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Abstract

This paper mainly considers the long-term behavior of p-Laplace equations with infinite de-
lays driven by nonlinear colored noise. We firstly prove the existence of weak solutions to
the equation, but the uniqueness of solutions cannot be guaranteed due to the lack of Lips-
chitz continuity conditions, and thus generate a multi-valued dynamical system. Moreover, the
regularity of solutions is also proved. Then we prove the existence of a pullback attractor. Sub-
sequently, the measurability of the pullback attractor and the multi-valued dynamical system
are also proved.
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1. Introduction

In this paper, we consider the existence of pullback random attractors for non-autonomous

p-Laplace equations with infinite delay (representing the past history of variables) on a bounded
domain O C R¥:

(
o A(VuP~2Vu) + M = () + g, — o))
0
+/ Flo, Lt +D)dl+ J(t,2) + h(t o, )G (0w), t>7, 1€0, (1)
u(t,z) =0, t >71, =€ 9O,
L u(T +5,7) = ¢(s,z), se€(-00,0], v€0O,7eR,

where p > 2, A > 0, (s is the colored noise with correlation time > 0, and W is a scalar Wiener
process on the classical Wiener space (2, P, F,{6;}+cr). The nonlinear drift term f and the
nonlinear diffusion term A are continuous functions but not necessarily Lipschitz continuous,
and the delay term g : O xR — R and F : O x R_ xR — R are also non-Lipschitz continuous.

Since the sample paths of a Wiener process are nowhere differentiable, to solve this difficulty,
we often use colored noise (see [23]) to approximate the Wiener process. Stochastic partial
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differential equations driven by nonlinear colored noise have been studied in many papers
[9, 15, M1]. Regarding multi-valued random dynamical systems, there are also some related
papers, such as [14. [10] 36].

The p-Laplace partial differential equation often appears in the physical studies about non-
Newtonian fluid dynamics. It also occurs in descriptions of phenomena related to nonlinear
elasticity, nonlinear filtering, or magnetic field distribution (see [22, 13]). The long-term dy-
namical behavior (especially the existence of pullback attractors) of the p-Laplace equation has
been extensively studied, see e.g., [16], 27, 28, 25, 19, 20 B8, B5] in a general singled-valued
random dynamical system with Lipschitz continuous conditions. In the absence of Lipschitz
continuous condition, the uniqueness of the solution cannot be ensured, thus the long-time
dynamics of the p-Laplace equation in multi-valued random dynamical systems are discussed,
for instance, in [8, 10] 3T, 14) 140, B34]. Note that none of the above papers possesses a delay
term.

For infinite delay equations, choosing a suitable state space is more difficult than for bounded
delay equations, see e.g., [17, 21]. The existence of attractors for models involving hereditary
characteristics with infinite delays has been discussed extensively, such as [29, 26, 41], 42, 43] in
singled-valued dynamical systems and [3, 4, [, [6, [7, 30, B9] in multi-valued dynamical systems.

The existence of pullback attractors for the multi-valued process associated to differential
equations with p-Laplace operators and infinite delays has been discussed in [30]. But as far
as we know, there are very few papers on dynamics of multi-valued non-autonomous p-Laplace
equations with infinite delays. Therefore, the topic of this paper is novel.

The main difficulties of this paper are: (i) The existence of weak solutions of equation
(1.1). (ii) The measurability of multi-valued dynamical systems and random attractors and
the asymptotic compactness of solutions. To solve these problems, we use the traditional
Galerkin approximations technique, and according to the method in [4], we prove that u —
fi)oo F(x,1,u(t+1))dl is continuous from C, 20y into L*(O) as shown in Remark , in order
to obtain the existence of weak solutions (see Theorem . To solve pullback asymptotically
compactness of solutions, we will use the same technique as [30, Lemma 5.5]. The measurability
of the pullback attractor will be deduced by proving the upper-semicontinuity of multi-valued
functions, the closure of a graph on some subspaces of the probability space by using the
methods in [4].

In fact, we try to prove the regularity of pullback random attractors for equation ([1.1)).
For p-Laplacian equations with bounded delays, Sobolev’s compactness theorem and Arzela-
Ascoli’s theorem can be applied to prove the regularity of pullback attractors as in [25] 35].
But for the space considered in this paper (shown in (2.5))), we find that there is no embedding
relationship between spaces C., r2(0) and C WP () Therefore, we can only prove the regularity
of the solution (see Theorem by applying the method of [§].

In the next section, we prove the existence of weak solutions to equation , and that they
generate a multi-valued dynamical system. Moreover, we also prove the regularity of solutions.
Section |3| is dedicated to the existence of the pullback attractor, and proves the measurability
of the pullback attractor and the multi-valued dynamical system. Therefore, the existence of
pullback random attractors for the equation is obtained.

2. Multivalued dynamical systems in C) g

Let H = L?(0O) equipped with the norm | - ||, and use || - ||s denote the norm in L*(O) (s
can be any positive constant). We denote W,”(O) by V, and the dual space W12(O) (p is



the conjugate of p) of Wy”(©) by V*. We also let (-, -) denote the inner product in L?(O), and
denote the duality product between V' and V* by (-, -). In addition, we have the usual chain of
dense and compact embedding V C H C V*.

For p > 2, we define the p-Laplacian operator A, : V. — V* by

Ayu = —div(|VulP 2 Vu), (Ayu,v) = / |Vu[P~2Vu - Vodz, (2.1)
o

for all u,v € V. Note that A, is a monotone and hemicontinuous operator as in [32]. Moreover,

by (2.1)), for all u,v € V
(Apu,v) = / |Vu[P~2Vu - Vodz
@)

< ([ vupas) ™ ([ 19opae)’ = uli 1ol 2.9

1Apu|

and

ve= sup (Agu,v) < [lufi (2.3)
lollv <1

Now, we consider the following non-autonomous random p-Laplace equation with infinite
delays:

0
( % = —Ayu—Au+ f(t,z,u) + gz, u(t — o(t))) +/ F(z,lu(t+1))dl
+ J(t,x) + h(t,x,u)(s(Ow), t > 7, €O, (2.4)

u(t,z) =0, t >71, z€dO,
Lu(T + 5,2) = p(s,z), s€(—00,0], z€O,TeR.

Let X be a Hilbert space. To deal with the delay terms g and F' in (2.4), we denote our
phase space by

Crx ={w e C((—00,0; X) : lim e"w(r) exists}, (2.5)
T——00
where 7 > 0 and we set ||w|c , = sup e7||w(7)|| < oo for all w € C, x. From [4], we
T7€(—00,0

know that C, x is a separable Banach space. Consider 7" > 7 and a function u : (=00, 7)) — X,
we can define for any ¢ € [7,T) the mapping u; : (—00,0] — X by wu(s) = u(t + s) for all

s € (—00,0].
By [I, 15], we define a random variable (5 : 2 — R by
1[0,
(s(w) = 5/ esdW(t,w), for each § > 0.

The process z5(t,w) = (5(6;w) is called an Ornstein-Uhlenbeck process (i.e. the colored noise),
which is a stationary Gaussian process with E((s) = 0 and is the unique stationary solution of
the stochastic equation:

1 1
d —zdt = =dW.
Z+(5Z (5W

By [14], there exists a {6, }:cr-invariant subset set (still denoted by) € of full measure such that
for w € €,

6
— =0, lim Ké(t—tw)’ =0 for every 0 < < 1. (2.6)

t—+oco t—+oo



2.1. Assumptions

In order to achieve our final result, we need to impose the following assumptions:
H1. The external force fulfills J(¢,z) € C(R, H).

H2. o(-) € C'(R, [0, p]) and |¢/(-)] < p" < 1.

H3. f: R x O xR — R is continuous and for all t,r € R,x € O,

f(t,!L‘,T‘)’r’ S _61|T|q + @Z}l(tvx)v (27)
|f(t7 $,7’)‘ < 52|7,|q—1 + ¢2(t,l’), (28)
where ¢ > 2,51, 82 > 0, ¥ € L, (R, LY(O) N L=(0)), 12 € Lii, (R, L*(0)) .

loc

H4. g € C(R,R) and there is 3 > 0 such that
lg(@, )" < Bslrl” + [¢s(2)*, VreR, 2 €0, (2.9)

where 13 € L*(0).
H5. The nonlinear diffusion term A : R x O x R — R is a continuous function such that
forallt,r e R,x € O,

[A(t, 2, 7)| < dhalt, )" + s (t, @), (2.10)

where 2 S n < 971?4 € L q 7] (Rv L2qq:n ( )) d}5 € LlOC(RJ LQ(O))

loc

H6. F : O xR_ xR — R is continuous. There exist a scalar function e "m4(:) €
L'((—o0,0],R), and a function mq(z,-) € L'((—o0, 0], L}(O)) such that F satisfies

|F(z,l,r)] <mi(D)|r| + |mo(z,1)], Yxe O,leR_,reR. (2.11)
To simplify the calculation, we will denote
0
mo = / [mo(-, ) hdr, (2.12)
0
my = / "y (r)dr- (2.13)

Remark 2.1. By (2.9)), we can obtain that

g, ult — e@NI* < Bsllult — o) + s ()]
< Baelurle, , + 18I

Remark 2.2. By (2.11)), we can deduce that

H/ (1 ult +1) le
< /O ( / °°0[ Ol + )] + [mola, wudw?df
< 2/@(/ ()|u(t+l)|dl)2dx+2/O(/Oo|mo(x,l)|dl)2dx

0
§2/ (sup " uy (1) |/ d:v+2/(/ imo(x,1)|dl)?*dz
0 1<0 O J—-c0

< 2m1HutHC%H + 2myg.



Remark 2.3. Given n € N. By H6, we know that if " — n in C, g, then for all 1 <0
Fa, 10" (1) = F(z,1,n(l)).
Thus, there exists a positive constant C'(M) such that, for any [ € [—M, 0],
1E(, 40" (1) = F(, Ln0)] < C(M).

Using Lebesgue’s majorant theorem we have for any M > 0

/—M 1EC L™ (1) = F(, Ln)]ldE— 0.

