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Óscar Cebadero-Dominguez, Antonio Casas-Rodríguez, María Puerto *, Ana María Cameán, 
Angeles Jos 
Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n◦2, 41012, Seville, Spain   
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A B S T R A C T   

Considering the increase in the use of graphene derivatives in different fields, the environmental and human 
exposure to these materials is likely, and the potential consequences are not fully elucidated. This study is 
focused on the human immune system, as this plays a key role in the organism’s homeostasis. In this sense, the 
cytotoxicity response of reduced graphene oxide (rGO) was investigated in monocytes (THP-1) and human T cells 
(Jurkat). A mean effective concentration (EC50-24 h) of 121.45 ± 11.39 μg/mL and 207.51 ± 21.67 μg/mL for 
cytotoxicity was obtained in THP-1 and Jurkat cells, respectively. rGO decreased THP-1 monocytes differenti-
ation at the highest concentration after 48 h of exposure. Regarding the inflammatory response at genetic level, 
rGO upregulated IL-6 in THP-1 and all cytokines tested in Jurkat cells after 4 h of exposure. At 24 h, IL-6 
upregulation was maintained, and a significant decrease of TNF-α gene expression was observed in THP-1 
cells. Moreover, TNF-α, and INF-γ upregulation were maintained in Jurkat cells. With respect to the apoptosis/ 
necrosis, gene expression was not altered in THP-1 cells, but a down regulation of BAX and BCL-2 was observed 
in Jurkat cells after 4 h of exposure. These genes showed values closer to negative control after 24 h. Finally, rGO 
did not trigger a significant release of any cytokine at any exposure time assayed. In conclusion, our data con-
tributes to the risk assessment of this material and suggest that rGO has an impact on the immune system whose 
final consequences should be further investigated.   

1. Introduction 

Nanoparticles and carbon-based nanomaterials (CNMs) are 
becoming attractive nanomaterials that are increasingly used (Svadla-
kova et al., 2022). Within the CNMs family, graphene is the most 
prominent compound isolated from graphite (Novoselov et al., 2004). 
Graphene is a two-dimensional nanomaterial composed of a monolayer 
of carbon atoms packed into a honeycomb lattice (Geim and Novoselov, 
2007). Graphene encompasses different types of graphene-based mate-
rials (GBMs) including few-layer graphene (FLG), graphene nano-
platelets (GNPs), graphene oxide (GO), reduced graphene oxide (rGO), 
graphene quantum dots (GQD) or graphene nanoribbons (GNR) (Achawi 
et al., 2021). Among them, GO and rGO have attracted more attention 
due to their unique chemical, biological, mechanical, and physical 
properties. GO is an oxidized form of graphite that contains different 
oxygen-based functional (carboxylic, hydroxyl, and epoxy) groups. GO 

can be reduced by thermal or chemical methods to obtain reduced 
graphene oxide (rGO). The reduction process improves solubility and 
agglomeration in relation to pristine graphene and lead to better 
structure stability compared to GO (Smith et al., 2019; Rossa et al., 
2022). 

The attractive properties of these materials have resulted in a 
widespread interest in their application in different fields such as 
biomedicine (Iannazzo et al., 2018; Maio et al., 2021), biotechnology 
(Wang et al., 2011), food packaging (Rossa et al., 2022; Zeng et al., 
2022) or for environmental purposes such as water treatment or biore-
mediation (An et al., 2023; Madenli et al., 2022). Actually, the pro-
duction of around 3800 tons per year of graphene is predicted to 2027 
(Goodwin et al., 2018). The expanding use of GBM will potentially in-
crease the opportunity of human exposure. This exposure can be mainly 
by inhalation, cutaneous and ocular routes, by the respiratory tract and 
by ingestion (Pelin et al., 2018), and this has raised concern on its safety. 
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In this sense, prior to the application of these materials it is necessary to 
determine its hazard potential. 

Among the main toxicological effects of rGO, some studies have 
already shown that rGO induces cytotoxicity in a wide diversity of cell 
lines of human origin such as lung cells (Mittal et al., 2017), intestinal 
cells (Cebadero-Domínguez et al., 2022a,b), or liver cells (Ahamed et al., 
2020; Cebadero-Domínguez et al., 2022b), among others. Furthermore, 
other toxicological mechanisms involve oxidative stress (Bengtson et al., 
2016, Cebadero-Domínguez et al., 2022a), genotoxicity (Cebader-
o-Domínguez et al., 2022c,d), or neurotoxic effects by increased 
apoptosis and cell cycle arrest on neural cell lines (Kang et al., 2017). 

