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10 Abstract 
11 A significant part of the housing stock in southern Europe is obsolete and in need of extensive retrofitting 
12 to improve its energy performance and thermal comfort. However, before adequate retrofit measures can 
13 be proposed for this housing stock, the characterization of current building performance is fundamental. 
14 Although the simulation tools frequently used and widely accepted by the scientific community ensure 
15 accurate results, these require high computational times. The main aim of this paper is the development of 
16 a surrogate model to speed up the thermal comfort prediction for any member of a building category, 
17 ensuring high reliability by testing the entire simulation process with real data measured in-situ. To this 
18 end, an artificial neural network (ANN) is generated under MATLAB® environment using the data 
19 obtained from EnergyPlus simulations for linear-type social housing multi-family buildings in southern 
20 Spain, which were constructed in the post-war period. The developed ANN provides a regression 
21 coefficient between simulation targets and ANN outputs of 0.96, with a relative error between monitored 
22 and simulated data below 9%. A further result is that the building category characterization shows a general 
23 lack of suitable indoor thermal comfort conditions, thereby showing the great need for effective retrofit 
24 strategies. 
25
26 Keywords: social housing stock; thermal comfort; building performance simulation; sensitivity analysis; simulation 
27 model calibration; surrogate models.
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Nomenclature
Acronyms
ACH
ANN
CV(RMSE)
HVAC
LHS
MM
NMBE
PMV
PPD
RefCS
RMSE
SA
SLABE

UA

Symbols
DH
DHh
DHc
N
R
SRRC
Tco
Text, ref
U

Air changes per hour
Artificial neural network
Coefficient of Variation of the Root Mean Square Error
Heating, ventilating and air conditioning
Latin hypercube sampling
Thermal comfort standard for hybrid or ‘Mixed Mode’ buildings
Normal Mean Bias Error
Predicted mean vote
Predicted percentage of dissatisfied
Reference case study
Root Mean Square Error
Sensitivity analysis
Simulation-based large-scale uncertainty/sensitivity analysis of building energy 
performance
Uncertainty analysis

Yearly percentage of discomfort hours
Percentage of discomfort hours during the heating period
Percentage of discomfort hours during the cooling period
Number of cases representing the building category stock (sample size)
Coefficient of regression
Standardized rank regression coefficient
Optimum comfort temperature [ºC]
Monthly average outdoor dry bulb temperature [ºC]
Thermal transmittance [W/m2 K]
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30 1. Introduction

31 The building sector accounts for around 40% of total energy consumption within the European Union (EU) 
32 [1], making the reduction of the energy use in this sector a common goal for all European regulations [2]. 
33 Given the low rate at which existing buildings are being replaced by new ones (i.e., around 1-3% per annum 
34 [3]) the EU 2030 and 2050 energy consumption reduction goals would be very difficult to achieve just 
35 through the construction of new buildings, with almost zero energy consumption. It is therefore essential 
36 to encourage the improvement of energy efficiency in existing buildings. Particularly in southern Europe, 
37 between 63% [4] and 76% [5] of the existing housing stock was built prior to the first regulations enacted 
38 for limiting the energy demand of buildings (1976-1979). Consequently, most of this housing stock was 
39 built without specific thermal insulation measures and is obsolete from an energy perspective [6].

40 Several studies highlight the importance of energy characterization prior to the proposal of adequate retrofit 
41 measures [7], as well as taking into account real user profiles, not just the standardized ones [8]. This initial 
42 step provides information on how the energy is being used and allows the environmental deficiencies in a 
43 specific building category to be identified. If generalized retrofitting proposals that are not based on 
44 calibrated simulations of the case study are used, the energy-saving predictions will be very far from the 
45 reality [9]. 

46 When evaluating the energy and thermal behaviour of the residential stock, rather than that of a residential 
47 unit, the different methods can be grouped into two categories: top-down and bottom-up [10]. The former, 
48 which uses historical data, is usually applied when investigating the correlation between the economy and 
49 the use of energy, while the latter is based on data collected from a study sample to obtain information 
50 about energy consumption and extrapolate it at a regional or national level. Bottom-up engineering 
51 techniques specifically are based on energy simulations and used in the detailed calculation of energy 
52 performance, allowing the impact of retrofitting strategies to be determined [11]. In order to harmonize the 
53 main objectives of building energy retrofitting (i.e., minimization of energy consumption and maximization 
54 of economic benefits) multi-objective optimization approaches are recommended [12, 13].

55 The simulation tools most commonly used among the scientific community, including EnergyPlus [14], 
56 ESP-r [15] and TRNSYS [16], if properly used, may ensure highly accurate results, albeit at the expense 
57 of high computational times. When the aim of the research is to evaluate the energy and comfort 
58 performance of large samples – such as whole housing stocks – other methods must be explored in order 
59 to reduce computational times [17]. Surrogate models, that is to say 'models of the model', are a good 
60 solution for large samples given that despite the long time required to develop them, once built they become 
61 very fast evaluation tools. The surrogate modelling techniques most widely used for the prediction of 
62 energy performance and thermal behaviour in buildings are Kriging (KG), Support Vector Regression 
63 (SVR) and Artificial Neural Networks (ANNs), all of which offer good reliability and accuracy [18]. In 
64 particular, ANNs are the most used surrogate models for evaluating energy performance in large samples 
65 of heterogeneous buildings. 

66 For what concerns some applications, it is worth highlighting the model developed by Melo et al. [19], 
67 which accurately simulates the energy consumption of the building stock of an entire city in Brazil, based 
68 on the results provided by EnergyPlus for a sample of 3200 heterogeneous buildings. Magalhães et al. [20] 
69 also developed ANNs that characterize the relationship between heating consumption and indoor 
70 temperatures, using data provided by ESP-r on a sample of 2600 residential buildings. However, within the 
71 bibliography there is a higher presence of ANNs developed to assess the demand or energy consumption 
72 of specific individual buildings. An example of this is the ANN developed by Buratti et al. [21], which uses 
73 simplified methods to check the energy certification of buildings, and that by Karatasou et al. [22], which 
74 aims to model energy use and predict hourly load profiles.