For any € > 0 there exists an M = M (e) > 0 such that

/ CNEC L) = F( L) |dl

—00

< / ) /o s () (1" (O] + (D)) + 2o, 1)[]
< /_ i (I)e=! /O (O] + (D)) dad +2 /_ ) /O (o, 1)|dzdl

o0

-M -M

< (e + Inllen ) / ma(l)e Tl + 2 / Imo(z, Dllded] < <.

Hence, for any & > 0, there exists N = N(g) > 0 such that, for n > N,
0 0
| [ rearoa- [ Feamoal <2,
which implies that n — fi)oo F(x,l,m)dl is continuous from C. y into H.
2.2. Emistence of solutions in C, g

In this section, we show the existence of weak solutions for the system ([2.4). To that end,
we assume that

8m? < A2, (2.14)
and
A V/ Bse?r
2M, < 3 < % and v :=p; —qgM; >0, where M; = 1536 > 0. (2.15)
_ p*

Definition 2.4. Given T > 0, a function u(-, 7,w, ¢) € C((—oo, 7+ T); H)NLP(7,7+T;V) N
Li(r,74+T; L1(0O)) is called a weak solution of (2.4) on (7,7+47) with initial function ¢ € C, g,
if for every n € VN L9(0O),

)+ (gt ) + A, )
=/Of(t,:v,u)ndx+/og(x,u(t—g(t)))ndx+/o(/_OO F(m,l,u(t+l))dl>nda:
+/OJ(t,x)ndx+<6(9tw)/0h(t,a:,u)ndx, (2.16)

in the sense of distributions.



It can be inferred from Definition [2.4) and H3-H6 that % € LP(r,7 4+ T;V*) + Lai(r, 7+
T; L71(0)). By [33], we know that u € C([r,7 + T]; H). Furthermore, for all ¢ € [r, 7 + T,

d
Gll? 29l + 271l =2 | p(t. wpude+2 [ glau(t - o(0))uds

2 /O ( / : F(a, L u(t + 1)t ) ude +2 /O J(t, 2)ude + 265 (6,) /O Wt wudr.  (2.17)

—0o0

In order to show the existence of a weak solution to system ([2.4]), we first need to establish
a priori estimates for weak solutions to equation ([2.4)).

Lemma 2.5. Suppose that H1-H6, (2.14)-(2.15) hold. Let 7 € R, w € QT > 0, and u
be a weak solution of system (2.4) with initial condition ¢ € C, . Then there exists ¢ =
c(Myi, \,7y) > 0 such that, for allt € [t,7+ T],

t
ful,, < SN [ 05D ar
thCy g = ¥ Cy,m A ’

t m2 0
i / =D (G5 (0,0) T + (G (0)* + 1) (2.18)
Proof. By (2.17), H3 and the Young inequality, we have
d, o 7 2
Dl + 207l + Al
< =26 ull + 2un(t. )+ 2 [ glaovult — oft))uds
o

+ 2/0 </O F(x,l,u(t+ l))dl)udx + %HJ(t, P+ 2¢5(0uw) / h(t,z,u)udz.

oo o

By H5 and the Young inequality again, we have

26s(6) | Bt wpuds < 26(0) [ @ult. D)l + vt )ul)do
(@) o
< Bulullg + ellalt, ML GO 75 + ellgst, YTk (0)] 7.

By Remark [2.2] and the Young inequality, for the infinite delay term we have

0 4m? 4m2 A
2/ (/ Fa,Lu(t+ 1)dl)udz < %nutuz‘% n % + 2 (2.19)
(@] —00 ’

Therefore, for all ¢t € [r,7 + T1,

d 5
—lall® + 2lfully, + Bullellf + Al

2

dm 4
<2 [ gloult = o®)uds + Tl , + 51761

(L a1 727 1o B0) 757 + 4t ) 727 G 00) | 7). (2.20)



Multiplying by e* and integrating it over t € [r,£], we have for all £ > 7,
M@ +2 [ e+ 1 [+ 3 [t Par
<M +2 [ [ oteatr ot + 8 o,
w3 [ arar ve [ 1601 + o) + s (2.21)

where we used that L%((’)) C L7 (0) and L2(O) C La-1(0). For the finite delay term we
have

o * 2 Lore, 2
2 / & /O g(z, ulr — o(r)yu(r)dr < M, / N ur) P+ 5 / Al (- ulr — o(r))|Pdr.

(2.22)
where M; = \/7”63_8 is defined in (2.15)). By H4 and H2, we have
1
o [ el — el (2.23)
< [ ovjute o ar + o [P
= ). M, .
Bae /£ A 2, s )||2/ A
< — eMu(r)||dr + edr
Wi g T
B /0 Mr+7)=2yr 2 2
< — e\ S (T 4 ) || P dr
i) Ju(r )]
Bae™ /£ A 2 ||¢3()||2/ A
+——— [ e|u(r)||"dr + edr
s [P B
ByerTen 2 /5 A 2, s )||2/ A
< + M eMlu(r)||“dr + eMdr.
Ml( _ )(27_/\)’“0”0%;1 1 7- H ( )H 1 7—
It can be inferred from (2.22)) and ([2.23)) that
3
2 [ [ glautr = otr))utr)ar
T (@
£ 3
< 2M1/ M u(r)|Pdr + e el2. ,, + c/ eMdr. (2.24)

By £ < 2; 772, -5 <2and 2M,; <2 ¢ defined in (2.15)), plugging (2.24)) into (2.21)), we have
[u(©)]* + /5 A2l u(r)|[F + Bullu(r)[lg + —||U( )1*)dr
< TIUI + eIl , + 2 [ AOpu,a (2.25)

3
+§/ eA(Té)HJ(Tw)H?d?"“/ 201G (0,0) [ + [Gs(Ow)|? + 1)



Then, multiplying (2.25) by €*7*, and replacing & by t + s, and taking the supremum in s €
[T —t,0], we obtain that
sup e |Ju(t + s, 7,w, ¢) |
s€[r—t,0]
< suwp B[O + eIl
se|T—t,

4 2 t 4 t
Iy P

t
se [ @UDGOLI + (G0 + ar] (2.26)
A(r—t) 2 Ar—t) 2 4m? tA(r—t) 2
< AU+ Il + 5 [ Il dr

4 t t .
+3 / MO T, ) Pdr + / XD (|C5(0,w)| T + |G (0pw)[? + 1)dr,

T

where we have used A < 27 defined in (2.15)). For s € (—oo, T — t], we consider

sup 275

s€(—o0,7—1]

lu(t + s, 7,w, )|

2'ys ||2

= sup |lur(t+s—7,7,w, )

s€(—o0,7—t]

= sup ot + s — 1)

s€(—o0,7—t]

_ sup 6—2v(t—7)€2'y(t+s—r)||s0(t 45— 7_)”2
s€(—o0,7—t]

= e ol , <eMel?, - (2.27)
Further

||ut(.77-,w,go)||20%H < max{ (3up | e ||u(t + s, 7, w, )%,
s€(—oo,7—1

sup e ult + 5,70, 9)[2}. (2.28)
s€[T—t,0]

Using the fact that ||u(7)||* = [|¢(0)|* < ”"Dnam we deduce from ([2.26])-(2.28) that for all
t>T,

2 4m% ! A(r—t 2
w7 w, 012, , < T ell?, , + —~ /6 w2, dr
T

4 t t 2g—2
+ X/ AU\ ()| Pdr + c/ A1 (0,w) o + |Cs(0,w)[? + 1)dr, (2.29)

or equivalently,

4m? [
M D, < el + 5 [l dr
T

4 t t 2g-2
+ X/ e)""HJ(r, I|[Pdr + c/ e’\r(]((;(@rw)] o=+ |¢5(0,w)|* 4 1)dr. (2.30)



Hence, by (2.14)) and using Gronwall’s lemma we have

) 4
A el A e o O %
bty 2q-2 2
+e / 0= 510 (15 (0,00)] 550 + |G (Or) 2 + 1), (2.31)
which completes the proof. O

Lemma 2.6. Suppose that H1-H6, (2.14)-(2.15)) hold. Let T € R, w € Q,T > 0, and B be a
bounded set of C, . Then, there exists ¢ = c¢(My, \,v, B, T) > 0 such that a weak solution u(-)
of system (2.4) with initial condition ¢ € B satisfies

t
lu(t, 7w, @)[* < e Ju(r)|| + C/ e N (o, ) [Pdo

t 2q—2
+ c/ e_’\(t_a)(|§5(00w)|ﬁ + |§5(90w)|2 + 1)do + c. (2.32)
forallr<r<t<t+T.

Proof. By (2.20) we have

d 5
Sl + 2lulf, + Sallulg + T3 Jull?
4m? 4
<2 [ glo.ult = oO)ude + Sl , + 51761

oL a7 G 00| 75 + ([0t ) 1727 G 01) 7). (2.33)

Multiplying (2.33) by e*° and integrating it in o € [r,t] with 7 <r <t < 7+ T, we have for
allt >r,

() + / N u(o) [ + fallu(o) 2 + {AJu(o) o
e M () |2 te’A(t"’) x,u(oc — o(0)))u(o)dxdo
< H()H+2/r /Og<,< o(0)))u(o)drd

4m? 1 t
+‘A1/e‘A(t‘”)||uallév,Hda+c/ eI (0, )| do

t
" / e (L 4 [¢5(0,0)| 7 + [G5(0,w)| 7T ) do. (2:34)
Similar to (2.22)-(2.23)), we have
t
2/ e_)‘(t_“)/ g(z,u(o — o(0)))u(o)dzdo (2.35)
r O
t
T / M=) g, u(o — o0)) |Pdo
t —A(t—p) t
< M e 2= Ny (o) ||Pdo + L/ e lu(o da+c/ e M=)y
<y [ Iulo) P+ [ ol e

T—p
t —A(t—r) ,2vp t

“A(t—0) 2 Bse € 2 —A(t—0)
< 2M1/r e |u(o)||“do + (L= )27 = N urlle, ,, + c/r e do.




