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A B S T R A C T

In the forensic studies of painting masterpieces, the analysis of the support is of major importance. For plain
weave fabrics, the densities of vertical and horizontal threads are used as main features, while angle deviations
from the vertical and horizontal axis are also of help. These features can be studied locally through the canvas.
In this work, deep learning is proposed as a tool to perform these local densities and angle studies. We trained
the model with samples from 36 paintings by Velázquez, Rubens or Ribera, among others. The data preparation
and augmentation are dealt with at a first stage of the pipeline. We then focus on the supervised segmentation
of crossing points between threads. The U-Net with inception and Dice loss are presented as good choices
for this task. Densities and angles are then estimated based on the segmented crossing points. We report test
results of the analysis of a few canvases and a comparison with methods in the frequency domain, widely used
in this problem. We concluded that this new approach successes in some cases where the frequency analysis
tools fail, while improves the results in others. Besides, our proposal does not need the labeling of part of the
to be processed image. As case studies, we apply this novel algorithm to the analysis of two pairs of canvases
by Velázquez and Murillo, to conclude that the fabrics used came from the same roll.
1. Introduction

1.1. Fabric analysis and plain weave

The weave and patterns on the fabric of paintings can be seen as
features or fingerprints that help in the forensic analysis of paintings,
e.g., to date and assign authorship (Alba and Murillo-Fuentes, 2021).
The type of weave, the material, the number of threads per centimeter
or the weight of fabrics have been widely studied (de Carbonnel, 1980).
A photograph of the back of the painting can be processed to study the
fabric, but in many cases the canvas has been relined to reinforce it and
the original fabric cannot be observed directly. Instead, X-ray plates of
the paintings are usually analyzed. Radiographs are much harder to
process because the frame and the painting itself, including cracks, are
observed as noise.

Plain weave fabrics1 have been widely used as the support of
paintings. In plain weave we have horizontal and vertical threads
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1 Also known as tabby, calico or tafetta weave.
2 Prime is applied to the cloth after nailing, and this prime acts as a glue.

intertwined. In the loom, a set of threads, the warp, are parallel
arranged from back to front, while another thread, the weft, is passed
iteratively from side to side, i.e., orthogonally to the warp. At this
point it is interesting to remark that separations between threads in the
warp presents a deterministic pattern that depends on how the threads
have been arranged, while in the weft the separation along the roll
depends on how the threads have been tightened. This is the reason
why the thread counting, i.e., the count of threads per cm, both in the
vertical and horizontal axes, has been widely used as characteristic of
the canvases. Besides, because of deformations of the fabric around
nails in the stretcher persists in time,2 deviations of threads respect
to the horizontal and vertical axis are useful for the curator to study
the painting and provide information on transformations of areas in
the canvas, checking for integrity, and better understanding how the
painter’s workshop was organized in the productions of series.
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Fig. 1. Scenarios where the FT fails, fabrics in canvases by (a) Rubens with different
thread widths and (b) Velázquez where vertical threads are seen as widenings of
horizontal ones at the crossing points.

The FT has been successfully applied to this problem of plain wave
canvases analysis (Johnson and Erdmann, 2013; Simois and Murillo-
Fuentes, 2018), exhibiting quite a robust performance. However, we
found that the FT fails in two common scenarios. First, whenever
threads are of different widths, for the pattern is not uniform, the FT
detects several maxima. As a result, in nearby areas of the canvas the
FT provides quite different threads densities, since it changes from one
maximum to another as we process locations one next to the other. In
Fig. 1.(a) we include a sample of the X-ray of the canvas Adan and
Eva from Rubens (1628), where threads of several different widths are
observed. On the other hand, in some fabrics and in one direction,
usually the warp, the threads are quite tight and the orthogonal ones
are just perceived as widenings at the crossing points. In this scenario
the FT is unable to provide any estimation of the thread density. In
Fig. 1.(b) we bring a sample of the X-ray plate of the Prince Baltasar
Carlos on Horseback by Velázquez (P001180 in MNP inventory) (de
Silva y Velázquez, 1634), horizontal threads are easily observed while
the vertical ones can be only identified by focusing on the widening of
the horizontal threads.

1.2. Pipeline and contributions

In the following, after describing related work in Section 2, we
face the analysis of thread densities and angles in plain weaves by
means of segmentation. As a first solution, we tried to segment vertical
and horizontal threads independently. However, as fabrics have severe
rotations at some points, the model was unable to distinguish a vertical
(or horizontal) thread from a severely rotated horizontal (vertical)
one. As a result, the learning did not converge and we decided to
segment (Minaee et al., 2022) crossing points instead, with just one
model. Accordingly, the pipeline was designed as follows.

In the dataset generation, described in Section 3, we used paintings
from several authors in the 17th-19th centuries. From these paintings,
random samples were obtained and labeled. We annotated both the
vertical and horizontal threads in every sample. The labeled samples
were divided into training, validation and test subsets. We investi-
gated several models, see Section 4, and adopted the U-Net with
inception (Szegedy et al., 2015). The Dice loss function was chosen,
exhibiting good performance. At this point, it is interesting to note that
we do not have densities nor angle estimations, but the locations of the
crossing points. Hence, an algorithm to estimate these values from the
crossing points was developed. This approach is described in Section 5.
The results of the training of the proposed model and its validation
are included in Section 6. In production, we process a whole canvas
to provide the densities and angle deviations at every point. Note that
we are not using the trained model as transfer learning to analyze a
new canvas, as this would involve a labeling process for every new
painting (Aradillas et al., 2021). We do not assume any annotation
for a new canvas analysis (Maaten and Erdmann, 2015). Section 7 is
devoted to illustrating the good performance of the developed approach
2

compared to the method in the frequency domain. A couple of pairs
of canvases by Velázquez and Murillo are analyzed. We also include
the study of an X-ray plate of a painting by Ribera. We end with
conclusions.