The immune system is the main responsible for protecting the host 
against invading microorganisms, foreign particles, or toxic substances 
to maintain homeostasis. And it can be affected whatever it is the 
exposure way, potentially leading to significant damage. The host has 
two fundamental lines of defense: innate (monocytes/macrophages) and 
adaptive (T lymphocytes) immune responses. It is known that the im-
mune cells are the initial biological components that interact with the 
GBMs (Wang et al., 2013). In recent years, the number of studies about 
the immunotoxic effects caused by pristine graphene, sheets/platelets of 
graphene nanomaterials have grown significantly, mainly in the case of 
GO (Cicuéndez et al., 2020; Escudero et al., 2020; Gurunathan et al., 
2019; Luo et al., 2020; Orecchioni et al., 2017; Ozulumba et al., 2021; 
Svadlakova et al., 2022; Yunus et al., 2021). However, the chemical 
modifications of graphene (as the rGO) can play an important role in the 
immune response (Orecchioni et al., 2016). Nevertheless, to the best of 
our knowledge, few studies have examined the effects of rGO in immune 
cells (Chortarea et al., 2022; Di Ianni et al., 2021; Li et al., 2018; Net-
kueakul et al., 2020; Park et al., 2015; Podolska et al., 2020; Wu et al., 
2018). Moreover, a comparative toxicological evaluation of rGO in 
THP-1 monocytes and Jurkat cells has not been performed to date. 

The THP-1 cell line is known to be a suitable model to represent a 
simplified, suitable and reliable model to study monocyte and macro-
phage functions/responses for in vitro toxicological studies and possible 
effects from external stimuli in the surrounding environment (Malkova 
et al., 2021). These cells have a monocytic phenotype and can be 
differentiated into macrophages using phorbol-12-myristate-13-acetate 
(PMA) (Chanput et al., 2014). However, only a study has evaluated 
the effects of GNPs on THP-1 differentiation (Yan et al., 2017). They 
observed a loss of the adherence ability of THP-1 macrophages after 
GNPs exposure. Jurkat cells are an immortalized cell line representative 
of the adaptive response, because they have parameters similar to those 
of human T cells. This cell line is generally used to study the immuno-
toxicity of antitumor drugs, toxins, and biomaterials (Zamorina et al., 
2021). Both cell lines can produce many cytokines to regulate innate and 
adaptive immune systems and scavenge foreign particles (Zhou et al., 
2012). Some cytokines act to make disease worse as interleukins IL-6 
(hematopoietic family: induce proliferation, differentiation and anti-
body secretion), IL-8 (chemokine family: secondary pro-inflammatory 
mediators), tumor necrosis factor (TNF-α: tumor necrosis factor fam-
ily: cause apoptosis) and interferon-gamma (INF-γ: interferon family: 
activate macrophages, interact with cells of the adaptive immune system 
and support the generation of Th1 cells), whereas others serve to reduce 
inflammation and promote healing (anti-inflammatory) as IL-2 (he-
matopoietic family) (Banchereau et al., 2012; Masi et al., 2017; Ramani 
et al., 2015). In this sense, imbalances in cytokine production and/or 
cytokine receptor activation can result in various pathological disorders 
(Tanaka et al., 2014). Moreover, the immune system is rarely limited to 
few molecule interactions being instead always a balance of switching 
several genes on and off (Orecchioni et al., 2016; Pescatori et al., 2013). 

Thus, it is important to study the production of cytokines and their 
gene expression in order to understand the mechanisms of action un-
derlying rGO immunotoxicity. Moreover, several reviews have sum-
marized that GBMs resulted in various degrees of cell death, which 
reflects the toxicity of GBMs. Thus, a better understanding of the cell 
death mechanisms induced by GBMs may allow for more precise 

determination of the consequences of human exposure to GBMs. For this 
reason, to determine the effects of rGO on the mRNA expression of 
selected genes involved in apoptosis and necrosis mechanisms in THP-1 
and Jurkat cells would contribute to establish the key cellular events 
leading to toxicity; with no previous studies on the topic. 

Taking all this into account, it is evidenced that the future extension 
of GBMs applications will depend on their risk assessment. Thus, to 
contribute to this topic, the aim of this work was to study the potential in 
vitro toxicity of rGO in the immune system. For this purpose, cytotoxicity 
was evaluated in THP-1 and Jurkat cell lines. Also, THP-1 cells were co- 
exposed to rGO and PMA to investigate the influence of rGO on mono-
cyte differentiation to macrophages. Alterations in gene expression of 
cytokines, such as interleukins (IL: IL-2, IL-6; IL-8), TNF-α, and IFN-γ by 
real time quantitative PCR (qRT-PCR) were also investigated, as well as 
their content in the culture medium by ELISA. Finally, the study was 
completed by evaluating the alterations in the expression of genes 
involved in cell death mechanisms (apoptosis/necrosis). 