By 2M; < % defined in (2.15)), we have

¢ 1
[olls +/ e M 2Ylu(o) |} + Bullulo) 1L + g)‘HU(U)HQ)dU

2vp
< e M () |12 Bse e A=) 1, |12
4m?

t t
o R T e MERTRE

T

+e / MO (1 4 (65 (60) |55 + (G (000) ) do (2.36)

By (2.6), H1 and ¢ € B, we can inferred from (2.18)) in Lemma that ||“t||20WH < () =
Ci(B,T) for t € [r,7 4+ T], we have

t 1
lu(t)]? +/ e u(o) + Bullu(o)§ + SAllu(o)|*)do

t
< e M () |12 + Oy + ¢ / e M| (0, ) [Pdo

' At 29-2 2
+ c/ e M (1 4 |G (Bpw)| 7 + |G(Bw) ) do. (2.37)
Then we conclude ([2.32)). O

We can draw the following results immediately from (2.37)):

Corollary 2.7. Suppose that H1-H6, (2.14)-(2.15) hold. Let T € R, w € QT > 0, and let
B C C, g be a bounded set. Then, there exists ¢ = c¢(My, \,y,B,T) > 0 such that a weak

solution u(-) of system (2.4) with initial condition ¢ € B satisfies, for allT1 <r <t <71 +T,
t
/(HU(U)H@Jr lu(@)[[3 + [[u(o)|*)do (2.38)
t t -
<cluIP+c [ 10l do + ¢ [ (04 G0 ¥ + () o +
Proof. Consider Co = min{2, 81, sA}. By (2.37) we have, forall 7 <r <t <747,
t
€A(”)Cz/ (lu(@)F + Nu() g + [lu(@)]|*)do
. T
< Cz/ e N ([[u(@)|F + lu(@)l|E + [fu(a)|*)do
t
<Al e [N I(o ) o
‘ At 29-2 2
+c/ N (1 4 (¢5(8,0)| T + |G (Bow) P)dor + .

which implies ([2.38]). O

10



Theorem 2.8. Suppose that H1-H6, (2.14)-(2.15) hold and T € R, w € Q, ¢ € C, . Then,

equation (2.4) admits at least one weak solution.

Proof. (1) First, we consider the Galerkin approximations to equation (2.4). It follows from

[24] that Hj(O) € VN LI(O) for r > max{¥ qq 2) 2”“\2/;’ 21 We con81der a speaal basis of H

Consisting of elements {w;} C H{(O), and denote by W,, = span[wy, ..., w,]. Let the projector
Pyu= Z(u wj)w;, then |J W, is dense in V' N L1(O).
7=1 neN

n

For fixed n € N, consider u"(t) = >_ u7(t)w;, where i are required to satisfy the following
i=1
system:

d ~n ~n ~n
AT QW)+ BT Ow) AT Ow)

= (T (0),w) + (oo T o)) + ([ L @0 w,)

+ (J(t, ), w;) + G(Ow) (h(t, z,u"(t)),w;), 1<j<mn, (2.39)

where initial data is ™ (7 + s) = P,¢(s) for s € (—o0,0]. It follows from [I8, Theorem 1.1] the
existence of local solutions for (2.39)). Now, we show that solutions do exist in [r,7 + T with
T >0.

(2) From (2.32) and setting r = 7 in (2.38)), we obtain for all 7" > 0,

{u"} is bounded in L*®(r,7+T;H)NLP(r, 7+ T;V)N LI, 7+ T; LI0O)).
By (2.10)), the Hélder and Minkowski inequalities, we obtain

/Tt/OCa(erw)h(t,a:,ﬁ"(r))wdxdr

< [ ([ |attratro)i o + st

) q(qn:ll) q-1
Sq/ /‘C& rwwrx‘ql‘u )| dx)q
/ |C5 (0,w)5(r, a:) q 1d:r: dr/ l|w|,dr
<c / /|C59w77/)4(7’1: qndqj 3717 | |qu 21>q;

+ ([ japntr i) ™ ar [ uar

<o [t Mscade+ [ i [ st ) [ ol

which together with . 2.8)) yields

oy / ol dr

{f(t,z, ")} and {Cs(0,w)h(t, 2, @)} are bounded in L 1(r, 7+ T;La1(0)).
Recall from Lemma 2.6] that
I tHC <Cy, Vte|r,7+T]|, pe BCCypu, neN. (2.40)

11



Thus, by (2.40), Remarkand Remark , we have {g(z,u™)} is bounded in L*(7,7+T; H),
and { fi)oo F(z,1,a"())dl} is bounded in L*(7,7+1T; H). Moreover, we can deduce that {A,u"}
is bounded in LP(7,7 4+ T;V*) from (2.3). From the above, we know that {dg—:} is bounded in
LP(t,7+ T; H"(0)) by [8].

Hence, there exist a subsequence (relabeled the same) {u"}, an element u € L*>®°(7, 74+T; H)N
LP(r,7+T;V)NLY(7,7+T; L1(0)) with % € LP(7,7+T; H"(O)), x1 € L (1,7+T;V*), x2 €
L*(r, 7+ T H), x3 € L*(r,7+T; H), x4 € La=1 (1, 7+T; L1 (0)), x5 € L1 (1, 7+T; Li=1(0))
such that, up to subsequence,

(0" — u weakly star in L>(7,7+ T; H),
u" — u weakly in LP(r,7+T;V) and Li(r,7+T;L%0)),
u" — u strongly in LP(1,7+ T; LP(O)),
Ayu" — x1 weakly in LP(7,7 +T; V"),
g(x,u") — xo weakly in L*(7,7 4+ T; H),

0 (2.41)
/ F(z,l,a™(1))dl — x3 weakly in L*(r,7 4+ T; H),
du™  du

- _ ; D . Iy-r
T weakly in LP(r,7 +T; H"(0O)),
f,2,0") = ya weakly in La1(7, 7+ T; L7 1(0)),

| Gs(B.w)h(-,2,0") — x5 weakly in L7 1(r,7 + T; LT1(0)),

for all 7" > 0. From [24, Lemma 1.3], we can identify that x; = Ayu, x4 = f(-,z,u) and
X5 = G(O.w)h(-, z,w).

By the compact embedding H < H~"(O) and (2.40), we can infer from the Arzela-Ascoli
theorem that ™ — uw in C([7,7+T]; H~"(O)). Then, by again, it is not difficult to prove
that for any sequence t,, — to with ¢,,ty € [7,7 4+ T1,

u"(t,) — u(ty) weakly in H. (2.42)
In fact, we want to show that
u' () —=u() in CO(r7+T];H). (2.43)

By ([2.41)), passing to the limit in (2.39)), we consider a solution u € C([r,7+T]; H) of a similar
problem to (2.4), that is, for all n € V' N L1(O)

)+ (D) + M) = (F(E-T).0) + () + (o)

+ (J(t,-),m) + (G (Ow)h(t, - 1), n), (2.44)

with the initial data @(T + s) = ¢(s) for s € (—00,0]. By (2.40), Remark [2.1] and Remark [2.2]
forall T<r<t<7+4+T,

t t
[ helo)Pdo < timint [ lg(o, @) Pdo < et ),
r n—-+0oo r

and

bR o

)/0 F(o,1 ﬂ”(l))leng <elt—1)

t ¢
/ |x3(0)||*do ghminf/
r n—+oo [

— 00
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Therefore, by the same method as Lemma , u can also satisfies (2.32)). We define functions
InyJ [T, +t] — R by

29—

IO =T = ¢ [ 1) 1Pdr = ¢ [ (G5 + 0w + 1o, (245)

J(t) = a)l* — C/ 17 (e, ) |*do — C/ (IG5 (00)| 377 + 1G5(0pt0) 2 + 1)dor (2.46)

where the ¢ in (2.45)) is the same as (2.46]). It is clear that J, and J are non-increasing and
continuous functions. By (2.41]) and [6, Lemma 11], we can deduce that

Jn(t) = J(t), forae.te[r,7+T]. (2.47)
Then, we have
lim sup [ ()] < [[ato)]l (2.48)
n—-+00

which together with (2.42)) implies (2.43)). By Remark and (2.43), we can deduce that
X2 = g(l’, a)
By [29, Theorem 5], for the initial datum ¢ € C, y, we know that P, — ¢ in C, . Indeed,

sup e”¥||u" (t + s) — u(t + s)||
s<0

< max { sup e’||u"(t+s) —u(t + s,
s€[T—t,0]

sup TGt p s —7) — U (t 45— 7) ||}
s€(—o0,7—1]

< max { sup 17" (s) = @(s)ll, N Pugp = @lle, u } — O,
se|T,t

which implies that for all ¢ € [7,7 + T
u —u  in Cyp. (2.49)

Therefore, by Remark , we deduce y3 = fi]oo F(z,l,u.(l))dl. Finally, we can pass to the
limit in (2.39)), concluding that u is a solution of ([2.4)). O

2.3. Regularity of solutions

Now, we can show a regularity result for the solution of equation (2.4)).

Theorem 2.9. Suppose that H1-H6, (2.14)-(2.15) hold and T € R, w € Q, ¢ € C, . Then
any weak solutions u to the equation (2.4) belongs to C,((1,7+T); V). In particular, if p(0) €
VN LI0O), then u € Cy([r, 7+ T]; V).

In order to prove this result, we need the next lemma. In the proof of the latter, we will
use the following Gronwall-type lemma for the estimate of the solutions in the regular space.
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Lemma 2.10. ([57]) Let y, g and h be three nonnegative and locally integrable functions on R,

thus % <! is also locally integrable and
j—t +by(t) + g(t) < h(t),t € R. (2.50)
Then, for everyt > 7 with T € R, one has
y(t) < t—lT /Tty(r)eb(r_t)dr + /Tt h(r)etr =D dy. (2.51)
In particular, if b =0 then
RS ! . /Tty(r)dr + /Tth(r)dr. (2.52)

Lemma 2.11. Suppose that H1-H6, (2.14)-(2.15)) hold. Let T €e R, w € Q,T > 0, and B be a
bounded set of C. . Then there exists ¢ = ¢(My, \,y, B,T) > 0 such that
(1) A weak solution u(-) of system (2.4]) with initial condition ¢ € B satisfies

[t < e [0+ GG 6007+ e (25)

forallt € (r,7+T).
(2) A weak solution u(-) of system (2.4) with initial condition ¢ € B and p(0) € VN LY(O)
satisfies

[l < e [+ GG 607+ b (25

forallt € [r,7+T].