75 In the case of social housing in southern Spain, one of the main conclusions drawn from previous audits 
76 [23, 24] is that the energy consumption of this building category is very low. This is due to the total absence 
77 of central HVAC (Heating, Ventilating and Air Conditioning) systems and severe limitations in the use of 
78 local heating and cooling equipment due to unfavourable socio-economic conditions. Therefore, in this 
79 building category, the retrofitting strategies and the prior characterization must be geared towards thermal 
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80 comfort levels rather than energy consumption. Although this is not the most frequent, various references 
81 to ANNs developed to evaluate the thermal comfort level in buildings can be found, including the prediction 
82 of indoor temperature [25, 26] and the Predicted Mean Vote (PMV) [27, 28]. It is more usual to find in the 
83 available bibliography studies based on ANNs to optimize the buildings thermal control [29]. As regards 
84 naturally ventilated buildings without HVAC systems, although some references can be found evaluating 
85 their thermal performance in mild (central Europe) [30] or hot and humid climates in summer (Asia) 
86 [31,32], few studies focus on the hot dry climate characteristic of the Mediterranean-area summers. This 
87 work will use the SLABE (Simulation-based Large-scale uncertainty/sensitivity Analysis of Building 
88 Energy performance) methodology developed by Ascione et al. [17] as a starting point, as it provides a 
89 reliable evaluation model for the percentage of discomfort hours for any member of a building stock 
90 category in the Mediterranean climate. However, given that this methodology focuses on climatized office 
91 buildings, its applicability to residential and free-running buildings (no mechanical heating or cooling 
92 systems used) should be verified. In this study, compared to the original SLABE methodology, the thermal 
93 comfort prediction is based on calibrated models through real data measured in-situ.

94 The main aim of this paper is to determine whether it is possible to develop a surrogate model to evaluate 
95 the thermal behaviour of any member of the category of social housing stock in southern Spain, accurately 
96 and with low computational times. To this end, ANNs are generated under MATLAB® environment using 
97 EnergyPlus simulated data in order to provide a reliable and fast prediction of thermal comfort.

98 In the following section, the proposed methodology is described. Its main originality consists in the 
99 evaluation of the thermal performance of a free-running building category – naturally ventilated without 

100 HVAC systems – in the Mediterranean climate, something seldom found in the available bibliography. The 
101 analysis of this building category entails the application of specific and accurate thermal comfort models. 
102 One of the strengths of this research is also the possibility of testing the entire simulation process with real 
103 data measured in-situ, unlike most of the examples above, which limited the calibration of ANNs to their 
104 adjustment with the results obtained in the detailed simulations carried out using tools such as TRANSYS® 
105 or EnergyPlus.

106

107 2. Methodology

108 The methodology developed in this work takes as a starting point the research carried out and tested by 
109 Mauro et al. [33], and Ascione et al. [17, 34]. The needs for a particular case study – a naturally ventilated 
110 building category – force this model to be focused on the analysis of the percentage of discomfort hours 
111 (DH), which entails the use of accurate thermal comfort models. This methodology stands out for the 
112 inclusion of model calibration throughout the whole process, based on previous one-year-long monitoring 
113 of a Reference Case Study (namely, RefCS), within the investigated building category.

114 This methodology is made up of 4 stages (figure 1) that allow the development and calibration of simulation 
115 models that represent and characterize – in terms of DH – all members of the explored building category: 
116 multi-family social housing from the linear geometrical typology built in southern Spain between 1950 and 
117 1980. This period of study was selected to cover the period between the initial Spanish public plans 
118 promoting social housing in 1950 after the Civil War, and the implementation of the first national 
119 regulations limiting energy demand in 1980, following the 1970s energy crisis. Within the text this period 
120 is referenced as 'post-war period'.
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121
122 Figure 1. Methodology framework
123

124 2.1 Step 1: Energy model adjustment (reference case study)

125 The starting point of the models developed in this work is the exhaustive characterization of the reference 
126 case study, defining constructive characteristics, user patterns (occupation schedules, lighting, use of local 
127 cooling/heating systems, windows opening and use of sun protections) and infiltration rate [23, 24]. The 
128 first energy model was developed with the DesignBuilder® (v.4.7.0.027) simulation tool, which uses the 
129 EnergyPlus engine [14]. This model recreated the heat transfer and shading conditions of the monitored 
130 housing unit and its boundary conditions. Each room was simulated as an independent thermal zone in 
131 order to compare the results and the measured data (in the main bedroom and living room) with greater 
132 accuracy. 

133 The climate data used for this energy simulation were obtained from a meteorological station belonging to 
134 the Spanish State Meteorological Agency [35] and located in Seville. These data were compared with spot 
135 measurements taken outside the case studies for the purposes of validation.

136 The initial manual adjustment of the model focused on indoor temperature in the winter and summer 
137 periods, as the housing units analysed are free-running most of the time. The results of energy simulations 
138 and monitoring are compared both graphically (for a representative week) and statistically (for the entire 
139 period).

140 In order to determine whether the model is well adjusted to the real behaviour, this research followed the 
141 statistic validation established in ASHRAE Guideline 14-2014 [36], setting two error indicators: the 
142 Normal Mean Bias Error (NMBE) and the Coefficient of Variation of the Root Mean Square Error 
143 (CVRMSE), following equations (1) and (2), respectively. ASHRAE Guideline 14 considers a building 
144 model to be calibrated with hourly data when monthly NMBE values fall within ±10% and monthly 
145 CV(RMSE) values fall below 30%.
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146 NMBE =
1
	 ×  
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(Mi � Si)

n � p  ×  100 (%)                                                                                            (1)

147 where:
148 m: mean of measured values;
149 n: number of measured data;
150 p: number of adjustable model parameters. Recommended to use 0;
151 Mi: measured data at instance i;
152 Si: simulated data at instance i;
153 Ni: number of dates used in the calibration.
154

155 CV(RMSE) =
1
	 ×  

��

�= 1

��� � ���2

n � p
 ×  100 (%)                                                                              (2)

156

157 2.2 Step 2: Energy model adjustment (simplified model in EnergyPlus)

158 The EnergyPlus [14] tool was chosen for the building performance simulations, and ANNs are developed 
159 based on its results. This allows indoor temperature to be assessed in detail, while also working with text-
160 based format inputs (.idf) and outputs (.csv), which makes the interaction with mathematical tools easier.