2. Materials and methods 

2.1. Chemical and reagents 

rGO was purchased from Graphitene, Ltd. (Flixborough, UK). Cell 
culture reagents were provided by Gibco (Biomol, Sevilla, Spain). The 
chemical and physical properties of rGO were described in Cebader-
o-Domínguez et al. (2022a) The characterization showed an interlayer 
distance of 0.32 nm. rGO had a C/O ratio of 6.35. Moreover, rGO pre-
sented irregular layers and wrinkled structure. Chemicals for the cyto-
toxicity and differentiation assays were obtained from Sigma-Aldrich 
(Madrid, Spain). Reagents for RT-qPCR and Bio-Plex ProTM human 
cytokine assay kit were obtained from Bio-Rad Laboratories (Hercules, 
CA, USA) and Qiagen (Madrid, Spain). 

2.2. Model system 

The THP-1 cell line derived from peripheral blood from an acute 
monocytic leukemia patient (ATCC® TIB-202™) and Jurkat cell line 
derived from the peripheral blood of a 14-year-old, male, acute T-cell 
leukemia patient (ATCC® TIB-152™) were maintained at 37 ◦C in an 
atmosphere containing 5% CO2 at 95% relative humidity (CO2 incu-
bator, Nuaire®, Spain) at the Biology Service (CITIUS). Cells were 
cultured in a medium consisting of RPMI-1640 medium containing high 
glucose (R8005, Sigma Aldrich) supplemented with 10% heat- 
inactivated fetal bovine serum (FBS), 2 g/L sodium bicarbonate, 
10000 U/mL penicillin and 10 mg/mL streptomycin. Both cell lines were 
cultured following ATCC recommendations and experiments were per-
formed with cultures passages 5–10. 

2.3. Cytotoxicity and differentiation 

For the cytotoxicity tests, THP-1 and Jurkat cells were seeded in 96- 
well culture plates at a density of 3 × 105 and 5 × 105 cells/well, 
respectively. rGO was dispersed in cell culture medium at different 
concentrations (0, 1.95, 3.9, 7.81, 15.6, 31.2, 62.5, 125, and 250 μg/ 
mL). These concentrations were selected based on previous studies of 
the research group in other cell lines (Cebadero-Domínguez et al., 
2022a,d) and also in the range used for GBMs in immune cells in the 
scientific literature (i.e. Lategan et al., 2018; Li et al., 2018; Gurunathan 
et al., 2019). Prior to exposure, all samples were sonicated for 1 h 
(Hielscher Ultrasound Technology, Telow, Germany). After 24 h, cells 
were exposed to rGO for 24 and 48 h. The cytotoxicity of rGO was 
evaluated by MTS (3-(4,5-dimethylthiazol-2-yl)5-(3-carbox-ymethox-
yphenyl)-2-(4-sulfophenyl) 2H-tetrazolium salt) assay as described in 
Houtman et al. (2014). Furthermore, graphene has been reported to 
interfere with some viability assays (Liao et al., 2011). To avoid po-
tential dye interferences, the method described by Wang et al. (2021) 
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was followed. After 2 h incubation with MTS, cells were centrifuged at 
300 rcf for 5 min, the supernatants were transferred to a new 96-well 
plate, and the absorbance was measured at 490 nm. 

To determine the effects of rGO on the differentiation of THP-1 cells 
into macrophages, cells were exposed to rGO in the presence or absence 
of PMA (5 ng/mL) for 24 h and 48 h, according to the recommendations 
of Müller et al. (2003), Park et al. (2007) and Casas-Rodríguez et al. 
(2023). Test concentrations were chosen considering the mean effective 
concentration (EC50) for 24 h obtained in the cytotoxicity test (121.45 
± 11.39 μg/mL), along with the fractions EC50/2 and EC50/4. After 
exposure, the proportion of differentiated and nondifferentiated cells 
was examined according to their adherence properties. 
Non-differentiated cells (non-adherent monocytes) were transferred to a 
new plate, leaving differentiated cells in the original plate, and 
approximately 200 μL of pre-warmed medium was added to each well of 
the original plate. The MTS assay was used to determine the proportion 
of both cell populations (Müller et al., 2003). 