The main contributions of the paper are as follows:

1. A description of problems of the FT applied to the thread count-
ing problem.

2. A method to crop and label X-rays of paintings, augmenting the
resulting dataset.

3. Four DL models to detect crossing points of threads in plain
weave, working in the spatial domain. These DL models follow
the U-Net architecture and have been programmed using Keras-
TensorFlow. We report that the segmentation of vertical, or
horizontal, threads yields poor results.

4. An approach to compute threads densities and angle estimations
from crossing points.

5. A whole thread counting algorithm in the spatial domain with
no need of labeling part of the to be processed canvas.

6. Analysis of the errors in the estimation of thread densities for la-
beled data of X-rays of different qualities and fabrics of different
densities.

7. Application to a pair of case studies with canvases by Velázquez
and Murillo, to conclude the fabrics used coming from the same
roll, very much outperforming the FT approach.

2. Related work

Image processing has been applied to the study of priceless paint-
ings (Barni et al., 2005; Cornelis et al., 2017; Deligiannis et al., 2017;
Johnson et al., 2008). Recently, algorithms in the machine learning
(ML) field based on artificial neural networks have been applied.
In Rucoba-Calderón et al. (2022) crack detection is solved by applying
K-SVD and in Sizyakin et al. (2020) convolutional neural networks
(CNN) were used. CNN were also applied to automatic classification of
paintings (Roberto et al., 2020). In Pu et al. (2020) auto-encoders (AE)
were used for image separation. In Zou et al. (2021) deep learning (DL)
was applied for virtual restoration of colored paintings. Authentication
and forgery detection has also been the focus of these techniques (Po-
latkan et al., 2009; Nemade et al., 2017). Segmentation approaches
based on U-Net (Ronneberger et al., 2015) and AE (Rumelhart et al.,
1986; Goodfellow et al., 2016) were applied to image restoration by
inpainting.

Within the field of image processing and machine learning (ML) the
study of the fabric has received particular attention. In Escofet et al.
(2001) the theoretical frequency analysis of fabrics was introduced,
being updated in Simois and Murillo-Fuentes (2018). Later, this theoret-
ical background was translated into studies of canvases (Johnson et al.,
2010; Johnson and Erdmann, 2013) by means of the Fourier transform
(FT). Another form of transform was also tried (Yang et al., 2015) and
the power spectral density was introduced as a feature of the canvas
in Simois and Murillo-Fuentes (2018). These transform-based tools are
unsupervised, as no previous labeling of the threads in the images
or their densities was needed. These FT approaches are robust and
useful to process many masterpieces, but they fail in some scenarios, as
discussed earlier. In Maaten and Erdmann (2015) the authors presented
a Bayesian tool to predict the positions of the crossing points in plain
weave. This is, up to our knowledge, the only ML tool applied to the
thread counting problem. However, a prior labeling stage was needed
for the canvas at hand, where the curator needs to mark the crossing
points for a given area of the to be processed canvas. In this manuscript
we present a novel ML tool for plain weave thread counting to solve
some drawbacks of the FT approaches, with no need of pre-labeling.
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Fig. 2. Examples of (a) four samples where the fabric is hardly observed and (b)
a labeled crop with annotations for vertical threads, one of the labeled threads is
highlighted.

3. Data preparation

3.1. Dataset

We first selected 36 paintings from the Museo Nacional del Prado
(MNP), of more than 13 different painters. Canvases from Rubens,
Velázquez, Lorena, Swanevelt, Dughet, Poussin, Both, Lemaire, or Rib-
era were included in the dataset. These paintings were selected to be
representative of several densities in the range 6 to 23 threads per
cm (thr/cm), different resolutions of the image and noise conditions.
This encompasses the usual densities found in canvases. For example,
in the French paintings analyzed for the 17th–20th centuries and 44
painters the densities of the threads were in the range 6-23.3 thr/cm.
For the 17th and 18th centuries, the range reduces to 8.6-20 thr/cm (de
Carbonnel, 1980).

The images of the X-ray plates were obtained after digitalization,
with resolutions ranging from 80 to 200 pixels per cm (ppc). The
images were enhanced with algorithms based on their local mean and
variance (Lee, 1980) then scaled, see Appendix for a description of
these steps. For every plate we cropped 40 random areas of 1.5×1.5 cm
and resampled them, if needed, to 200 ppc. For every canvas, approxi-
mately 7 samples out of the 40 were labeled. This number was reduced
or increased if its densities and quality were already represented or not
by other similar fabrics in the dataset. Overall, we labeled 239 samples.
The labeling of these samples was performed not for the crossing
points but for the vertical and horizontal threads independently, then
a unique labeled image was obtained with the crossing points. This
stage was specially elaborated as in many cases the fabric was hardly
observed in the X-ray plate, see four different samples in Fig. 2.(a). For
high densities, the labeling becomes challenging as the space between
threads is quite narrow, if any. See Fig. 2.(b), where the annotations
for one sample is included and one of the annotations is highlighted.
More than one person participated in the labeling. Therefore, for the
same canvas we may have slightly different widths for the annotations.