161 For this proposal, the DesignBuilder simulation model was exported to the .idf format. But prior to 
162 exporting it, this model initially developed for a specific housing unit was completed and simplified. The 
163 entire building was defined, with each housing unit simulated as a thermal zone and the floor geometry 
164 reduced to a rectangle (the SLABE method is limited to rectangular buildings [37]). 

165 In this step, a second calibration of the simulation model was carried out, comparing the results obtained 
166 with the indoor temperature measured in RefCS throughout a year (average value of the temperature 
167 measured in the two main rooms). The statistic validation established by ASHRAE Guideline 14-2014 [36] 
168 is used to ascertain whether the model is well adjusted.

169 An additional calibration check was developed focusing on the comfort analysis performed for the summer 
170 and winter period (based on the measured data) [23, 24]. According to the conclusions of the above 
171 research, thermal comfort levels are assessed according to:

172 � Winter period (December – February): the adaptive optimum comfort temperature (Tco) equation 
173 defined in ISO-EN-15251 (equation 3) [38], applicable only in buildings without HVAC systems 
174 which are used for low metabolic rate activities and where occupants can freely operate windows 
175 and change their clothing level. An acceptability range is applied according to building category 
176 III, for a moderate level of expectation (PPD < 15%), with a temperature interval of ± 4 ºC. 
177
178                              (3)���  �!"#$ = 0.33 × �#' + 18.8
179 where:
180 TeR: running mean dry bulb outdoor temperature for today (equation 4)
181
182                            (4)�#' = (1 � *) ×  �#+ � 1 +  * ×  �#' � 1

183 where:
184 Ted-1: daily mean dry bulb outdoor temperature for previous day;
185 TeR-1: running mean dry bulb outdoor temperature for previous day;
186 80 a constant between 0 and 1. Use of 0.8 is recommended.

187 � Summer, spring and autumn periods (March – November): the adaptive Tco equation defined by 
188 Barbadilla-Martín et al. (equation 5) [39] for the specific case of hybrid or 'Mixed Mode' buildings 
189 (naturally ventilated through windows and with air conditioning equipment used intermittently) in 
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190 the Mediterranean climate. In this case, the acceptability range applied corresponds to 80% of 
191 satisfied occupants (PPD < 20%), with a temperature interval of ± 3.5 ºC.
192
193                              (5)��� ,-		#$ = 0.24 × �#' + 19.3
194 where:
195 TeR: running mean dry bulb outdoor temperature for today (equation 4)
196

197 2.3 Step 3: Building category characterization (SLABE)

198 In this step thermal comfort is predicted for the building category stock using an uncertainty analysis (UA) 
199 and a sensitivity analysis (SA). Discomfort hours represent the occupied hours during which indoor 
200 temperature is outside the comfort range defined in Section 2.2. Thermal comfort is evaluated for the whole 
201 building, based on the average value of the DH of each dwelling. 

202 The input data of the previous energy model (simplified model of the RefCS in EnergyPlus) must be 
203 replaced by parameters in order to pass from a model representing only RefCS to another which could 
204 represent a stock. In order to define the building category stock, characteristic parameters related to building 
205 geometry, envelope and operation are set. Thanks to information previously compiled, a range of variability 
206 and a probability distribution (uniform or normal) are assigned to these parameters. The building category 
207 should be limited, avoiding excesses in the range of variability of the parameters, in order to prevent the 
208 dependence between parameters (as the use of insulating materials is more common in certain periods of 
209 construction than in others). Latin hypercube sampling (LHS) is applied to these parameters within a Monte 
210 Carlo framework in order to generate a determinate number (N) of cases representing the building category 
211 stock. This statistical method ensures the uniformity and coverage of the sample [40]. All cases are 
212 simulated in EnergyPlus, automatically launched by MATLAB [41] obtaining a set of DH values.

213 Once the results are obtained, the UA is performed in order to investigate the distribution of DH in the 
214 building category stock. The UA is also used to define the optimum sample size (N) for ensuring stability 
215 in the mean value and standard deviation of DH. Bibliography on the UA and SA of buildings [42] describes 
216 a ratio between the number of sampled cases (N) and the number of characteristic parameters from 2 to 5.

217 Finally, SA is carried out to evaluate which parameters have the most influence on DH and which can be 
218 ruled out for ANN development. In this work,  a global approach is used for the SA, assessing the 
219 Standardized Rank Regression Coefficients (SRRCs) [33]. In this regard, a global SA approach is more 
220 reliable for the purposes of building energy analysis than local ones [43, 44]. Furthermore, most reliable 
221 building performance simulation (BPS) tools provide non-linear and discontinuous outputs [43]. However, 
222 there is generally a monotonic relation between inputs and outputs. In fact, as outlined in the comprehensive 
223 review by Tian [44] regression methods, which assume monotonic relations, are the most widely used for 
224 SA in building energy analysis. Therefore, SRRCs are selected as SA indices given that they are suited to 
225 non-linear but monotonic functions between inputs and outputs, such as those researched in the proposed 
226 study. This choice is also shared by the BPS community, as shown in the studies [33, 45, 46].  

227 The SRRC sensitivity indices are calculated to measure the influence of each parameter on the output, 
228 ranging from -1 to 1. A positive value means that parameter and output change with the same sign, while 
229 the opposite occurs for a negative value. The SRRC is based on the rank transformation of outputs and 
230 inputs in a multiple linear regression model with a standardized input-output matrix [Error! Bookmark 
231 not defined.].