Proof. Multiplying (2.4) by |u|?"%u, and integrating over O, we have
d 1 _
SCN+ [ Apuul2u)ds -+ Alul
o
= [ el u)da + | gl ult = ot) (luf" )i
o o

+/O (/0 F(z, Lu(t +1))dl) (Ju|]**u)dz + /o J(t, ) (Ju|"u)dx
+ G5(Orw) /0 h(t, z,u)(|ul?*u)dz. (2.55)
It is easy to check that for any ¢ > 2,
/OApu(|u|q_2u)dx > 0. (2.56)
By and the Young inequality, we deduce that
[ pe e < [ ol + o) + e ol
s—&mﬁé—&mwﬁéﬁ/wwwmwwx

—Bullullzg—s + —HUHZ + ﬁl\wl(t,-)ll : (2.57)

N N
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By Remark [2.2] and the Young inequality we have

/O (/0 P L u(t + 1))d) (a7 u)dr < 2;;“ lll?, , + % P 2
By the Youn_goinequality again,

/ J(t, 2)(|u)u)dx <
Jointly with H5, we ha\?e

G5 (0,) /O ht, 2, u)(Jul"2u)da
< Gs5(Ow) /O(M(ta o) |u|" + s (t, ) (Ju]*u)da

B
1||U||§Z 2+ —1||J(t7')||2- (2.59)

Biy 2g-2 20-2 2
< 7 lullzgs + €lGo(Guo) [+ [[ha(t, )qu s s+ clGs (0w s 2, ) 2. (2.60)
For ¢ > 2, we substitute (2.56)-(2.60]) into (2.55) to yleld
d _ q a
7 lullg + 2A g + || 22 < /Og(ﬂc,U(t = o(t)(Jul""*u)dz + —|I¢1(t7-)\|§
2qm2 2qm q 2¢9—2
+ =g, , + =+ I+ elGs (B o [[valt, )qu s + clGs (Owo) s (t, )1
A b B
(2.61)

Then, using (2.51)) in Lemma over the interval [7,t], we have

Jute) g+ 5 [ X utr)
/ 0 u(r) |qd7"+q/ M t/ g(z, u(r = o(r)))(lu(r)|*">u(r))dzdr

T

T / A |, dr + o / MO (r, ) |2dr

t 2qg—2
+e / D¢ (O) 35+ ¢ (Ow) | + 1), (2.62)

where € € (0,¢ — 7). By the same method as - forall 7 <t <74+ T, we derive
o [ o / v, u(r — o) (Ju(r)[**u(r))dedr
q

My [* -0 a2 2+ =L [ D) g, u(r — o(r)))|2dr
=5 i 2q—2 oM, . g\z, 0

qM, /t 2g—2 CIB3€/\” /T A(r—t) 2
< — u(r 2dr + ————— e u(r)||“dr
3| @O s [ )

Ap t t
+ —2]\;%6 > / A0 ||lu(r)||2dr + c/ A=y
1\t T T

qu ¢ r— 2 que Nl—1
< [ O+ e,

My [t '
+ 2 o / A |u(r)|[Pdr + c/ A dr, (2.63)
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where M, = F“fie;f. By (2.63)) and let r = 7 in ([2.36|), we have for all ¢t € (7,7 + T,

9t B
lu@)lg+ 5 [ D flulr)|5g—3dr
2
1 M, [!
Sg/ eA(T_t)HU(T‘)Hng—}—q 1/ 6A(r—t)||u(r)||2dr

2

T

¢ t
e M |ug |2 e / D |2, dr + / AN (r, )| Pdr

t 2q—2
+e / D¢ ()35 + ¢ (Ow) 2 + 1)

t
< Ce—A(t—r)”uT”aﬂ +c/ 6A(T—t)||ur||%%Hdr
T

t 2¢—2
+ / DT, 2 + 1G5(0,0)] 7T+ [Co(0r) 2 + 1),

(2.64)

where ¥ = 8 — ¢M; > 0 is defined in (2.15)). Since ¢ € B, thus ||u7n||%MH < C, =Cy(B,T) for
r € [r,7 + T] as proved in Lemma [2.6, Thus for all t € (7,7 + T7,

t t 2e_s
/ lu(r) 222 < cCy + / 70 + 160,055+ G560, + L)dr.

(2.65)
(2) Applying the general Gronwall inequality to (2.61]), we have for all t € [r,7 + T,

t
ol + 5 [ 0y

< N u, |
t

par+a [ @ [ gl ute = o)) ulr))dods

t
+c/ e)‘(r_t)HuTH%WHdr#—c/ eA(T_t)HJ(T,-)Her

t —_
* / AT0(¢(0,w)| 35 + [C(Bw)]? + 1),

By (2.63)) and similar to (2.64)), we have

(2.66)

9 [t )
)l +5 [ 0 utr) - Sar

t
< e M| |u | Zdr + ce_’\(t_T)HuTH%%H + c/ eA(T_t)HurH%%Hdr
T

t 2¢g—2
i C/ AT )P + 16 (Gw) 77 + [Gs(6rw) P + 1)dr (2.67)

On account of ¢ € B and ¢(0) € VNLY(O), it follows that for all ¢ € [, 7+T7, (2.54) holds. [
Now we can finish the proof of Theorem [2.9
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Proof of Theorem [2.9] Given T > 0, let u(-, 7,w, ¢) be a weak solution of equation ({2.4)),
for short denoted by w. Cons1der that problem

(d
= =Dy =My + fltau) + gl ult = oft))
0
(P,) +/ F(x, Lu(t+1))dl + J(t,z) + h(t,z,u)G(Ow), t>71, x€O, (2.68)
y(t,x) =0, t >7, x €00,
L y(T+s,2) =u(T +s,2) =¢(s,x), s€(-00,0,, z€0,7€R,

possesses a local solution by [32]. Now, we will show the local solution is a global solution.
Recall from Lemma [2.6] that

||ut||%;%H <Cy, Vte[r,7+T], o€ BCC,p. (2.69)

For fixed n € N, consider u"(t) = »_ ji}(t)w;, where 7 are required to satisfy the following
j=1
system:

d “~n “~n
GO0 + Q700 + @O 0) = [ J(tw ) wyda
0
+/ 9(x, u(— o(t)) Jw;d +/ (/ F o, )l ) wyda
@ @ —00
+/ J(t, - )w;dx + C(;(Qtw)/ h(t,z,u(t))w;de, 1<j<n. (2.70)
@ 0
Multiplying (2.70)) by z%(t), summing from j = 1 until n we have

QW%W+ﬂwuwm+wwww

_2/ Ft 2 ult ()d:c—l—Z/Og(a:,u(t—Q(t)))ﬁ”(t)dx

+2/O(/Oo (m,l,ut(l))dl>ﬁ”(t)d93+2/(9J(t,a:)ﬂ"(t)dx

+2§5(0tw)/ h(t,z,u(t))u"(t)dx. (2.71)
o
By (2.8) and the Young inequality, we have
1662 ., 16
2 [ fn i (0d < QIEOF + 2GS + Tl (272
By Remark 2.2] we obtain that
0 16m3 16mg A
2/ (/ Fla, L u(t +0)d) @ ()de < =l + =0+ S|@ @2 (2.73)
O — 00 )\ vH )\ 8
By Remark 2.1 we have
~n < 8ﬁ3 2vp 2 8 2 A ~n 2
2o, ult — o). 7 (1) < Ly, + SO + JIE@F (274)
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By the Young inequality again,

-~n A -~n 2 8 2
Z/OJ(t,x)u (t)dx < §Hu )|l +X|\J(t,-)\| : (2.75)

Jointly with H5, we have
265 (01w) / h(t, 2, u)a" (£)da
O
< 26(0) [ (att)lul™ + vt )i (0

[ ()11 + cllul35=3 + elCs (0r) 7 llwalt, IS + elsBhso) Pl ss t, I (2.76)

Substituting ([2.72))-(2.76|) into (2.71)),

1
d ~n||2 ~n p
S @7+ 2vat @l +

11

8
_ 16

< cl|ullq—3 + ~ et P+ (

Nl (2.77)

16m2 88,
Tl + T€2w)||ut||?;w tc

8 2g-2 29-2
+5 17 I+ el (@) e e, = + el (O [ls (E, )1

1
q—n

Multiplying (2.77) by e, and integrating over (7,t) with ¢t € [r,7 + T1,

t t
@O +2 [ XV A [ ) (2.78)

t t
—A(t—T7 r— 2q—2 r—
SeMtWﬁ%w+f/€Mtwwm%4W+0/€MﬂWM&ﬂW

¢ ¢ -
+ ;/ e’\(T_t)||J(7’, -)||2d7“ + c/ eA(T_t)(|<5(6’rw)|% + |(5(8Tw)|2 + 1)dr.

T

Using the same method as ([2.26))-(2.28]), and by (2.64]) and (2.69)) we have for all ¢ € (7,7 + T,
t
I, 0 < ce el +e [ @Ol dr
! Ar—t) 2 292 2
o [ eI+ 1G(Ow)] = + [ (0rw) 7 + 1dr
! 2g-2
: C/ (1T (ry )* + [Gs(Orw)] e + |G (0r) * + 1)dr + c. (2.79)

Hence we deduce the existence of global solution of equation (P,) on t € [T + ¢, 4+00) with

e € (0,t — 7). Analogously, by (2.67)), (2.69) and ¢(0) € V N L%(O), it follows the existence of
the global solution of equation (P,) on t € |1, +00).
Now we prove the uniqueness of the solution for equation (P,). Taking the inner product

of (2.68]) with u" = y; — y, we have

d “~n
2+ 2081 — Ay, @) + 2" = 0. (2.80)
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By [12, Lemma 2.1], we know the following inequality: for every p > 2, there exists ¢ > 0 such

that, for all aq,as € R,
(lar[P~%a1 — |az[P~?az) (a1 — as) > clar — asf”.
The above fact yields
(Apyr — Dy, 0") = ([Vin [PV — [Vip PV, Vi — Vi) > ¢ VA" |2,
Thus

d
%Ilu””IIQ +2¢|| V@ [P + 2X[|@"||* < 0.

