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Abstract

This paper mainly considers the long-term behavior of p-Laplace equations with infinite de-
lays driven by nonlinear colored noise. We firstly prove the existence of weak solutions to
the equation, but the uniqueness of solutions cannot be guaranteed due to the lack of Lips-
chitz continuity conditions, and thus generate a multi-valued dynamical system. Moreover, the
regularity of solutions is also proved. Then we prove the existence of a pullback attractor. Sub-
sequently, the measurability of the pullback attractor and the multi-valued dynamical system
are also proved.
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1. Introduction

In this paper, we consider the existence of pullback random attractors for non-autonomous
p-Laplace equations with infinite delay (representing the past history of variables) on a bounded
domain O ⊂ RN :

∂u

∂t
− div(|∇u|p−2∇u) + λu = f(t, x, u) + g(x, u(t− %(t)))

+

∫ 0

−∞
F (x, l, u(t+ l))dl + J(t, x) + h(t, x, u)ζδ(θtω), t > τ, x ∈ O,

u(t, x) = 0, t > τ, x ∈ ∂O,
u(τ + s, x) = ϕ(s, x), s ∈ (−∞, 0], x ∈ O, τ ∈ R,

(1.1)

where p ≥ 2, λ > 0, ζδ is the colored noise with correlation time δ > 0, and W is a scalar Wiener
process on the classical Wiener space (Ω,P,F , {θt}t∈R). The nonlinear drift term f and the
nonlinear diffusion term h are continuous functions but not necessarily Lipschitz continuous,
and the delay term g : O×R→ R and F : O×R−×R→ R are also non-Lipschitz continuous.

Since the sample paths of a Wiener process are nowhere differentiable, to solve this difficulty,
we often use colored noise (see [23]) to approximate the Wiener process. Stochastic partial
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differential equations driven by nonlinear colored noise have been studied in many papers
[9, 15, 11]. Regarding multi-valued random dynamical systems, there are also some related
papers, such as [14, 10, 36].

The p-Laplace partial differential equation often appears in the physical studies about non-
Newtonian fluid dynamics. It also occurs in descriptions of phenomena related to nonlinear
elasticity, nonlinear filtering, or magnetic field distribution (see [22, 13]). The long-term dy-
namical behavior (especially the existence of pullback attractors) of the p-Laplace equation has
been extensively studied, see e.g., [16, 27, 28, 25, 19, 20, 38, 35] in a general singled-valued
random dynamical system with Lipschitz continuous conditions. In the absence of Lipschitz
continuous condition, the uniqueness of the solution cannot be ensured, thus the long-time
dynamics of the p-Laplace equation in multi-valued random dynamical systems are discussed,
for instance, in [8, 10, 31, 14, 40, 34]. Note that none of the above papers possesses a delay
term.

For infinite delay equations, choosing a suitable state space is more difficult than for bounded
delay equations, see e.g., [17, 21]. The existence of attractors for models involving hereditary
characteristics with infinite delays has been discussed extensively, such as [29, 26, 41, 42, 43] in
singled-valued dynamical systems and [3, 4, 5, 6, 7, 30, 39] in multi-valued dynamical systems.

The existence of pullback attractors for the multi-valued process associated to differential
equations with p-Laplace operators and infinite delays has been discussed in [30]. But as far
as we know, there are very few papers on dynamics of multi-valued non-autonomous p-Laplace
equations with infinite delays. Therefore, the topic of this paper is novel.

The main difficulties of this paper are: (i) The existence of weak solutions of equation
(1.1). (ii) The measurability of multi-valued dynamical systems and random attractors and
the asymptotic compactness of solutions. To solve these problems, we use the traditional
Galerkin approximations technique, and according to the method in [4], we prove that u →∫ 0

−∞ F (x, l, u(t+ l))dl is continuous from Cγ,L2(O) into L2(O) as shown in Remark 2.3, in order
to obtain the existence of weak solutions (see Theorem 2.8). To solve pullback asymptotically
compactness of solutions, we will use the same technique as [30, Lemma 5.5]. The measurability
of the pullback attractor will be deduced by proving the upper-semicontinuity of multi-valued
functions, the closure of a graph on some subspaces of the probability space by using the
methods in [4].

In fact, we try to prove the regularity of pullback random attractors for equation (1.1).
For p-Laplacian equations with bounded delays, Sobolev’s compactness theorem and Arzelà-
Ascoli’s theorem can be applied to prove the regularity of pullback attractors as in [25, 35].
But for the space considered in this paper (shown in (2.5)), we find that there is no embedding
relationship between spaces Cγ,L2(O) and Cγ,W 1,p

0 (O). Therefore, we can only prove the regularity

of the solution (see Theorem 2.9) by applying the method of [8].
In the next section, we prove the existence of weak solutions to equation (1.1), and that they

generate a multi-valued dynamical system. Moreover, we also prove the regularity of solutions.
Section 3 is dedicated to the existence of the pullback attractor, and proves the measurability
of the pullback attractor and the multi-valued dynamical system. Therefore, the existence of
pullback random attractors for the equation (1.1) is obtained.

2. Multivalued dynamical systems in Cλ,H

Let H = L2(O) equipped with the norm ‖ · ‖, and use ‖ · ‖s denote the norm in Ls(O) (s
can be any positive constant). We denote W 1,p

0 (O) by V , and the dual space W−1,p̂(O) (p̂ is
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the conjugate of p) of W 1,p
0 (O) by V ∗. We also let (·, ·) denote the inner product in L2(O), and

denote the duality product between V and V ∗ by 〈·, ·〉. In addition, we have the usual chain of
dense and compact embedding V ⊂ H ⊂ V ∗.

For p ≥ 2, we define the p-Laplacian operator ∆p : V → V ∗ by

∆pu := −div(|∇u|p−2∇u), 〈∆pu, v〉 =

∫
O
|∇u|p−2∇u · ∇vdx, (2.1)

for all u, v ∈ V . Note that ∆p is a monotone and hemicontinuous operator as in [32]. Moreover,
by (2.1), for all u, v ∈ V

〈∆pu, v〉 =

∫
O
|∇u|p−2∇u · ∇vdx

≤
(∫
O
|∇u|pdx

) p−1
p
(∫
O
|∇v|pdx

) 1
p

= ‖u‖p−1
V ‖v‖V , (2.2)

and

‖∆pu‖V ∗ = sup
‖v‖V ≤1

〈∆pu, v〉 ≤ ‖u‖p−1
V . (2.3)

Now, we consider the following non-autonomous random p-Laplace equation with infinite
delays: 

∂u

∂t
= −∆pu− λu+ f(t, x, u) + g(x, u(t− %(t))) +

∫ 0

−∞
F (x, l, u(t+ l))dl

+ J(t, x) + h(t, x, u)ζδ(θtω), t > τ, x ∈ O,
u(t, x) = 0, t > τ, x ∈ ∂O,
u(τ + s, x) = ϕ(s, x), s ∈ (−∞, 0], x ∈ O, τ ∈ R.

(2.4)

Let X be a Hilbert space. To deal with the delay terms g and F in (2.4), we denote our
phase space by

Cγ,X = {w ∈ C((−∞, 0];X) : lim
τ→−∞

eγτw(τ) exists}, (2.5)

where γ > 0 and we set ‖w‖Cγ,X := sup
τ∈(−∞,0]

eγτ‖w(τ)‖ < ∞ for all w ∈ Cγ,X . From [4], we

know that Cγ,X is a separable Banach space. Consider T > τ and a function u : (−∞, T )→ X,
we can define for any t ∈ [τ, T ) the mapping ut : (−∞, 0] → X by ut(s) = u(t + s) for all
s ∈ (−∞, 0].

By [1, 15], we define a random variable ζδ : Ω→ R by

ζδ(ω) =
1

δ

∫ 0

−∞
e
s
δ dW (t, ω), for each δ > 0.

The process zδ(t, ω) = ζδ(θtω) is called an Ornstein-Uhlenbeck process (i.e. the colored noise),
which is a stationary Gaussian process with E(ζδ) = 0 and is the unique stationary solution of
the stochastic equation:

dz +
1

δ
zdt =

1

δ
dW.

By [14], there exists a {θt}t∈R-invariant subset set (still denoted by) Ω of full measure such that
for ω ∈ Ω,

lim
t→±∞

ω(t)

t
= 0, lim

t→±∞

|ζδ(θtω)|
t

= 0 for every 0 < δ ≤ 1. (2.6)
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2.1. Assumptions

In order to achieve our final result, we need to impose the following assumptions:
H1. The external force fulfills J(t, x) ∈ C(R, H).
H2. %(·) ∈ C1(R, [0, ρ]) and |%′(·)| ≤ ρ∗ < 1.
H3. f : R×O × R→ R is continuous and for all t, r ∈ R, x ∈ O,

f(t, x, r)r ≤ −β1|r|q + ψ1(t, x), (2.7)

|f(t, x, r)| ≤ β2|r|q−1 + ψ2(t, x), (2.8)

where q > 2, β1, β2 > 0, ψ1 ∈ L∞loc(R, L1(O) ∩ L∞(O)), ψ2 ∈ L2
loc(R, L2(O)) .

H4. g ∈ C(R,R) and there is β3 > 0 such that

|g(x, r)|2 ≤ β3|r|2 + |ψ3(x)|2, ∀r ∈ R, x ∈ O, (2.9)

where ψ3 ∈ L2(O).
H5. The nonlinear diffusion term h : R × O × R → R is a continuous function such that

for all t, r ∈ R, x ∈ O,

|h(t, x, r)| ≤ ψ4(t, x)|r|η−1 + ψ5(t, x), (2.10)

where 2 ≤ η < q, ψ4 ∈ L
2q−2
q−η
loc (R, L

2q−2
q−η (O)), ψ5 ∈ L2

loc(R, L2(O)).
H6. F : O × R− × R → R is continuous. There exist a scalar function e−γ·m1(·) ∈

L1((−∞, 0],R), and a function m0(x, ·) ∈ L1((−∞, 0], L1(O)) such that F satisfies

|F (x, l, r)| ≤ m1(l)|r|+ |m0(x, l)|, ∀x ∈ O, l ∈ R−, r ∈ R. (2.11)

To simplify the calculation, we will denote

m0 =

∫ 0

−∞
‖m0(·, r)‖1dr, (2.12)

m1 =

∫ 0

−∞
e−γrm1(r)dr. (2.13)

Remark 2.1. By (2.9), we can obtain that

‖g(·, u(t− %(t)))‖2 ≤ β3‖u(t− %(t))‖2 + ‖ψ3(·)‖2

≤ β3e
2γρ‖ut‖2

Cγ,H
+ ‖ψ3(·)‖2.