232

233 2.4 Step 4: Artificial Neural Network generation

234 One of the most used techniques for surrogate modelling, regarding energy and thermal performance of 
235 buildings, is the Artificial Neural Network. ANNs store and process the experimental knowledge, obtained 
236 from the relationship between inputs and outputs from the original model, for use when required. In this 
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237 work, ANNs were chosen as meta-modelling techniques, both for their reliability when evaluating the 
238 energy performance of building stocks [19], and because MATLAB® has a pre-programmed development 
239 tool [17]. The most used ANN architecture, applied in this work, is the multi-layer perception, which is 
240 made up of several layers of 'neurons' or computation units (figure 2):

241 � An input layer which receives information
242 � One or more hidden layers
243 � An output layer which provides the results

244

245
246 Figure 2. Architecture of a multi-layer perception ANN [17] 

247

248 In order to set the input parameters to be included in the ANN, previous SA results are used selecting only 
249 the parameters with relevant influence on the output parameter, set as a �SRRC� value greater than 0.05 
250 [33]. The number of hidden neurons was set using 'trial and error' to find the best ANN performance. The 
251 output parameter is the annual percentage of discomfort hours, as this variable is of interest for evaluation 
252 when proposing retrofitting strategies in this specific building category. The results obtained in this process 
253 are explained in Section 4.4. In this case, the ANN was composed of:

254 � An input layer, made up of 18 characteristic parameters
255 � One hidden layer with 6 hidden neurons
256 � An output layer providing the annual percentage of discomfort hours

257  

258 The network is trained with a Levenberg-Marquardt back-propagation algorithm coupled with Bayesian 
259 regularization. A sigmoidal transfer function is used for the hidden layer, while a linear one is used for the 
260 output layer. A similar network configuration was used in previous relevant studies, concerning the 
261 performance simulation of a single building [21] or a building stock [19] with optimal results. The training 
262 is stopped when either the Root Mean Square Error (RMSE) stabilizes or the maximum number of epochs, 
263 set at 1000 [47], is reached. The network is then tested on a second sample of input and output data using 
264 the performance indicators of coefficient of regression (R) and the distribution of the relative error between 
265 the ANN outputs and the EnergyPlus simulation targets.

266 A sensitivity analysis on the reliability of ANNs as a function of the number of samples is also performed 
267 in this study by creating four ANNs, each with 250, 500, 750 and 1000 samples respectively.

268

269 3. Case study

270 The methodology defined in the previous section was applied to a specific building category: multi-family 
271 social housing buildings constructed in southern Spain between the 1960s and 1980s, and belonging to the 
272 linear geometrical typology. The location selected was the city of Seville, where this linear typology 
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273 represents 44% of the post-war-period social housing stock. It is the most representative typology, with 
274 over 4000 buildings in total [48].

275 The city of Seville belongs to the Mediterranean climate, one of the most representative in southern Europe. 
276 The location is classified as Csa climate according to the Köppen-Geiger classification [49] and zone B4 
277 according to the Spanish Government [50]. Zone B presents one of the lowest values in the scale of winter 
278 climate severity in Spain, while zone 4 is the highest value in the scale of summer climate severity. The 
279 main climate characteristics for Seville are summarized in table 1.

280 In previous work developed within a research project, morphological and constructive information was 
281 compiled for over 100000 dwellings built during the post-war period in Seville [48, 51], of which over 
282 42000 belong to the building category studied in this paper. The data collected were used to define the 
283 upper and lower limits of the range of variability of the input parameters for this building category, taking 
284 the extreme values found in the sample. The ranges of variability and probability distribution are defined 
285 in table 2 for each parameter. In order not to increase the number of variable parameters, the surface 
286 properties of surrounding buildings were set according to the weighted average value of the façade 
287 properties of the building category studied.

288 From this housing stock defined, a real reference case study (RefCS) was selected for further analysis 
289 (figure 3). A dwelling from RefCS was monitored throughout a year and its energy and environmental 
290 performance evaluated during the winter and summer periods [23, 24]. This housing unit has a floor area 
291 of 58 m2 and is inhabited by a young couple. As tends to be the case in social housing in southern Spain, it 
292 only has local thermal conditioning systems (a reversible heat pump in the secondary bedroom and a 
293 portable electric air heater) with a very sporadic use.

294 The main RefCS façades are composed of two layers of brick (a 10 cm external layer and 4 cm internal 
295 one) separated by an air cavity. The building’s flat roof is made up of an external layer of ceramic tile, coal 
296 dust and the roof structure (reinforced concrete joins and lightened ceramic blocks). The 6-mm single-
297 glazed windows have aluminium frames and roller blinds for solar protection. Table 2 summarizes the main 
298 typological and constructive characteristics of RefCS.

299 Figure 3. Exterior view and floor plan of the reference case study (RefCS)

300 Table 1. Annual standard climate values, period 1981 – 2010 [35]

Seville: Climate characteristics
Altitude [m] 34
Latitude 37º 25’ 0’’ N
Longitude 5º 52’ 45’’ W
Average temperature [ºC] 19.2
Average maximum daily temperature [ºC] 25.4
Average minimum daily temperature [ºC] 13.0
99% winter design temperature (annual) [ºC] 4.5
Winter mean DTR [ºC] 12.9
1% summer design temperature (annual) [ºC] 37.6
Summer mean DTR [ºC] 17.4
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Average relative humidity [%] 59
Average daily global irradiation [kWh/m2] 5.23
Average hours of sunlight 2917

301 Table 2. Characterization of the parameters of the reference case (RefCS) study and its building category

Parameter RefCS Building Category Stock Distribution
General  - Year of construction 1964 1940 – 1980

 - Typology Linear Linear
 - No. dwellings 260 42140
- Thermal conductivity [W/m K] 0.38 0.38
- Density [kg/m3] 1200 1200

Surface 
properties of 
surrounding 
buildings - Specific heat [J/kg K] 1000 1000