Multiplying (2.83)) by e, integrating over t € |7, £], we have for all € € [r, 7+ T,
[@ (&, 7w, )| < e XN (7, 7,0, 0)|1%.

Let £ =t + s with s <0, then using the same method as (2.26)-(2.28)), we have

1@ ¢ w, ), , < e MR L,

(2.81)

(2.82)

(2.83)

(2.84)

(2.85)

which, together with @ = 0, implies the uniqueness of solution to (P,). Therefore, on account

of u is a solution to equation (2.4)), it follows that y = w.
(1) Let C5 = min{2, 3A}. Then we infer from (2.78) that, for all t € (7,7 + T,

t
Cye 2= / (V@ () |dr + @ () |2)dr
t
<o / ArO(VE | + @ () 2)dr

t t
< @) + / A0 u(r) |2 2dr + ¢ / 0, dr

t 2q—2
* / (T (r, )2 + G50, 77 + [Cs(Bw) 2 + D),

which means that by (2.64) and (2.69)), for all t € (7,7 + T7,

/ (V@ () |2dr + @ (r)|?)dr
< / (6P + 1G5+ G Bw)? + Ddr +c.

Similarly, by (2.67), (2.69) and ¢(0) € V- N LY(O), for all t € [r,7 + T,

/(\IV@”(T)\Eid?HL @ (r)1*)dr

T

= C/ (1T, )2+ 1G5(Orw)] 7 + [Gs(Or) | + D) + c.
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(2) Multlplylng ) by

HVU i

, summing from j = 1 until n we have

:—/\/uA”—da:—F/ftxu

+/Og(a:,u(t—g( )))dditdx—i_/o(/_ F(:U,l,u(t—i—l))dl)dd—da:

di di"
+ / J(t,2) " da + ¢ (0,w) / h(t, z,u) " dz. (2.89)
o dt o dt
By (2.8) and the Young inequality,
[t e < 3|+ 28 100ES + 2o 1P (2.90)
The Young inequality and (2.10]) imply that
 di dm di"
1 . -
zH L H2+3HJ( P +6 [ 60wt )P da
@]
46166 [ [us(t. )P da
(@]
1) da 2 .
< <[ =]+ s +3III + Alul
2q—2
+ |G (Brw) |« [|[a(t, )qu L +6\Ca(9tw)! s (, )17 (2.91)
By Remark 2.1 we have
di" - ,
[ e utt — o(0) " de < < 3B ¢ gz, + 2O (292)

Similar to (2.73]), we obtain
0 du” 1y du™ |2
/O (/ Fla, L ult + D)dl) Sde < 2millual?, +2m3 + | -

Then, plugging — into ,

HV”” )L+ pH H

S SA*pl[a”||* + 3ps3; Huuiz_é +2p(|lea(t, )1* + st(-)H?) (2pm + 2pBse™”) w2, ,,

(2.93)

+ 2pmg + 3p[[J (8, )|* + elGo(00) | 77 [[Wa(t, )|| +6p|Ca(9tuJ)| s (2, ). (2.94)
Applying (2.52)) in Lemma to (2.94) over the 1nterval (1,1,
e o P @HQ 5
Va" (t)]p + s ) A dr (2.95)

1 t t t
<2 [ v +38 [ 1w eRr 2t [z, ,d
2q—2
b [ I+ [ 10617+ 166215 + 607+ i

20



where ¢ € (0,¢t — 7). By (2.53)), (2.69) and (2.87)), we have
t 2q—2
[V ()] < C/ (1 Cr, )P + IGs(Orw) [+ + 1Gs(0,w)|* + 1)dr +c, (2.96)

forall 74+¢ <t < 74T with € € (0,¢ — 7). Therefore, we can deduce that {u"} is bounded in
L>®(t +¢&,7+ T;V). Then, by the uniqueness of solution to (P,) and u € C([r,7 + T|; H), it
follows that u € Cy((1, 7+ T]; V') by [8, Theorem 4].

(3) Integrating inr € rt], with <t <747, we have

2

dr

i

t
~n(\p o P
vaol+5 [ |G

t t
< @@ + e / J@ () |2dr + ¢ / (urli2, , + [u()E2)dr

e / (70, )2 + Co(6) 355 + 16,0 + D) (2.97)

Similar to (2), by (2.54), (2.69), (2.88) and u"(7) = ¢(0) € V N LI(2), we obtain that

IVar @)l < 0/ (70 P + 16 (0r) [ 57 + G (Or) P + Vel + (2.98)

for all 7 <t <7+ T. As [8, Theorem 4|, we have u € C,([r, 7+ T]; V). O

2.4. Generation of a multi-valued cocycle in C. g

Denote by C(X) the collection of all nonempty closed subsets of X.

Definition 2.12. ([4,34]) A multi-valued mapping ® : R* xR x Q x C, y — C(C, g) is called
a strict multi-valued non-autonomous dynamical system on C, i over (€2, F, P, {0}cr) if for all
t,s e RY 7€ Riw e Q and ¢ € C, y, the following conditions (i)-(ii) are satisfied:

<i> @(O, T, W, ) = IC%HQ

(il) ®(t + s, 7w, ) = O(t, 7 + s, 05w, D(s, T, w, ©)).

Now, we define a multi-valued mapping ® : RT x R x Q x C, gy — C(C, g) by

O(t, 7w, ) = {urr. (-, 7, 0w, ) : u is a solution of (2.4)} (2.99)
for every (t,7,w,u,) € RT x R x Q x C, g.

Lemma 2.13. Suppose that H1-H6, (2.14)-(2.15)) hold and 7 € R, w € Q, ¢ € C, . The
mapping O (t, 7, w, @) in (2.99) is a multi-valued cocycle on C. g over (Q, F,IP,0).

Proof. By the same argument as in [4, Lemma 5.1], the cocycle property (ii) in Definition m
of ® can be proved. Lemma implies that the set ®(t, 7,w, ¢) is nonempty. Moreover, we are
able to verify ®(¢,7,w,¢) has compact values by using Theorem [2.8] Therefore, we complete
the proof in the sense of Definition [2.12] O

Lemma 2.14. Suppose that H1-H6, (2.14)-(2.15) hold and 7 € R, w € Q, ¢ € C, . The
mapping ®(t, 7, w,-) : Cy g — C(C, ) is upper-semicontinuous.
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Proof. Given T' > 0,n € N, let 7 € Ryw € Q,¢",¢" € C, gy such that " — ¢° in C, 5.
Meanwhile, let 5™ such that "™ € ®(t, 7, w, ¢™), that is,

nn = Ut—I—T(', T, 0—7w7 gpn)
As " = % in C, g, without loss of generality, we can assume that

le™E, , < 1+201¢°E, ,, VneN.

Arguing as in the proof of Lemma and Corollary , n™ is bounded in L*°(7,7+ T; H) N
LP(r,7+T; V)N Li(r, 7+ T; LI(0O)). Similar to the proof of Theorem we can ensure that
there exist n° € ®(¢, 7, w, ¢°) and a subsequence of n™ (still denote the same) such that 5" — n°
in C, y for all t € [7,7 +T]. As T is arbitrary, it follows that ® is upper-semicontinuous. [

3. Existence of random attractors in Cy g

In this part, we need to establish the existence of ®-pullback attractor of ®, where ® is the
universe of all tempered time-sample sets D = {D(7,w) : 7 € R,w € Q} such that D(7,w) is a
nonempty bounded subset of C, y and

tEI_n e%tHD(T +1, Htw)HQC%H =0, VDe®D rteRwecl (3.1)
Consider a number « satisfying
ac (0, ——). (3.2)

We state now an assumption.
H7. The non-autonomous term J € L} (R, H) satisfies: For every 7 € R,

loc

0
/ NI (r + 7, )||2dr < oo, (3.3)

—00

and for every positive constant c,

0
tlim eCt/ e || J(r +t,-)||?dr = 0. (3.4)
——00 o

3.1. Existence of pullback attractors in C) g

Lemma 3.1. Suppose that H1-H7, (2.14))-(2.15) hold. For each (T,w,D) € R x Q x D, there
exists T'=T(1,w, D, ) > 0 such that the solution of (2.4) satisfies

||UT('a T —t, 9_70.), U'T—t)H%’%H < COR(T7 CU), (35)

forallt > T and u,_y € D(T —t,0_w), where ¢y is a constant and

0 4m? 2g—2
R = [ O+ )P GO0 +lG@aP e 60

—0o0
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Proof. Using T — t instead of 7 and 6_,w instead of w in ([2.25)), we have for all £ € [7 — ¢, 7],

¢
lu(€)II* + 02/ A () I + () g+ llulr)]|?)dr

T—t
Am} [*
Sce—x(&—r+t)’|uT_t||2C%H_i_%/ 6’\(T—£)||ur||20%Hd7’ (3.7)
T—t

13 2¢—2
e [ AT+ [Gs0rri) 5+ 1Go(Orr) P+ 1)
T—t

where [[u(T—1)[|* < [[ur—[[Z., ,, and Oy = min{2, 1, A} is defined in Corollary . Multiplying
(3.7) by €**, and replacing £ by £ + s, then taking the supremum in s € [T —¢ —&, 0], we obtain
that

sup  eXF||u(é+ 5,7 —t, 0w, urg)|]?

s€[r—t—¢,0]

(29N [ o= AE—T+0) 2 Ami (S oo, 12
< sup e [ce lwr—tlle, , + 3 e urllc., , dr
s€[T—t—¢,0] T—t

