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1. Introduction

The brain, despite being one of the most
complex and less known organs, has dem-
onstrated great computation capabilities,
adaptability, and efficient resolution of
complex problems, overcoming modern
computers in many aspects.[1] On this
basis, neuromorphic engineering focuses
on the study, design and implementation
of hardware and software systems that
mimic the principles of brain structures,
and their function to achieve the
observed power efficiency and computa-
tional capabilities.[2–4]

In order to develop systems that mimic
these biological principles, a bioinspired
computational approach is needed. A spe-
cific type of biologically plausible neural
network, called spiking neural network
(SNN), is the most widely used for this
purpose. These networks, sets of neurons
interconnected by synapses, are responsi-

ble for the generation, processing, and transmission of asynchro-
nous electrical pulses called action potentials or spikes. The
transmission of spikes through different layers of neurons allows
these systems to achieve high-level functionalities. Within the
system, only the set of neurons that receive spikes are active, thus
achieving a distributed computing approach that has great advan-
tages in terms of energy consumption and real-time operation
compared to traditional systems.[5,6]

In the neuromorphic engineering field, the navigation of ani-
mals and, particularly, mammals, through unknown environ-
ments is a topic of great interest due to its applicability to
robotics. However, this is still an open challenge to be solved.
In biology, the navigation process of mammals consists of differ-
ent stages: mapping the environment, path planning and
decision-making, or motor control.[7,8] Different brain regions
are involved in the navigation process and each of its stages.
Among them, the hippocampus and the posterior parietal cortex
(PPC) should be highlighted. The hippocampus is the brain
region that acts as a short-term memory capable of maintaining
an allocentric representation of the environment map thanks to
the place cells.[9,10] On the other hand, the PPC is the region
responsible for, among other functions, the planning and
modulation of the mammal’s movements.[11–13]
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The brain has great capacity for computation and efficient resolution of complex
problems, far surpassing modern computers. Neuromorphic engineering seeks to
mimic the basic principles of the brain to develop systems capable of achieving such
capabilities. In the neuromorphic field, navigation systems are of great interest due
to their potential applicability to robotics, although these systems are still a challenge
to be solved. This work proposes a spike-based robotic navigation and environment
pseudomapping system formed by a bioinspired hippocampal memory model
connected to a posterior parietal cortex (PPC) model. The hippocampus is in charge
of maintaining a representation of an environment state map, and the PPC is in
charge of local decision-making. This system is implemented on the SpiNNaker
hardware platform using spiking neural networks. A set of real-time experiments are
applied to demonstrate the correct functioning of the system in virtual and physical
environments on a robotic platform. The system is able to navigate through the
environment to reach a goal position starting from an initial position, avoiding
obstacles and mapping the environment. To the best of the authors’ knowledge, this
is the first implementation of an environment pseudomapping system with dynamic
learning based on a bioinspired hippocampal memory.
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Biological evidence suggests that the functioning and
interconnection of these regions play an important role in the
navigation process.[14] The hippocampus is involved in the explo-
ration of the environment by maintaining an allocentric repre-
sentation of the state of the environment, while the PPC is
responsible for decision-making or translation of this allocentric
information from the environment into a sequence of motor
actions (egocentric).[14–16]

Regarding this topic, state-of-the-art works can be found in the
literature. Some authors have attempted to develop navigation
systems using spiking but not bioinspired networks, refer other
studies.[17] Others propose fully bioinspired navigation systems
(including all the stages in the process), such as other studies,[14]

which do not present any learning phase and, therefore, the envi-
ronment is hard-coded in a static memory,[8] which is only able to
map three different possible states.

Other works focus on a specific stage of the whole process,
such as environment mapping,[15,18–20] path planning,[7,21–24]

and motor control.[25,26] In general, these works assume that
the previous stages are global and return detailed and complete
information that is complex to obtain in a spiking paradigm.
Moreover, they operate globally rather than locally. Therefore,
the mapping is done on the complete environment, the planning
generates all the steps to reach the target position from the initial
position, and the motor control returns the exact sequence of
movements to follow the complete route. These processes
require very detailed information about the conditions of the
complete environment, and they either are not always available
or require information obtained through these same processes
but locally.

Given these shortcomings and limitations, this article pro-
poses a fully functional spike-based robotic navigation and envi-
ronment pseudomapping system implemented with SNN on the
SpiNNaker hardware platform. This system is capable of navigat-
ing while avoiding obstacles in an initially unknown grid
environment to reach a goal position while mapping the environ-
ment with several possible states for each position. The operation
of this system is achieved thanks to the use of a bioinspired hip-
pocampus memory model capable of generating and maintain-
ing the environment map and a bioinspired PPC model which is
responsible for local decision-making or planning.

1.1. Biological Background

1.1.1. Hippocampus

The hippocampus or hippocampal system is that set of brain
structures, belonging to the limbic system, which receives infor-
mation from the different cortical sensory flows from the neocor-
tex. All this information reaches the hippocampus mainly
through the EC (Brodmann’s area 28) which, at the same time,
acts as its main activity output pathway.[9]

This region is characterized by acting as a short-term memory
able to quickly store input information without following any
structure. This learning and storage occurs with the association
of the different input activity flows by means of an internal
self-associative or attractor recurrent collateral network. As the
input information is received from different cortical sensory
streams, the association of this sensory information forms what

is called a memory or episode. Thus, the hippocampus is
involved in episodic memory.[9,10]

Events stored in the episodic memory lack interpretation or
reasoning and are merely associations of information without
cognitive processing. It is the semantic memory of the neocortex
which gradually builds and adjusts, on the basis of much accu-
mulated information, the semantic or cognitive representation of
events.[9,10]

Furthermore, the hippocampus consists of place cells, which
are neurons that are activated when the subject is in a certain
spatial region (not a specific point, but a specific area). A network
of such neurons in the hippocampus provides a cognitive map of
the entire environment in which the individual is located. This
map stores an allocentric representation of both the environment
and the location of the individual in that environment. It contains
updated and coherent information regarding the state of the envi-
ronment. This means that the hippocampus is involved in the
navigation process through the environment.[9,13,27]

The firing or activation field of the hippocampal place cells or,
in other words, the state of the stored map, can be modified by
both external signals (new sensory information from the environ-
ment) and internal signals (information regarding the individu-
al’s own movement).[13]

1.1.2. Posterior Parietal Cortex

The PPC (Brodmann areas 5, 7, 39 and 40) is an “associative”
cortical region, since it is neither strictly sensory nor motor,
but combines input information from several brain areas
(such as somatosensory, auditory, visual, motor, cingulate, and
prefrontal) and integrates proprioceptive and vestibular signals
from subcortical areas to achieve higher abstraction functions.[28]

This anatomical situation within the brain makes it a very
active region in several cognitive processes such as: sensorimotor
integration, functional memory, imitation of actions observed in
other individuals, early motor planning, transformation of sen-
sory information into decisions and actions, and attention and
spatial navigation, among others.[11,28,29] Among all the cognitive
processes, its contribution to navigation and the generation of
actions based on sensory information should be highlighted.

During the subject’s movement in an environment, PPC neu-
rons fire only when a particular movement or action (turning left,
turning right, going straight ahead, etc.) is performed at particular
(discrete) points along the pathway.[12,13,28,30] In addition, these fir-
ing patterns are modulated from internal information and without
the need for external visual stimuli.[28] These aspects support the
fact that the PPC plays a critical and essential role in the transfor-
mation of spatial information from landmarks based on allocentric
vision (such as that present in the hippocampus) into sequences of
movements based on egocentric (first-person) vision, called naviga-
tional context, which are necessary to reach the goal position.[28,30]

Specifically, the activation of PPC neurons encodes the move-
ments to be performed before they take place and is, therefore,
responsible for the planning and modulation of the subject’s
movements.[11–13] Regarding the internal landmarks, it is worth
mentioning the use of the relative position of the subject’s head
within the allocentric map to determine the movement to be
made to reach the target.[11,28]
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The match-selective neurons present in the PPC are respon-
sible for planning the action or intention to be performed. For
this purpose, they integrate information from sensory streams
together with signals from brain regions involved in more
abstract cognitive processes. These signals contain information
related to internal brain models that identify the characteristics
that are relevant from the point of view of the subject’s behav-
ior.[31] These neurons do not make any decision on the action
to be taken until sufficient information is received.[11]

In short, there are neurons in the PPC that receive the sensory
information of the environment and the expected characteristics
to carry out a certain behavior; thus, when the activation of both
coincide, these neurons are activated, indicating the action to be
performed.