2.4. Gene expression analysis by quantitative real-time PCR 

Gene expression at the mRNA level was measured using the quan-
titative real-time polymerase chain reaction assay (RT-qPCR). THP-1 
cells were seeded at 3 × 105 cells/mL, and Jurkat cell were seeded at 5 ×
105 cells/mL and incubated for 24 h at 37 ◦C in 5% CO2. Both cell lines 
were exposed to EC20-24 h rGO obtained in the cytotoxicity tests for 
THP-1 (21.64 ± 0.4 μg/mL) and Jurkat cell lines (90.83 ± 0.73 μg/mL) 
and incubated for 4 and 24 h. After exposure, the expression of different 
cytokines were examined in THP-1 cells (IL-6, IL-8, TNF-α) and Jurkat 
cells (IL-2, IL-6, IL-8, TNF-α, INF-γ). Apoptosis/necrosis genes, Bcl-2- 
associated X protein (BAX), B-cell lymphoma 2 (BCL-2), and receptor- 
Interacting Serine/Threonine-Protein Kinase 3 (RIPK3) were examined 
in both cell lines. For the calculations, the GAPDH housekeeping gene 
was used. All used primers are presented in Table 1. Medium-treated 
cells were used as a negative control. Lipopolysaccharide (LPS) 
(Sigma-Aldrich, L2630) at a concentration of 10 ng/mL were used as 
inflammatory response positive control and camptothecin (CPT) (Sigma- 
Aldrich, C9911) at a concentration of 0.5 μM as apoptosis/necrosis 
positive control. After exposure, cells were centrifuged at 300 rcf for 6 
min. RNA was extracted following the manufacturer’s instructions for 
the RNAeasy Mini KitTM (Cat: 74104, Qiagen, Madrid, Spaing). RNA 
purification was carried out using the RNAse-free DNAse set (Cat: 
79254). NanoDrop 2000 (Thermo Scientific, Pittsbutgh, PA, USA) was 
used to measure RNA purity at 260/280 nm. To obtain cDNA, reverse 
transcription (RT) was performed with 1 μg of total RNA using Quan-
tiTect® reverse transcription kit (Cat: 205311, Qiagen, Madrid, Spain) 
in a total volume of 20 μL, as described by the manufacturer. The cDNA 
was diluted (1:5) in RNAse-free water and amplified by PCR in a final 
reaction volume of 10 μL (384-well plate) with the prime PCR probe for 
the corresponding gene and the iTaq universal probes Supermix (Cat: 
1725134) also included. The LightCycler®480 System (Roche, Berlin, 

Germany) was used to amplification at 95 ◦C for 2 min followed by 50 
cycles of 95 ◦C for 5 seg and 60 ◦C for 30 seg. The 2-ΔΔCT method was 
used to determine the results. Values above 1.5 were considered as up 
regulation, and values below 0.7 as down regulation. 

2.5. Cytokine detection 

After 4 h and 24 h exposure to EC20 (24 h), supernatants were 
collected to evaluate the inflammatory response of THP-1 and Jurkat 
cells. The levels of different cytokines (IL-1β, IL-2, IL-6, TNF-α, IFN-γ) 
were measured using the Bio-Plex Pro Human Chemokine Assays (Cat: 
171304090 M), following the manufacturer’s instructions (Bio-Rad 
Laboratories, Inc., Hercules, California, USA). Medium-treated cells 
were used as a negative control and LPS (10 ng/mL) was used as positive 
control. Before analysis, the supernatants were centrifuged to exclude 
interference with rGO. 

2.6. Statistical analysis 

The normality and the homogeneity of variances was analyzed using 
the Kolmogorov-Smirnov test. Comparisons were made with Kruskal 
Wallis test followed by Dunn’s multiple comparison (non- normal dis-
tribution) or one-way ANOVA followed by Tukey’s multiple compari-
sons test (normal distribution). 

All analysis were performed with Graph-Pad Prism 9 version 9.0.0 
software. Differences were considered significant at *p < 0.05, **p <
0.01 and ***p < 0.001. All experiments were performed at least three 
times. 

3. Results 

3.1. Cytotoxicity and differentiation assays 

Regarding the cytotoxicity assay, THP-1 and Jurkat cells exposed to 

Table 1 
Primers for PCR reactions used in this study for inflammatory response (IL-2, IL- 
6, IL-8, TNF-α, IFN-γ), apoptosis (BAX, BCL2) and Necrosis (RIK3).  