Then, we divided the dataset into training, validation and test.
Instead of randomly distributing the samples into these three groups,
we took the labeled samples from 4 paintings for validation, 31 samples
overall, and the samples of 3 other paintings for test purposes, with 18
labeled samples. Hence, out of the available paintings, 29 were used
for training, 4 for validation and 3 for test. We enforced that not only
different paintings were used in each group, but that canvases with
labeled fabrics known to come from the same roll were placed in the
same subset. Paintings in the validation and test datasets were selected
to be representative of different densities and qualities. At this point,
it is important to remark that these are not the final samples used.
Next, we explain how to generate the samples fed to the model for the
training, validation and test stages.
3

3.2. Data generation and augmentation

We need a large dataset to represent the different possible inputs.
In our design, we labeled 1.5 × 1.5 cm samples at 200 ppc resolution.
However, the model, as explained later, is fed with 1 × 1 cm images
(200 × 200 pixels). The first step to generate the input datasets was
to obtain these images from every sample. We performed this task by
first taking the corners of the sample to get the first 4 images. Then
four rotated versions of two images given by the (50:250, 50:250) and
(65:265, 65:265) pixels of the sample were added, with random angles
in the ranges [2, 7], [−2,−7], [8, 12], [−8,−12]. We also added two ro-
tated versions of the images given by the (65:265, 65:265) pixels of the
sample, with random angles in the ranges [2, 7], [−2,−7]. This process
yield 10 samples for every sample. The dataset was augmented (Shorten
and Khoshgoftaar, 2019) by repeating the whole process after (a) left–
right flipping, (b) up–down flipping, (c) rotating 90◦, (d) rotating 90◦

plus left–right flipping and (e) rotating 90◦ plus up–down flipping the
full sample. At the end of the whole process we had 60 images of size
200 × 200 for every labeled 300 × 300 pixel sample. Since we labeled
239, we generated 14340 images.

The resulting dataset was slightly skewed. Some of the labeled
samples came from canvases with similar fabrics, hence increasing the
number of samples of the same type. To prevent the model to overfit to
them, we generated twice the samples for the other paintings, including
them in the dataset. By repeating the generation of samples for these
fabrics we increased the number of images to 21540.

4. DL model

We designed a DL model to detect and segment crossing points
between vertical and horizontal threads. The U-Net architecture (Ron-
neberger et al., 2015; Ali et al., 2022) was the starting point to build
the model, see Fig. 3, where a top-down path, usually denoted as
encoder or contracting path, is followed by a set of down-top layers,
the decoder or expansive path. Layers are composed of one main
unit, i.e., a module with 2D convolutions, batch normalization and a
ReLU activation function. We developed several models based on this
architecture. In the following, we first describe the best model found,
i.e., the one providing the best threads densities estimations for the
validation subset. Then we outline other evaluated models.

4.1. Inception module

We first tried a fixed size 2D convolutional kernel in every layer,
while the size could change from one layer to the next. However, the
outcome of this model was improved by introducing inception. Our
conjecture is that the variety of threads densities of the canvases, in the
range 6 to 23 thr/cm, makes it hard for the model to locate the crossing
points if one fixed-size kernel is used. On the contrary, by means of the
inception paradigm, in the same layer we have convolutional kernels
of several sizes. We used 𝑘 × 𝑘 kernels with 𝑘=3, 5 and 7, see Fig. 4.
Note that similar ideas were adopted in Zhang et al. (2022), Ali et al.
(2022) and Yamanakkanavar and Lee (2022). The inception module,
see horizontal (blue) arrows within the encoder and decoder in Fig. 3,
is a sequence of blocks where the first one is a convolution with 𝑛𝑖 × 3
different kernels, where 𝑛𝑖 denotes the number of filters per layer
and 𝑖 the layer level from top to bottom, see Fig. 4. The results are
concatenated at the output. Then a batch normalization is performed,
followed by a ReLU activation function. We used 𝑛0 = 8 filters for the
first upper layer and scaled this number by 2 as we went deeper in the
encoder, 𝑛𝑖+1 = 2𝑛𝑖. All convolutions were performed with the ‘same’
option, i.e., zero padding of size ⌊𝑘∕2⌋ was introduced around every
input image to get the same size at the output after convolution.
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Fig. 3. The U-Net architecture used with the inception modules in blue horizontal arrows, with the number of filters used, 𝑛𝑖, indicated on top. Up and down steps involve halving
reductions of sizes downwards, and double them upwards, with zero padding if needed. Skip (copy) connections concatenate the upcoming features with the features at the same
level in the encoder. The size of all feature maps is indicated below them. At the output a 1 × 1 convolutional filter is used, with sigmoid activation function.
Fig. 4. Inception block: 3 × 3, 5 × 5 and 7 × 7 kernels are convolved with the input
at the same depth, as many times as given by the number of filters parameter, 𝑛𝑖. The
results of these convolutions are concatenated.

4.2. Model description

The model used, in Fig. 3, has an image of 200 × 200 × 1 at the input
layer. Then, in the encoder stage, the input undergoes 5 layers down
to get a tensor of dimensions 12 × 12 × 384. Each layer is composed
of the following blocks:

1. Inception: three parallel 2D convolutional layers with square
kernels of size 3, 5 and 7. Outputs of the inception are concate-
nated at the output, the number of features at the output of the
inception is 3 times the number on top of the horizontal arrows
in the encoder, that indicates the number of inception kernels.

2. Batch normalization.
3. ReLU activation function.
4. Max-pooling of stride 2 and kernel size 2, except for the last (5th)

layer of the encoder.
5. Dropout of probability 𝑝 = 0.1.

After the encoder, the resulting features go up through 4 layers in the
decoder stage. Each layer in the decoder includes the following:

1. Upsampling of size 2 × 2, except for the last layer in the decoder
(9th layer in the full network).

2. Inception: three parallel 2D convolutional layers with square
kernels of size 3, 5 and 7. Outputs of the inception are concate-
nated at the output, the number of features at the output of the
inception is 3 times the number on top of the horizontal arrows
in the decoder, that indicates the number of inception kernels.

3. Batch normalization.
4. ReLU activation function.
4

5. Copy and concatenate the tensor at the output of the layer at the
same level (same size) at the encoder, see long horizontal arrows
joining the two vertical paths of the ‘‘U’’ shape in Fig. 3.