Geometry P1 Orientation (North Axis) 24° 0°; ±30°; ±60°; 90° Uniform
P2 Area of each floor [m2] 105 90 - 300 Uniform
P3 Form ratio (*) 2.1 1 – 5 Uniform
P4 Floor height [m] 2.5 2.4 – 3.5 Uniform
P5 Window to wall ratio: S 21% 10% – 40% Uniform
P6 Window to wall ratio: E 0% 10% – 40% Uniform
P7 Window to wall ratio: N 32% 10% – 40% Uniform
P8 Window to wall ratio: W 0% 10% – 40% Uniform
P9 Number of stories 5 3 – 7 Uniform

Envelope P10 Roof solar absorptance (a) 0.7 0.1 – 0.9 Normal
P11 Façade solar absorptance (a) 0.6 0.1 – 0.9 Normal
P12 Floor thickness [m] 0.25 0.15 – 0.30 Normal
P13 Floor thermal conductivity [W/m K] 0.80 0.70 – 1.80 Normal
P14 Floor density [kg/m3] 1500 1500 – 1800 Normal
P15 Floor specific heat [J/kg K] 1000 500 – 1500 Normal
P16 Roof thickness [m] 0.35 0.20 – 0.40 Normal
P17 Roof thermal conductivity [W/m K] 0.55 0.31 – 0.57 Normal
P18 Roof density [kg/m3] 1300 1000 – 1800 Normal
P19 Roof specific heat [J/kg K] 1000 500 – 1500 Normal
P20 Façade thickness [m] 0.16 0.10 – 0.35 Normal
P21 Façade thermal conductivity [W/m K] 0.40 0.19 – 0.46 Normal
P22 Façade density [kg/m3] 2000 1000 – 3000 Normal
P23 Façade specific heat [J/kg K] 1000 500 – 1500 Normal
P24 Internal partitions thickness [m] 0.08 0.07 – 0.24 Normal
P25 Type of window glass Single Single; Double Uniform
P26 Type of window frame Aluminium Aluminium; Wood Uniform

Operation P27 People density [people/m2] 0.09 0.01 – 0.15 Normal
P28 Infiltration rate [h-1] 0.4 0.3 – 1.0 Normal
P29 Night-time natural ventilation rate [h-1] 6 0; 2; 4; 6 Uniform

302 (*) Form ratio = Major façade length / Minor façade length

303

304 The first energy model was developed using the DesignBuilder® interface (figure 4). In addition to the 
305 constructive definition of the envelope (described above), a real use and occupation pattern (table 3) was 
306 applied to the energy model. This pattern includes the use of local heating and cooling systems, natural 
307 ventilation (window opening), and use of sun protection (shutters, awnings…). Another aspect that helps 
308 to reduce the uncertainty of the model is the introduction of the rate of infiltration measured in an air 
309 permeability test (table 2).
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310
311 Figure 4. Axonometric view of energy model of the reference case study (RefCS)

312 Table 3. Use and occupation pattern of the reference case (RefCS).

Schedule (ON)
Winter period
Occupancy (man) 21:00 – 12:00 h
Occupancy (woman) 21:00 – 8:00 h
Natural ventilation 8:00 – 9:00 h
Local heating 9:00 – 10:00 h
Summer period
Occupancy (man) 24 hrs
Occupancy (woman) 15:00 – 7:00 h
Natural ventilation 23:00 – 9:00 h
Local cooling 15:00 – 19:00 h
Solar protection (roller blind) 11:00 – 21:00 h

313
314

315 4. Results and discussion

316 4.1 Step 1: Energy model adjustment (reference case study)

317 The indoor temperatures measured in RefCS during the winter and summer periods were compared with 
318 the results of the energy model simulation using the DesignBuilder® tool. According to this, the capacity 
319 of the first energy model (recreating the monitored dwelling) for reproducing the real scenario was 
320 evaluated and the relative error was quantified.

321 Firstly, the results of energy simulations and monitoring for a typical winter and summer week were 
322 compared in graphs (figure 5). The selected periods show a representative thermal behaviour of the case 
323 study, avoiding the coolest and hottest days of the winter and summer period respectively. The presence of 
324 the typical user pattern has also been taken into account for the selection of these typical weeks. For the 
325 adjustment, the degree of error of the measurement equipment (+/- 0.5 ºC) was taken into account and 
326 represented in the graph using error bars.

327 A good graphic adjustment of the model with the real data was achieved, and was better in summer due to 
328 more iterative environmental behaviour. During this manual adjustment process, variables with some 
329 degree of uncertainty due to the impossibility of measurement were determined, including the natural 
330 ventilation rate through opening windows or the occupants’ metabolic rate.

331 During the winter period, logically, the poorer results were found when users modified their regular use 
332 pattern, for instance with exceptional increases in occupation rates or use of local heat radiators. In the 
333 summer, slight differences were found when users clearly increased the night-time natural ventilation rate 
334 or switched on local cooling systems (bedroom). This was also the case in instances where solar protections 
335 were not used or when occupation rates increased (living-room).

336 In addition, the statistical validation of the energy model was verified hourly throughout the entire winter 
337 (from December to February) and summer (from June to August) periods, following the indicators 
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338 established by ASHRAE [36] (table 4). A good seasonal adjustment of the model with the real data was 
339 demonstrated, achieving values for NMBE and CV(RMSE) much lower than the maximum values set by 
340 ASHRAE as ‘acceptable calibration tolerances’ (10% and 30%, respectively). Seasonal overall values of 
341 NMBE for RefCS were around 5%, while those for CV(RMSE) were around 11% in winter and 9% in 
342 summer.