These intentions are segregated in the PPC in such a way that
each region of the match-selective neurons specializes in plan-
ning different actions.[11] In addition, inhibitory neurons are acti-
vated in the PPC between two consecutive decisions[12] to bring it
to a starting state for the following decision.

1.1.3. Hippocampus–Posterior Parietal Cortex Relationship

The availability of a complete map of the environment thanks to
the hippocampal system is not enough to perform spatial behav-
iors. A network capable of converting spatial information into
goal-directed motor outputs is needed for this purpose. This
is where the PPC, which is in charge of transforming the
allocentric representation of the environment stored in the hip-
pocampus and EC into goal-directed movements, comes into
play. The connections between the hippocampus and EC with
the PPC are responsible for supplying the PPC with the spatial
information needed for motor planning.

1.2. Related Work

The navigation process in living beings presents different tem-
porally separated phases of behaviors: environment mapping,
path planning and motor control, or translation of the action into
motor commands.[7,8]

Previous works present spiking navigation systems that cover
these three phases, such as another study.[14] In that publication,
the authors propose a navigation system based on three spatial
frames of reference of the environment (allocentric, egocentric,
and route centric) by means of an SNN that consists of models of
the hippocampus, the PPC, and the retrosplenial cortex.
However, these models are static and do not have any learning
capability. Therefore, they only work for completely predefined
environments that are previously stored in the models.
Furthermore, they are not fully bioinspired models; since,
although they mimic the high-level functionality of these brain
regions, they do not rely on their neural structure and inner func-
tioning to obtain these higher-abstraction functionalities.

In ref. [8], a complete robotic system based on SNN capable of
mapping unknown environments is proposed. Each map posi-
tion is defined by the activation of a single place cell connected
with dynamic synapses to a Border cell in order to detect the pres-
ence of obstacles and also to a Goal cell to mark if it is the target.
Therefore, the mapping of the environment is limited to three

possible states per position: obstacle, target, and none of the
above. It also has other limitations, including the fact that move-
ment planning is limited to avoiding obstacles, and place cells are
created on the fly for each new position that is visited. The latter
behavior makes the system more optimized for representing the
environment, although, at the same time, it moves away from the
biological counterpart.

Other works address a particular phase of the navigation using
SNN and assume the rest as external inputs/outputs.

For environment mapping, the publication by Nagagawa
et al.[15] proposes a system that stores the set of positions to visit
in order to go from the initial position to the target, once it is
located. This has also been addressed by other studies,[18–20]

who developed a spiking system capable of, approximately, deter-
mining the position of the robot and the presence of obstacles to
achieve SLAM.

Regarding the path planning phase, there are numerous works
that focus on it. However, most of them assume that the map is
static, that it has been completely defined previously and that the
map is modeled using a 2D array of neurons, where each neuron
represents a position and synapses represent the possibility of
going from the source position to the target position.

Other works[21,22] apply the wavefront technique both in sim-
ulation and in real environments to define the path between a
source and a target position based on the set of projections that
connect both with the smallest delay. A similar implementation
can be seen in ref. [23] (goal-driven), in ref. [7] with neurons rep-
resenting the points of interest instead of specific positions using
a winner take all network, or in ref. [24] for dynamic maps with
moving obstacles.

Works such as RatSLAM[32] and NeuroSLAM[33] are bioins-
pired in the mammalian spatial cognitive processing and naviga-
tional neural systems to develop SLAM systems. Unlike the
previous works mentioned, they make use of artificial neural net-
work (ANN) and deep learning techniques for the processing of
visual information and odometry data. As a result, these systems
are able to map the environment based on landmarks, achieving
a more complex, robust, and efficient representation than classi-
cal SLAM techniques.

There are variants of these works that make use of the hearing
system instead of vision,[34] applied to 2.5D environments[35] and
even for 3D aquatic environments.[36]

For the motor control phase, Zahara et al.[25] proposed a
closed-loop control system for a robotic arm with an SNN capable
of translating desired actions into motor commands through a
prior learning phase with spike-timing-dependent plasticity
(STDP), although it is not inspired in any brain region. In
ref. [26], the authors design a complete navigation system; how-
ever, it focuses on the deployment of self-organizing SNN to gen-
erate the appropriate motor command given an input of spatially
distributed distance sensors. The system was not able to map the
environment in memory and the path planning is based on fol-
lowing an object detected by the distance sensors.

There are also other works[17] that offer a different approach
using SNN, but they are quite distant from their biological coun-
terpart and are rather focused on ANN techniques. It makes use
of a convolutional neural network (CNN) network to generate the
relevant motor commands via spiking-coded images from
datasets.
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1.3. Main Contributions

The main contributions of this work include the following: 1) A
spike-based bioinspired PPC neural model is proposed to deter-
mine and translate the motor action to be performed based on
current information regarding the state of the local environment.
2) A robotic system based on SNN capable of navigating a grid
environment to reach a target position while avoiding obstacles
and mapping the state of the environment in real time is pro-
posed. The system consists of a spike-based bio-inspired hippo-
campus memory model together with the proposed PPC model.
3) The proposed system is able to store a spiking representation
of the map with the travelled path between a source and a target
position together with information from the surrounding envi-
ronment. 4) The system was first simulated in software and then
implemented on the SpiNNaker hardware platform and tested in
real controlled environments with a mobile robotic platform.
5) The source code is publicly available (see Section 6), together
with the documentation including all the necessary details
regarding the SNN architectures.

The rest of the article is structured as follows: Section 2
presents the Experimental Section used in this work. In
Section 3, the proposed spike-based robotic navigation and
environment pseudomapping system is detailed, including its
architecture (Section 3.1) and its operating principle
(Section 3.2). The experiments performed to evaluate the func-
tionality and performance of the proposed PPC model and the
complete system are explained in Section 4, along with the
results obtained. Then, in Section 5, the results of the experi-
ments are discussed. Finally, the conclusions of the article are
presented in Section 6.

2. Experimental Section

2.1. Spiking Neural Networks

The third generation of neural networks, SNN, is one of the best
alternatives to use when working with bioinspired computational
models. These allow creating networks of neurons that are
inspired in biology and aim to mimic it in order to incorporate
the neurocomputational capabilities found in nature.[37]

The operation and the transmission of information of SNN are
based on spikes, which are asynchronous events that incorporate
the concept of space and time into neural networks through con-
nectivity and plasticity. These networks are very efficient from a
computational point of view, as only the components that are
involved in a specific event that occur at a specific moment of
time (when input spikes are received) operate, due to their asyn-
chronous behavior.[38]

At the biological level, there are a wide variety of models for
each of the basic components that are present in a neural
network depending on the level of abstraction and, therefore,
the level of neurocomputational complexity to be achieved.
Among them, the most widely used one in the state of the
art, the LIF neuron model, was used in this work, which
describes the behavior of a neuron by means of an resistor–
capacitor (RC) circuit with a spike generator.[39,40]

On the other hand, STDP learning mechanisms were also
used.[41] The STDP learning mechanism modifies the weight
of synapses proportionally to the degree of temporal correlation
between the activation of pre- and postsynaptic neurons. When
the presynaptic neuron generates a spike before the postsynaptic
neuron, the activation of the presynaptic neuron is considered to
be related to the activation of the postsynaptic neuron, thus
increasing the weight of the synapse that links them. This pro-
cess is called long-term potentiaton (LTP). In the opposite case,
that is, the postsynaptic neuron generates a spike before the pre-
synaptic neuron, the activity of the postsynaptic neuron is con-
sidered to be unrelated to the activation of the presynaptic
neuron. In this case, there is a decrease in the weight of the syn-
apse between them and the process is called long-term depres-
sion (LTD). The amount by which the synaptic weight increases
or decreases is proportional to the time difference between the
two spikes.