6. Dropout of probability 𝑝 = 0.1.

Finally, at the output layer we have a 2D convolutional layer of kernel
size 1 and a sigmoid as activation function. The outputs of the first
5 layers in the encoder have sizes 100 × 100 × 48, 50 × 50 × 96,
25 × 25 × 192, 12 × 12 × 192 and 12 × 12 × 384, that are, in
reverse order, the sizes of the inputs to the layers at the same level
in the decoder and the output layer. The full model has over 6 million
parameters.

4.3. Loss function

The binary cross-entropy was first used as loss function. However,
when analyzing an image the output values of the model were far from
being binarized and a thresholding was needed, where the Otsu (Otsu,
1979) method was applied. To provide an output with more extreme
values we better used the Dice loss, then in the analysis stage the image
was binarized with just a 0.5 threshold. Given the labeled output 𝐈, a
matrix of bits, and the estimated one �̂�, the Dice loss is given by:

𝐿𝐷 = 1 −
2
∑

𝑖,𝑗 𝐈[𝑖, 𝑗]�̂�[𝑖, 𝑗]
∑

𝑖,𝑗 𝐈[𝑖, 𝑗] +
∑

𝑖,𝑗 �̂�[𝑖, 𝑗]
(1)

In Fig. 5 we included the output for a segmentation after training with
binary cross-entropy and Dice loss. Note that the resulting output with
Dice loss is a quasi-binary image, as needed later to estimate densities
and angles of threads. We also observed better results in accuracy, used
as validation loss, see Section 6. Therefore, in the learning stage of the
model presented above, later used in the analysis of some case studies,
we used the Dice loss in (1) as error to train the parameters of the
networks and the accuracy as validation loss.

4.4. Other models

We described above the model that provided the best results in
validation and the one used in the studies later included. Other three
models were also proposed. The four of them share the number of
layers, the max-pooling at every layer in the encoder, the sigmoid as
activation layer in the output of the model and the ReLU as activation
function in the other layers. The accuracy was used in all cases to vali-
date the model. The main features of these other models are described
in this subsection.
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Fig. 5. Segmented image obtained with (a) binary cross-entropy as loss function and
(b) Dice loss.

4.4.1. U-Net with Otsu
The U-Net model with layers of one kernel size was the first

tried model. At the output, a threshold computed using the Otsu
approach (Otsu, 1979) was applied prior to performing the thread
densities estimations. In the encoder, the layer unit was a double
repetition of convolutional plus batch normalization and ReLU blocks.
All kernels size where 𝑘 = 3 except for the first layer, set to 𝑘 = 7.
The initial number of filter was 𝑛 = 14 and this number was doubled
in the next layer, 𝑛𝑖+1 = 2𝑛𝑖. The dropout was set to 𝑝 = 0.25 and
the learning rate to 10−4. These values were the ones exhibiting the
best results. In the decoder, the transposed convolution was applied
to upsample the intermediate results. The loss function used was the
binary cross-entropy.

4.4.2. U-Net with Dice
This model was equivalent to the previous one but for the loss

function, where the Dice in (1) was used instead. As the result was
already quite binarized a 0.5 threshold was used at the output, to
estimate the densities. The learning rate was increased to 10−3.

4.4.3. Original inception
Another model used was a closer version of the inception model

in Szegedy et al. (2015). As inception module we included four parallel
convolutional layers:

1. A 𝑘 = 1 convolution with batch normalization and ReLU.
2. A 𝑘 = 1 convolution with batch normalization and ReLU fol-

lowed by a 𝑘 = 3 convolution with batch normalization and
ReLU.

3. A 𝑘 = 1 convolution with batch normalization and ReLU fol-
lowed by a 𝑘 = 3 convolution, another 𝑘 = 3 convolution, batch
normalization and ReLU.

4. A max-pooling of size 3 × 3 but with stride one, followed by a
𝑘 = 1 convolution with batch normalization and ReLU.

The output of these four sequences of blocks were concatenated at the
output. The learning rate was set to 10−3.

4.5. SW and HW details

The models described above were programmed using Python 3.9
and Keras-Tensorflow 2.5.0. The input grayscale image size was
200 × 200 × 1 and the default batch size was 32. We used the Adam
optimizer (Kingma and Ba, 2015) with a learning rate value of 10−3.
An early stopping was also included with a latency of 5. A Tesla P100
with 16 GB memory was used along with a Intel Xeon E5-2630 v4 with
20 cores CPU.
5

Fig. 6. Sketch of the search for 𝑚 = 9 neighbors for a given crossing point (circled).
The arrows to the neighbors indicate the vectors used to compute the angle deviations
and the distances.

5. Density and angle estimations

At the output of our model we have an image with high values
at the crossing points areas, see Fig. 5.(b) for an example, where a 1
cm side image is included. After binarization we locate these areas by
computing their centroids. Next, we propose to estimate the densities of
the vertical and horizontal threads as described in Algorithm 1, where 𝐡
denotes the mean value of vector 𝐡 and we exploited the fact that inputs
images have a resolution of 200 pixeles per cm. In this work we used
𝑚 = 9, 𝛼 = 25◦ and 𝑞 = 10 or 𝑞 = 0. For every crossing point found, the
method searches for the 𝑚 nearby segmented crossing points to estimate
distances and angles. In Fig. 6 we include an example where for a
crossing point, circled in red, the 𝑚 = 9 nearest ones are found. Within
these 𝑚 neighbors, the nearest ones above (+90◦), below (−90◦), to the
right (0◦) and to the left (180◦) are found, if any. See Fig. 6 where some
of these points have been marked with arrows. The averaged distances
to the neighbors for all the crossing points are used to estimate the
thread densities. Before averaging, removing values below and above
a percentile, given by parameter 𝑞, might eliminate possible outliers.
Angle orientations of the vertical and horizontal threads can also be
estimated by checking the angles of the vectors pointing to the nearest
neighbors.