343

344

345
346 (a)

347
348 (b)

349 Figure 5. Graphic validation of the energy model over typical weeks: (a) winter period (17-25 January); (b) summer 
350 period (2-9 August)

351
352 Table 4. Statistical validation of the energy model based on hourly values over the year: indoor air temperature 
353 measured vs simulated (DesignBuilder®)

NMBE 
Living room

NMBE 
Bedroom

CV(RMSE) 
Living room

CV(RMSE) 
Bedroom

Winter period
(December - January) -5.33% -5.06% 10.14% 11.27%

Summer period
(June – August) -7.23% -3.84% 9.96% 8.68%

ASHRAE Standards [36] MBE < 10% CV(RMSE) < 30%

354

355 4.2 Step 2: Energy model adjustment (simplified model in EnergyPlus)
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356 In this stage, a second energy model is built by means of the simplification of the previous one (of the 
357 RefCS), in order to allow the development of Step 3 of this methodology. Thus, further validation is 
358 required and will be carried out with the comparison between the indoor temperature measured in RefCS 
359 throughout a year (average value of the temperature measured in the two main rooms) and the results of the 
360 energy model simulation using the EnergyPlus tool.

361 The validation of the second energy model was verified hourly throughout the whole year, following the 
362 indicators established by ASHRAE [36] (table 5). The simulation shows high reliability, with an annual 
363 value of NMBE below 3% and of CV(RMSE) around 7%, far from the maximum values set by the 
364 ASHRAE.

365 An additional calibration check was developed, focusing on the relative error in the percentage of 
366 discomfort hours (DH) during winter (from December to February) and summer (from June to August) 
367 periods (table 6). The results of a previous comfort analysis [23, 24], based on the monitored indoor 
368 temperature, and a current one, based on the EnergyPlus results, are compared. A very good seasonal 
369 adjustment of the model with the real situation is demonstrated, achieving relative errors below 1%.

370
371 Table 5. Statistical validation of the energy model based on hourly values over the year: indoor air temperature 
372 measured vs simulated (simplified model in EnergyPlus)

NMBE CV(RMSE)
Year -2.93% 7.28%

ASHRAE Standards [36] MBE < 10% CV(RMSE) < 30%

373
374 Table 6. Testing of the simulation simplified model (EnergyPlus) in relation with DH

DH (based on 
measured data)

DH (based on 
EnergyPlus simulation) Relative Error

Winter period
(December - January) 99.9% 99.0% 0.90%

Summer period
(June – August) 11.4% 11.4% 0.00%

375

376 4.3 Step 3: Building category characterization (SLABE)

377 For the evaluation of the thermal comfort in the building category stock, 29 characteristic parameters and 
378 their variability range were defined to represent the entire building category (table 2). Although the 
379 scientific community considers a ratio between the number of sampled cases (N) and the number of 
380 characteristic parameters around 2-5 to be valid [42], in this study N was increased to ensure the 
381 representativeness of the results since the study of a building category entails higher ranges of variability 
382 in the characteristic parameters. Another reason to increase N was the aim of developing an ANN, since 
383 this requires a higher number of samples [17]. According to Conraud [52], the sample size should be in 
384 agreement with the network's architecture and size, setting a minimum value of 5 x number of inputs x 
385 number of outputs. As an initial hypothesis to evaluate whether it is possible to develop a reliable ANN for 
386 a building category, based on the results obtained from a sample of this size, the number of cases (N) was 
387 set at 500, a ratio of 17.2. These 500 cases were generated via LHS and their DH calculated with the 
388 EnergyPlus simulation tool. In a later phase (at the end of Section 4.4), it will be ascertained whether the 
389 reliability of the ANN depends on sample size.

390 The first item analysed from the results obtained was to ascertain whether the sample size could ensure 
391 reliability. For this purpose, the trends of mean value and standard deviation of the percentage of discomfort 
392 hours were evaluated during the winter (also named heating period, December-January) (DHh), summer 
393 (also named cooling period, June-August) (DHc) and throughout the whole year (DH), according to the 
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394 sample size (figure 6). In this case, the standard deviation of the results was stabilized from the 70 simulated 
395 cases, so that a ratio of 2.5 would have been sufficient to ensure reliable results.

396 Secondly, the results obtained for the 500 case studies were analysed through their individual histograms 
397 and the normal distribution considered the best fit. As can be observed, the DHh (figure 7a) and DHc (figure 
398 7b) results do not follow a normal distribution, since more than 80% of the cases result in 100% of 
399 discomfort hours during the heating period and more than 60% have less than 10% discomfort hours during 
400 the cooling period (with 0% being the most frequent result). The median value of DHh is 99.9%, with a 
401 maximum of 100% and a minimum of 95%, and the median value of DHc is 5.9%, with a maximum of 60% 
402 and a minimum of 0%. The generalized lack of thermal insulation in this building category brings about a 
403 concentration of DHh results around value 100 – the maximum value possible –, while the widespread habit 
404 of using night-time natural ventilation as a passive cooling strategy concentrates the DHc results around 0 
405 – the minimum value possible. This leads to these specific distribution patterns of results. However, when 
406 DH is evaluated over a full year (figure 7c) the distribution of the results is close to a normal one, with 
407 values between 20% and 50%. The median value of DH is 34.4%. The results for RefCS are also 
408 represented, and in all three cases (DHh, DHc and DH) they are close to the mean value of the normal 
409 distributions.

410

411  
412 (a)

413
414 (b)

415 Figure 6. Main value (a) and standard deviation (b) of DH values in the building category, according to the sample 
416 size

417
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418  
(a) (b)

419
420 (c)

421 Figure 7. Distribution of DH values in the building category, during the heating (a) and cooling seasons (b) and the 
422 whole year (c)

423

424   
(a) (b)
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425
426 (c)

427 Figure 8. Standard rank regression coefficients (SRRCs) in relation to discomfort hours (DHh, DHc and DH) for 
428 geometry (a), operation (b) and envelope parameters (c)

429 Finally, the results of the performed SA were evaluated as represented in figure 8. As regards the geometry 
430 (figure 8a), the most relevant parameters (with the highest �SRRCs�) for the DHh are ‘floor height’ (0.20) 
431 and ‘form ratio’ (0.15), for the DHc these are orientation (‘north axis’, 0.35) and ‘form ratio’ (0.20). The 
432 most relevant parameters for DH throughout the year are ‘form ratio’ (0.30) and ‘area of each floor’ (-0.25). 
433 In general, the greater the compactness (low 'form ratio' and low 'floor height'), the lower the DH, due to 
434 the lower exposure to outdoor environmental factors.