From a mathematical point of view, the weight change for an
STDP synapse formed by presynaptic neuron j and postsynaptic

neuron i, Δwji, is defined by Equation (1), where tfj is the time
instant at which presynaptic neuron j produces a spike f, tni is the
time instant at which postsynaptic neuron i produces a spike n,
andW(x) is the STDP function. The most commonly used STDP
function (also used in this work) is defined in Equation (2), where
Aþ and A� identify the maximum amplitude of positive and
negative weight change, respectively, and τþ and τ� are the time
constants.

Δwji ¼
XN

f ¼1

XN

n¼1

W tni � tfj
� �

(1)

W xð Þ ¼ Aþexp � x
τþ

� �
for x > 0

W xð Þ ¼ A�exp � x
τ�

� �
for x < 0

(2)

Different hardware platforms particularly designed for imple-
menting and simulating SNN can be found in the literature.
Some of the most well-known hardware platforms are
SpiNNaker,[42] Loihi,[43] and TrueNorth.[44]

In this work, we used SpiNNaker as the hardware platform in
which the different SNN models presented were implemented
and emulated. SpiNNaker is a massively parallel multicore com-
puting system, which was designed to allow modeling very large
SNNs in real time. In this work, a SpiNN-5 machine was used,
which consisted of 48 SpiNNaker chips in total.[42,45]

This platform works with a time step of 1ms time unit and
allows the modeling of large SNNs in real time.[46] In addition,
a software package called sPyNNaker[47] allows running PyNN[48]

simulations directly on the SpiNNaker board, making the plat-
form very straightforward to work with, since all the codes
regarding the design and implementation of SNN can be done
using high-level functions described in Python programming
language.

2.2. Robotic Platform

To test the correct operation of the proposed system in a real,
physical environment, a customized robotic platform was used
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(Figure 1). This robotic platform is capable of moving through
the environment, obtaining information regarding the distance
to nearby obstacles in order to detect them and communicating
with other systems wirelessly.

To achieve these functionalities, the platform consisted of a
circular chassis with two motorized wheels, an idler wheel
and an ultrasound sensor mounted on a servomotor to be able
to measure the distance to nearby obstacles in different
directions around the robot without the need to physically turn.
At the electronic level, it contains a Romeo BLE board and an
ESP32 board.

The Romeo BLE board is in charge of managing the robot con-
trol system. On the one hand, it takes distance measurements on
the right, front, and left of the robot through the ultrasound sen-
sor with the help of the servomotor to detect whether or not there
are obstacles in the near environment. This information from the
local environment is then sent to the spiking system emulated in
SpiNNaker for mapping the environment in memory. On the
other hand, it has an integrated H-bridge motor controller to per-
form the motor actions received from the spiking system.

The ESP32 board is connected to the Romeo BLE board and
has a wireless communication module. It is responsible for the
wireless communication between the robotic platform and the
spiking system. It creates an UDP server to which the spiking
system must connect in order to transmit information. This
allows a fast sending data from the Romeo BLE board to the spik-
ing system and vice versa.

As a wireless robotic platform, it requires a portable power
supply. On the one hand, the motors were powered using a
set of 4 AAA batteries, while the rest of the electronic systems
were powered with an external battery.

3. Environment Pseudomapping and Navigation
Model Based on Hippocampus and Posterior
Parietal Cortex

This article proposes a spike-based robotic navigation and
environment pseudomapping system consisting of a bioinspired
hippocampal memory model and a bioinspired PPC
decision-making model that are interconnected with each other
(see Figure 2). This spiking navigation system follows the biolog-
ical principles observed in living beings, where the joint func-
tioning of both brain regions plays a critical and essential role
in this process, as discussed in Section 1.1.3.

The purpose of the system is to be able to reach a goal position
within a grid environment while avoiding obstacles and walls
that may be in the trajectory and, at the same time, map the state
of the explored fragment of the environment in real time. The
hippocampus is in charge of mapping the state of the environ-
ment by maintaining a spiking and updated representation of it
during exploration, while the PPC is responsible for the
decision-making regarding the next action to perform based
on the information obtained from the environment that is
provided by the hippocampus.

The architecture of the models and, thus, of the navigation
system is fully parameterized and depends on the environment
to be navigated and the number of possible states that the envi-
ronment may have. Based on these two variables, the sizes of the
different populations as well as the set of internal and external
connections and interconnections are automatically calculated.

In the beginning, the environment is completely unknown.
The system will map the environment as it is explored and, after
reaching the target, maintain a stored representation of the state
of the regions it has explored to reach that position. However, it is
first necessary to specify the size of the grid in which the envi-
ronment will be divided. This is necessary to define the possible
positions within the environment and, thus, the size of the state
map that the hippocampus model will store. The proposed archi-
tecture does not limit the maximum grid size.

3.1. Architecture

The complete bioinspired spike-based navigation system is
shown in Figure 2. Both the hippocampus model and the
PPC model are detailed in Section 3.1.1 and 3.1.2, respectively.

3.1.1. Hippocampus

The bioinspired spike-based hippocampus memory model is
based on that reported in our previous work.[49] This memory
model is able to learn, recall, and forget memories following a
workflow and structure based on the biological model of the hip-
pocampus. At the input is DG, which is responsible for dispers-
ing input memories and facilitating their storage. Next, DG
connects to Cornu Ammonis 3 (CA3) where recurrent collateral
synapses with STDP are responsible for learning and storing
memories. Finally, CA3 connects to Cornu Ammonis 1 (CA1),
which performs the reverse operation of DG to retrieve the
memory in its original format before exiting the model.

Figure 1. Picture of the robotic platform used for the real-time demonstra-
tion. The relevant components are highlighted: the chassis, the power sup-
ply system, the robot’s control and communication boards, and the
sensors and actuators needed to obtain local information from the
environment.
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A memory is considered to be a pattern of spiking activity
that is fed to the memory model that consists of concatenation
of information from different sources. The information con-
tained in memories lacks prior interpretation, depends on
the source it is provided from, and presents a spatiotemporal
coding. This means that the activity of different neurons at
the same instant belongs to the same memory and that the activ-
ity of the same neuron at different instants refers to different
memories.

The DG population only disperses a part of the memory,
which will be called the cue, while the rest of the memory will
be called the content. Because of this division of the memory,
CA3 includes CA3 neurons to which the cue arrives (CA3cue)
and CA3 neurons to which the content arrives (CA3cont).
Recurrent CA3 collateral synapses connecting CA3cue to
CA3cont use the STDP learning mechanism. For the implemen-
tation of the STDP mechanism, the default values of the hippo-
campal model have been used. Therefore, Aþ and A� have a
value of 6, and τþ and τ� have a value of 3 time units.

When a memory is to be learnt, it is held at the input to the
network for 3 time units, triggering a series of simultaneous
activations of CA3cue and CA3cont and, thus, of the STDPmech-
anism. STDP increases the weight of those synapses that connect
the activated neurons or, in other words, learning and storage of
the memory occur in the CA3 synapses themselves.

When a memory want to be recalled, a fragment of the mem-
ory, the cue, has to be held for one unit of time at the input of the
network. The activity of the cue will reach CA3 which, by prior
learning of the memory, will activate only those CA3cont neu-
rons belonging to the memory identified by the cue.

In case the memory to be learned has the same cue as an
already-stored memory, simultaneous learning and recalling
takes place (the learning of the new memory and the recall of
the previous one). Due to the temporal sequence of spiking activ-
ity that occurs in CA3 as a consequence of these operations, the
STDP is activated by increasing the weight of the synapses that
represent the newmemory and, at the same time, it decreases the
weight of the synapses that represent the old one. In other words,
at the same time as the new memory is learnt, implicit forgetting
of the old one takes place.

Moreover, as in the biological model, since the hippocampus
acts as a short-term memory, its content is forgotten over time
(memory leak). Using the STDP learning mechanism, for each
operation in which a memory is not involved, the weight of the
synapses in which it is stored is slightly decreased. Therefore, if
after a configurable number of memory operations the memory
is not used, the hippocampus model ends up forgetting it, as it is
considered not important. Although the forgetting of the mem-
ory depends on the number of consecutive operations in which it
is not involved, this fact is directly related to the time it has been
stored without being used, hence the reason for calling it a tem-
poral forgetting mechanism.