Remark 2.2. By (2.11), we can deduce that∥∥∥∫ 0

−∞
F (·, l, u(t+ l))dl

∥∥∥2

≤
∫
O

(

∫ 0

−∞
[m1(l)|u(t+ l)|+ |m0(x, l)|]dl)2dx

≤ 2

∫
O

(

∫ 0

−∞
m1(l)|u(t+ l)|dl)2dx+ 2

∫
O

(

∫ 0

−∞
|m0(x, l)|dl)2dx

≤ 2

∫
O

(sup
l≤0

eγl|ut(l)|
∫ 0

−∞
e−γlm1(l)dl)2dx+ 2

∫
O

(

∫ 0

−∞
|m0(x, l)|dl)2dx

≤ 2m2
1‖ut‖2

Cγ,H
+ 2m2

0.
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Remark 2.3. Given n ∈ N. By H6, we know that if ηn → η in Cγ,H , then for all l ≤ 0

F (x, l, ηn(l))→ F (x, l, η(l)).

Thus, there exists a positive constant C(M) such that, for any l ∈ [−M, 0],

‖F (·, l, ηn(l))− F (·, l, η(l))‖ ≤ C(M).

Using Lebesgue’s majorant theorem we have for any M > 0∫ 0

−M
‖F (·, l, ηn(l))− F (·, l, η(l))‖dl→ 0.

For any ε > 0 there exists an M = M(ε) > 0 such that∫ −M
−∞
‖F (·, l, ηn(l))− F (·, l, η(l))‖dl

≤
∫ −M
−∞

∫
O

[
m1(l)(|ηn(l)|+ |η(l)|) + 2|m0(x, l)|

]
dxdl

≤
∫ −M
−∞

m1(l)e−γl
∫
O
eγl(|ηn(l)|+ |η(l)|)dxdl + 2

∫ −M
−∞

∫
O
|m0(x, l)|dxdl

≤ (‖ηn‖Cγ,H + ‖η‖Cγ,H )

∫ −M
−∞

m1(l)e−γldl + 2

∫ −M
−∞
‖m0(x, l)‖1dxdl ≤ ε.

Hence, for any ε > 0, there exists N = N(ε) > 0 such that, for n ≥ N ,∥∥∥∫ 0

−∞
F (·, l, ηn(l))dl −

∫ 0

−∞
F (·, l, η(l))dl

∥∥∥ ≤ 2ε,

which implies that η →
∫ 0

−∞ F (x, l, η)dl is continuous from Cγ,H into H.

2.2. Existence of solutions in Cγ,H
In this section, we show the existence of weak solutions for the system (2.4). To that end,

we assume that

8m2
1 < λ2, (2.14)

and

2M1 ≤
λ

8
≤ γ

4
and ϑ := β1 − qM1 > 0, where M1 =

√
β3eλρ√

1− ρ∗
> 0. (2.15)

Definition 2.4. Given T > 0, a function u(·, τ, ω, ϕ) ∈ C((−∞, τ + T );H)∩Lp(τ, τ + T ;V )∩
Lq(τ, τ+T ;Lq(O)) is called a weak solution of (2.4) on (τ, τ+T ) with initial function ϕ ∈ Cγ,H ,
if for every η ∈ V ∩ Lq(O),

d

dt
(u, η) + 〈∆pu, η〉+ λ(u, η)

=

∫
O
f(t, x, u)ηdx+

∫
O
g(x, u(t− %(t)))ηdx+

∫
O

(∫ 0

−∞
F (x, l, u(t+ l))dl

)
ηdx

+

∫
O
J(t, x)ηdx+ ζδ(θtω)

∫
O
h(t, x, u)ηdx, (2.16)

in the sense of distributions.
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It can be inferred from Definition 2.4 and H3-H6 that du
dt
∈ Lp̂(τ, τ + T ;V ∗) + L

q
q−1 (τ, τ +

T ;L
q
q−1 (O)). By [33], we know that u ∈ C([τ, τ + T ];H). Furthermore, for all t ∈ [τ, τ + T ],

d

dt
‖u‖2 + 2‖∇u‖pp + 2λ‖u‖2 = 2

∫
O
f(t, x, u)udx+ 2

∫
O
g(x, u(t− %(t)))udx

+ 2

∫
O

(∫ 0

−∞
F (x, l, u(t+ l))dl

)
udx+ 2

∫
O
J(t, x)udx+ 2ζδ(θtω)

∫
O
h(t, x, u)udx. (2.17)

In order to show the existence of a weak solution to system (2.4), we first need to establish
a priori estimates for weak solutions to equation (2.4).

Lemma 2.5. Suppose that H1-H6, (2.14)-(2.15) hold. Let τ ∈ R, ω ∈ Ω, T > 0, and u
be a weak solution of system (2.4) with initial condition ϕ ∈ Cγ,H . Then there exists c =
c(M1, λ, γ) > 0 such that, for all t ∈ [τ, τ + T ],

‖ut‖2
Cγ,H
≤ ce(

4m2
1

λ
−λ)(t−τ)‖ϕ‖2

Cγ,H
+

4

λ

∫ t

τ

e(λ− 4m2
1

λ
)(r−t)‖J(r, ·)‖2dr

+ c

∫ t

τ

e(λ− 4m2
1

λ
)(r−t)(|ζδ(θrω)|

2q−2
q−η + |ζδ(θrω)|2 + 1)dr. (2.18)

Proof. By (2.17), H3 and the Young inequality, we have

d

dt
‖u‖2 + 2‖∇u‖pp +

7

4
λ‖u‖2

≤ −2β1‖u‖qq + 2‖ψ1(t, ·)‖+ 2

∫
O
g(x, u(t− %(t)))udx

+ 2

∫
O

(∫ 0

−∞
F (x, l, u(t+ l))dl

)
udx+

4

λ
‖J(t, ·)‖2 + 2ζδ(θtω)

∫
O
h(t, x, u)udx.

By H5 and the Young inequality again, we have

2ζδ(θtω)

∫
O
h(t, x, u)udx ≤ 2ζδ(θtω)

∫
O

(ψ4(t, x)|u|η + ψ5(t, x)|u|)dx

≤ β1‖u‖qq + c‖ψ4(t, ·)‖
q

q−η
q

q−η
|ζδ(θtω)|

q
q−η + c‖ψ5(t, ·)‖

q
q−1
q
q−1
|ζδ(θtω)|

q
q−1 .

By Remark 2.2 and the Young inequality, for the infinite delay term we have

2

∫
O

( ∫ 0

−∞
F (x, l, u(t+ l))dl

)
udx ≤ 4m2

1

λ
‖ut‖2

Cγ,H
+

4m2
0

λ
+
λ

2
‖u‖2. (2.19)

Therefore, for all t ∈ [τ, τ + T ],

d

dt
‖u‖2 + 2‖u‖pV + β1‖u‖qq +

5

4
λ‖u‖2

≤ 2

∫
O
g(x, u(t− %(t)))udx+

4m2
1

λ
‖ut‖2

Cγ,H
+

4

λ
‖J(t, ·)‖2

+ c(1 + ‖ψ4(t, ·)‖
q

q−η
q

q−η
|ζδ(θtω)|

q
q−η + ‖ψ5(t, ·)‖

q
q−1
q
q−1
|ζδ(θtω)|

q
q−1 ). (2.20)
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Multiplying (2.20) by eλt and integrating it over t ∈ [τ, ξ], we have for all ξ ≥ τ ,

eλξ‖u(ξ)‖2 + 2

∫ ξ

τ

eλr‖u(r)‖pV dr + β1

∫ ξ

τ

eλr‖u(r)‖qqdr +
λ

4

∫ ξ

τ

eλr‖u(r)‖2dr

≤ eλτ‖u(τ)‖2 + 2

∫ ξ

τ

eλr
∫
O
g(x, u(r − %(r)))u(r)dr +

4m2
1

λ

∫ ξ

τ

eλr‖ur‖2
Cγ,H

dr

+
4

λ

∫ ξ

τ

eλr‖J(r, ·)‖2dr + c

∫ ξ

τ

eλr(|ζδ(θrω)|
q

q−η + |ζδ(θrω)|
q
q−1 + 1)dr, (2.21)

where we used that L
2q−2
q−η (O) ⊂ L

q
q−η (O) and L2(O) ⊂ L

q
q−1 (O). For the finite delay term we

have

2

∫ ξ

τ

eλr
∫
O
g(x, u(r − %(r)))u(r)dr ≤M1

∫ ξ

τ

eλr‖u(r)‖2dr +
1

M1

∫ ξ

τ

eλr‖g(·, u(r − %(r)))‖2dr,

(2.22)

where M1 =

√
β3eλρ√
1−ρ∗ is defined in (2.15). By H4 and H2, we have

1

M1

∫ ξ

τ

eλr‖g(·, u(r − %(r)))‖2dr (2.23)

≤ β3

M1

∫ ξ

τ

eλr‖u(r − %(r))‖2dr +
1

M1

∫ ξ

τ

eλr‖ψ3(·)‖2dr

≤ β3e
λρ

M1(1− ρ∗)

∫ ξ

τ−ρ
eλr‖u(r)‖2dr +

‖ψ3(·)‖2

M1

∫ ξ

τ

eλrdr

≤ β3e
λρ

M1(1− ρ∗)

∫ 0

−ρ
eλ(r+τ)−2γre2γr‖u(τ + r)‖2dr

+
β3e

λρ

M1(1− ρ∗)

∫ ξ

τ

eλr‖u(r)‖2dr +
‖ψ3(·)‖2

M1

∫ ξ

τ

eλrdr

≤ β3e
λτe2γρ

M1(1− ρ∗)(2γ − λ)
‖ϕ‖2

Cγ,H
+M1

∫ ξ

τ

eλr‖u(r)‖2dr +
‖ψ3(·)‖2

M1

∫ ξ

τ

eλrdr.