Another approach to estimate the densities could be applying fre-
quency analysis, i.e., the FT, to the result of the segmentation. We will
refer to this method as FA.

6. Training and testing

6.1. Training models

We trained the proposed models ten times with different random
initialization of the parameters, i.e., the kernels, for (A) the inception
with Dice loss function (Inc-Dice) in Section 4.1, (B) the U-net with
Otsu threshold (Unet-Th) in Section 4.4.1, (C) the U-Net with Dice
(Unet-Dice) in Section 4.4.2 and (D) the original inception with Dice
in Section 4.4.3 (Orig-Inc-Dice). In Fig. 7 we include a box diagram
with the accuracy results of the segmentation for the validation set after
training, with 𝑞 = 10. The diamonds indicate outliers. It can be observed
that the inception with Dice loss provides the best values, in mean and
Q1 and Q3 quartiles. The Unet-Th does a good job, although with a
higher dispersion. This dispersion is reduced with the Unet-Dice. The
original inception exhibits a much worse result in most of the trainings,
being the most computationally demanding, in view of the description
in Section 4.4.3.

In Fig. 8 the box diagram is represented for the error in the counting
using the SC approach with 𝑞 = 0 for the trained models and validation
set. The values for the horizontal and vertical densities were compared
to the ones after applying the same SC approach to the ground truth
(annotated samples with crossing-points). We measured the mean of
the absolute error normalized by the true value, to properly highlight
errors in high densities. As expected, the median values increased in the
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Algorithm 1 Spatial Counting (SC)
Input: the number of segmented crossing points, 𝑀 , and the centroids
of the crossing points.
for k = 1 to 𝑀 do estimate the 𝑚 nearest centroids to the 𝑘th one
and store the distances to them, in pixels, as the 𝑘th row of the 𝑀×𝑚
matrix 𝐃.
end for
for k = 1 to 𝑀 do estimate the angles of the vectors joining the 𝑘th
centroid to the 𝑚 nearest ones and store the result as the 𝑘th row of
the 𝑀 × 𝑚 matrix 𝐀.
end for
Initialize 𝐡 and 𝐯 as empty vectors.
for k = 1 to 𝑀 do

Search for the entries of the 𝑘th row of 𝐀 with values in the range
[90−𝛼, 90+𝛼] and, if any, store in 𝐯 the lowest distance found within
the corresponding entries of the 𝑘th row of 𝐃.

Search for the entries of the 𝑘th row of 𝐀 with values in the range
[−90 − 𝛼,−90 + 𝛼] and, if any, store in 𝐯 the lowest distance found
within the corresponding entries of the 𝑘th row of 𝐃.

Search for the entries of the 𝑘th row of 𝐀 with values in the range
[−𝛼,+𝛼] and, if any, store in 𝐡 the lowest distance found within the
corresponding entries of the 𝑘th row of 𝐃.

Search for the entries of the 𝑘th row of 𝐀 with values in the range
[180 − 𝛼, 180 + 𝛼] and, if any, store in 𝐡 the lowest distance found
within the corresponding entries of the 𝑘th row of 𝐃.
end for
Remove from 𝐡 and 𝐯 values below the 𝑞th percentile and above the
(100 − 𝑞)th percentile.
Compute the horizontal, ℎ, and vertical, 𝑣, thread densities, in
threads/cm, as

ℎ = 200∕𝐡 (2)

𝑣 = 200∕𝐯 (3)

Likewise, the average tilt of the vertical and horizontal threads can
be calculated by means of the average of all the angles of the
corresponding crossing points in 𝐯 and 𝐡, respectively.

same order as the validation decreased for the Inc-Dice, Unet-Th, Unet-
Dice and Orig-Inc-Dice approaches. The training providing the lowest
value was in the Inc-Dice set, with a 1.12% error. In the following we
will use the Inc-Dice with these weights and SC, hereafter denoted by
DLSC, to evaluate the performance in the test set and to analyze the
case studies proposed.

The number of epochs varies from one training to the other. For the
Inc-Dice the averaged number of epochs run was 8.7 + 5 ≈ 14 where 5
stands for the patience used in the early stopping. Since the training of
the Inc-Dice lasted 180 s per epoch, each training of this model took
approximately 42 minutes.

6.2. Test results

We evaluate the selected model, DLSC, for the test set. The averaged
normalized absolute value for test was 1.83% with 𝑞 = 0% and 1.61%
if SC with 𝑞 = 10% was used. This last value was the one selected for
the processing of the whole X-ray of canvases. In Fig. 10 we include
the error of this DLSC model for images in the test set. We show
the absolute normalized error for the samples in the four 1 × 1 cm
corners of the annotated 1.5 × 1.5 cm samples in the test set, both
for the horizontal and vertical threads. In Fig. 9 we include the input
(first column), the labeling (second column) and the output of the
DL model (third column) results for images number 6 (Fig. 9.(a)–(c))
and 32 (Fig. 9.(d)–(f)) in Fig. 10, the ones with the largest errors in
the horizontal and vertical densities, respectively. In the first case,
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Fig. 7. Box diagram of accuracy results for the four models trained: Inc-Dice, Unet-Th,
Unet-Dice and Orig-Inc-Dice.

Fig. 8. Box diagram of normalized absolute errors in the density estimations for the
four models trained: Inc-Dice, Unet-Th, Unet-Dice and Orig-Inc-Dice.