3 2¢—2
de [0 AP + GO [FT + (6P + 1)
T—1

—A(E-T+1) 2 ami ¢ A(r—¢) 2
<ce T ||UT—t||C%H + \ / e\’ ||UT||C%HdT
T—t

3 2g—2
* / AO(1(r, )2 + |G (Br—r)| 3T + [C5(Or—rw) | + 1), (3.8)
T—1

where we have used A < 27 defined in (2.15)). For s € (—oo, 7 — t — ], we consider

sup eS| u(é+ 5,7 —t, 0w, u )|
s€(—oo0,7—t—¢]

=  sup e PETHINUET (b E+ s — T, 7 — 0w, ury)|?
s€(—o0,T—t—¢]

—HeT) HUT—t ||%7,H < e_A(E_T—H) HuT—t ||%’Y,H : (39>

=e
Therefore, similar to (2.28) we have for all £ € [7 — ¢, 7],

Huﬁ('v T —t, G*TW? u‘rft) H%%H

—\E—T+t) 2 4m% - ¢ Ar 2
< ce Hqut”C%H + Te T_te HUTHC%HdT
Y ¢ Ar 2 29-2 2
+ ce e (| () 4 G5 (Or—rw)| e 4+ (56, —rw)|” + 1)dr. (3.10)
T—t
Then, using the Gronwall lemma we have, for all £ € [T — ¢, 7],
4m% 4m%

é am?
e (-, 7 — taefvaqut)H%%H < Ce(Tf’\)(éfTH)HqutHQc%H + ce(A)‘)g/ el *TI)T(HJ(r? NIE
T—t

2q-2
+ 15 (0y—rw)| 5 + |C5(0y—rw)|[* + 1)dr
4m% 4m% 577— 4711,%
< Ce(T—A)(é—TH)HuT_tH?C L Ce()\_)‘)(é_T)/ ePA=—=x)r
s
—t

< (1T 47,1 + 16 (O0w) 57 + ¢ (0,w) 2+ 1)dr. (3.11)
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Let € = 7, we have

4'm2
lur (-7 —t, 0w, uT_t)||é%H < ce(Tl_A)tHuT_tH%%H + cR(T,w), (3.12)

where R(7,w) is defined in (3.6]). Since u,_+ € D(7 —t,6_w) and D € D, we see from ([2.14])
and (3.1)) that

4m2
X I fu |2, < e BYD(T — 0 w)[|2 , — 0, as t — oo, (3.13)
Thus, we complete the proof. O

Proposition 3.2. Suppose that H1-H7, (2.14))-(2.15)) hold. Then, the multi-valued cocycle
has a closed ®-pullback absorbing set K € D, given by

K(r,w)={weC,pu: ||w||%;%H < cR(T,w)}, VreR,we. (3.14)

where R(T,w) is defined in (3.6)).

Proof. By (3.5]), we know that for t € RT, 7 € R and w € , there exists T'= T'(7,w, D, §) > 0
such that, for all ¢ > T,

O(t, 7 —t,0_yw,D(T —t,0_w)) C K(1,w). (3.15)

Now, we show that K € ©. Let oy = min{\ — ﬂ)\% —a,%}, by (3.6) and (3.14) we have, for
t <0,
e%tR(T +t, 0w)

4m

5 (7 (a—tmi), 2 29-2 2
e eI+ T A )7+ 1O 7+ (G (Orpaw) |7+ 1dr

0 4m2
et [ oSyt

—00

0 am? 2q—2
*eﬁ/m6”“*A“ﬂ“ﬁmemwnfn+mu&HmF+1wr

0 am?
< e 3T () / AN I(r + 7+ 8, )| 2dr

0 2q—2
+eﬁ/‘eWMW“w@wHwnqn+muaHMF+1Mr (3.16)

—0o0

By the same method as [38, Lemma 3.4], we can deduce that there exist by = b;(w,d) > 0 and
by = by(w,d) > 0 such that, for all r,t <0

0 < 20T |¢5 (0,4 w)| 7 < by, 0 < €50, 1w) > < b (3.17)

Hence, by and , it follows from that, for ¢t <0,
lim e2'R(T +t,0,w) = 0. (3.18)
Therefore K € ® as desired. O
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Now we establish the ®-pullback asymptotic compactness of ®.

Lemma 3.3. Suppose that H1-H7, (2.14)-(2.15)) hold. Then ® is ©-pullback asymptotically
compact in C, .

Proof. Let T € R, w € Q, D € ©, and 2" € O(t,, 7 — t,,0_4,w,ur—y,) with u,_,, € D(1 —
tn,0_y,w) and t,, — co. Then

z"(s) =ur(s, 7 —ty,0_;w,ur—y,), Vs € (—o00,0], (3.19)

where u"™ is a solution of (2.4). We need to show {u(s,7—1,,0_,w, ur_¢, ) }22, has a convergent
subsequence in C., .

(1) We will verify that there exists W € C([-T,0]; H) and a subsequence of {z"} (not
relabeled) such that " — W in C([-T,0]; H) for every T > 0.

Let T be a positive integer, similar to (3.11) and (3.13) in Lemma [3.1] there exist ng =

2
4m1

no(T,w, D) > 1 and cp = coe">)T > 0 such that, for all n > ng and t, > T,
||ug||aH <crR(t,w), Y¢ €[t —T,71], (3.20)

where R(T,w) is defined in (3.6 and then

[u"(€)|? < erR(r,w), VE € [r—T,7], n > ny. (3.21)
Consider
Y€)= u"(E—T), V€€ rT+T). (3.22)
By (B:21)), we have
1Y) < erR(r,w), VE € [r,7+T], n>ny. (3.23)

Thus, for fixed 7', {Y"} is bounded in L*(7,7 + T; H). Note that Y™ is a solution of the
following system:

dy™ - _

;; = =AY =AY A+ f(& 2, Y) + (2, Y(E — 0(6))) (3.24)
0

+/ F(z, L, Y™+ D))l + J(E, x) + h(&, 2, Y™ (0ew), VE € [r,7+1T),

with initial data Y* = u}_,. It can be inferred from (3.20) that
||an||%17H < crR(T,w), Yn > ng. (3.25)

From (3.22) and ({3.24]), we consider for all £ € [r, 7 4+ T],

f(gv'rayn) = f(é - T7I7un>7 §<x7yn(€ - Q(g))) = g(xvun<€ -T- Q(g - T)))

F(z,,Y"§+1) = F(z,L,u"(§ =T +1)), h(§z,Y") =h(§ =T, z,u"). (3.26)
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Therefore, using the same method as (3.7)), we have for all r € [ — T 7],
CzeAT/ T(HU"(T)H?/Jr [[u" (7)) dr
<[ W+ ) gar
4m2 T r—1 n
< e T, +Tl/TT6A< |, dr
1 ! Mr—7) 2 29-2 2
c [ eI )T+ (G (Or—rw) [ + (G5 (Br—rw)| + L)dr
=T
4m2 T T—T n
< e ||ur T||CWH +Tl/TT@A( )Ilur||?:%Hd7‘

0 2¢—2
+ c/ (| T+ 7, )P+ 1¢G(0.w)| 5 + |G (0,w) >+ 1)dr. (3.27)

—00

Plugging ((3.20) into and thanks to A > A\ — 4m1 , we have
/ T(Hu(T)W\D/ +lu()[§)dr < coe™ R(T,w), (3.28)

which means that {Y"} is bounded in LP(7,7 + T;V) and Li(7,7 + T3 L9(O)) in view of

m In addltlon we are able to show {f(-,z, Y™} and {¢s(6,w)h(-,z,Y™)} are bounded in

Li(r 7+ T; L71(0)). Owing to the above estimates, there exists Y € L*(r,7 + T; H) N
LP(r, 7+ T; V) N LI(r, 7+ T; L9(0O)) such that

{ Y™ —Y weakly star in L*®(r,7 +T; H), (3.29)

Y" =Y weakly in LP(r, 7+ T;V) and Li(7,7+ T; LY(0O)).
By RemarkN, Remark [2.2| and (3.20)), we deduce that g(z,Y") is bounded in L*(7,7 + T; H
and { ffoo F(z,1,Y"(1))} is bounded in L*(r,7 + T H). Similar to the proof of Theorem ,
we can come to this conclusion

Y"=Y in C(rn7+T);H). (3.30)

Let W(s) :=Y(s+7+T) for s € [-T,0]. By (3.29), then using the diagonal technique we
can obtain that there exist a function W € C'((—o0, 0], H) and a subsequence of {n} (relabeled
the same) such that 2" =« — W in C([-T,0]; H) on every interval [T, 0]. Thus, by
we have for any T > 0,

lim sup e**|[ul(s)||> = sup e**|W(s)|* < erR(r,w), (3.31)

N0 sc[—T,0] s€[-T,0]
that is, W € C, g and
”W(S)Haz{ < erR(r,w), Vse[-T,0], forany T > 0. (3.32)

(2) We will prove that 2™ — W in C, y. To that end, we consider for every ¢ > 0 there
exists n. such that, for all n > n,

sup ¥ |[u”(s) — W(s)||* < e. (3.33)

s$€(—00,0]
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2
Due to A — 4% < A\ < 27, for every € > 0 there exists 1. > 0 such that

m2
coe O R(r ) <

5
—. 3.34
: (3.34)
By (3.11)) we have
4m?2
[ (s)]1” < coe™ @3 R(7,w), (3.35)
Then, (3.34) and (3.35)) yield
sup e?%||u”(s)]|* < o sup 6[277()‘74%)]SR(T,W> < = (3.36)
s<—-T¢ s<—-T¢ 2
Given k > 0, by (3.32)) and (3.34), we have for all s € [—(T. + k + 1), — (T + k)]
4m?2
T (5)[P < e PO FDT A R )
am?2 4m?2
< cpe A e O=TIITHR p(r ) < %7 (3.37)
which means that
sup 2| W (s)|? < . (3.38)
s<-T¢, 2
It can be inferred from (3.36)) and (3.38) that for all n > n,
sup e |lul(s) — W(s)||* <e. (3.39)

s€(—o00,—T¢]

From (1), the convergence of u”(-) to W is true in compact intervals. Therefore, together with
(13.39) we conclude (j3.33)). m

Then, we prove the existence of a pullback attractor in C) . Let us first recall the definition.