It can be inferred from (2.22) and (2.23) that

2

∫ ξ

τ

eλr
∫
O
g(x, u(r − %(r)))u(r)dr

≤ 2M1

∫ ξ

τ

eλr‖u(r)‖2dr + ceλτ‖ϕ‖2
Cγ,H

+ c

∫ ξ

τ

eλrdr. (2.24)

By q
q−η <

2q−2
q−η , q

q−1
< 2 and 2M1 ≤ λ

8
defined in (2.15), plugging (2.24) into (2.21), we have

‖u(ξ)‖2 +

∫ ξ

τ

eλ(r−ξ)(2‖u(r)‖pV + β1‖u(r)‖qq +
λ

8
‖u(r)‖2)dr

≤ eλ(τ−ξ)‖u(τ)‖2 + ceλ(τ−ξ)‖ϕ‖2
Cγ,H

+
4m2

1

λ

∫ ξ

τ

eλ(r−ξ)‖ur‖2
Cγ,H

dr (2.25)

+
4

λ

∫ ξ

τ

eλ(r−ξ)‖J(r, ·)‖2dr + c

∫ ξ

τ

eλ(r−ξ)(|ζδ(θrω)|
2q−2
q−η + |ζδ(θrω)|2 + 1)dr.
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Then, multiplying (2.25) by e2γs, and replacing ξ by t + s, and taking the supremum in s ∈
[τ − t, 0], we obtain that

sup
s∈[τ−t,0]

e2γs‖u(t+ s, τ, ω, ϕ)‖2

≤ sup
s∈[τ−t,0]

e(2γ−λ)s
[
eλ(τ−t)‖u(τ)‖2 + ceλ(τ−t)‖ϕ‖2

Cγ,H

+
4m2

1

λ

∫ t

τ

eλ(r−t)‖ur‖2
Cγ,H

dr +
4

λ

∫ t

τ

eλ(r−t)‖J(r, ·)‖2dr

+ c

∫ t

τ

eλ(r−t)(|ζδ(θrω)|
q

q−η + |ζδ(θrω)|
q
q−1 + 1)dr

]
(2.26)

≤ eλ(τ−t)‖u(τ)‖2 + ceλ(τ−t)‖ϕ‖2
Cγ,H

+
4m2

1

λ

∫ t

τ

eλ(r−t)‖ur‖2
Cγ,H

dr

+
4

λ

∫ t

τ

eλ(r−t)‖J(r, ·)‖2dr + c

∫ t

τ

eλ(r−t)(|ζδ(θrω)|
2q−2
q−η + |ζδ(θrω)|2 + 1)dr,

where we have used λ ≤ 2γ defined in (2.15). For s ∈ (−∞, τ − t], we consider

sup
s∈(−∞,τ−t]

e2γs‖u(t+ s, τ, ω, ϕ)‖2

= sup
s∈(−∞,τ−t]

e2γs‖uτ (t+ s− τ, τ, ω, ϕ)‖2

= sup
s∈(−∞,τ−t]

e2γs‖ϕ(t+ s− τ)‖2

= sup
s∈(−∞,τ−t]

e−2γ(t−τ)e2γ(t+s−τ)‖ϕ(t+ s− τ)‖2

= e−2γ(t−τ)‖ϕ‖2
Cγ,H
≤ e−λ(t−τ)‖ϕ‖2

Cγ,H
. (2.27)

Further

‖ut(·, τ, ω, ϕ)‖2
Cγ,H
≤ max

{
sup

s∈(−∞,τ−t]
e2γs‖u(t+ s, τ, ω, ϕ)‖2,

sup
s∈[τ−t,0]

e2γs‖u(t+ s, τ, ω, ϕ)‖2
}
. (2.28)

Using the fact that ‖u(τ)‖2 = ‖ϕ(0)‖2 ≤ ‖ϕ‖2
Cγ,H

, we deduce from (2.26)-(2.28) that for all
t ≥ τ ,

‖ut(·, τ, ω, ϕ)‖2
Cγ,H
≤ ceλ(τ−t)‖ϕ‖2

Cγ,H
+

4m2
1

λ

∫ t

τ

eλ(r−t)‖ur‖2
Cγ,H

dr

+
4

λ

∫ t

τ

eλ(r−t)‖J(r, ·)‖2dr + c

∫ t

τ

eλ(r−t)(|ζδ(θrω)|
2q−2
q−η + |ζδ(θrω)|2 + 1)dr, (2.29)

or equivalently,

eλt‖ut(·, τ, ω, ϕ)‖2
Cγ,H
≤ ceλτ‖ϕ‖2

Cγ,H
+

4m2
1

λ

∫ t

τ

eλr‖ur‖2
Cγ,H

dr

+
4

λ

∫ t

τ

eλr‖J(r, ·)‖2dr + c

∫ t

τ

eλr(|ζδ(θrω)|
2q−2
q−η + |ζδ(θrω)|2 + 1)dr. (2.30)
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Hence, by (2.14) and using Gronwall’s lemma we have

‖ut(·, τ, ω, ϕ)‖2
Cγ,H
≤ ce(

4m2
1

λ
−λ)(t−τ)‖ϕ‖2

Cγ,H
+

4

λ

∫ t

τ

e(λ− 4m2
1

λ
)(r−t)‖J(r, ·)‖2dr

+ c

∫ t

τ

e(λ− 4m2
1

λ
)(r−t)(|ζδ(θrω)|

2q−2
q−η + |ζδ(θrω)|2 + 1)dr, (2.31)

which completes the proof.

Lemma 2.6. Suppose that H1-H6, (2.14)-(2.15) hold. Let τ ∈ R, ω ∈ Ω, T > 0, and B be a
bounded set of Cγ,H . Then, there exists c = c(M1, λ, γ, B, T ) > 0 such that a weak solution u(·)
of system (2.4) with initial condition ϕ ∈ B satisfies

‖u(t, τ, ω, ϕ)‖2 ≤ e−λ(t−r)‖u(r)‖2 + c

∫ t

r

e−λ(t−σ)‖J(σ, ·)‖2dσ

+ c

∫ t

r

e−λ(t−σ)(|ζδ(θσω)|
2q−2
q−η + |ζδ(θσω)|2 + 1)dσ + c. (2.32)

for all τ ≤ r ≤ t ≤ τ + T .

Proof. By (2.20) we have

d

dt
‖u‖2 + 2‖u‖pV + β1‖u‖qq +

5

4
λ‖u‖2

≤ 2

∫
O
g(x, u(t− %(t)))udx+

4m2
1

λ
‖ut‖2

Cγ,H
+

4

λ
‖J(t, ·)‖2

+ c(1 + ‖ψ4(t, ·)‖
q

q−η
q

q−η
|ζδ(θtω)|

q
q−η + ‖ψ5(t, ·)‖

q
q−1
q
q−1
|ζδ(θtω)|

q
q−1 ). (2.33)

Multiplying (2.33) by eλσ and integrating it in σ ∈ [r, t] with τ ≤ r ≤ t ≤ τ + T , we have for
all t ≥ r,

‖u(t)‖2 +

∫ t

r

e−λ(t−σ)(2‖u(σ)‖pV + β1‖u(σ)‖qq +
1

4
λ‖u(σ)‖2)dσ

≤ e−λ(t−r)‖u(r)‖2 + 2

∫ t

r

e−λ(t−σ)

∫
O
g(x, u(σ − %(σ)))u(σ)dxdσ

+
4m2

1

λ

∫ t

r

e−λ(t−σ)‖uσ‖2
Cγ,H

dσ + c

∫ t

r

e−λ(t−σ)‖J(σ, ·)‖2dσ

+ c

∫ t

r

e−λ(t−σ)(1 + |ζδ(θσω)|
q

q−η + |ζδ(θσω)|
q
q−1 )dσ. (2.34)

Similar to (2.22)-(2.23), we have

2

∫ t

r

e−λ(t−σ)

∫
O
g(x, u(σ − %(σ)))u(σ)dxdσ (2.35)

≤M1

∫ t

r

e−λ(t−σ)‖u(σ)‖2dσ +
1

M1

∫ t

r

e−λ(t−σ)‖g(·, u(σ − %(σ)))‖2dσ

≤M1

∫ t

r

e−λ(t−σ)‖u(σ)‖2dσ +
β3e
−λ(t−ρ)

M1(1− ρ∗)

∫ t

r−ρ
eλσ‖u(σ)‖2dσ + c

∫ t

r

e−λ(t−σ)dσ

≤ 2M1

∫ t

r

e−λ(t−σ)‖u(σ)‖2dσ +
β3e
−λ(t−r)e2γρ

M1(1− ρ∗)(2γ − λ)
‖ur‖2

Cγ,H
+ c

∫ t

r

e−λ(t−σ)dσ.
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By 2M1 ≤ λ
8

defined in (2.15), we have

‖u(t)‖2 +

∫ t

r

e−λ(t−σ)(2‖u(σ)‖pV + β1‖u(σ)‖qq +
1

8
λ‖u(σ)‖2)dσ

≤ e−λ(t−r)‖u(r)‖2 +
β3e

2γρ

M1(1− ρ∗)(2γ − λ)
e−λ(t−r)‖ur‖2

Cγ,H

+
4m2

1

λ

∫ t

r

e−λ(t−σ)‖uσ‖2
Cγ,H

dσ + c

∫ t

r

e−λ(t−σ)‖J(σ, ·)‖2dσ

+ c

∫ t

r

e−λ(t−σ)(1 + |ζδ(θσω)|
2q−2
q−η + |ζδ(θσω)|2)dσ. (2.36)

By (2.6), H1 and ϕ ∈ B, we can inferred from (2.18) in Lemma 2.5 that ‖ut‖2
Cγ,H

≤ C1 =

C1(B, T ) for t ∈ [τ, τ + T ], we have

‖u(t)‖2 +

∫ t

r

e−λ(t−σ)(2‖u(σ)‖pV + β1‖u(σ)‖qq +
1

8
λ‖u(σ)‖2)dσ

≤ e−λ(t−r)‖u(r)‖2 + cC1 + c

∫ t

r

e−λ(t−σ)‖J(σ, ·)‖2dσ

+ c

∫ t

r

e−λ(t−σ)(1 + |ζδ(θσω)|
2q−2
q−η + |ζδ(θσω)|2)dσ. (2.37)

Then we conclude (2.32).