The memories that the hippocampus model learns, recalls,
and forgets take a position in the environment as a cue and
the state of the environment at that position as the rest of the
content. Taking these considerations, the memories would rep-
resent maps of the state of the environment in which the subject
is located. Following the biological basis, the hippocampus
model acts as a short-term memory that, thanks to the use of
place cells, is able to maintain an allocentric representation of
the map of the environment in which the subject is located.[14]

Place cells would be responsible for storing memory cues.

3.1.2. Posterior Parietal Cortex

The proposed computational model of the PPC is based on the
biological basis presented in Section 1.1.2. The characteristics of
this region make it an ideal reference point for decision-
making,[50,51] this is, local planning and the generation of the
robotic system’s movements. By local planning, it is meant that
the system decides, based on the information of the local state of
the environment, what is the next action to be performed in order
to reach the target position.

As shown in Figure 3, to perform this task, the PPC takes the
time-coded local environmental state information, the combina-
tion of information (the state of the local positions) over
time during the planning phase, from the hippocampus
(Match IN), and a signal that identifies the start of the next
decision-making (Searching) operation as input. From this allo-
centric information of the environment, the model returns the

Figure 2. Architecture of the pseudomapping and navigation model proposed. The blocks that correspond to the architecture are framed with a dashed
line, which consists of the hippocampus model and the PPC. The architecture is parameterised in size through memSize (size of the memory, equivalent
to the number of states plus the number of neurons needed to encode in binary all the positions of the map), numValidState (number of states indicating
that the remembered position is traversable), and numCommands (number of motor commands that the PPC can generate). All the interconnections
between these blocks are excitatory, static, and parameterized according to the environment in which it will be used.
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next motor command (egocentric information) to be performed
in order to achieve the goal.

As shown in Figure 4, the signal that marks the beginning of
the decision-making process (Searching) connects to the popula-
tion of Delay neurons. This population consists of a set of neu-
rons connected in a chain that is responsible for propagating the
input signal with a certain delay. There is a time difference
between the start of the decision-making process and the input
of the first signal corresponding to the state of the first position of
the local environment. As a consequence, the Delay population
has an InitDelay input neuron with a different time delay than
the rest, which aims to correct this time difference.

Each Delay neuron is connected to a single match-selective
neuron. Thus, the population of Delay neurons would act as a
selector for a single match-selective neuron for each time
window. The time that elapses between the selection of one

match-selective neuron and the next depends on the propagation
delay of synapses in the Delay neuron chain.

When the decision-making process starts, the possible states
of interest of the different positions of the local environment of
the robotic system arrive to the population of match-selective
neurons encoded in time. In other words, the network receives
a set of inputs that identify the different states that are taken into
account in a position to plan the next motor command.With time
coding we mean that the activation of these signals at different
time instants identifies different positions within the local
environment.

The time delay in signal transmission used in the Delay pop-
ulation is the same as the time taken between the temporal state
encoding of one position and the next. When the activation of
both temporal inputs coincides, a specific match-selective neuron
is activated. As each match-selective neuron encodes a single
motor command, it is these neurons which, when activated
due to the sensory information from the local environment, indi-
cate the action to be performed.

In addition, the model presents a population of interneurons,
INH, which inhibit the neurons of the match-selective popula-
tion and receive an excitatory input from the last neuron of
the Delay population. Therefore, the function of these neurons
is to regulate the output activity of the model, leaving the match-
selective neurons in a resting state between one decision-making
and the next, as observed in the biological basis. The rest of the
synapses in the model are excitatory.

Figure 3. Block diagram of the PPC model including parameterized inputs
and outputs. The Searching input signal indicates the start of the motor
command planning process whose signal will be propagated internally
over time. Match IN are the input signals in which the activation of
any of them in conjunction with the Searching signal determines the com-
mand to perform, that is, the motor command output.

Figure 4. Internal structure of the PPC model. It consists of four populations of neurons: InitDelay, Delay, INH, and match-selective. The InitDelay and
Delay populations act as delayed propagators of the input signal, the match population determines whether the Delay activation matches the inputs,
indicating the action to be performed, and the INH population is responsible for regulating the output activity of the network. Synapses denoted with
black arrows are excitatory and those presented with red arrows are inhibitory.
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3.2. Operating Principle

The proposed spike-based robotic system is bioinspired in the
navigation system formed by the hippocampus and the PPC.
This system enables the navigation of the robot through a grid
environment, initially unknown, to reach a goal position avoiding
possible obstacles that may appear in the trajectory. At the same
time, the system performs a pseudomapping of the state of the
environment, allowing to know the current local environment
traveled so far in order to determine the actions or motor com-
mands to be performed to reach the goal.

The term pseudomapping is used for two main reasons. The
first reason is that the system does not traverse the environment
to map it completely: it obtains a map with the state of the frag-
ment of the environment that has been traversed to reach the
target position. This map is formed by the combination of the
local mapping performed at each position of the trajectory in
order to plan the next motor action. The second reason is that
the environment is not mapped based solely on the presence
of obstacles and targets, as the mapping also considers the input
of more complex states obtained by brain systems with higher
abstraction functions.

For this purpose, the operation of the system is divided into
iterations. In each iteration, the systemmaps the state of the local
environment and, based on this information, determines the
next action to be taken. Each of these processes is explained
in detail below.

3.2.1. Local Environment Mapping

State Map: The bioinspired hippocampal memory model would
be responsible for maintaining the map representation with the
state of the environment traversed so far. Each position of
the map is represented by the activation of a single PC and,
in this model, only one PC is activated simultaneously thanks
to the internal mechanism of input information dispersion.[49]

The activation of the PC will be used as a cue to the memory
to be learnt and stored, while the remaining content of the mem-
ory corresponds to the possible states that these positions may
have.

The PCmap stores a total of eight possible states per cell. Each
PC (i.e., each position on the map) will be associated with the
activation of a single state. The main states are: obstacle, goal,
free (nonobstacle), start position, and unexplored. The remaining
three (step in path, crossroad, and dead end) are derived from
these five and are discussed in more detail.

The unexplored status is used to identify those regions that
have not been explored yet. The states referring to the presence
or absence of obstacles are given by the activity input from
boundary cells present in the entorhinal cortex. These neurons
are activated when boundaries are detected in the environment
either in the form of vertical surfaces or falling edges, that is, in
the presence of obstacles.[52] On the other hand, the goal state is
given by the activation of goal cells present in the prefrontal
Cortex. These neurons are activated when facing a position that
corresponds to the goal.[8]

The activity of boundary cells and goal cells also reaches other
brain regions with higher levels of abstraction functions. In these

regions, information is converted into knowledge, as occurs in
the semantic memory.[9] These areas would be responsible
for the activity related to the remaining states that are stored
in the positions of the environment map: step in path, crossroad,
and dead end.

The step in path state indicates that that specific position is a
position that has either been passed through or, after the
decision-making phase, established as the next position in the
path. The crossroad state identifies a position that has been
passed through and where there is at least one additional
obstacle-free neighboring position in addition to the one taken
in the current path. This state is useful when backtracking during
navigation after having encountered a dead end in the path to the
goal. Finally, the dead end state indicates which positions that
have been traversed lead to dead ends in the trajectory to reach
the goal position.

The main states (obstacle, goal, free, start position, and unex-
plored) are determined internally in the network, while the states
derived from them (step in path, crossroad, and dead end)
require higher processing. Since the aim of this system is not
to compute the most complex states present in biological sys-
tems, they are processed externally to the network and fed into
the memory afterward.

Implemented Functionality: In the first phase, the system
obtains from the real environment the state of the three neigh-
boring positions (right, front and left) with respect to the current
position of the robot and stores them in the hippocampal mem-
ory. To obtain the neighboring positions, the system combines
the orientation and the current position of the robot. The orien-
tation would come from the head direction cells[52] and the posi-
tion would come from the hippocampal place cells.[8]

The possible states of the real environment that reach the hip-
pocampus would be position with obstacle, position without
obstacle, and target, as the remaining states would come from
further processing. The only exception is the initial position state,
which is manually specified in the system in the beginning of the
simulation to position the robot within the environment. This
information also reaches the PPC where the decision-making
phase takes place.

All learning operations applied on the hippocampal memory
during the local mapping phase are performed with reinforce-
ment. The hippocampal memory has a forgetting mechanism,
which leads to forgetting information that has not been accessed
after many consecutive operations. Therefore, as the environ-
ment is being navigated, the system will work with nearby loca-
tions, while distant ones will be in danger of being forgotten, as
they have not been used for several operations. Reinforcement
learning consists of a learning operation followed by a recalling
operation of the same memory in order to store it for a much
longer time.