435 Some operation parameters (figure 8b) have the highest influence on DH values. This is the case of ‘natural 
436 ventilation’ which reaches a SRRC value of around -0.60 for DHc and -0.50 for DH. Higher ‘natural 
437 ventilation’ rates reduce DH during much of the year, due to the mild outdoor temperatures during spring, 
438 autumn and summer-nights. As could be expected, DH decreases with higher ‘people density’, especially 
439 in winter.

440 Envelope parameters (figure 8c) generally present the lowest �SRRC� values, as only ‘type of glass’ and 
441 ‘roof a’ exceed -0.10 for DHh; ‘roof a’ and ‘wall a’ exceed 0.10 for DHc; ‘façade conductivity’ exceeds 
442 0.10, just as ‘type of glass’ and ‘façade thickness’ exceed -0.10 for DH. The improvement in glass and 
443 façades (greater thickness and lower conductivity) reduces DH, particularly in winter, as heat dissipation 
444 capacity is also limited in summer due to these factors. The increase in absorptivity of the envelope’s 
445 external layer clearly raises DH in the summer period and most of the year.

446

447 4.4 Step 4: Artificial Neural Network generation

448 The results obtained in the previous section show that the distribution of DHh and DHc for the building 
449 category is far from normal and is concentrated around a specific value located at the extreme of the 
450 variability range. This significantly decreases the reliability of an ANN developed based on these data. In 
451 addition, and in view of the fact that the case study is a free-running building category where future 
452 retrofitting measures should aim to improve environmental behaviour improvement year-round (rather than 
453 improve specific conditions to reduce heating or cooling energy demand), the development of ANNs for 
454 the seasonal comfort conditions is ruled out. This study focuses on the development of an ANN whose 
455 output parameter will be the annual percentage of discomfort hours.

456 Not all 29 starting characteristic parameters are taken into account for this development as those with less 
457 influence (�SRRC� values below 0.05 [33]) on DH will be discarded. In this case, according to the SA 
458 results presented in the previous section, only the 18 characteristic parameters included in table 7 will be 
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459 the inputs for the ANN. By means of trial-and-error, six hidden neurons are set as optimal to maximize the 
460 reliability of the surrogate model (figure 9). ANN development was tested with different numbers of hidden 
461 neurons - from 1 to 18, the input layer size - and the best reliability was found with six hidden neurons.

462

463
464 Figure 9. ANN structure
465
466

467

468

469 Table 7. Characteristic parameters selected as ANN inputs

Parameter ANN input
Geometry P1 Orientation (North Axis) [º] Yes

P2 Area of each floor [m2] Yes
P3 Form ratio (*) Yes
P4 Floor height [m] Yes
P5 Window to wall ratio: S [%] Yes
P6 Window to wall ratio: E [%] Yes
P7 Window to wall ratio: N [%] Yes
P8 Window to wall ratio: W [%] Yes
P9 No. stories Yes

Envelope P10 Roof solar absorptance No
P11 Façade solar absorptance Yes
P12 Floor thickness [m] No
P13 Floor thermal conductivity [W/m K] Yes
P14 Floor density [kg/m3] No
P15 Floor specific heat [J/kg K] No
P16 Roof thickness [m] No
P17 Roof thermal conductivity [W/m K] No
P18 Roof density [kg/m3] Yes
P19 Roof specific heat [J/kg K] No
P20 Façade thickness [m] Yes
P21 Façade thermal conductivity [W/m K] Yes
P22 Façade density [kg/m3] No
P23 Façade specific heat [J/kg K] No
P24 Internal partitions thickness [m] No
P25 Type of window glass Yes
P26 Type of window frame No

Operation P27 People density [people/m2] Yes
P28 Infiltration rate [h-1] Yes
P29 Night-time natural ventilation rate [h-1] Yes

470

471 According to similar studies [17, 53, 54], 9/1 is considered a suitable ratio between the sizes of training 
472 and testing sets. In this case, of the 500 cases previously simulated (Section 4.3), 450 (90% selected at 
473 random [52]) were used to train the ANN, while the remaining 50 were used to test it. ANN performance 
474 is evaluated by means of the regression and the distribution of the relative error between ANN outputs and 
475 EnergyPlus targets (figure 10). The outcomes of these tests are summarized in table 8. Regression analysis, 
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476 with a coefficient of regression (R) above 0.94, and relative errors, with an average value of 3.5%, show 
477 high reliability of the developed ANN, similar to previous studies related to a building stock [17]. The 
478 development of surrogate models related to stocks is more complex, and therefore slightly poorer results 
479 than in studies concerning specific single buildings can be expected [13].

480 In addition, the comparison between ANN prediction and the EnergyPlus target for RefCS is evaluated 
481 (table 9). The result, specifically as regards the Reference Case Study, shows a relative error above 8%, 
482 which means that the RefCS unfortunately belongs to the 21% of cases overcoming a 5% relative error 
483 according to the overall evaluation of the ANN (table 8). The evaluation is completed by comparing the 
484 ANN prediction for RefCS with the results of a comfort analysis based on the real indoor temperature 
485 measured in-situ (table 10). The result shows a relative error above 10% which could be improved by 
486 optimizing the ANN generation.