Mechanisms Gene 
Symbol 

Gene name Reference 

Inflammatory 
response 

IL-2 Interleukin 2 qHsaCIP0029918 
IL-6 Interleukin 6 qHsaCEP0051939 
IL-8 Interleukin 8 qHsaCEP0053894 
TNF-α Tumor necrosis factor α qHsaCEP0040184 
IFN-γ Interferon gamma qHsaCEP0050640 

Apoptosis BAX BCL2-associated X protein qHsaCEP0040666 
BCL2 B-cell CLL/lymphoma 2 qHsaCEP0058350 

Necrosis RIPK3 Receptor-Interacting 
Serine/Threonine-Protein 
Kinase 3 

qHsaCEP0025866  
Fig. 1. Effects of rGO (0–250 μg/mL) after 24 and 48 h of exposure on THP-1 
cells (a) and Jurkat cells (b) in MTS metabolization. Data expressed in % of 
control. The significance levels observed are *p < 0.05, **p < 0.01, and ***p <
0.001, in comparison with control group values. 
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rGO showed a significant reduction compared to control cells from 62.5 
μg/mL after 24 h and 125 μg/mL after 48 h of exposure in the MTS assay 
(Fig. 1a and b). The EC50 values obtained in THP-1 cells were 121.45 ±
11.39 μg/mL for 24 h and 218.86 ± 37.17 μg/mL for 48 h exposure. 
However, no significant changes were observed between 24 h and 48 h 
of exposure. In Jurkat cells, the EC50 values were 207.51 ± 21.67 μg/mL 
for 24 h and 178.56 ± 38.39 μg/mL for 48 h of exposure. These results 
indicated that THP-1 cells are more sensitive to rGO-induced cytotox-
icity than Jurkat cells for 24 h. However, the contrary effect was 
observed after 48 h of exposure. 

The influence of rGO on the differentiation of THP-1 monocytes into 
macrophages is shown in Fig. 2. Cells without PMA grow in suspension 
and do not adhere to the culture plates. The treatment with PMA pro-
duced changes in the monocytes morphology, such as cell adhesion or 
spread morphology, typical characteristics of macrophages. All con-
centrations assayed and the control with PMA showed a significant 
difference compared to the undifferentiated control (cells without PMA) 
verifying the differentiation to macrophages. However, only a signifi-
cant difference was observed with respect to the PMA control at the 
highest concentration at 48 h of exposure, indicating a reduction in THP- 
1 monocytes differentiation (Fig. 2). 

3.2. Gene expression analysis by quantitative real-time PCR 

The rGO-induced pro-inflammatory response was assessed by 
quantification of IL-6, IL-8 and TNF-α gene expression in THP-1 cells for 
4 and 24 h. In Jurkat cells, IL-2 and IFN-γ gene expression were also 
evaluated. 

In the case of THP-1 cells, significant upregulation (2.7-fold) of IL-6 
was observed after 4 h of exposure with respect to the control. After 24 
h, rGO exposure induced a slight pro-inflammatory response (1.5-fold 
increase) compared to the control group. Regarding TNF-α expression, 
no significant changes were observed after 4 h of exposure. However, a 
significant downregulation was detected after 24 h. IL-8 on the contrary, 
did not show modifications in any rGO exposure (Fig. 3a). 

In Jurkat cells, the results obtained suggested that rGO significantly 
stimulated the gene expression of all cytokines tested: IL-2, IL-6, IL-8, 
TNF-α and INF-γ after 4 h of exposure (Fig. 4a). The highest expres-
sion was observed in IL-6 gene, with a significant 24-fold increase in 
cells exposed to rGO. This is an important proinflammatory cytokine, 
with essential effects on adaptive immunity. However, most of the genes 
showed values close to the negative control after 24 h of exposure (IL-2, 
IL-6 and IL-8). The genes that kept their upregulation after 24 h of 
exposure were TNF-α and INF-γ (Fig. 4a). Both are important regulator 
cytokines in defense against tumors and enhance the microbicide ac-
tivity of macrophages. Also, positive controls treated with LPS (10 ng/ 
mL) were run in parallel, increasing all cytokines expression. 

The cell death mechanisms of rGO for 4 and 24 h were determined by 
evaluating the alterations in the gene expression of BAX and BCL-2 for 
apoptosis, and RIPK3 a protein coding gene involved in necrosis. 
Regarding THP-1, none of the genes was altered after rGO exposure at 
any of the conditions assayed (Fig. 3b). In Jurkat cells, the values 
showed down regulation in the expression of BAX and BCL-2 after 4 h of 
exposure. However, they remained unaltered after 24 h of exposure. In 
the case of RIPK3, the expression did not change after rGO exposure at 
any time employed (Fig. 4b). 