3.2.2. Decision-Making

In this phase, the PPC performs local decision-making and plan-
ning, that is, determining which motor action to perform in
order to reach the goal based on the surrounding environment.
In this way, the output of the hippocampal memory is connected
to the input of the PPC. Specifically, the signals from

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 2300132 2300132 (8 of 17) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300132 by U

niversidad D
e Sevilla, W

iley O
nline L

ibrary on [07/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


hippocampal states of interest that are passed to the match-
selective neurons of the PPC are: goal, step in path, and cross-
road. This means that the system will determine the motor
actions needed in order to reach the positions that present only
those states.

By default, the behavior of the system is to search for the next
position to reach the target (default behavior). To do so, it obtains
the state information of the positions local to the current one
from the hippocampus. If any of the neighboring positions pres-
ent any of the states of interest, the PPC generates the motor
action needed to reach it. At the same time, if the current position
has more than one neighboring position without obstacle, its
state would be updated to crossroad.

If no motor action is generated (no goal, step in path, or cross-
road states found in its local environment), a global planning that
is external to the network would be called to determine, from all
the nonobstacle positions around the current one, the closest to
the goal based on the Manhattan distance, and its state would be
modified in memory to step in path. In the next iteration of the
system, the PPC should find at least one position with a state of
interest.

When checking the positions, if it is completely surrounded by
obstacles except for the previous position through which it
arrived at the current one, it means that it has encountered a dead
end. In this case, the system would switch to a backtracking
behavior. In this behavior, the system would turn around and
start backtracking until it encounters a position with crossroad
state. Since it is a crossroad, this position will have at least
one other possible neighboring position with no obstacle; thus,
the system will again continue to search for a path to the target
starting from there. While performing the backtracking, it
changes the step in path positions to dead end and the crossroad
positions that do not have any unexplored neighboring positions
with no obstacles to step in path.

The system will finish its operation when reaching the target
position.

4. Experimentation and Results

A set of experiments were performed to demonstrate the correct
functioning of the system.

For the case of the memory model, several experiments were
performed in a previous work that validated its operation.[49] In
this article, it was implemented with the sPyMem Python library
(https://github.com/dancasmor/sPyMem).

After that, an incremental experimentation focused on the
whole system was performed. These experiments consisted of
the navigation and mapping of a set of virtual grids of different
sizes and with different distribution of obstacles. In these virtual
environments, the robotic system was not used, and, therefore,
data inputs from the environment were simulated and given as
input to the system.

Initially, the robotic system was evaluated on the navigation
andmapping of small environments with few obstacles as a proof
of concept. Subsequently, after demonstrating its operation in
simple environments, larger environments with more strategi-
cally placed obstacles were used in order to test the system in
different situations. After deeply evaluating the system in a

virtual environment, a demonstration was performed on a phys-
ical environment using the robotic system described in Section 2.

All experimentation on the complete system in both virtual
and real environments took place in real time and on a 2D plane.
Due to these characteristics of the environment, a total of four
motor actions are sufficient to move the robot through it, or,
in other words, a total of four match-selective neurons in the
PPC model are needed to cover the spectrum of possible motor
actions. These actions would be: moving up, down, left, and
right.

To determine the motor action to be performed, a recall of the
states of the neighboring positions is configured in such a way
that the order of the input positions’ state to the PPC is: up, left,
down, and right. In addition, the PPC model is defined with a
delay in the propagation of the onset signal of the decision-
making phase equal to the time it takes to perform a recall in
the memory model. By taking both considerations, the
activation of the four match-selective neurons will indicate the
motor actions required for moving up, left, down, and right,
respectively.

In addition, for these experiments, a numerical code is used to
represent the states of the positions. This number represents the
id of the hippocampal memory neuron whose activity encodes
that particular state.

4.1. PPC Proof of Concept

This experiment is a proof of concept to demonstrate the correct
functioning of the PPC model. For this purpose, a PPC model
capable of reacting to two possible input states (INmatchPPCi)
and, from them, generating four possible motor actions
(Matchi) was developed. This model has a signal propagation
delay of 7 ms within the Delay population and 9ms as the initial
delay (InitDelay). In other words, it takes 9ms from the begin-
ning of the decision-making phase to the arrival of the state of the
first position and a time of 7ms between state arrivals of the
remaining consecutive positions.

The test consists of carrying out four decision-makings, in
each of which a different action is determined by the arrival
of one of the two states of interest. Specifically, the model should
select the first (upward), second (left), third (downward), and
fourth (right) actions for the first, second, third, and fourth
decisions, respectively. Following the analogy discussed at the
beginning of the section, the inputs from the states of interest
will arrive temporarily in the following order: up, left, down,
and right.

Figure 5 shows the input and output spiking activity of the
model, as well as the spiking activity of each neuron of each inter-
nal population of the network that is activated as a consequence
for every time step of the simulation.

The first decision-making (ms 1) starts with the arrival of a
spike from the INsearchingPPC0 input. This spike will trigger
the activation of the Delay population input neuron, InitDelay,
at ms 2. This neuron starts the propagation of the input signal
along the Delay neuron chain. The first activation, Delay0, occurs
at ms 11 after 9ms of delay, while the remaining neurons in the
chain (Delay1, Delay2, and Delay3) will be activated every 7ms
(ms 18, 25, and 32, respectively). This temporal deviation
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between the activation delay of the first neuron and the remain-
ing neurons is necessary to correct the temporal differences that
exist between the beginning of the decision-making process
and the arrival of the state of the first position of the local
environment.

At the same time, at an instant in the decision-making pro-
cess, one of the two inputs related to the states of interests
for the position being evaluated will be activated. The activation
of any of the two is sufficient to select the action to be taken.
Specifically, for the first decision-making, the input of the first
state of interest, INmatchPPC0, is activated at ms 11. It coincides
with the activation of the first neuron of the Delay chain, Delay0.
The first match-selective neuron, Match0 is then activated at ms
12. In other words, the action of moving up is selected, whose
decision will reach the output population of the model at ms 13.

After the activation of the last neuron of the chain in the Delay
population (Delay3) at ms 32, the decision-making phase is fin-
ished. Therefore, this activity is then propagated to the inhibitory
interneuron Inh0, whose activation at ms 33 will inhibit the
match-selective neurons in order to prepare them for the next
decision-making.

What was described for the first decision-making occurs for
the following ones at ms 51, 101, and 151 respectively. The signal
of the first state of interest (INmatchPPC0) is activated for the
second decision-making at ms 68 and the signal of the second
state of interest (INmatchPPC1) for the third and fourth
decision-makings at ms 125 and 182, respectively. This activity

coincides in time with those of the Delay1, Delay2, and Delay3
neurons, respectively, leading to the activation of the Match1 (ms
69), Match2 (ms 126), and Match3 (ms 183) neurons. This acti-
vation of match neurons results in the selection of the second
action for the second decision-making, the third action for the
third decision-making, and the fourth action for the fourth
decision-making, as reflected in the population external to the
PPC model (OUTi) at ms 70, 127, and 184, respectively.

With this experiment, the correct functioning of the model in
the selection of the motor actions for the different possible input
conditions in the decision-making process was verified. For each
decision-making process, the model was able to generate the
expected motor commands after providing the given data inputs.

4.2. 4� 4 Grid Map Simulation Experiment

This is the first experiment with the complete system on a virtual
grid environment of 4� 4 size, that is, a total of 16 positions dis-
tributed in 4 rows and 4 columns. The environment presents a
single obstacle strategically placed on the trajectory taken by the
robotic system in the ideal case with no obstacles within the same
environment (see Figure 6a).

Initially, the system will learn the initial and target positions
(Figure 6b). The virtual robot will initially be oriented downwards
and, according to this map, start at position 3. After that, the iter-
ative execution of the proposed system will start. In each itera-
tion, the system begins with a local environment mapping phase

Figure 5. Internal and external spiking activity of the proposed PPC model during a proof of concept test for the four possible motor commands. Each
point represents the activation of a neuron (Y axis) at a given time instant (X axis). The plot is divided into four parts, each demonstrating the selection of a
different motor command. Each part starts with the activation of the decision-making signal (INsearchingPPC0), which is propagated along each neuron
of the Delay population with a certain delay. When the activation of any of the input signals of interest (INmatchPPCi) coincides with the activation of a
Delay neuron (Delayj), the corresponding match neuron (Matchj) is activated and, thus, a motor command (OUTj) is selected.
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in which measurements of the local environment will be taken to
determine whether or not there is an obstacle around the current
position.