Definition 3.4. [34] A € © is called a ®-pullback attractor for @ if the following conditions
(1)-(iii) are satisfied: for every 7 € R and w € €,

(i) A(1,w) is compact in C) g;

(i) A(1,w) is strictly invariant, i.e.

O(t, 7 —t,0_w, AT —t,0_w)) = A(T,w), ¥t > 0.
(iii) A(7,w) is pullback attracting, that is, for each D € D,

lim diste, , (®(t, 7 —t,0_w, D(1T —t,0_w)), A(T,w)) = 0.

t——+00

Theorem 3.5. Suppose that H1-HT7, (2.14)-(2.15) hold. Then the multi-valued cocycle ®
generated from the p-Laplace equation (2.4) has a unique ®-pullback attractor A € ©.

Proof. Givent € R*,7 € R and w € Q. We can obtain the multi-valued cocycle ® is upper
semi-continuous by the result in Lemma [2.14] Proposition yields the existence of a closed
D-pullback absorbing set K € ®. Lemma [3.3| gives the asymptotic compactness of the multi-
valued cocycle ®. Thus we come to this conclusion in view of [4, Theorem 3.4]. O
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3.2. Measurability of the pullback attractor
We recall (see [I]) that €, a subspace of C(R,R), can be equipped with the Fréchet metric

— 1 suDep @i (t) — wi(D)]
d(wy,ws) = — ’ , Ywi,wy €,
(12 = 2 i T uppe g n® — @] "
and F is the Borel o-algebra B(€2) with respect to the metric.
For m € N, we introduce the subset of 2 as
Oy = {w e |w®)| <t V> m}. (3.40)

Lemma 3.6. ([1]]) Let ¢ € (0,1] and Q,, C Q given by (3.40) for m € N.
(i) If W™ — w with W, w € Q,, then (5(0w™) — (5(6w) uniformly for t in any compact
interval of R as n — oo.

(11) 0, is a closed subset of Q and Q= {J Q.

m=1
(111) Given w € Q,,, we have for allt < —m,

66 < 2+ 1. (3.41)

Lemma 3.7. Suppose that H1-H6, (2.14))-(2.15)) hold. Let T > 0,M >0, 7 € R, w" — w with
W' w € Q. Then there exists ¢ = ¢(6,7,T, M,w) > 0 such that the solutions of (2.4) satisfy

”Ut(',T, H—TWnaSO)H%‘%H S ¢, (342)

and
t
[ e Mt - @I + a0 0) [ < (3.43)

for alln € N,t € [1,7 +T| and the initial condition v € C, g with ||¢|c, , < M.

Proof. Since w,w™ € ,,, by Lemma [3.6] (i) there exists N = N(4,T,7,w) > 1 such that, for all
n>Nandr € [r,7+T],

|G (Or—™)| < |Gs(0r—rw)| + 1,

which, with the continuity of (5(0sw) in s, imply that there exists ¢; = ¢1(6, T, 7,w) > 0 such
that, for all r € [r,7 + T,

1Cs(0,—w)| <1, so |G(0r—rw™)| <14 ¢. (3.44)

Replacing w in (2.18) with #_,w", and plugging (3.44]) into (2.18) imply (3.42). Analogously,
replace w by 0_,w™ and let r = 7 in (2.36)). Then, by (3.44)), we can also figure out (3.43). [

Now, we will show the multi-valued cocycle ® is random in the sense of the following
definition:

Definition 3.8. ([4]) A multi-valued cocycle @ is said to be random if

O(,7,, ) RTxQxC,yp —C(Cyp) is BR") x F x B(C, y)-measurable,
that is, for any open set O in C, g, the set {(t,w,z) e R* x Q@ x C, g : ®(t,7,w,2) N O # 0}
belongs to B(RT) x F x B(Cyu).
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Lemma 3.9. Suppose that H1-H6, (2.14))-(2.15)) hold. Then, for every T € R, the mapping
(t,w, ) = (t, 7w, )
is B(R") x F x B(C,, i)-measurable.

Proof. (1) Givenn € N, ° > 0, let t" — %, " — ¢" in C, y and ¢", ¢° € C, gy, W™ — w” with
W™, w® € Q,,. By [, Lemma 2.5], we need to verify the above mapping is upper-semicontinuous,
that is, we will show that for any sequence x™ € ®(t", 7, w", ¢"), there exists a subsequence y™*
converging to some x° € ®(t°, 7,w" ¢") in C, p.

We assume that, for all n € N,

0<t"<1+1° and [@"[2 , <1+2[°2, - (3.45)

By the definition of ® in (2.99), then x" = u? (-, 7,0_;w™, ¢"). On account of in
Lemma [3.7, we have the sequence {u"(-,7,0_,w", ¢")} is bounded in L=(7,7 + 1+ ¢°; H). By
similar reasons to the ones in (8.43), {u"(-,7,0_,w", ¢")} is bounded in LP(1,7 4+ 1 +t%V)
and LI(7,7 + 1+ t% L9(0)). Similar to the proof of Theorem , there exist a subsequence
{u (-, 7, 0_w™, ™)} and uO(-, 7,00 ") € L®(r, 7+ 1+ t% H) N LP(1,7 + 1+ t% V)N
LY, 7 +1+1t% L9(0)) such that

u™ () = u’() in C(r,7+ 1+t H). (3.46)
Thus, for a given € > 0, we have

sup || u (7 H " s, T, 0 0™, ™) —ul (T 0+ s, 7, 0w, 0|

s€[—1-t9,0]
< sup €U (T " 4 s, T, 0w, Q) — UO(T + " 45,7, 0_ w0, g00)||
s€[—1-19,0]
+  sup Ul (7t 45,7, 0w, ) — (T 0 4 s, T 0w, 00|
s€[—1-t9,0]
< £ (3.47)
—_ 4. .

For s € (—o0, —1 — t°], we have
sup ¥ u™ (7 4+ 7 + 5) —u (7 + 10+ )|
s€(—00,—1—19]

< sup o ePfu (7t 4 s) —ul (T 4 )

se(foo,flfto}
+osup (Tt 4 s) = (r )+ )

se(—oo,—l—to}
ST =Pl + s L ) S (349

s€(—o0,—1—t

By the fact that ¢" — ¢° in C, y, for large k we obtain

e Y| Tk

5
=. 3.49
; (3.49)
Owing to ¢° € C, y, there exists lim,_, o, €7°¢%(s) = ¢ € H. Thus consider T' > 1+¢" we have

’90 - (pOHC%H <

sup e[|t +5) — (10 + 5)
s€(—o00,—T]

< sup @t +s) — ol 4+ sup €l — @ (10 + 5)|| <

s€(—o0,—T] s€(—o0,—T

(3.50)

> M
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For s € [-T,—1 —t°], we have

sup €| ("™ +5) — (" + )| <
s€[-T,—1—19]
for large k. It can be inferred from — that x™ — x° in C, y as k — oo. Then,
XP =l o( 7, 0000 ¢°) € CA,H

By the continuity of f, g, h (see H3 H5), Remark ﬂ and Lemma [3.6] (i), we know that u°
is a solution of equation , then x° € ®(t°, 7, ", ©°).

(2) Due to (1), we can obtain that the mapping (¢, w, ) — (¢, 7,w, ) is B(RT) x Fq,, X
B(C., m)-measurable, where Fq,, is the trace o-algebra of F with respect to €,,. Since €, is
a closed subset of 2 by Lemma (iithen Q,, € F, which implies that Fq,, C F. Then,

3.6

(3.51)

| o

together with Q = |J Q,, by Lemma

m=1

(ii), we complete the proof. ]

Recall that the graph of a set-valued map w — F(w) : Q — 2% is defined by
Gr(F)={(w,z) e Qx X: z € F(w)}.

Lemma 3.10. Suppose that H1-H7, (2.14)-(2.15) hold and let m € N, 7 € R. Then, for any
t >0, the map Qp, 3 w — (¢, 7,w, K(7,w)) is measurable with respect to the P-completion of
Fa,, - In addition, ®(t,7,w, K(T,w)) is closed.

Proof. Based on the above definition of graph, by [2], we have to verify the graph of the map
w— D(t, 7, w, K(1,w)) is closed in Q,, x C,, gr. Let w™ — w® in Q,, and x" — x° in C,, yy, where
X" € ®(t, 7,w", K(T,w") . Thus, we only need to prove that x° € ®(¢, 7, w? K(7,w°).

On account of x" € ®(¢, 7,w", ") and " € K(1,w™), we have

X"(s) =ul(t+s,7,0_,w" @"), Vs < —t,

where u™ is a solution of (2.4)). Then ¢™ — ¢° in C,, p.
By Lemma [3.6| (i), there exists ¢, > 0 such that, for all n € N and r € [-m, 0],

1G5(0ra™) 55+ [G5(0,0™) 2 < o (3.52)

In view of H7 and (3.52)), applying the Lebesgue theorem, we have
0 4m%
im [ O S(T +7)| + (G(0w) [+ (G0 + D)dr

n—oo [_

= [ eI P G0 + GO + 1 (353)

—m

Since w™ € ,,, by Lemmal3.6] (i), there exists ¢; > 0 such that, for alln € Nand r € (—o0, —m],
2g-2 2g-2
1G5 (O,w™)| s < es(|r|a +1) and |¢5(0,0™)]* < cs(|r]® + 1). (3.54)

In view of H7 and (3.54)), applying the Lebesgue theorem, we have

nh—{{)lo b (A_i "I+ )P+ 16 (00" )|q " -|-|C<s(9w )|? + 1)dr
= [T P 4 GO IGO0 (355
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Thus, R(r,w") = R(7,w°).
Since ¢" € K(1,w"), we deduce from Proposition that ||<p”||%7 . < coR(r,w"). Hence,

%112, ,; < coR(7,w°) and ¢° € K(7,w"). Using a similar argument as the proof of Lemma ,
we deduce that x € ®(¢, 7,w°, ©°) C ®(t, 7,w°, K(7,w"). d

A pullback attractor A is random with respect to the P-completion F of the o-algebra F,
that is,

{lweQ: AT, w)NO #£ 0} € F,
for any open set O C Cy g and 7 € R.