3.3. Measurement of cytokines 

Cytokine levels (pg/mL) were measured in the supernatants of THP-1 
and Jurkat cells after 4 h and 24 h of exposure (Table 2). In THP-1 cells, 
values were obtained only for IL-1β and TNF-α after exposure to rGO for 
4 h and 24 h. However, no significant differences were observed 
compared to the control group. For the other cytokines (IL-2, IL-6, and 
INF-γ) the values were out of range (lower than the detection limit of the 
test). Positive control treated with LPS (10 ng/mL) showed significant 
differences in comparison with the negative control for both exposure 
times (Table 2). With respect to Jurkat cells, all values obtained were out 
of range (data not shown). 

4. Discussion 

Graphene based materials are among the novel technologies that 
have attracted great attention for their manifold applications. But before 
these expectations become real, a risk assessment to ensure their safety 

Fig. 2. Influence of rGO on the differentiation of THP-1 monocytes to macro-
phages after 24 and 48 h of exposure. All values are expressed as mean ± SD. 
The significant levels observed are ***p < 0.001 compared to the undiffer-
enciated negative control, ###p < 0.001 compared to the PMA- 
differenciated control. 

Fig. 3. Effects of rGO on the expression of mRNA of selected genes involved in 
(a) the inflammatory response and (b) apoptosis/necrosis in THP-1. The cells 
were exposed to rGO (EC20 = 21.64 ± 0.4 μg/mL) for 4 and 24 h. LPS (10 ng/ 
mL) was used as inflammatory response positive control and CPT (0.5 μM) as 
apoptosis/necrosis positive control. Values are expressed as mean ± SD. The 
significant levels observed are *p <0.05, **p < 0.01, and ***p < 0.001 
compared to the control group. Bold values show the up- or down-regulation 
of genes. 
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is required. In this sense, the toxicological evaluation of rGO in different 
human and mammalian cells has been performed (Ahamed et al., 2020; 
Cebadero-Domínguez et al., 2022a; Mittal et al., 2017). However, the 
toxic effects of rGO in immune innate and adaptive cells are very 
scarcely reported and need to be investigated. Recently, Yunus et al. 
(2021) have indicated that there are no comparative studies carried out 
on various immune cell types concurrently as the investigation of 
different cell types simultaneously would provide more understanding 
into putative cell-type restricted effects. To the best of our knowledge, 
only two studies have examined the toxic effects of rGO in THP-1 cells 
(Di Ianni et al., 2021; Podolska et al., 2020), and there are no reports in 
Jurkat cells. Based on their relevance, these two different in vitro models 
were selected to study the immunotoxic effects of rGO. 

In the present study, we have demonstrated that rGO induced cyto-
toxicity in THP-1 and Jurkat cells from 62.5 μg/mL for 24 h, being more 
sensitive THP-1 after 24 h and Jurkat after 48 h. Strikingly, cytotoxicity 

in THP-1 cells was higher at 24 h than after 48 h. This could be due to 
biodegradation of GBMs in immune cells (Fadeel et al., 2018) with 
different reports highlighting the metabolizing activity of THP-1 cells 
(Chanput et al., 2014). Other authors exposed differentiated THP-1 cells 
to rGO (0–40 μg/mL) and did not observe any significant difference in 
the viability by using the MTS assay (Chortarea et al., 2022; Netkueakul 
et al., 2020). Moreover, the cytotoxic response of THP-1 monocytes for 
rGO nanoplatelets (Yan et al., 2017) or vanillin-functionalized GO 
(V-rGO) (Gurunathan et al., 2019) have been evaluated. The results 
suggested that rGO nanoplatelets (above 5 μg/mL) and V-rGO (above 20 
μg/mL) caused significant loss of viability on THP-1 cells for 24 h, and 
the inhibitory effect was more apparent with high concentrations and 
showed concentration-dependent effects. 

No data about the effects of rGO on cellular viability in the human T- 
lymphocyte cell line (Jurkat cells) have been found in the scientific 
literature. However, it has been observed that other nanomaterials as 
multi-walled carbon nanotubes or GO nanosheets induced T-lymphocyte 
cytotoxicity in a concentration (Ivask et al., 2015) and time-dependent 
way (Bottini et al., 2006). 