We can draw the following results immediately from (2.37):

Corollary 2.7. Suppose that H1-H6, (2.14)-(2.15) hold. Let τ ∈ R, ω ∈ Ω, T > 0, and let
B ⊆ Cγ,H be a bounded set. Then, there exists c = c(M1, λ, γ, B, T ) > 0 such that a weak
solution u(·) of system (2.4) with initial condition ϕ ∈ B satisfies, for all τ ≤ r ≤ t ≤ τ + T ,∫ t

r

(‖u(σ)‖pV + ‖u(σ)‖qq + ‖u(σ)‖2)dσ (2.38)

≤ c‖u(r)‖2 + c

∫ t

r

‖J(σ, ·)‖2dσ + c

∫ t

r

(1 + |ζδ(θσω)|
2q−2
q−η + |ζδ(θσω)|2)dσ + c.

Proof. Consider C2 = min{2, β1,
1
8
λ}. By (2.37) we have, for all τ ≤ r ≤ t ≤ τ + T ,

e−λ(t−τ)C2

∫ t

r

(‖u(σ)‖pV + ‖u(σ)‖qq + ‖u(σ)‖2)dσ

≤ C2

∫ t

r

e−λ(t−σ)(‖u(σ)‖pV + ‖u(σ)‖qq + ‖u(σ)‖2)dσ

≤ e−λ(t−r)‖u(r)‖2 + c

∫ t

r

e−λ(t−σ)‖J(σ, ·)‖2dσ

+ c

∫ t

r

e−λ(t−σ)(1 + |ζδ(θσω)|
2q−2
q−η + |ζδ(θσω)|2)dσ + c,

which implies (2.38).

10



Theorem 2.8. Suppose that H1-H6, (2.14)-(2.15) hold and τ ∈ R, ω ∈ Ω, ϕ ∈ Cγ,H . Then,
equation (2.4) admits at least one weak solution.

Proof. (1) First, we consider the Galerkin approximations to equation (2.4). It follows from

[24] that Hr
0(O) ⊂ V ∩Lq(O) for r ≥ max{N(q−2)

2q
, 2p+N(p−2)

2p
}. We consider a special basis of H

consisting of elements {wj} ⊂ Hr
0(O), and denote by Wn = span[w1, . . . , wn]. Let the projector

Pnu =
n∑
j=1

(u,wj)wj, then
⋃
n∈N

Wn is dense in V ∩ Lq(O).

For fixed n ∈ N, consider ũn(t) =
n∑
j=1

µ̃nj (t)wj, where µ̃nj are required to satisfy the following

system:

d

dt
(ũn(t), wj) + 〈∆pũ

n(t), wj〉+ λ(ũn(t), wj)

= (f(t, x, ũn(t)), wj) + (g(x, ũnt (−%(t))), wj) +
(∫ 0

−∞
F (x, l, ũnt (l))dl, wj

)
+ (J(t, ·), wj) + ζδ(θtω)(h(t, x, ũn(t)), wj), 1 ≤ j ≤ n, (2.39)

where initial data is ũn(τ + s) = Pnϕ(s) for s ∈ (−∞, 0]. It follows from [18, Theorem 1.1] the
existence of local solutions for (2.39). Now, we show that solutions do exist in [τ, τ + T ] with
T > 0.

(2) From (2.32) and setting r = τ in (2.38), we obtain for all T > 0,

{ũn} is bounded in L∞(τ, τ + T ;H) ∩ Lp(τ, τ + T ;V ) ∩ Lq(τ, τ + T ;Lq(O)).

By (2.10), the Hölder and Minkowski inequalities, we obtain∫ t

τ

∫
O
ζδ(θrω)h(t, x, ũn(r))wdxdr

≤
∫ t

τ

(∫
O

∣∣∣ζδ(θrω)ψ4(r, x)|ũn(r)|η−1 + ζδ(θrω)ψ5(r, x)
∣∣∣ q
q−1
dx
) q−1

q
dr

∫ t

τ

‖w‖qdr

≤ 2
1
q

∫ t

τ

[( ∫
O

∣∣ζδ(θrω)ψ4(r, x)
∣∣ q
q−1
∣∣ũn(r)

∣∣ q(η−1)
q−1

dx
) q−1

q

+
(∫
O

∣∣ζδ(θrω)ψ5(r, x)
∣∣ q
q−1dx

) q−1
q
]
dr

∫ t

τ

‖w‖qdr

≤ c

∫ t

τ

[(( ∫
O
|ζδ(θrω)ψ4(r, x)|

q
q−η dx

) q−η
q−1
( ∫
O
|ũn(r)|qdx

) η−1
q−1

) q−1
q

+
(∫
O
|ζδ(θrω)ψ5(r, x)|

q
q−1dx

) q−1
q
]
dr

∫ t

τ

‖w‖qdr

≤ c
(∫ t

τ

‖ψ4(r, ·)‖ 2q−2
q−η

dr +

∫ t

τ

‖ũn‖η−1
q dr +

∫ t

τ

‖ψ5(r, ·)‖2dr
)∫ t

τ

‖w‖qdr,

which together with (2.8) yields

{f(t, x, ũn)} and {ζδ(θtω)h(t, x, ũn)} are bounded in L
q
q−1 (τ, τ + T ;L

q
q−1 (O)).

Recall from Lemma 2.6 that

‖ũnt ‖2
Cγ,H
≤ C1, ∀t ∈ [τ, τ + T ], ϕ ∈ B ⊂ Cγ,H , n ∈ N. (2.40)
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Thus, by (2.40), Remark 2.1 and Remark 2.2, we have {g(x, ũn· )} is bounded in L2(τ, τ +T ;H),

and
{ ∫ 0

−∞ F (x, l, ũn· (l))dl
}

is bounded in L2(τ, τ+T ;H). Moreover, we can deduce that {∆pũ
n}

is bounded in Lp̂(τ, τ + T ;V ∗) from (2.3). From the above, we know that {dũn
dt
} is bounded in

Lp̂(τ, τ + T ;H−r(O)) by [8].
Hence, there exist a subsequence (relabeled the same) {ũn}, an element ũ ∈ L∞(τ, τ+T ;H)∩

Lp(τ, τ+T ;V )∩Lq(τ, τ+T ;Lq(O)) with dũ
dt
∈ Lp̂(τ, τ+T ;H−r(O)), χ1 ∈ Lp̂(τ, τ+T ;V ∗), χ2 ∈

L2(τ, τ+T ;H), χ3 ∈ L2(τ, τ+T ;H), χ4 ∈ L
q
q−1 (τ, τ+T ;L

q
q−1 (O)), χ5 ∈ L

q
q−1 (τ, τ+T ;L

q
q−1 (O))

such that, up to subsequence,

ũn → ũ weakly star in L∞(τ, τ + T ;H),

ũn → ũ weakly in Lp(τ, τ + T ;V ) and Lq(τ, τ + T ;Lq(O)),

ũn → ũ strongly in Lp(τ, τ + T ;Lp(O)),

∆pũ
n → χ1 weakly in Lp̂(τ, τ + T ;V ∗),

g(x, ũn· )→ χ2 weakly in L2(τ, τ + T ;H),∫ 0

−∞
F (x, l, ũn· (l))dl→ χ3 weakly in L2(τ, τ + T ;H),

dũn

dt
→ dũ

dt
weakly in Lp̂(τ, τ + T ;H−r(O)),

f(·, x, ũn)→ χ4 weakly in L
q
q−1 (τ, τ + T ;L

q
q−1 (O)),

ζδ(θ·ω)h(·, x, ũn)→ χ5 weakly in L
q
q−1 (τ, τ + T ;L

q
q−1 (O)),

(2.41)

for all T > 0. From [24, Lemma 1.3], we can identify that χ1 = ∆pũ, χ4 = f(·, x, ũ) and
χ5 = ζδ(θ·ω)h(·, x, ũ).

