0.00977 

Residual 0.00018 ± 0.01349 

 706 



 
 

Figure 1. Simplified wetland food web with trophic relations between the studied species 707 

(modified from Wilbur 1997). Solid arrows indicate the primary direction of energy flow. 708 

Doted arrows indicate potential energy flow pathways, depending on tadpole species (Altig et 709 

al., 2007; Arribas et al., 2015; Montaña et al., 2019). Dashed arrow indicates a secondary 710 

energy flow that occurs when salamander larvae grow bigger than some tadpole species and 711 

are then able to consume them. A) predatory insects: Anax longipes, Erythemis simplicollis, 712 

Lethocerus americanus and Noctonecta sp.. B) larval salamanders: Ambystoma laterale. C) 713 

larval anurans: Anaxyrus americanus, Hyla versicolor, Pseudacris crucifer, P. feriarum, P. 714 

triseriata, Rana catesbeiana, R. clamitans, R. palustris, R. pipiens and R. sylvatica. D) 715 

zooplaknton: Daphnia magna. E) Amphipods: Hyalella sp., H. spinicauda and H. wellborni.  716 

 717 

Figure 2. Boxplot (median and quartiles) of critical thermal maximum (CTmax) of the studied 718 

species. Species were grouped according to their taxonomy. Amphipods and zooplankton 719 

were grouped together (Zoo/Apod group) since they represent the main phytoplankton 720 

consumers. Dashed lines indicate the average CTmax for each group and the respective 721 

standard deviation. Species: ALO, Anax longipes; ESI, Erythemis simplicollis; LAM, 722 

Lethocerus americanus; NOC, Noctonecta sp.; ALA, Ambystoma laterale; AAM, Anaxyrus 723 

americanus; HVE, Hyla versicolor; PCR, Pseudacris crucifer; PFE, P. feriarum; PTR, P. 724 

triseriata; LCA, Rana catesbeiana; RCL, R. clamitans; RPA, R. palustris; RPI, R. pipiens; 725 

RSY, R. sylvatica; DMA, Daphnia magna; HYA, Hyalella sp.; HSP, H. spinicauda; HWE, 726 

H. wellborni. 727 
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