The real-time spiking activity of the system during this phase
in the first iteration is shown in Figure 7a. The local environment
of the robotic system will be formed by the three surrounding
positions, that is, right, front, and left. As the robot starts at
position 3 looking down, its immediate right position would
be 2, the front would be 7, and the left would be 4. For all of
them, the state is an obstacle-free position, as there is only
one placed at position 11.

For each position, a state learning operation with reinforce-
ment is performed, that is, a learning operation followed by a
recalling operation of the same memory. The memories will con-
sist of the position they encode as a cue and the state of that posi-
tion as content.

With these considerations in mind, in Figure 7a, the learning
and recalling operations of the state of position 2 are observed.
Learning is characterized by the activation of neuron 1 of the
memory cue population (MemCue1), encoding position 2 in
binary, and neuron 5 of the memory content population
(MemCont5), encoding the obstacle-free state, at ms 142 and
145. For the recalling operation, the position is passed as a
cue (activation of MemCue1) at ms 176 leading to the recall
of the state of that position (activation of MemCont5) at ms 177.

The same occurs for the remaining neighboring positions at
ms 207–243 for position 7 (MemCue0, 1 and 2) and ms 272–307
for position 4 (MemCue2), with an obstacle-free state or activa-
tion of MemCont5.

For the learning operations, the memory must receive the
input memory for three consecutive time units. However, only
the first and third input stimuli affect the memory; the second
input spike is ignored by neurons due to their refractory period.
Considering this, for the first operation, for example, if the first
spike occurs at ms 142, the next one should be at ms 144. Since
the system is working in real time, it may not reach the exact
precision of 1ms between signal transmissions and it may arrive
1ms later, as in this first learning operation. However, the mem-
ory is sufficiently consistent, to ensure that it does not pose a
problem and can function correctly even in these cases, as
demonstrated by the correct recall of the stored memory during
reinforcement learning.

After this, the decision-making phase takes place, in which the
next action to be taken to reach the goal position will be deter-
mined or, if there is no neighboring position with the step in path
state, the most suitable position for being the next in the path will
be selected.

In the first iteration, the system is surrounded by free neigh-
boring positions, but none of them has the step in path state (see
Figure 6b). By means of Manhattan distance, positions 7 and 2
are the closest to the target. As there are more than one option, by
default, the system will choose the position that reduces the
distance on the vertical axis, that is, position 7. At the same time,
since the current position (position 3) has more than one
possible path to the target, its state will change to crossroad.
Both learning operations with reinforcement are reflected in
Figure 7b.

Both learning operations with reinforcement are shown at ms
474–509 for position 7 with the step in path state (activation of
MemCont3) and at ms 539–573 for position 3 with crossroad
state (activation of MemCont4). Both state changes lead to for-
getting the previous state of those positions in order to learn
the new ones, as denoted by their last recall at ms 475 and
540 for position 7 and 3, respectively.

The activation of the PPC outputs at ms 476 and 541 is due to
the input activity saturation corresponding to reinforcement
learning operations on states of interest, as a constant excitatory
input is supplied 2–3 times in a row from which only a single
arrival is expected at most.

After that, the first iteration would end and the second one
would follow. In its decision-making phase, there is a next posi-
tion in the trajectory to follow; therefore, the PPC generates the
motor action necessary to reach it. As shown in Figure 7c, the
phase starts with the recall of the state of the local environment
at ms 778. When MemCont3 (step in path state) related to posi-
tion 7 arrives at the PPC at ms 809, PPC’s output 2 is activated at
ms 811. This output corresponds to the motor action of moving
down (continuing forward) one position with respect to the cur-
rent one.

In short, in the first iteration, the local environment is mapped
and the next position to be visited is decided, while in the second
iteration the motor command to reach that position is generated.
In other words, with this pair of iterations, a step is taken on the
path to the goal.

Figure 6. State maps of the environment for the 4� 4 grid map experiment: a) showing the location of the obstacle that the system must avoid; b) at the
beginning of the simulation with the start and goal positions; and c) after finishing the simulation when reaching the target.
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In iterations 3 and 4, the system is at position 7 and detects the
obstacle at position 11. This is recorded in the hippocampal
memory. The system does not consider that position as the next

step in the trajectory and the PPC ignores that position as it has a
state that is not of interest, that is, the position has an obstacle.
Therefore, the robotic system successfully avoids it.

From here on, the system will constantly repeat this pair of
iterations until the goal is reached at iteration 9. The map of
states of the environment stored in the hippocampal memory
after reaching the goal can be seen in Figure 6c.

With this experiment, the common operation flow of the com-
plete system is described. At the same time, the correct operation
of the system is verified for a 4� 4 grid environment with a sim-
ple obstacle in the trajectory, being able to travel from the source
position to the target position avoiding the obstacle and mapping
the environment around the trajectory.

4.3. 6� 6 Grid Map Simulation with Short Backtracking
Experiment

In this second experiment regarding the complete system, the
aim is to test it in a more complex environment than the previous
one in terms of size and number and distribution of obstacles.
The system will navigate through a virtual grid environment of
6� 6 size, that is., 36 positions. In this environment there are a
total of six obstacles strategically placed on the trajectory that the
robot would take to reach the goal if no obstacles were present. In
this case, the obstacles (see Figure 8a) will lead the robot to a
dead-end, where a backtracking mode that was not needed in
the previous experiment and that allows the robot to go
back to the first crossroad and look for another possible path
is used.

The system starts the experiment knowing its initial and target
position (Figure 8b). Following its default behavior, every two
iterations it advances one position in the environment while
mapping the state of the neighboring positions. The sequence
of positions and actions that the system performs is as follows:
position 3 (left), position 4 (right), position 10 (left), position 11
(right), position 17 (left), position 18 (right), and position 24. This
way, the robot followed this sort of “ladder movement” to try to
reach the goal since, every time it tried to maintain a direction, it
encountered an obstacle. During this path, the system mapped
positions 5, 12, 23, and 30 with the obstacle state (MemCont6
activation), positions 4, 11, 18, and 24, with the step in path state
(MemCont3 activation), positions 3, 10, and 17 with the cross-
road state (MemCont4 activation), since they allowed more than
one possible path to the goal, and the remaining positions sur-
rounding the followed path that had no obstacles were assigned
the obstacle free state (MemCont5 activation). When position 24
is reached, the system does not find any position in the local envi-
ronment that is free of obstacles, that is, it reached a dead-end. At
this point, the system starts its backtracking mode. In this mode,
the system turns the orientation of the robot’s head by 180°. In
other words, the robot turns around and begins to follow the
path it previously took in search for a position with crossroad
state. A position with this state means that there is at least
one other free position in its local environment that has not been
explored yet.

In this way, the system turns around and moves forward
through position 18 until it reaches position 17. This backtrack-
ing consists of following the positions of the local environment

Figure 7. Spike activity of the proposed pseudomapping and navigation
model during the 4� 4 grid map experiment: a) in a local environment
mapping phase during the first iteration; b) when selecting the next posi-
tion to move to in order to reach the goal during the first iteration; c) in the
decision-making phase during the second iteration. Each point represents
the activation of a neuron (Y axis) at a given time instant (X axis). The
spikes generated by the PPC are shown in green, those generated by
the part of the memory in charge of the memory cue are represented
in blue, and those corresponding to the part of the memory in charge
of the rest of the memory content are displayed in red.
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with step in path state that are already mapped in the hippocam-
pal map representation. Therefore, to step through each position,
only a single iteration is required: in the same iteration the
state of the local positions is recalled and the PPC generates
the necessary motor action to proceed. At the same time, all
the positions traversed until reaching the one with the crossroad
state are marked with the dead-end state (activation of
MemCont7) to indicate that these positions only lead to dead-
end paths.