By the compact embedding H ↪→ H−r(O) and (2.40), we can infer from the Arzelà-Ascoli
theorem that ũn → ũ in C([τ, τ+T ];H−r(O)). Then, by (2.40) again, it is not difficult to prove
that for any sequence tn → t0 with tn, t0 ∈ [τ, τ + T ],

ũn(tn)→ ũ(t0) weakly in H. (2.42)

In fact, we want to show that

ũn(·)→ ũ(·) in C([τ, τ + T ];H). (2.43)

By (2.41), passing to the limit in (2.39), we consider a solution ũ ∈ C([τ, τ +T ];H) of a similar
problem to (2.4), that is, for all η ∈ V ∩ Lq(O)

d

dt
(ũ, η) + 〈∆pũ, η〉+ λ(u, η) = (f(t, ·, ũ), η) + (χ2, η) + (χ3, η)

+ (J(t, ·), η) + (ζδ(θtω)h(t, ·, ũ), η), (2.44)

with the initial data ũ(τ + s) = ϕ(s) for s ∈ (−∞, 0]. By (2.40), Remark 2.1 and Remark 2.2,
for all τ ≤ r ≤ t ≤ τ + T ,∫ t

r

‖χ2(σ)‖2dσ ≤ lim inf
n→+∞

∫ t

r

‖g(σ, ũnσ)‖2dσ ≤ c(t− r),

and ∫ t

r

‖χ3(σ)‖2dσ ≤ lim inf
n→+∞

∫ t

r

∥∥∥∫ 0

−∞
F (σ, l, ũnσ(l))dl

∥∥∥2

dσ ≤ c(t− r).
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Therefore, by the same method as Lemma 2.6, ũ can also satisfies (2.32). We define functions
Jn, J : [τ, τ + t]→ R by

Jn(t) = ‖ũn(t)‖2 − c
∫ t

τ

‖J(σ, ·)‖2dσ − c
∫ t

τ

(|ζδ(θσω)|
2q−2
q−η + |ζδ(θσω)|2 + 1)dσ, (2.45)

J(t) = ‖ũ(t)‖2 − c
∫ t

τ

‖J(σ, ·)‖2dσ − c
∫ t

τ

(|ζδ(θσω)|
2q−2
q−η + |ζδ(θσω)|2 + 1)dσ. (2.46)

where the c in (2.45) is the same as (2.46). It is clear that Jn and J are non-increasing and
continuous functions. By (2.41) and [6, Lemma 11], we can deduce that

Jn(t)→ J(t), for a.e. t ∈ [τ, τ + T ]. (2.47)

Then, we have

lim sup
n→+∞

‖ũn(tn)‖ ≤ ‖ũ(t0)‖, (2.48)

which together with (2.42) implies (2.43). By Remark 2.1 and (2.43), we can deduce that
χ2 = g(x, ũ·).

By [29, Theorem 5], for the initial datum ϕ ∈ Cγ,H , we know that Pnϕ→ ϕ in Cγ,H . Indeed,

sup
s≤0

eγs‖ũn(t+ s)− ũ(t+ s)‖

≤ max
{

sup
s∈[τ−t,0]

eγs‖ũn(t+ s)− ũ(t+ s)‖,

sup
s∈(−∞,τ−t]

eγ(τ−t)eγ(s+t−τ)‖ũnτ (t+ s− τ)− ũτ (t+ s− τ)‖
}

≤ max
{

sup
s∈[τ,t]

‖ũn(s)− ũ(s)‖, eγ(τ−t)‖Pnϕ− ϕ‖Cγ,H
}
→ 0,

which implies that for all t ∈ [τ, τ + T ]

ũnt → ũt in Cγ,H . (2.49)

Therefore, by Remark 2.3, we deduce χ3 =
∫ 0

−∞ F (x, l, ũ·(l))dl. Finally, we can pass to the
limit in (2.39), concluding that ũ is a solution of (2.4).

2.3. Regularity of solutions

Now, we can show a regularity result for the solution of equation (2.4).

Theorem 2.9. Suppose that H1-H6, (2.14)-(2.15) hold and τ ∈ R, ω ∈ Ω, ϕ ∈ Cγ,H . Then
any weak solutions u to the equation (2.4) belongs to Cw((τ, τ +T ];V ). In particular, if ϕ(0) ∈
V ∩ Lq(O), then u ∈ Cw([τ, τ + T ];V ).

In order to prove this result, we need the next lemma. In the proof of the latter, we will
use the following Gronwall-type lemma for the estimate of the solutions in the regular space.
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Lemma 2.10. ([37]) Let y, g and h be three nonnegative and locally integrable functions on R,
thus dy

dt
is also locally integrable and

dy

dt
+ by(t) + g(t) ≤ h(t), t ∈ R. (2.50)

Then, for every t > τ with τ ∈ R, one has

y(t) ≤ 1

t− τ

∫ t

τ

y(r)eb(r−t)dr +

∫ t

τ

h(r)eb(r−t)dr. (2.51)

In particular, if b = 0 then

y(t) ≤ 1

t− τ

∫ t

τ

y(r)dr +

∫ t

τ

h(r)dr. (2.52)

Lemma 2.11. Suppose that H1-H6, (2.14)-(2.15) hold. Let τ ∈ R, ω ∈ Ω, T > 0, and B be a
bounded set of Cγ,H . Then there exists c = c(M1, λ, γ, B, T ) > 0 such that

(1) A weak solution u(·) of system (2.4) with initial condition ϕ ∈ B satisfies∫ t

τ

‖u(r)‖2q−2
2q−2dr ≤ c

∫ t

τ

(‖J(r, ·)‖2 + |ζδ(θrω)|
2q−2
q−η + |ζδ(θrω)|2 + 1)dr + c, (2.53)

for all t ∈ (τ, τ + T ].
(2) A weak solution u(·) of system (2.4) with initial condition ϕ ∈ B and ϕ(0) ∈ V ∩Lq(O)

satisfies∫ t

τ

‖u(r)‖2q−2
2q−2dr ≤ c

∫ t

τ

(‖J(r, ·)‖2 + |ζδ(θrω)|
2q−2
q−η + |ζδ(θrω)|2 + 1)dr + c, (2.54)

for all t ∈ [τ, τ + T ].

Proof. Multiplying (2.4) by |u|q−2u, and integrating over O, we have

d

dt
(
1

q
‖u‖qq) +

∫
O

∆pu(|u|q−2u)dx+ λ‖u‖qq

=

∫
O
f(t, x, u)(|u|q−2u)dx+

∫
O
g(x, u(t− %(t)))(|u|q−2u)dx

+

∫
O

( ∫ 0

−∞
F (x, l, u(t+ l))dl

)
(|u|q−2u)dx+

∫
O
J(t, x)(|u|q−2u)dx

+ ζδ(θtω)

∫
O
h(t, x, u)(|u|q−2u)dx. (2.55)

It is easy to check that for any q > 2,∫
O

∆pu(|u|q−2u)dx ≥ 0. (2.56)

By (2.7) and the Young inequality, we deduce that∫
O
f(t, x, u)(|u|q−2u)dx ≤

∫
O

[−β1(|u|q + |u|p) + ψ1(t, x)]|u|q−2dx

≤ −β1‖u‖2q−2
2q−2 − β1‖u‖p+q−2

p+q−2 +

∫
O
ψ1(t, x)|u|q−2dx

≤ −β1‖u‖2q−2
2q−2 +

λ

2
‖u‖qq +

1

2λ
‖ψ1(t, ·)‖

q
2
q
2
. (2.57)
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By Remark 2.2 and the Young inequality we have∫
O

(∫ 0

−∞
F (x, l, u(t+ l))dl

)
(|u|q−2u)dx ≤ 2m2

1

β1

‖ut‖2
Cγ,H

+
2m2

0

β1

+
β1

4
‖u‖2q−2

2q−2. (2.58)

By the Young inequality again,∫
O
J(t, x)(|u|q−2u)dx ≤ β1

4
‖u‖2q−2

2q−2 +
1

β1

‖J(t, ·)‖2. (2.59)

Jointly with H5, we have

ζδ(θtω)

∫
O
h(t, x, u)(|u|q−2u)dx

≤ ζδ(θtω)

∫
O

(ψ4(t, x)|u|η−1 + ψ5(t, x))(|u|q−2u)dx

≤ β1

4
‖u‖2q−2

2q−2 + c|ζδ(θtω)|
2q−2
q−η ‖ψ4(t, ·)‖

2q−2
q−η
2q−2
q−η

+ c|ζδ(θtω)|2‖ψ5(t, ·)‖2. (2.60)

For q > 2, we substitute (2.56)-(2.60) into (2.55) to yield

d

dt
‖u‖qq + 2λ‖u‖qq +

β1

2
‖u‖2q−2

2q−2 ≤ q

∫
O
g(x, u(t− %(t)))(|u|q−2u)dx+

q

2λ
‖ψ1(t, ·)‖

q
2
q
2

+
2qm2

1

β1

‖ut‖2
Cγ,H

+
2qm2

0

β1

+
q

β1

‖J(t, ·)‖2 + c|ζδ(θtω)|
2q−2
q−η ‖ψ4(t, ·)‖

2q−2
q−η
2q−2
q−η

+ c|ζδ(θtω)|2‖ψ5(t, ·)‖2.

(2.61)

Then, using (2.51) in Lemma 2.10 over the interval [τ, t], we have

‖u(t)‖qq +
β1

2

∫ t

τ

eλ(r−t)‖u(r)‖2q−2
2q−2dr

≤ 1

ε

∫ t

τ

eλ(r−t)‖u(r)‖qqdr + q

∫ t

τ

eλ(r−t)
∫
O
g(x, u(r − %(r)))(|u(r)|q−2u(r))dxdr

+ c

∫ t

τ

eλ(r−t)‖ur‖2
Cγ,H

dr + c

∫ t

τ

eλ(r−t)‖J(r, ·)‖2dr

+ c

∫ t

τ

eλ(r−t)(|ζδ(θrω)|
2q−2
q−η + |ζδ(θrω)|2 + 1)dr, (2.62)

where ε ∈ (0, t− τ). By the same method as (2.22)-(2.23), for all τ < t ≤ τ + T , we derive

q

∫ t

τ

eλ(r−t)
∫
O
g(x, u(r − %(r)))(|u(r)|q−2u(r))dxdr

≤ qM1

2

∫ t

τ

eλ(r−t)‖u(r)‖2q−2
2q−2dr +

q

2M1

∫ t

τ

eλ(r−t)‖g(x, u(r − %(r)))‖2dr

≤ qM1

2

∫ t

τ

eλ(r−t)‖u(r)‖2q−2
2q−2dr +

qβ3e
λρ

2M1(1− ρ∗)

∫ τ

τ−ρ
eλ(r−t)‖u(r)‖2dr

+
qβ3e

λρ

2M1(1− ρ∗)