Fig. 9. The two images with worst errors in the test set in Fig. 10 for the horizontal
(a) and vertical (d) densities. In (b) and (e) we have the annotations while in (c) and
(f) the output of the DL segmentation.

the very thin treads are hard to segment, providing a value of 17.67
thr/cm when the true value was 19.18 thr/cm. In the second scenario,
(I) the poor quality of the image and (II) the error in the labeling
where some crossing points are missing cause this error, estimating



Engineering Applications of Artificial Intelligence 126 (2023) 107100A. Delgado et al.
Fig. 10. Normalized absolute error (%) in horizontal (◦ solid) and vertical (⋄ dashed) densities for the 1 × 1 cm corners of the 1.5 × 1.5 cm annotated samples in the test set, DL
and SC with 𝑞 = 10% was used.
Fig. 11. Normalized absolute error (%) in horizontal (◦ solid) and vertical (⋄ dashed) densities for the 1 × 1 cm corners of the 1.5 × 1.5 cm annotated samples in the test set and
the FT approach.
9.36 thr/cm from the segmentation where 8.9 thr/cm is estimated from
the annotations. See the left lower and upper parts in Fig. 9.(d)–(f) as
examples of (I) and (II), respectively.

In Fig. 11 we include the results for the FT approach applied to
the same test images using 2048 points for the discrete FT. It can be
observed how the results for the first 28 images are quite poor, nor-
malized errors rise up to 50%, being more relevant for the horizontal
threads, as vertical ones are better observed in the images. The overall
average normalized error is 7.47%. These first 28 images came from the
‘The Crucified Christ’ by Velázquez (P001167 in MNP inventory) (de
Silva y Velázquez, 1632a) where we have a similar aspect to the one in
Fig. 9.(a), i.e., high thread densities and low noise, and the horizontal
threads cannot be visually identified as lines. For the rest of the test
images, to the right, both warp and weft are better observed. However,
the FT still provides worse results. For example, above image number
28 in Fig. 11 we have eight images with error above 10% while in the
DLSC, Fig. 9, we have none in the whole test set.

7. Canvas analysis

In the following, we propose two case studies, to check for the
correspondence between pairs of fabrics by using the DLSC approach.
We will also include the results of the FT method as described in Simois
and Murillo-Fuentes (2018). We process 1 × 1 cm patches in the full
preprocessed image, at 200 ppc, of the X-ray of the canvas, 𝐙, whose
top left corners are at 𝐙[𝑝⋅𝑠, 𝑞⋅𝑠] where 𝑝 and 𝑞 are non-negative integers
and 𝑠 is the shift, in pixels, from one patch to the following one.

7.1. Velázquez’s portraits

We analyze two canvases by Velázquez, on the one hand Antonia de
Ipeñarrieta 𝑦 Galdós and her Son, Luis (P001196) (de Silva y Velázquez,
7

Fig. 12. Paintings by Velázquez (a) Antonia de Ipeñarrieta 𝑦 Galdós and her Son,
Luis (de Silva y Velázquez, 1632b) and (b) Diego del Corral y Arellano (de Silva y
Velázquez, 1632c).

1632b) and on the other Diego del Corral 𝑦 Arellano (P001195) (de
Silva y Velázquez, 1632c). In this couple of canvases husband and wife
were portrayed, see Fig. 12, and hence it is conjectured that both were
painted at the same time on fabrics from the same roll.

We used the DLSC approach with 𝑞 = 10%. In Fig. 13 we include
the horizontal ‘density map’ for both paintings. This density map is the
estimated value for the threads counting along the canvas. With a shift
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Table 1
Estimation of densities for the horizontal and vertical threads in thr/cm for the patches in Fig. 16 with DL
based crossing points segmentation and SC (DLSC), DL based crossing points segmentation with FA (DLFA)
and FT approach (FT).

Sample Horizontal (thr/cm) Vertical (thr/cm)

DLSC DLFA FT DLSC DLFA FT

Fig. 16.(a) 16.88 16.83 11.74 19.50 17.19 12.89
Fig. 16.(c) 14.47 14.50 14.47 17.37 19.14 10.54
of 𝑠 = 100, we have four pixels in the resulting density map for every
square centimeter in the canvas. The color of any pixel encodes the
value of the thread density in thr/cm in the corresponding location,
[𝑝𝑠, 𝑞𝑠], see the color bar to the right. In the figure we observe a vertical
dashed line. The image to the left corresponds to the horizontal density
map of P001196, while the one to the right to P001195 horizontally
flipped. It can be clearly observed how the pattern of variations of the
separation in the horizontal threads perfectly matches in both canvases.
This indicates that both fabrics came from the same roll.

In Fig. 14 the same analysis, performed with FT (Simois and Murillo-
Fuentes, 2018), is included. It can be observed that the result is quite
noisy and conclusions about fabric pairing are harder to draw. In
Fig. 15.(a) and (b) we include the vertical density map for P001196
computed with FT and DLSC respectively. It can be observed that in
the vertical density the noise if stronger when using FT, with a very
high variability in the vertical axis, while in the DLSC case the result
is quite more consistent with the fact that along any vertical line
density should not significantly change. To illustrate the differences
in the results of the new proposed approach and the FT we focus on
two of the processed patches, in Fig. 16.(a) and (c). In Fig. 16.(b)
and (d) we have the corresponding outputs of the DL segmentation
model. The estimated densities values are analyzed in Table 1 for both
samples and for the horizontal and vertical threads. Note that since
these samples are of size 1 × 1 cm, the visual counting of horizontal
and vertical threads provides the densities in thr/cm. The densities
estimated by FT are quite poor in the case of the first sample, in
Fig. 16.(a). The main reason, as pointed in Section 1, is that we have
threads with different widths and that in this case vertical threads
are poorly observed compared to the horizontal ones. Put in other
words, we have both effects described through Fig. 1. This is the
reason why, in this scenario, the main frequency found by the FT
approach does not correspond to the thread counting. In Table 1 we
have an estimation of 16.88 and 19.50 thr/cm for horizontal and
vertical threads, respectively, by means of the DLSC approach, while
the FT is providing 11.74 and 12.89 thr/cm, i.e., it is focusing more on
the thick threads than on the thin ones. By using the DLSC, we avoid
focusing on main frequencies to measure distances between any pair of
consecutive threads. When the segmentation fails, for example because
of the poor quality of the image, the estimation of densities through
the average distances between threads is not accurate. In Fig. 16.(c) the
fabric cannot be observed in a large part of the patch. In the output of
the segmentation, Fig. 16.(d), we observe that the crossing points are
missing in some parts. In the lower part of the output, the estimation
of the vertical thread density by using SC introduces an error in the
overall estimation, as observed in Table 1. Still, the DLSC is providing
a much better estimation than the FT. However, if in this case the FA is
used instead of the SC, we observe an improvement, estimating 19.14
thr/cm compared to 17.37 thr/cm of the DLSC and 10.54 thr/cm of the
FT. Usually, we observe outcomes of the DLFA better than the FT but
worse than the DLSC while at some points, as in this patch, the DLFA
provides better estimations.