At position 17, the system returns again to the default behavior
mode, continuing its search for the next position toward the tar-
get, giving preference to those positions that have not been vis-
ited yet. When passing through position 17 again, as it has only
one possible position left to continue that was not visited, its state
is changed from crossroad to step in path. Following the default
mode of operation by pairs of iterations, the system reaches the
target position at iteration 28. The state map of the environment
stored in the hippocampal memory after the simulation can be
seen in Figure 8c. Position 14 is not marked as a crossroad
because the system reaches the target position and terminates
the execution, and therefore it does not update the position.

This experiment demonstrates the correct behavior of the sys-
tem in a larger environment and with a more complex obstacle
placement, forcing the robot to temporarily switch to backtrack-
ing mode, where it stays for a couple of iterations until reaching a
crossroad position.

4.4. 6� 6 Grid Map Simulation with Long Backtracking
Experiment

In this experiment, the system navigates through a virtual envi-
ronment of 6� 6 size with a large number of obstacles than in
the previous experiment. These obstacles (see Figure 9a) prevent
the system from reaching the goal through the set of ideal short-
est paths (right side of the environment). The system goes
around these obstacles, traversing almost the entire environ-
ment, in order to reach the goal position.

At the beginning, the system follows the same sequence of
actions as in the previous experiment. The difference is present
when reaching position 17 after backtracking, where it continues
its trajectory through position 16 and arrives at position 22,
where the system again encounters another dead-end. Unlike
in the previous experiment, the backtracking path it has to per-
form involves more iterations and backtracking movements.
Specifically, it completely explores the whole right part of the
environment until it returns to the initial position. In this pro-
cess, the dead-end state is assigned to all the positions in that
region.

After that, it takes the path to the left side of the environment
despite moving away from the goal, in order to explore other pos-
sible paths that will allow the robot to reach it. On this path, it
avoids the central obstacle wall until reaching the goal position
without further problems. After reaching this position, the

Figure 8. State maps of the environment for the 6� 6 grid map with short backtracking experiment: a) showing the location of the obstacle that the
system must avoid; b) at the beginning of the simulation with the start and goal positions; c) after finishing the simulation when reaching the target.

Figure 9. State maps of the environment for the complex 6� 6 grid map experiment: a) showing the location of the obstacle that the system must avoid;
b) at the beginning of the simulation with the start and goal positions; c) after finishing the simulation when reaching the target.
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hippocampal memory presents an almost complete state map of
the environment containing the shortest path between the initial
position and the goal (see Figure 9c).

This demonstrates the correct operation of the complete sys-
tem in both default and backtracking behavior, as well as its abil-
ity to map the environment, even in complex and relatively large
environments.

4.5. Real-Time Demonstration Using a Robotic Platform

The previous experiments demonstrated the operation of the sys-
tem in virtual environments, simulating the inputs and outputs.
This experiment was performed in order to prove the operation
of the whole system in a real scenario. A real-time demonstration
of the system operation in a real physical environment was devel-
oped using the robotic platform described in Section 2.

For this experiment, the same grid as the one used in the
“4� 4 grid map simulation experiment” was used. Therefore,
the same initial and goal positions in a 4� 4 grid environment
and a single obstacle placed in the path of the robot toward the
goal were used (see Figure 10). In order to prepare this
environment, the physical space was divided into cells of 30� 30
centimeters, resulting in an environment of 120� 120 cm.

The SpiNNaker hardware platform is used to run the SNN
formed by the hippocampal memory and the PPC. The Next
Unit of Computing (NUC), an Intel’s mini-computer with large
computing capabilities and small size, acts as the core system to
launch the network simulation on SpiNNaker and manage the
iterative execution of the system and the communication

between the network and the robotic platform. This communi-
cation consists of passing the information related to the presence
or absence of an obstacle in the local environment obtained from
the robot to the SNN implemented in SpiNNaker and the
response from SpiNNaker with the motor action generated by
the PPC to the robot in order to execute it.

After the experiment was finished, the robotic platform was
able to reach the target position while avoiding the obstacle.
The spiking system generated exactly the same spiking activity
and map as in the 4� 4 grid virtual environment that used
the same configuration. In short, the operation of the system
was demonstrated not only in ideal virtual environments, but
also in physical and real case environments.

A recording of this experiment is available, with annotations of
what happens at each moment. This video can be found in the
repository indicated at the end of Section 6.

5. Discussion

The set of experiments performed demonstrated the decision-
making capacity of the PPC model to generate the motor actions
from the state inputs of the different positions in the local envi-
ronment. On the other hand, they proved the operation of the
complete system in different environments, both virtual with
simulated inputs and physical with a robotic platform in a real
case scenario. In addition, these experiments were used to test
the system progressively in environments whose complexity
ranged from lower to higher, varying the size of the environment
and the number and disposition of the obstacles in it.

Each experiment on the complete system was used to explore
different situations where its ability to adapt to the environment
was demonstrated, both in navigation to reach the goal by detect-
ing and avoiding obstacles and in the mapping of the explored
environment. In the first experiments, since the environments
used were simple, the system barely explored and mapped half
of it. On the other hand, in the last experiment consisting of a
virtual environment, the system mapped almost the entire envi-
ronment due to its level of complexity and the need to search for
alternative paths to reach the goal position.

The hippocampal memory model shows a certain degree of
forgetting for each operation performed (memory leak).[49]

This forgetting factor could be adjusted, by modifying the
STDP parameters, to add a temporality factor to the validity of
the information. In this way, local and more recent information
would be retained for longer, while information from more dis-
tant positions in both time and space would be forgotten, that is,
they would lose validity. This mechanism would allow the system
to reinforce its performance in dynamic environments. When
navigating through already visited positions that were forgotten,
the system will map them again.

From a bioinspired point of view, the biological basis of the
PPC (Section 1.1) describes in broad outline the functions in
which it participates, as well as some of the internal structures
that form it. When designing and developing the proposed PPC
model, we tried to make it as close to these bases as possible.

In the biological model, the PPC actively participates in the
navigation process by transforming a sequence of allocentric
information from the hippocampus into a sequence of egocentric

Figure 10. Environment used for the real-time demonstration with the
robotic platform. It contains the grid map with the source and target posi-
tions of the simulation, the obstacle, and the necessary hardware systems.
These hardware systems are the robotic platform, the SpiNNaker board,
the computer (NUC) that keeps the whole system running, and the router
needed to interconnect the computer with SpiNNaker.
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information, such as action sequences. On the other hand, the
proposed model takes the information of the state of the local
environment (i.e., the surrounding positions) as input to deter-
mine the egocentric motor action (turn right, turn left, up and
down) to be performed in each iteration. In addition, the local
environment state information comes from an allocentric repre-
sentation of the environment via a map stored and managed by
the hippocampal memory model.

The PPC model generates motor actions at each iteration
(or pair of iterations), where each iteration represents the loca-
tion of the system at a different position within a discrete envi-
ronment. In other words, the PPC generates motor actions at
discrete positions as in the biological model.

At the structural level, in the biological model of the PPC,
match-selective neurons can be found. Each set of these neurons
is responsible for generating a specific motor action based on the
information coming from sensory flows and the flow of brain
regions with more abstract cognitive processes. Similarly, the
proposed model presents a population of match-selective neu-
rons, each of which is responsible for generating a specific motor
action. This population determines the action to be performed
based on the information from the states of interest of the local
positions where the system is located. States derive directly from
external sensory information or from the processing of these.

Although the state of the positions directly come from the map
constructed in the hippocampal memory, the information with
which these states are assigned comes both from the sensory
flow (absence or presence of obstacles, target, etc.) and from
regions with more complex cognitive processes (step-in-path,
dead-end, etc.). In addition, the proposed model presents a pop-
ulation of inhibitory interneurons that are responsible for reset-
ting the state of the match-selective neurons (which is also
present in the biological model) after each iteration.

The biological model of the hippocampus indicates that it acts
as a short-term memory and is also capable of maintaining an
allocentric representation of the environment. This representa-
tion is achieved by place cells, which are neurons that are acti-
vated when the mammal is in a certain position in the discretized
environment. In the proposed system, the hippocampus acts as a
memory capable of storing memories that form an allocentric
representation of the environment. This is achieved by consider-
ing that memory cues encode the activity of the place cells
(the positions in the environment) and that the content repre-
sents the possible states of those positions.