The entrance of GBMs in the organism can lead to an innate immune 
response and cells as monocytes are mobilized and activated to the 
differentiation into macrophages and dendritic cells (Kassam et al., 
2005). This differentiation process is crucial for a correct immune 
response in all types of infection (Gatto et al., 2017). Some studies have 
evaluated the effects of different compounds during the 
monocyte-to-macrophage differentiation process (Casas-Rodríguez 
et al., 2023; Kassam et al., 2005; Müller et al., 2003; Solhaug et al., 
2016). However, the number of works that have studied the effects of 
graphene materials in this process is scarce (Svadlakova et al., 2021; Yan 
et al., 2017). Our results revealed that rGO reduced the monocytes dif-
ferentiation at the highest concentration at 48 h of exposure. This 
reduction could be attributed to loss of adherence ability. This effect was 
observed in differentiated THP-1 cells after reduced graphene oxide 
nanoplatelets (rGONPs) exposure (Yan et al., 2017). These authors 
analyzed the expression of CD11b, a macrophage marker, which is 
induced during differentiation of monocytes and they observed that 
rGONPs inhibited the expression of this marker. However, an accelera-
tion of the spontaneous differentiation of THP-1 monocytes to macro-
phages were observed after the exposure of multi-walled carbon 
nanotubes and two different graphene platelets (Svadlakova et al., 
2021). 

The understanding of how the immune system is regulated and re-
sponds to nanomaterials cannot overlook the genomic level. Moreover, 
it should be noted that the study of a single immunological parameter at 
one time is not sufficient to generate a general view of how the immune 
system fights (Ricciardi-Castagnali and Granucci, 2002). We observed 
that both cell lines exposed to rGO have different inflammatory re-
sponses in terms of gene expression. Accordingly, Aceves et al. (2004) 
reported a different pattern of cytokine gene expression in THP- 1 and 
Jurkat cells after their exposure to different substances. Particularly, 
rGO for 4 h stimulated the expression of IL-2, IL-6, IL-8, IFN-γ and TNF-α 
in Jurkat cells in a higher way compared to THP-1 cells. In general, after 
24 h of exposure, most of the genes showed values close to negative 
control, except for TNF-α (downregulation) in THP-1 cells or IFN-γ in 
Jurkat cells (upregulation). In this sense, studies about the modulation 
of gene expression after rGO exposure are limited. Di-Ianni et al. (2021) 
assayed the gene expression levels of IL-8 in THP-1 cells following 6 and 
24 h rGO exposure, showing unalterated IL-8 levels. Moreover, rGONP 
did not stimulate the gene expression of TNF-α in THP-1 cells (Yan et al., 
2017). These results are in agreement with our research in the same cell 
line. 

GBMs-induced apoptosis usually has the fundamental features of 
caspase activation, DNA fragmentation, increased oxidative stress, and 
calcium efflux. However, mechanistic studies demonstrated that mito-
chondria (intrinsic pathway) are involved in apoptotic cell death, which 
act as major control points responsible for regulating apoptosis (Ou 

Fig. 4. Effects of rGO on the expression of mRNA of selected genes involved in 
(a) the inflammatory response and (b) apoptosis/necrosis in Jurkat cells. The 
cells were exposed to rGO (EC20 = 90.83 ± 0.73 μg/mL) for 4 and 24 h. LPS 
(10 ng/mL) was used as inflammatory response positive control and CPT (0.5 
μM) as apoptosis/necrosis positive control. Values are expressed as mean ± SD. 
The significant levels observed are * p <0.05, **p < 0.01, and ***p < 0.001 
compared to the control group. Bold values show the up- or down-regulation 
of genes. 

Table 2 
Levels (pg/mL) of different cytokines (IL-1β, TNF-α) in the supernatants of THP- 
1 cells after 4 h and 24 h exposure to EC20 rGO (21.64 ± 0.4 μg/mL).  

Exposure time 4 h 24 h 

Mean ± SD (pg/mL) Mean ± SD (pg/mL) 

IL-1β TNF-α IL-1β TNF-α 

Control - 0.20 ± 0.14 11.86 ± 0.38 2.16 ± 0.27 35.72 ±
1.20 

LPS (10 ng/ 
mL) 