Theorem 3.11. Suppose that H1-HT7, (2.14)-(2.15)) hold. Then, the multi-valued random non-
autonomous dynamical system ® generated from the p-Laplace equation (2.4) has a ©-pullback
random attractor A over (Q, F,P).

Proof. By Lemma the map w — ®(t, 7,w, (7, w)) is measurable w.r.t. the P-completion
of Fq,,, that is

Cpi={w € Q: O, 7,0, K(1,w))NO #£0} € Fg,,.

By Lemma [3.6| (ii), we have

{weQ: o, 7w K(r,w))NO #£D} = G Cn€F,

m=1

together with the closedness of the graph proved in Lemma|3.10|and Lemma (3.9 we can deduce
the conclusion according to [4, Theorem 3.5]. O

Acknowledgements

The authors would like to thank the referees for their helpful suggestions which allowed to
improve the presentation of this paper.
Fengling Wang was supported by the China Scholarship Council (CSC No. 202106990035) and
the Postgraduate Research and Innovation Project of Chongqing grant CYB22109. Yangrong
Li was supported by Natural Science Foundation of China grant 12271444. Tomas Caraballo
was supported by the Spanish Ministerio de Ciencia e Innovacién (AEI) and FEDER under
project PID2021-122991NB-C21.

Data availability

The authors declare that all the data related to the research carried out in this paper are
included in the paper.

31



Competing interests

The authors declare that they have no competing interests.

[1] L. Arnold, Random dynamical systems, Springer-Verlag, Berlin, 1998.
[2] J.P. Aubin, H. Frankowska, Set-Valued Analysis, Birkhauser, 1990.

[3] T. Caraballo, P. Marin-Rubio, J. Valero, Attractors for differential equations with un-
bounded delays, J. Differ. Equ. 239 (2007) 311-342.

[4] T. Caraballo, M.J. Garrido-Atienza, B. Schmalfuf}; J. Valero, Non-autonomous and random
attractors for delay random semilinear equations without uniqueness, Discrete contin. Dyn.
Syst. 21 (2008) 415-443.

[5] T. Caraballo, M.J. Garrido-Atienza, B. Schmalfuf}; J. Valero, Asymptotic behavior of a
stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete
contin. Dyn. Syst. Ser. B 14 (2010) 439-455.

[6] T. Caraballo, M.J. Garrido-Atienza, B. Schmalfuf}, J. Valero, Global attractor for a non-
autonomous integro-differential equation in materials with memory, Nonlinear Anal. 73
(2010) 183-201.

[7] T. Caraballo, M.J. Garrido-Atienza, B. Schmalfu}, J. Valero, Attractors for a random
evolution equation with infinite memory Theoretical results, Discrete contin. Dyn. Syst. Ser.
B 22 (2017) 1779-1800.

[8] T. Caraballo, M. Herrera-Cobos, P. Marin-Rubio, Asymptotic behaviour of nonlocal p-
Laplacian reaction-diffusion problems, J. Math. Anal. Appl. 459 (2018) 997-1015.

[9] P. Chen, R. Wang, X. Zhang, Long-time dynamics of fractional nonclassical diffusion equa-
tions with nonlinear colored noise and delay on unbounded domains, Bull. Sci. Math. 173
(2021) 103071.

[10] P. Chen, B. Wang, R. Wang, X. Zhang, Multivalued random dynamics of Benjamin-
Bona-Mahony equations driven by nonlinear colored noise on unbounded domains, Math.
Ann. (2022). https://doi.org/10.1007/s00208-022-02400-0

[11] P. Chen, X. Zhang, Random dynamics of stochastic BBM equations driven by nonlinear
colored noise on unbounded channel, J. Evol. Equ. 22 (2022) 87.

[12] L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators
and applications to symmetry and monotonicity results, Ann. Inst. H. Poincaré Anal. Non
Linéaire 15 (1998) 493-516.

[13] J.R. Esteban, J.L. Vazquez, On the equation of turbulent filtration in one-dimensional
porous media, Nonlinear Anal. 210 (1986) 1303-1325.

[14] A. Gu, B. Wang, Random attractors of reaction-diffusion equations without uniqueness
driven by nonlinear colored noise, J. Math. Anal. Appl. 486 (2020) 123880.

32



[15] A. Gu, B. Wang, Asymptotic behavior of random FitzHugh-Nagumo systems driven by
colored noise, Discrete Contin. Dyn. Syst., Ser. B 23 (2018) 1689-1720.

[16] P.G. Geredeli, A. Khanmamedov, Long-time dynamics of the parabolic p-Laplacian equa-
tion, Comm. Pure Appl. Math. 12 (2013) 735-754.

[17] J.K. Hale, J. Kato, Phase space for retarded equations with infinite delay, Fwzkcial. Ekvac.
21 (1978) 11-41.

[18] Y. Hino, S. Murakami, T. Naito, Functional differential equations with infinite delay Lec-
ture Notes in Mathematics, vol. 1473, Springer-Verlag, Berlin, (1991).

. Krause, B. Wang, Pullback attractors of non-autonomous stochastic degenerate
19] A. K B. W Pullback attract f t hastic d
parabolic equations on unbounded domains, J. Math. Anal. Appl. 417 (2014) 1018-1038.

[20] A. Krause, M. Lewis, B. Wang, Dynamics of the non-autonomous stochastic p-Laplace
equation driven by multiplicative noise, Appl. Math. Comput. 246 (2014) 365-376.

[21] F. Kappel, W. Schappacher, Some considerations to the Fundamental theory of infinite
delay equations, J. Differ. Equ. 37 (1980) 141-183.

[22] H.B. Keller, D.S. Cohen, Some positone problems suggested by nonlinear heat generation,
J. Math. Mech. 16 (1967) 1361-1376.

[23] M.M. Klosek-Dygas, B.J. Matkowsky, Z. Schuss, Colored noise in dynamical systems,
SIAM J. Appl. Math. 48 (1988) 425-441.

[24] J.L. Lions, Quelques Méthodes de Résolution des Problemes aux Limites Non Lineaires,
Dunod, Paris, (1969).

[25] L. Liu, X. Fu, Existence and upper semi-continuity of pullback attractors of a p-Laplacian
equation with delay, J. Math. Phys. 58 (2017) 082702.

[26] L. Liu, T. Caraballo, P. Marin-Rubio, Stability results for 2D Navier-Stokes equations with
unbounded delay, J. Differ. Equ. 265 (2018) 5685-5708.

[27] Y. Li, A. Gu, J. Li, Existence and continuity of bi-spatial random attractors and application
to stochastic semilinear Laplacian equations, J. Differ. Equ. 258 (2015) 504-534.

[28] Y. Li, J. Yin, Existence, regularity and approximation of global attractors for weakly
dissipative p-Laplace equations, Discrete Contin. Dyn. Syst. 9 (2016) 1939-1957.

[29] P. Marin-Rubio, J. Real, J. Valero, Pullback attractors for a two-dimensional Navier-Stokes
model in an infinite delay case, Nonlinear Anal. 74 (2011) 2012-2030.

[30] R.A. Samprogna, T. Caraballo, Pullback attractor for a dynamic boundary non-
autonomous problem with infinite delay, Discrete Contin. Dyn. Syst. Ser. B 23 (2018) 509—
523.

[31] R.A. Samprogna, K. Schiabel, C.B. Gentile Moussa, Pullback attractor for multivalued
process and application to nonautonomous problems with dynamic boundary conditions,
Set-Valued Var. Anal. 27 (2019) 19-50.

33



[32] R.E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential
Equations, American Mathematical Society, Providence, (1997).

[33] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Second
edition, Applied Mathematical Sciences, 68, Springer-Verlag, New York, (1997).

[34] B. Wang, Multivalued non-autonomous random dynamical systems for wave equations
without uniqueness, Discrete Contin. Dyn. Syst. Ser. B 22 (2017) 2011-2051.

[35] K. Zhu, Y. Xie, F. Zhou, Q. Zhou, Pullback attractors for p-Laplacian equations with
delays, J. Math. Phys. 62 (2021) 022702.

[36] P. Zhang, A. Gu, Attractors for multi-valued lattice dynamical systems with nonlinear
diffusion terms, Stoch. Dynam. 22 (2022) 2140013.

[37] W. Zhao, Regularity of random attractors for a degenerate parabolic equations driven by
additive noises, Appl. Math. Comput. 239 (2014) 358-374.

[38] W. Zhao, Y. Zhang, High-order Wong-Zakai approximations for non-autonomous stochas-
tic p-Laplacian equations on R”, Commun. Pur. Appl. Anal. 20 (2021) 243-280.

[39] Y. Wang, P.E. Kloeden, Pullback attractors of a multi-valued process generated by
parabolic differential equations with unbounded delays, Nonlinear Anal. 90 (2013) 86-95.

[40] Y. Wang, M. Sui, Pullback attractors for multi-valued non-compact random dynamical
systems generated by reaction-diffusion equations on an unbounded domain, J. Differ. Equ.

259 (2015) 728-776.

[41] J. Xu, Z. Zhang, T. Caraballo, Non-autonomous nonlocal partial differential equations
with delay and memory, J. Differ. Equ. 270 (2021) 505-546.

[42] J. Xu, T. Caraballo, J. Valero, Asymptotic behavior of nonlocal partial differential equa-
tions with long time memory, Discrete Contin. Dyn. Syst. Ser. S 15 (2022) 3059-3078.

[43] J. Xu, T. Caraballo, J. Valero, Asymptotic behavior of a semilinear problem in heat
conduction with long time memory and non-local diffusion, J. Differ. Equ. 327 (2022) 418-
447.

34



	Introduction
	Multivalued dynamical systems in C,H
	Assumptions
	Existence of solutions in C,H
	Regularity of solutions
	Generation of a multi-valued cocycle in C,H

	Existence of random attractors in C,H
	Existence of pullback attractors in C,H
	Measurability of the pullback attractor