Finally, in Fig. 17.(a) and (b) we include the angle deviation esti-
mations for P001195 of horizontal and vertical threads, respectively.
It can be observed the ‘garland’ effect, i.e., the periodic variation of
deviations near the sides of the canvas, due to the separation between
nails. This indicates that the painting is conserved in its original size.
Also, in the left upper corner of Fig. 17.(b) it can be observed that
8

Fig. 13. Match of horizontal thread densities using DLSC, in thr/cm, for Antonia de
Ipeñarrieta and Son (P001196), to the left and Diego del Corral 𝑦 Arellano (P001195),
flipped horizontally, to the right. The maps of densities are separated by a dashed line.

Fig. 14. Match of horizontal thread densities using FT, in thr/cm, for Antonia de
Ipeñarrieta and Son (P001196), to the left and Diego del Corral 𝑦 Arellano (P001195),
flipped horizontally, to the right. The maps of densities are separated by a dashed line.

the fabric is twisted. This is consistent with the deformation of lines
of thread densities in Fig. 13, right upper corner.

The inference in this case took approximately 43 min for each
canvas, in the GPU Tesla P100 - CPU Intel Xeon HW. The time to
perform inference depends on the number of patches to be processed.
As already mentioned we used a 50% overlap, since the canvas is
2.12 × 1.21 m size, we run the Inc-Dice model plus the spatial counting
approach for 212 × 121 × 4 = 102608 patches.
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Fig. 15. Vertical thread densities, in thr/cm, for Antonia de Ipeñarrieta and Son
(P001196) with (a) FT and (b) DLSC.

Fig. 16. In (a) and (c) patches of 1 × 1 cm of the X-ray plate of Diego del Corral
𝑦 Arellano (P0011195) and in (b) and (d) the corresponding outputs of the DL based
segmentation.

7.2. Murillo’s prodigal son

In the studies of series of canvases the thread density analysis proves
to be useful to check for the use of the same fabric in the paintings.
We bring here two masterpieces produced by Murillo for the series
illustrating the biblical parable of the prodigal son: ‘‘The prodigal son
taking leave of his home’’ (P00998) (Murillo, 1660-1965a) and ‘‘The
prodigal son squandering his inheritance’’ (P00999) (Murillo, 1660-
1965b), see Fig. 18. In Fig. 18 we also include to the right the results
of the vertical thread density estimation with 𝑠 = 20 using DLSC, where
P00999 has been rotated 180 degrees. It can be observed the good
match between the fabrics. In Fig. 19 results for the FT and DLSC
applied to the canvas P00999 can be compared both for the horizontal
(top) and vertical (bottom) thread densities. It is interesting to note
the improved definition of the DLSC approach, better allowing for the
identification of color lines, representing densities along the warp and
weft.
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Fig. 17. Angle deviation, in degrees, for Diego del Corral 𝑦 Arellano, of (a) horizontal
and (b) vertical threads.

7.3. High intensity and low contrast areas

In Fig. 20 we include the results for the estimation of the densi-
ties of horizontal threads for one of the X-ray plates of the canvas
Ixion by Ribera (1632). The processed area within the whole canvas
is highlighted in Fig. 20.(a) while a 1 cm side patch is included in
Fig. 20.(b). The results for the FT and DLSC are reported in Fig. 20.(c)
and Fig. 20.(d), respectively. It can be observed that the result of the
DLSC is not as good as the one of the FT. Note that the fabric, see
Fig. 20.(b), has a low density of threads with a very regular distance
between them. In this scenario the FT is quite robust and provides
excellent results. On the contrary, the DLSC fails in areas of the plates
where we have very high levels and low contrast, because threads
cannot be observed in the image. Please pay attention to the shoulder
of the man on top and the high intensity area below its arm, within
the processed area. This degrades the outcome of the segmentation,
and the SC is unable to provide an accurate result as it needs a good
enough grid of crossing points. However, a method searching for main
frequencies after the segmentation successes, see the outcome of the
DLFA in Fig. 20.(e). It can be observed that we achieve similar results
to the ones in Fig. 20.(c), with the FT. But in these areas, the DL will
not improve the FT.

8. Conclusions

In this paper we present a multidisciplinary investigation in which
an effort has been made to understand the problem posed, analyze the
state of the art, its drawbacks and study the possible alternatives. In
this process we identify and report two scenarios in which methods
based on frequency domain analysis fail. To overcome these problems,
we propose to resort to the spatial domain by segmenting the crossing
points.

The previous known solution working in the spatial domain needs a
previous partial labeling of the image to be analyzed. We propose a new
algorithm that can use the curator with minimal effort and knowledge,
without labeling or a complex parameter selection.