As discussed in Section 3.2.1, the states of positions come
from neurons and brain regions whose activity is received at
the hippocampus. The states related to the presence of obstacles,
absence of obstacles, initial position, and goal come from the bor-
der and goal cells, while the states of step in path, crossroad, and
dead-end would come from those brain regions involved in more
abstract processes, such as semantic memory.

The complete system presents a default behavior when search-
ing for new positions that bring it closer to the goal and a back-
tracking behavior in which it searches for new possible paths for
reaching the goal position. This has also been observed in biol-
ogy. Authors in ref. [13,14] indicate that the functioning of the
PPC and the hippocampus is sensitive to the general behavior
of the individual. It is therefore plausible that, during navigation,

depending on the individual’s situation, one behavior or another
is adopted in these brain regions.

However, there are some aspects of the model that are not
similar to its biological counterpart. There is a set of features
yet to be implemented by SNN that are beyond the scope and
purpose of this work. The mapping of the local environment
and the local decision-making or path planning are performed
by the proposed spiking network. The management signals of
the system iterations, the global planning (deciding which is
the closest position to the goal by Manhattan distance of those
found with the local environment mapping), and the communi-
cation with the robot are external to the spiking network.

The bioinspired nature of the proposed system comes from its
inspiration in the brain regions of the hippocampus and the PPC,
not in the application of ANN-to-SNN conversion methods, as in
ref. [17] The proposed system has not only been simulated in
software and on ideal environments as in ref. [8,15], but also
on more complex environments and, in addition, on a robotic
platform in physical environments.

Regarding the environment, the proposed system initially
knows nothing about the environment except the initial and goal
position. Throughout the simulation, the system maps the envi-
ronment through a continuous learning process. Therefore, it
does not work with completely known and previously mapped
environments where no learning is involved, as in ref. [14,24],
or those that focus only on path-planning and, therefore, assume
that they can access the status of the entire map, such as in other
studies.[7,21–23]

The hippocampus model is responsible for cumulatively stor-
ing the result of the local mapping, resulting in a pseudomap-
ping of the environment, while in refs. [26] the mapping
result is not stored, but immediately used for local planning. This
map presents different states beyond the presence of obstacles or
not and the goal position, as in refs. [8,15,18]. In addition, the
system reacts to the environment by avoiding obstacles and
reaching the goal, not merely circling around the environment
avoiding obstacles or even ignoring them as in refs. [8,15].

The proposed system does not present a global planning algo-
rithm achieved with SNNs like those proposed in ref. [7,21–24].
However, these techniques necessarily require knowledge of the
entire environment and additional information that is some-
times difficult to obtain. In ref. [18–20] the authors propose
SNN models to approximately determine the position of the
robot in each iteration of the system to achieve a SLAM, while
the proposed system requires external signals to control the posi-
tion in each iteration. Moreover,[8,15,18] a more bioinspired posi-
tion state input system than that of the proposed system is used.

Finally, the system presents two time-dependent tasks. On the
one hand, when the state information of the robot’s position
reaches the hippocampus, the input data to the hippocampus
must remain in the input for three units of time. However, in
case the data cannot be kept three time units in a row at the hip-
pocampal input, the hippocampus model allows up to five time
units difference between two consecutive inputs. In case of larger
time differences, the behavior of the system may differ from the
expected, as the learning of the memory (state of the environ-
mental locations) will result in an activation of the STDP with
a lower synaptic weight variation. This implies the possibility that
thememory may not be learnt well or may only be partially learnt.
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On the other hand, when the state information of the local
positions reaches the PPC, given a specific time configuration,
it is expected that the time constrains mentioned before will
be respected. That is, given an initial time of x time units until
the arrival of the first state and a time between subsequent con-
secutive state inputs of y time units, the PPC will function cor-
rectly when the inputs reach it at these times. However, based on
the configuration of the neural parameters of the PPC model, it
allows this input to be delayed or advanced by up to three time
units from the expected time.

Despite all of the above, these temporal error margins can be
extended, making the robot more fault tolerant. To do so, it is
sufficient to modify the configuration parameters of the STDP
mechanism in the hippocampus model, for the first case, and
of the neuron models in the PPC, for the second case.

6. Conclusion

In this work, a fully functional spike-based robotic navigation and
environment pseudomapping system implemented with SNNs on
the SpiNNaker hardware platform was proposed. The proposed
system is able to navigate through a discrete and initially unknown
grid environment in order to reach a goal position from an initial
position while avoiding possible obstacles that may be present in
the trajectory. Furthermore, the system is able to map the state of
the explored environment during its trajectory to the goal.

The architecture of the proposed system is fully parameterized,
thus allowing its use in environments of different sizes or even in
environments of equal size but with higher or lower spatial reso-
lution in the discretization of the environment. Specifically, it
demonstrated good performance for environments of up to 36
positions distributed in a 6� 6 grid with many obstacles, but it
would work just as well for other maps of different sizes, as well
as different number and distribution of obstacles.

In this work, a fully functional bioinspired PPC neural network
model implemented with SNNs was also proposed. This model is
able to perform local decision-making or planning based on the
state of the positions in the local environment. This information
regarding the state of the environment is provided by a hippocam-
pal memory model proposed in a previous work.

This memory model is able to maintain a representation of the
state of the different positions that make up the grid-like environ-
ment through which the system navigates. To do this, it learns
and recalls memories that consist of a cue (fragment from which
the rest of the content of the memory is recalled) and the content
of the memory itself. Each memory encodes the activation of a
place cell (i.e., a position on the map of the environment) through
the cue, while the rest of the content of the memory indicates the
state of that position. The information with which the possible
states are established comes from the border cells, goal cells,
and other regions with higher abstraction functionalities.

The hippocampal memory system is able to obtain a new form
of representation of the environment. It is a spiking and thus
dynamic representation of the environment, a spiking map.
Each position and the state of each position in the environment
is represented by a specific spike pattern. The information is
encoded both temporally and spatially, thus allowing new ways
of processing information from the environment that take

advantage of the intrinsic characteristics of these types of
applications.[7,53]

Furthermore, the proposed complete system was not only com-
pared with its biological counterpart, but also with other systems
that can be found in the literature. A bioinspired spiking system
capable of mapping the environment that the robot navigates with
a wide range of possible states for each position was proposed.
Thanks to this range of states, the systemwas able to navigate com-
plex environments by detecting and avoiding obstacles until reach-
ing the goal position. In addition, a PPC model capable of
performing local decision-making or planning based on informa-
tion about the state of the local environment was presented.

The proposed functionalities of both the complete system and
the bioinspired PPC model were demonstrated through a set of
experiments. These experiments were successfully completed by
demonstrating, on the one hand, the decision-making capability
of the PPC model and, on the other hand, the ability of the com-
plete system to navigate and map a set of progressively larger and
more complex environments. Furthermore, its operation was not
only simulated, but also tested in a physical environment with a
robotic platform in a real-time demonstration.

As a future work, some spiking features of the system could be
implemented. The global planning part of the system was not
within the scope of this work. Therefore, one of such features
would be the adaptation of the wavefront technique for the hip-
pocampal memory architecture as a spiking global planning algo-
rithm. This allows the system to react to dynamic environments
by having a global planning that determines the trajectory to the
goal and a local planning that rectifies depending on the obstacles
it detects. Another interesting feature would be the incorporation
of a population of head cells with which to determine in a spiking
manner the position in which the system is at any given moment
and, therefore, which are the neighboring positions.

In addition, the spiking map generated in hippocampal mem-
ory after reaching the goal has many applications in the field of
neuromorphic robotics. It could be shared with other spiking
robotic systems that, without the need for learning and mapping
the environment, could navigate from the source position to the
goal or calculate the most optimal route to the goal. Several robots
in parallel could explore different regions of an environment and,
after reaching their respective goals, assemble a joint spiking
representation of their explored regions. Ultimately, the genera-
tion of the spiking state map of the environment and even the
map itself serve as the basis for spiking robotic swarms.

The source code regarding the implementation of the
complete spike-based robotic navigation and environment
pseudomapping system with SNN on SpiNNaker is available
on GitHub (https://github.com/dancasmor/bio-inspired-
spike-based-hippocampus-and-posterior-parietal-cortex-robotic-
system-for-pseudo-mapping).
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