0.58 ± 0.22 
*** 

139.67 ± 6.29 
*** 

7.86 ± 0.16 
*** 

554.39 ±
4.17 
*** 

EC20 0.30 ± 0.14 15.28 ± 2.68 2.59 ± 0.12 33.36 ±
3.34 

Values are expressed as mean ± SD. The significant level observed is ***p <
0.001 compared to the control - group. 
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et al., 2017). In this sense, we have determined the gene expression of 
BCL-2 and BAX, which are often used to monitor the apoptosis of tumor 
cells and evaluate substances effect (Zhou et al., 2016). In this work it 
was observed that in general and after prolonged exposure times, rGO 
did not induce any upregulation in the expression of BAX and BCL-2 in 
THP-1 and Jurkat cells at the subcytotoxic concentration assayed (EC20). 
In this case, these results are in agreement with the absence of cell death 
observed by MTS assay at the same concentration. Therefore, rGO 
neither promoted nor repressed apoptosis. In this sense, Serrano et al. 
(2018) observed that macrophage apoptosis (SubG1 fraction) did not 
increase in the presence of rGO microfibers with respect to the control 
cells. However, V-rGO treatments cause mitochondrial damage and 
increased pro-apoptosis genes, accelerating the THP-1 cells death 
(Gurunathan et al., 2019). 

On the other hand, the literature provides very scarce reports when 
searching for necrosis by GBM, and more concerns are needed (Ou et al., 
2017). In this sense, we chose to determine the gene expression of RIPK3 
because it is a crucial upstream activating kinase that regulates 
RIP1-dependent programmed necrosis. RIP3 phosphorylation forms a 
tight RIP1–RIP3 complex that is needed to initiate the necrotic program 
(Cho et al., 2009). In our study, the gene expression profile of RIPK3 was 
not significantly affected in THP-1 and Jurkat cells after rGO exposure. 
However, Qu et al. (2013) observed that GO induces programmed ne-
crosis partially attributed to RIP1-RIP3 complex, in macrophages. In this 
case, the different response observed could be attributable to factors 
such as chemical composition, concentrations and cells employed (Nel 
et al., 2006; Yang et al., 2009). 

Regarding to the cytokine levels, our studies showed that rGO did not 
caused the increased leakage of cytokines. Similarly, rGO did not 
significantly elevate the level of TNF-α, IL-1β, IL-6, and IL-8 in differ-
entiated THP-1 cells after treatment of 6 h and 24 h for TNF-α and 
treatment of 24 h and 48 h for the other cytokines (Netkueakul et al., 
2020). In this sense, rGO do not elicit any inflammatory responses in 
THP-1 (monocytes or macrophages) or Jurkat cells. Regarding Jurkat 
cells in particular, there are authors who described that these intact cells 
have a very low production of IL-2, IL-10 and IFN-γ (Sharashenidze 
et al., 2021). Therefore, the low level of cytokines released in cell culture 
medium in comparison to the gene expression results could suggest that 
post-transcriptional/post-translational modifications of cytokines syn-
thesis may occur. 

In contrast, another type of cells such as THP-1 exposed to a different 
graphene such as V-rGO, showed a significant induction in the produc-
tion of various cytokines such as IL-1β, IL-6 and TNF-α (Gurunathan 
et al., 2019). These authors related the stimulation of the secretion of 
cytokines and chemokines with the interaction of V-rGO with the 
Toll-like receptors (TLR). Dudek et al. (2016) also indicated that gra-
phene and GO stimulated TLR and activated multiple pro-inflammatory 
genes and secretion of cytokines such as IL-1β, IL-2, IL-6, IL-10 and 
TNF-α in macrophages. Thus, the variability in the inflammatory 
response observed could be due to the different oxidation degrees be-
tween GO and rGO and the different stage of THP-1 cells differentiation 
(Yan et al., 2017). 

5. Conclusions 

This study compares for the first time the toxic effects of rGO in THP- 
1 monocytes and Jurkat T lymphocytes, with both cell lines showing 
differential responses. Our results clearly indicate that rGO reduced cell 
viability at high concentrations (above 62.5 μg/mL), in both cell lines, 
being more sensitive THP-1 after 24 h and Jurkat after 48 h. In the case 
of THP-1 cells, the process of monocytes-macrophage differentiation 
was altered after 48 h of exposure (121.45 μg/mL). Moreover, rGO 
upregulated the expression of genes involved in inflammatory responses 
at subcytotoxic concentrations, acting as a transcriptional inducer in 
both cell lines, although no changes in their release was observed. This 
response was higher in Jurkat cells than in THP-1 cells at both 4 and 24 h 

of exposure. On the other hand, rGO did not induce any change in the 
expression of apoptosis/necrosis genes. Overall, these findings are of 
great interest to understand the effects of rGO in the immune system and 
characterize the hazard. Furthermore, additional studies (i.e determi-
nation of reactive oxygen species levels, and other inflammatory 
markers) are needed to have a full picture of the potential human risks 
derived from exposure to graphene materials. 
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