The U-Net, used as starting point, was not capable of processing
fabrics with different thread densities, typically in the 5-25 range. Fixed
width kernels did not give good results in all cases. We investigated
several models with different layers and kernel sizes to conclude that
inception was a good option to accommodate the different thread
frequencies possible. We also found that the loss functions used in
training had a relevant impact on the result. Consequently, we studied
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Fig. 18. Canvases (left) and vertical thread densities (right), in thr/cm, for ‘‘The prodigal son taking leave of his home’’ P00998 (top) and ‘‘The prodigal son squandering his
inheritance’’ P00999 (bottom, rotated 180◦).
Fig. 19. Horizontal (top) and vertical (bottom) thread densities, in thr/cm, for P00999 with (a) FT and (b) DLSC.
the different possibilities and adopted Dice as the criterion to evaluate
the error of the model.

The generation of the dataset from scratch, another contribution of
this work, is also developed. This includes the preprocessing and the
data augmentation stages. Labeling of the data is cumbersome. To gain
in efficiency, we decided to label larger samples (1.5 times wider and
taller) than needed at the input of the model, to then use different
areas in the data augmentation step. The organization of the dataset
into training, validation and test was another problem to be addressed.
At the beginning of our research we included samples of the same
painting in the all of them. Although this has the advantage of having
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fairly representative subsets, it does not guarantee good performance
when a new canvas is presented. It must be taken into account that
canvases from different authors may present different counts, different
qualities of fabrics or different primers used. We designed a partition
to ensure that (1) canvases of different thread densities are included
in the subsets and (2) different qualities are considered in the training,
validation and testing. In addition, since a small number of instances
with very high and very low thread densities are available, in the
training phase we had to balance the number of samples used from
each image to avoid skewness.
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Fig. 20. Horizontal thread densities, in thr/cm, for the vertical area highlighted in (a) over the full Xray of Ixion by Ribera (1632) with (c) FT, (d) DLSC and (e) DLFA. A 1 cm
side patch is included in (b).
The proposed deep learning model, after training, provides the
crossing points found in the fabric, but we needed to translate the result
into the horizontal and vertical counts. We presented an approach to
cope with this, the SC, that also provides the estimation of the angle
deviations of the threads. Then we checked the performance at the
output of the SC, to observe how a result in segmentation translated
into thread densities estimations. Our model selection relied on the
final count performance, as discussed in Section 6.1. In Section 6.2
we carefully analyzed the final outcome for the patches in the test
subset, coming from three new canvases of different densities. In the
test set, the whole DLSC procedure, segmentation plus spatial counting,
exhibited a very low normalized absolute error, 1.61%, while the FT
approach had 7.47%.

To illustrate the good performance of the novel approach, we
present two case studies. On the one hand, we include a detailed
analysis of the canvases P01195 (de Silva y Velázquez, 1632c) and
P01196 (de Silva y Velázquez, 1632b) by Velázquez. In this comparison
of densities, the FT fails to produce a fine enough density estimation
maps, as predicted, while the proposed approach provides a very useful
result. We also included a comparison of a pair of canvases of the series
The Prodigal Son, by Murillo, to prove that both canvases were painted
on canvases coming from the same roll. Again, our new approach
exhibited neater results for the density maps, allowing for a better
comparison.

While the DLSC proposed approach presented quite good results
in some scenarios, in others its outcome was worse compared to the
FT method. It failed for some patches of P001195 by Velázquez or
some areas of P001114 by Ribera where the fabric could hardly been
observed. In these cases, the DLFA, where frequency analysis was used
instead of the SC method, could be used. We conjecture that with a
better preprocessing stage at the segmentation input we could further
improve the DLSC approach. This is a future line of research.

To sum up, this novel proposal focuses on the application of deep
learning to thread counting in old paintings. This works starts with a
careful problem analysis to later face a full design from the dataset
design to the spatial thread counting, paying attention to the deep
model development and the loss functions used. As a result, we have
11
a method that improves the state of the art FT approach in several
relevant scenarios, with no need of pre-labeling.
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Appendix. Preprocessing

The images were enhanced with algorithms based on their local
mean and variance when the patches were cropped from the plates to
facilitate the labeling and the training of the network. The preprocess-
ing was done in three stages:

1. Local mean filtering. In the local mean filtering we first compute
the average around a pixel then subtract this value to the value
of the pixel. The computation of the average value is computed
by convolving with a constant value square kernel of size 𝑤 =
2𝑠 + 1. If 𝐗 is the input image and 𝐗[𝑖, 𝑗] is the pixel in the 𝑖th
row and 𝑗th column, the result of this step is

𝐘[𝑖, 𝑗] = 𝐗[𝑖, 𝑗] − 1
2

𝑖+𝑠
∑

𝑗+𝑠
∑

𝐗[𝑘, 𝑙] (4)

𝑤 𝑘=𝑖−𝑠 𝑙=𝑗−𝑠
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With the local mean filtering we avoid changes in intensities due
to wood stretches or to areas with more opaque paintings. In this
work we used 𝑤 = 13.

2. Standard deviation filtering. Then, to ensure that the whole range
is used we divide by the local standard deviation, avoiding
division by zero. We first compute the variance as

𝜎2𝑖,𝑗 =
1
𝑤2

𝑖+𝑠
∑

𝑘=𝑖−𝑠

𝑗+𝑠
∑

𝑙=𝑗−𝑠
(𝐘[𝑘, 𝑙])2 (5)

where we also used 𝑤 = 13. Then the output of this stage is

𝐙[𝑖, 𝑗] = 𝐘[𝑖, 𝑗]∕max(𝜎𝑖,𝑗 , 𝜖) (6)

where 𝜖 is any tiny value.
3. Clipping and Scaling. In this step we scale the image, 𝐙, to use

the full dynamic range by setting its lowest and largest values
to zero and one, respectively. Prior to this step we clip low
probable largest and lowest values as follows. We first estimate
the probabilities of values to be into one out of 256 segments
of same lengths between the minimum and maximum values.
Extreme values with probabilities below some threshold, 𝛾, are
clipped. We used 𝛾 = 10−3.
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