∫ t

τ

eλ(r−t)‖u(r)‖2dr + c

∫ t

τ

eλ(r−t)dr

≤ qM1

2

∫ t

τ

eλ(r−t)‖u(r)‖2q−2
2q−2dr +

qM1e
2γρ

2γ − λ
e−λ(t−τ)‖uτ‖2

Cγ,H

+
qM1

2

∫ t

τ

eλ(r−t)‖u(r)‖2dr + c

∫ t

τ

eλ(r−t)dr, (2.63)
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where M1 =

√
β3eλρ√
1−ρ∗ . By (2.63) and let r = τ in (2.36), we have for all t ∈ (τ, τ + T ],

‖u(t)‖qq +
ϑ

2

∫ t

τ

eλ(r−t)‖u(r)‖2q−2
2q−2dr

≤ 1

ε

∫ t

τ

eλ(r−t)‖u(r)‖qqdr +
qM1

2

∫ t

τ

eλ(r−t)‖u(r)‖2dr

+ ce−λ(t−τ)‖uτ‖2
Cγ,H

+ c

∫ t

τ

eλ(r−t)‖ur‖2
Cγ,H

dr + c

∫ t

τ

eλ(r−t)‖J(r, ·)‖2dr

+ c

∫ t

τ

eλ(r−t)(|ζδ(θrω)|
2q−2
q−η + |ζδ(θrω)|2 + 1)dr

≤ ce−λ(t−τ)‖uτ‖2
Cγ,H

+ c

∫ t

τ

eλ(r−t)‖ur‖2
Cγ,H

dr

+ c

∫ t

τ

eλ(r−t)(‖J(r, ·)‖2 + |ζδ(θrω)|
2q−2
q−η + |ζδ(θrω)|2 + 1)dr, (2.64)

where ϑ = β1 − qM1 > 0 is defined in (2.15). Since ϕ ∈ B, thus ‖ur‖2
Cγ,H
≤ C1 = C1(B, T ) for

r ∈ [τ, τ + T ] as proved in Lemma 2.6. Thus for all t ∈ (τ, τ + T ],∫ t

τ

‖u(r)‖2q−2
2q−2dr ≤ cC1 + c

∫ t

τ

(‖J(r, ·)‖2 + |ζδ(θrω)|
2q−2
q−η + |ζδ(θrω)|2 + 1)dr. (2.65)

(2) Applying the general Gronwall inequality to (2.61), we have for all t ∈ [τ, τ + T ],

‖u(t)‖qq +
β1

2

∫ t

τ

eλ(r−t)‖u(r)‖2q−2
2q−2dr

≤ e−λ(t−τ)‖uτ‖qqdr + q

∫ t

τ

eλ(r−t)
∫
O
g(x, u(r − %(r)))(|u(r)|q−2u(r))dxdr

+ c

∫ t

τ

eλ(r−t)‖ur‖2
Cγ,H

dr + c

∫ t

τ

eλ(r−t)‖J(r, ·)‖2dr

+ c

∫ t

τ

eλ(r−t)(|ζδ(θrω)|
2q−2
q−η + |ζδ(θrω)|2 + 1)dr, (2.66)

By (2.63) and similar to (2.64), we have

‖u(t)‖qq +
ϑ

2

∫ t

τ

eλ(r−t)‖u(r)‖2q−2
2q−2dr

≤ e−λ(t−τ)‖uτ‖qqdr + ce−λ(t−τ)‖uτ‖2
Cγ,H

+ c

∫ t

τ

eλ(r−t)‖ur‖2
Cγ,H

dr

+ c

∫ t

τ

eλ(r−t)(‖J(r, ·)‖2 + |ζδ(θrω)|
2q−2
q−η + |ζδ(θrω)|2 + 1)dr. (2.67)

On account of ϕ ∈ B and ϕ(0) ∈ V ∩Lq(O), it follows that for all t ∈ [τ, τ+T ], (2.54) holds.

Now we can finish the proof of Theorem 2.9.
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Proof of Theorem 2.9. Given T > 0, let u(·, τ, ω, ϕ) be a weak solution of equation (2.4),
for short denoted by u. Consider that problem

(Pu)



dy

dt
= −∆py − λy + f(t, x, u) + g(x, u(t− %(t)))

+

∫ 0

−∞
F (x, l, u(t+ l))dl + J(t, x) + h(t, x, u)ζδ(θtω), t > τ, x ∈ O,

y(t, x) = 0, t > τ, x ∈ ∂O,
y(τ + s, x) = u(τ + s, x) = ϕ(s, x), s ∈ (−∞, 0], x ∈ O, τ ∈ R,

(2.68)

possesses a local solution by [32]. Now, we will show the local solution is a global solution.
Recall from Lemma 2.6 that

‖ut‖2
Cγ,H
≤ C1, ∀t ∈ [τ, τ + T ], ϕ ∈ B ⊂ Cγ,H . (2.69)

For fixed n ∈ N, consider ûn(t) =
n∑
j=1

µ̂nj (t)wj, where µ̂nj are required to satisfy the following

system:

d

dt
(ûn(t), wj) + 〈∆pû

n(t), wj〉+ λ(ûn(t), wj) =

∫
O
f(t, x, u(t))wjdx

+

∫
O
g(x, ut(−%(t)))wjdx+

∫
O

(∫ 0

−∞
F (x, l, ut(l))dl

)
wjdx

+

∫
O
J(t, ·)wjdx+ ζδ(θtω)

∫
O
h(t, x, u(t))wjdx, 1 ≤ j ≤ n. (2.70)

Multiplying (2.70) by µ̂nj (t), summing from j = 1 until n we have

d

dt
‖ûn(t)‖2 + 2‖∇ûn(t)‖pp + 2λ‖ûn(t)‖2

= 2

∫
O
f(t, x, u(t))ûn(t)dx+ 2

∫
O
g(x, u(t− %(t)))ûn(t)dx

+ 2

∫
O

(∫ 0

−∞
F (x, l, ut(l))dl

)
ûn(t)dx+ 2

∫
O
J(t, x)ûn(t)dx

+ 2ζδ(θtω)

∫
O
h(t, x, u(t))ûn(t)dx. (2.71)

By (2.8) and the Young inequality, we have

2

∫
O
f(t, x, u)ûn(t)dx ≤ λ

8
‖ûn(t)‖2 +

16β2
2

λ
‖u‖2q−2

2q−2 +
16

λ
‖ψ2(t, ·)‖2. (2.72)

By Remark 2.2, we obtain that

2

∫
O

(∫ 0

−∞
F (x, l, u(t+ l))dl

)
ûn(t)dx ≤ 16m2

1

λ
‖ut‖2

Cγ,H
+

16m2
0

λ
+
λ

8
‖ûn(t)‖2. (2.73)

By Remark 2.1, we have

2(g(x, u(t− %(t))), ûn(t)) ≤ 8β3

λ
e2γρ‖ut‖2

Cγ,H
+

8

λ
‖ψ3(·)‖2 +

λ

8
‖ûn(t)‖2. (2.74)

17



By the Young inequality again,

2

∫
O
J(t, x)ûn(t)dx ≤ λ

8
‖ûn(t)‖2 +

8

λ
‖J(t, ·)‖2. (2.75)

Jointly with H5, we have

2ζδ(θtω)

∫
O
h(t, x, u)ûn(t)dx

≤ 2ζδ(θtω)

∫
O

(ψ4(t, x)|u|η−1 + ψ5(t, x))ûn(t)dx

≤ λ

8
‖ûn(t)‖2 + c‖u‖2q−2

2q−2 + c|ζδ(θtω)|
2q−2
q−η ‖ψ4(t, ·)‖

2q−2
q−η
q−1
q−η

+ c|ζδ(θtω)|2‖ψ5(t, ·)‖2. (2.76)

Substituting (2.72)-(2.76) into (2.71),

d

dt
‖ûn‖2 + 2‖∇ûn(t)‖pp +

11

8
λ‖ûn‖2 (2.77)

≤ c‖u‖2q−2
2q−2 +

16

λ
‖ψ2(t, ·)‖2 + (

16m2
1

λ
+

8β3

λ
e2γρ)‖ut‖2

Cγ,H
+ c

+
8

λ
‖J(t, ·)‖2 + c|ζδ(θtω)|

2q−2
q−η ‖ψ4(t, ·)‖

2q−2
q−η
q−1
q−η

+ c|ζδ(θtω)|2‖ψ5(t, ·)‖2.

Multiplying (2.77) by eλt, and integrating over (τ, t) with t ∈ [τ, τ + T ],

‖ûn(t)‖2 + 2

∫ t

τ

eλ(r−t)‖∇ûn(r)‖ppdr +
3

8
λ

∫ t

τ

eλ(r−t)‖ûn(r)‖2dr (2.78)

≤ e−λ(t−τ)‖ϕ‖2
Cγ,H

+ c

∫ t

τ

eλ(r−t)‖u(r)‖2q−2
2q−2dr + c

∫ t

τ

eλ(r−t)‖ur‖2
Cγ,H

dr

+
8

λ

∫ t

τ

eλ(r−t)‖J(r, ·)‖2dr + c

∫ t

τ

eλ(r−t)(|ζδ(θrω)|
2q−2
q−η + |ζδ(θrω)|2 + 1)dr.

Using the same method as (2.26)-(2.28), and by (2.64) and (2.69) we have for all t ∈ (τ, τ +T ],

‖ûnt ‖2
Cγ,H
≤ ce−λ(t−τ)‖ϕ‖2

Cγ,H
+ c

∫ t

τ

eλ(r−t)‖ur‖2
Cγ,H

dr

+ c

∫ t

τ

eλ(r−t)(‖J(r, ·)‖2 + |ζδ(θrω)|
2q−2
q−η + |ζδ(θrω)|2 + 1)dr

≤ c

∫ t

τ

(‖J(r, ·)‖2 + |ζδ(θrω)|
2q−2
q−η + |ζδ(θrω)|2 + 1)dr + c. (2.79)

Hence we deduce the existence of global solution of equation (Pu) on t ∈ [τ + ε,+∞) with
ε ∈ (0, t− τ). Analogously, by (2.67), (2.69) and ϕ(0) ∈ V ∩ Lq(O), it follows the existence of
the global solution of equation (Pu) on t ∈ [τ,+∞).