487

(a) (b)

488 Figure 10. DH prediction for the building category: ANN outputs vs EnergyPlus targets. Regression (a) and relative 
489 error distribution (b)
490
491 Table 8. Testing of the ANN for DH in the building category. ANN outputs vs EnergyPlus targets

Percentage of cases with absolute 
value of relative errorEpochs R

< 1% < 2.5% < 5% < 10% < 25%

Average of the absolute 
values of relative errors

ANN 168 0.944 17% 41% 79% 96% 100% 3.49%

492
493 Table 9. Testing of the ANN for RefCS. ANN output vs EnergyPlus target

EnergyPlus target (DH) ANN output (DH) Relative error
RefCS 33.9% 30.9% 8.85%

494
495 Table 10. Testing of the ANN for RefCS. ANN output vs Real measured data

Measured data (DH) ANN output (DH) Relative error
RefCS 35.5% 30.9% 12.96%

496
497 Table 11. Testing of the ANN for DH in the building category. ANN outputs vs EnergyPlus targets

Percentage of cases with absolute 
value of relative errorN Epochs R

< 1% < 2.5% < 5% < 10% < 25%

Average of the absolute 
values of relative errors

250 132 0.907 8% 32% 74% 84% 100% 4.97%

500 168 0.944 17% 41% 79% 96% 100% 3.49%

750 314 0.958 22% 48% 79% 96% 100% 3.27%
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1000 353 0.957 18% 46% 81% 96% 100% 3.17%

498
499 Table 12. Testing of the ANNs for RefCS. ANNs outputs vs EnergyPlus target

N EnergyPlus target (DH) ANN output (DH) Relative error
250 28.0% 17.40%
500 30.9% 8.85%
750 32.5% 4.13%
1000

33.9%

30.9% 8.85%
500
501 Table 13. Testing of the ANNs for RefCS. ANNs output vs Real measured data

N Measured data (DH) ANN output (DH) Relative error
250 28.0% 21.13%
500 30.9% 12.96 %
750 32.5% 8.45 %
1000

39.5%

30.9% 12.96 %

502 In order to establish the ANN performance optimization and to answer the question of whether the 
503 reliability of ANNs depends on sample size, new neuronal networks were generated from samples of 250, 
504 750 and 1000 cases simulated by EnergyPlus. For this purpose, the same methods described above were 
505 followed and the results summarized in table 11. All models provide a valid R value above 0.9 which 
506 improves as the sample size increases, with the exception of the 1000-sample model, where the R 
507 coefficient does not improve with respect to the one from 750 samples. 

508 This improvement in model reliability is also reflected in the results obtained for RefCS (tables 12 and 13), 
509 successfully reducing the relative error between ANN output and EnergyPlus target by up to 4% and 
510 between ANN output and measured data by up to 8.5%, when the ANN is developed from 750 samples 
511 (that is, after 750 samples ANN reliability does not improve). The relative error for RefCS also increases 
512 by almost 5% when the ANN increases from 750 to 1000 samples. Therefore, it could be determined that 
513 the optimal ratio between the number of sampled cases (N) and the number of characteristic parameters to 
514 ensure the trade-off between ANN reliability and computational time is around 42 (N of 750, divided by 
515 the number of characteristic parameters used as input, 18).

516 The good results achieved in the 750-sample model offered the possibility to accurately predict the thermal 
517 behaviour of an entire building category with very low computational times. This methodology is a highly 
518 significant tool for future steps such as identifying building categories whose population is at serious risk 
519 of significant discomfort and fuel poverty as well as assessing the technical and economic profitability of 
520 energy retrofitting measures. Politicians and city planners, as well as architects and engineers, could apply 
521 this methodology to different building categories in the Mediterranean climate in order to promote a feasible 
522 energy retrofitting for buildings and cities.

523

524 5. Conclusions

525 This study has featured the entire process for the generation of a predictive model of the environmental 
526 behaviour of a building category, including model calibration throughout the whole process based on the 
527 earlier one-year-long monitoring of RefCS. A surrogate model with high reliability was developed, 
528 reducing computational times by 98%.

529 Following the characterization of the environmental performance of linear-type multi-family social housing 
530 built in southern Spain during the post-war period it was concluded that:
531 � For this building category, the minimum number of samples required to ensure reliable results is 
532 around 70. This results in a ratio of 2.5 between the sample size and the number of characteristic 
533 parameters.
534 � There is a generalized lack of adequate thermal comfort conditions. This problem is more serious 
535 during the winter period, as the results for the entire sample are between 95% and 100% of discomfort 
536 hours. In summer the results are more dispersed, going between 0% and 60% of discomfort hours. 
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537 When the full year is evaluated, the distribution of the results is close to normal, with values between 
538 20% and 50% of discomfort hours.
539 � The most influential parameters on thermal comfort for this building category are operational 
540 (essentially natural ventilation rate and people density) and geometric (particularly form ratio, floor 
541 area and height). Some of the parameters related to the envelope could be neglected due to their low 
542 influence on thermal comfort, since the range of variation of this parameter is quite narrow within this 
543 building category (there are no cases with thermal insulation making a clear difference).
544 � Although the Mediterranean climate is known to be warm globally during the winter, the result shows 
545 that the users of the studied building category are greatly at risk from energy poverty during much of 
546 the year unless an energy retrofitting process is carried out.

547 After the ANN generation and testing, it can be stated that it is possible to develop a surrogate model which 
548 accurately evaluates the thermal behaviour of any member of a building category, with low computational 
549 times. The best compromise between reliability and computational effort of the neuronal network was 
550 reached from the simulation of 750 samples, with a regression coefficient between simulation targets and 
551 ANN outputs of around 0.96. This means that the optimal ratio between the number of sampled cases (N) 
552 and the number of characteristic parameters is around 42. This model has a low average relative error 
553 between ANN outputs vs EnergyPlus targets (3.3%) and an acceptable relative error between the ANN 
554 output for RefCS and the results from measured data (8.5%).

555 Previous adjustment between the energy models and the measured data is essential in order to achieve 
556 reliable surrogate models, both for a given building category and a particular case study. The methodology 
557 developed in this work can be easily extended to other building categories and locations of the 
558 Mediterranean climate, effectively completing the characterization of the existing housing stock (essential 
559 for the optimization of energy retrofitting). Therefore, this methodology can become a robust and reliable 
560 tool for planning the energy retrofit of large housing stocks, optimizing computational times. This would 
561 be fundamental in order to avoid the risk of falling into a situation of fuel poverty, which is now a reality 
562 in these building stocks.

563 Future studies will include the evaluation of retrofitting strategies in the surrogated models, as well as the 
564 analysis of the impact of the future climate scenario focused on global warming.
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