Now we prove the uniqueness of the solution for equation (Pu). Taking the inner product
of (2.68) with ûn = y1 − y2, we have

d

dt
‖ûn‖2 + 2〈∆py1 −∆py2, û

n〉+ 2λ‖ûn‖2 = 0. (2.80)
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By [12, Lemma 2.1], we know the following inequality: for every p ≥ 2, there exists c > 0 such
that, for all a1, a2 ∈ R,

(|a1|p−2a1 − |a2|p−2a2)(a1 − a2) ≥ c|a1 − a2|p. (2.81)

The above fact yields

〈∆py1 −∆py2, û
n〉 = (|∇y1|p−2∇y1 − |∇y2|p−2∇y2,∇y1 −∇y2) ≥ c‖∇ûn‖pp. (2.82)

Thus

d

dt
‖ûn‖2 + 2c‖∇ûn‖pp + 2λ‖ûn‖2 ≤ 0. (2.83)

Multiplying (2.83) by eλt, integrating over t ∈ [τ, ξ], we have for all ξ ∈ [τ, τ + T ],

‖ûn(ξ, τ, ω, ϕ)‖2 ≤ e−λ(ξ−τ)‖ûn(τ, τ, ω, ϕ)‖2. (2.84)

Let ξ = t+ s with s ≤ 0, then using the same method as (2.26)-(2.28), we have

‖ûnt (·, τ, ω, ϕ)‖2
Cγ,H
≤ e−λ(t−τ)‖ûnτ ‖2

Cγ,H
, (2.85)

which, together with ûnτ = 0, implies the uniqueness of solution to (Pu). Therefore, on account
of u is a solution to equation (2.4), it follows that y = u.

(1) Let C3 = min{2, 3
8
λ}. Then we infer from (2.78) that, for all t ∈ (τ, τ + T ],

C3e
−λ(t−τ)

∫ t

τ

(‖∇ûn(r)‖ppdr + ‖ûn(r)‖2)dr

≤ C3

∫ t

τ

eλ(r−t)(‖∇ûn(r)‖pp + ‖ûn(r)‖2)dr

≤ e−λ(t−τ)‖ûn(τ)‖2 + c

∫ t

τ

eλ(r−t)‖u(r)‖2q−2
2q−2dr + c

∫ t

τ

eλ(r−t)‖ur‖2
Cγ,H

dr

+ c

∫ t

τ

eλ(r−t)(‖J(r, ·)‖2 + |ζδ(θrω)|
2q−2
q−η + |ζδ(θrω)|2 + 1)dr, (2.86)

which means that by (2.64) and (2.69), for all t ∈ (τ, τ + T ],∫ t

τ

(‖∇ûn(r)‖ppdr + ‖ûn(r)‖2)dr

≤ c

∫ t

τ

(‖J(r, ·)‖2 + |ζδ(θrω)|
2q−2
q−η + |ζδ(θrω)|2 + 1)dr + c. (2.87)

Similarly, by (2.67), (2.69) and ϕ(0) ∈ V ∩ Lq(O), for all t ∈ [τ, τ + T ],∫ t

τ

(‖∇ûn(r)‖ppdr + ‖ûn(r)‖2)dr

≤ c

∫ t

τ

(‖J(r, ·)‖2 + |ζδ(θrω)|
2q−2
q−η + |ζδ(θrω)|2 + 1)dr + c. (2.88)
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(2) Multiplying (2.70) by
dµ̂nj (t)

dt
, summing from j = 1 until n we have

1

p

d

dt
‖∇ûn(t)‖pp +

∥∥∥dûn
dt

∥∥∥2

= −λ
∫
O
ûn
dûn

dt
dx+

∫
O
f(t, x, u)

dûn

dt
dx

+

∫
O
g(x, u(t− %(t)))

dûn

dt
dx+

∫
O

( ∫ 0

−∞
F (x, l, u(t+ l))dl

)dûn
dt

dx

+

∫
O
J(t, x)

dûn

dt
dx+ ζδ(θtω)

∫
O
h(t, x, u)

dûn

dt
dx. (2.89)

By (2.8) and the Young inequality,∫
O
f(t, x, u)

dûn

dt
dx ≤ 1

4

∥∥∥dûn
dt

∥∥∥2

+ 2β2
2‖u‖

2q−2
2q−2 + 2‖ψ2(t, ·)‖2. (2.90)

The Young inequality and (2.10) imply that

− λ
∫
O
ûn
dûn

dt
dx+

∫
O
J(t, x)

dûn

dt
dx+ ζδ(θtω)

∫
O
h(t, x, u)

dûn

dt
dx

≤ 1

4

∥∥∥dûn
dt

∥∥∥2

+ 3λ2‖ûn‖2 + 3‖J(t, ·)‖2 + 6

∫
O
|ζδ(θtω)ψ4(t, x)|2|u|2η−2dx

+ 6|ζδ(θtω)|2
∫
O
|ψ5(t, x)|2dx

≤ 1

4

∥∥∥dûn
dt

∥∥∥2

+ 3λ2‖ûn‖2 + 3‖J(t, ·)‖2 + β2
2‖u‖

2q−2
2q−2

+ c|ζδ(θtω)|
2q−2
q−η ‖ψ4(t, ·)‖

2q−2
q−η
2q−2
q−η

+ 6|ζδ(θtω)|2‖ψ5(t, ·)‖2. (2.91)

By Remark 2.1, we have∫
O
g(x, u(t− %(t)))

dûn

dt
dx ≤ 1

8

∥∥∥dûn
dt

∥∥∥2

+ 2β3e
2γρ‖ut‖2

Cγ,H
+ 2‖ψ3(·)‖2. (2.92)

Similar to (2.73), we obtain∫
O

(∫ 0

−∞
F (x, l, u(t+ l))dl

)dûn
dt

dx ≤ 2m2
1‖ut‖2

Cγ,H
+ 2m2

0 +
1

4

∥∥∥dûn
dt

∥∥∥2

. (2.93)

Then, plugging (2.90)-(2.93) into (2.89),

d

dt
‖∇ûn(t)‖pp +

p

8

∥∥∥dûn
dt

∥∥∥2

≤ 3λ2p‖ûn‖2 + 3pβ2
2‖u‖

2q−2
2q−2 + 2p(‖ψ2(t, ·)‖2 + ‖ψ3(·)‖2) + (2pm2

1 + 2pβ3e
2γρ)‖ut‖2

Cγ,H

+ 2pm2
0 + 3p‖J(t, ·)‖2 + c|ζδ(θtω)|

2q−2
q−η ‖ψ4(t, ·)‖

2q−2
q−η
2q−2
q−η

+ 6p|ζδ(θtω)|2‖ψ5(t, ·)‖2. (2.94)

Applying (2.52) in Lemma 2.10 to (2.94) over the interval (τ, t],

‖∇ûn(t)‖pp +
p

8

∫ t

τ

∥∥∥dûn
dr

∥∥∥2

dr (2.95)

≤ 1

ε

∫ t

τ

‖∇ûn(r)‖ppdr + 3λ2p

∫ t

τ

‖ûn(r)‖2dr + 2pm2
1

∫ t

τ

‖ur‖2
Cγ,H

dr

+ c

∫ t

τ

‖u(r)‖2q−2
2q−2dr + c

∫ t

τ

(‖J(r, ·)‖2 + |ζδ(θrω)|
2q−2
q−η + |ζδ(θrω)|2 + 1)dr,
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where ε ∈ (0, t− τ). By (2.53), (2.69) and (2.87), we have

‖∇ûn(t)‖pp ≤ c

∫ t

τ

(‖J(r, ·)‖2 + |ζδ(θrω)|
2q−2
q−η + |ζδ(θrω)|2 + 1)dr + c, (2.96)

for all τ + ε ≤ t ≤ τ + T with ε ∈ (0, t− τ). Therefore, we can deduce that {ûn} is bounded in
L∞(τ + ε, τ + T ;V ). Then, by the uniqueness of solution to (Pu) and u ∈ C([τ, τ + T ];H), it
follows that u ∈ Cw((τ, τ + T ];V ) by [8, Theorem 4].

(3) Integrating (2.94) in r ∈ [τ, t], with τ ≤ t ≤ τ + T , we have

‖∇ûn(t)‖pp +
p

8

∫ t

τ

∥∥∥dûn
dr

∥∥∥2

dr

≤ ‖ûn(τ)‖pV + c

∫ t

τ

‖ûn(r)‖2dr + c

∫ t

τ

(‖ur‖2
Cγ,H

+ ‖u(r)‖2q−2
2q−2)dr

+ c

∫ t

τ

(‖J(r, ·)‖2 + |ζδ(θrω)|
2q−2
q−η + |ζδ(θrω)|2 + 1)dr. (2.97)

Similar to (2), by (2.54), (2.69), (2.88) and ûn(τ) = ϕ(0) ∈ V ∩ Lq(Ω), we obtain that

‖∇ûn(t)‖pp ≤ c

∫ t

τ

(‖J(r, ·)‖2 + |ζδ(θrω)|
2q−2
q−η + |ζδ(θrω)|2 + 1)dr + c, (2.98)

for all τ ≤ t ≤ τ + T . As [8, Theorem 4], we have u ∈ Cw([τ, τ + T ];V ). 2

2.4. Generation of a multi-valued cocycle in Cγ,H

Denote by C(X) the collection of all nonempty closed subsets of X.

Definition 2.12. ([4, 34]) A multi-valued mapping Φ : R+×R×Ω×Cγ,H → C(Cγ,H) is called
a strict multi-valued non-autonomous dynamical system on Cγ,H over (Ω,F ,P, {θ}t∈R) if for all
t, s ∈ R+, τ ∈ R, ω ∈ Ω and ϕ ∈ Cγ,H , the following conditions (i)-(ii) are satisfied:

(i) Φ(0, τ, ω, ·) = ICγ,H ;
(ii) Φ(t+ s, τ, ω, ϕ) = Φ(t, τ + s, θsω,Φ(s, τ, ω, ϕ)).

Now, we define a multi-valued mapping Φ : R+ × R× Ω× Cγ,H → C(Cγ,H) by

Φ(t, τ, ω, ϕ) = {ut+τ (·, τ, θ−τω, ϕ) : u is a solution of (2.4)} (2.99)

for every (t, τ, ω, uτ ) ∈ R+ × R× Ω× Cγ,H .

Lemma 2.13. Suppose that H1-H6, (2.14)-(2.15) hold and τ ∈ R, ω ∈ Ω, ϕ ∈ Cγ,H . The
mapping Φ(t, τ, ω, ϕ) in (2.99) is a multi-valued cocycle on Cγ,H over (Ω,F ,P, θ).

Proof. By the same argument as in [4, Lemma 5.1], the cocycle property (ii) in Definition 2.12
of Φ can be proved. Lemma 2.6 implies that the set Φ(t, τ, ω, ϕ) is nonempty. Moreover, we are
able to verify Φ(t, τ, ω, ϕ) has compact values by using Theorem 2.8. Therefore, we complete
the proof in the sense of Definition 2.12.

Lemma 2.14. Suppose that H1-H6, (2.14)-(2.15) hold and τ ∈ R, ω ∈ Ω, ϕ ∈ Cγ,H . The
mapping Φ(t, τ, ω, ·) : Cγ,H → C(Cγ,H) is upper-semicontinuous.
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Proof. Given T > 0, n ∈ N, let τ ∈ R, ω ∈ Ω, ϕn, ϕ0 ∈ Cγ,H such that ϕn → ϕ0 in Cγ,H .
Meanwhile, let ηn such that ηn ∈ Φ(t, τ, ω, ϕn), that is,

ηn = ut+τ (·, τ, θ−τω, ϕn).

As ϕn → ϕ0 in Cγ,H , without loss of generality, we can assume that

‖ϕn‖2
Cγ,H
≤ 1 + 2‖ϕ0‖2

Cγ,H
, ∀n ∈ N.

Arguing as in the proof of Lemma 2.6 and Corollary 2.7, ηn is bounded in L∞(τ, τ + T ;H) ∩
Lp(τ, τ + T ;V ) ∩ Lq(τ, τ + T ;Lq(O)). Similar to the proof of Theorem 2.8, we can ensure that
there exist η0 ∈ Φ(t, τ, ω, ϕ0) and a subsequence of ηn (still denote the same) such that ηn → η0

in Cγ,H for all t ∈ [τ, τ + T ]. As T is arbitrary, it follows that Φ is upper-semicontinuous.

3. Existence of random attractors in Cλ,H

In this part, we need to establish the existence of D-pullback attractor of Φ, where D is the
universe of all tempered time-sample sets D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} such that D(τ, ω) is a
nonempty bounded subset of Cγ,H and

lim
t→−∞

e
λ
2
t‖D(τ + t, θtω)‖2

Cγ,H
= 0, ∀D ∈ D, τ ∈ R, ω ∈ Ω. (3.1)

Consider a number α satisfying

α ∈ (0, λ− 4m2
1

λ
). (3.2)

We state now an assumption.
H7. The non-autonomous term J ∈ L2

loc(R, H) satisfies: For every τ ∈ R,∫ 0

−∞
eαr‖J(r + τ, ·)‖2dr <∞, (3.3)

and for every positive constant c,

lim
t→−∞

ect
∫ 0

−∞
eαr‖J(r + t, ·)‖2dr = 0. (3.4)

3.1. Existence of pullback attractors in Cλ,H

Lemma 3.1. Suppose that H1-H7, (2.14)-(2.15) hold. For each (τ, ω,D) ∈ R× Ω×D, there
exists T = T (τ, ω,D, δ) > 0 such that the solution of (2.4) satisfies

‖uτ (·, τ − t, θ−τω, uτ−t)‖2
Cγ,H
≤ c0R(τ, ω), (3.5)

for all t ≥ T and uτ−t ∈ D(τ − t, θ−tω), where c0 is a constant and

R(τ, ω) =

∫ 0

−∞
e(λ− 4m2

1
λ

)r(‖J(r + τ, ·)‖2 + |ζδ(θrω)|
2q−2
q−η + |ζδ(θrω)|2 + 1)dr. (3.6)
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Proof. Using τ − t instead of τ and θ−τω instead of ω in (2.25), we have for all ξ ∈ [τ − t, τ ],

‖u(ξ)‖2 + C2

∫ ξ

τ−t
eλ(r−ξ)(‖u(r)‖pV + ‖u(r)‖qq + ‖u(r)‖2)dr

≤ ce−λ(ξ−τ+t)‖uτ−t‖2
Cγ,H

+
4m2

1

λ

∫ ξ

τ−t
eλ(r−ξ)‖ur‖2

Cγ,H
dr (3.7)

+ c

∫ ξ

τ−t
eλ(r−ξ)(‖J(r, ·)‖2 + |ζδ(θr−τω)|

2q−2
q−η + |ζδ(θr−τω)|2 + 1)dr,

where ‖u(τ−t)‖2 ≤ ‖uτ−t‖2
Cγ,H

and C2 = min{2, β1,
1
8
λ} is defined in Corollary 2.7. Multiplying

(3.7) by e2γs, and replacing ξ by ξ+s, then taking the supremum in s ∈ [τ − t− ξ, 0], we obtain
that

sup
s∈[τ−t−ξ,0]

e2γs‖u(ξ + s, τ − t, θ−τω, uτ−t)‖2

≤ sup
s∈[τ−t−ξ,0]

e(2γ−λ)s
[
ce−λ(ξ−τ+t)‖uτ−t‖2

Cγ,H
+

4m2
1

λ

∫ ξ

τ−t
eλ(r−ξ)‖ur‖2

Cγ,H
dr

+ c

∫ ξ

τ−t
eλ(r−ξ)(‖J(r, ·)‖2 + |ζδ(θr−τω)|

2q−2
q−η + |ζδ(θr−τω)|2 + 1)dr

]
≤ ce−λ(ξ−τ+t)‖uτ−t‖2

Cγ,H
+

4m2
1

λ

∫ ξ

τ−t
eλ(r−ξ)‖ur‖2

Cγ,H
dr

+ c

∫ ξ

τ−t
eλ(r−ξ)(‖J(r, ·)‖2 + |ζδ(θr−τω)|

2q−2
q−η + |ζδ(θr−τω)|2 + 1)dr, (3.8)

where we have used λ ≤ 2γ defined in (2.15). For s ∈ (−∞, τ − t− ξ], we consider

sup
s∈(−∞,τ−t−ξ]

e2γs‖u(ξ + s, τ − t, θ−τω, uτ−t)‖2

= sup
s∈(−∞,τ−t−ξ]

e−2γ(ξ−τ+t)e2γ(t+ξ+s−τ)‖uτ−t(t+ ξ + s− τ, τ − t, θ−τω, uτ−t)‖2

= e−2γ(ξ−τ+t)‖uτ−t‖2
Cγ,H
≤ e−λ(ξ−τ+t)‖uτ−t‖2

Cγ,H
. (3.9)

Therefore, similar to (2.28) we have for all ξ ∈ [τ − t, τ ],

‖uξ(·, τ − t, θ−τω, uτ−t)‖2
Cγ,H

≤ ce−λ(ξ−τ+t)‖uτ−t‖2
Cγ,H

+
4m2

1

λ
e−λξ

∫ ξ

τ−t
eλr‖ur‖2

Cγ,H
dr

+ ce−λξ
∫ ξ

τ−t
eλr(‖J(r, ·)‖2 + |ζδ(θr−τω)|

2q−2
q−η + |ζδ(θr−τω)|2 + 1)dr. (3.10)

Then, using the Gronwall lemma we have, for all ξ ∈ [τ − t, τ ],

‖uξ(·, τ − t, θ−τω, uτ−t)‖2
Cγ,H
≤ ce(

4m2
1

λ
−λ)(ξ−τ+t)‖uτ−t‖2

Cγ,H
+ ce(

4m2
1

λ
−λ)ξ

∫ ξ

τ−t
e(λ− 4m2

1
λ

)r(‖J(r, ·)‖2

+ |ζδ(θr−τω)|
2q−2
q−η + |ζδ(θr−τω)|2 + 1)dr

≤ ce(
4m2

1
λ
−λ)(ξ−τ+t)‖uτ−t‖2

Cγ,H
+ ce(

4m2
1

λ
−λ)(ξ−τ)

∫ ξ−τ

−t
e(λ− 4m2

1
λ

)r

× (‖J(r + τ, ·)‖2 + |ζδ(θrω)|
2q−2
q−η + |ζδ(θrω)|2 + 1)dr. (3.11)
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Let ξ = τ , we have

‖uτ (·, τ − t, θ−τω, uτ−t)‖2
Cγ,H
≤ ce(

4m2
1

λ
−λ)t‖uτ−t‖2

Cγ,H
+ cR(τ, ω), (3.12)

where R(τ, ω) is defined in (3.6). Since uτ−t ∈ D(τ − t, θ−tω) and D ∈ D, we see from (2.14)
and (3.1) that

ce(
4m2

1
λ
−λ)t‖uτ−t‖2

Cγ,H
≤ e−

1
2
λt‖D(τ − t, θ−tω)‖2

Cγ,H
→ 0, as t→∞. (3.13)

Thus, we complete the proof.

Proposition 3.2. Suppose that H1-H7, (2.14)-(2.15) hold. Then, the multi-valued cocycle Φ
has a closed D-pullback absorbing set K ∈ D, given by

K(τ, ω) = {w ∈ Cγ,H : ‖w‖2
Cγ,H
≤ c0R(τ, ω)}, ∀τ ∈ R, ω ∈ Ω. (3.14)

where R(τ, ω) is defined in (3.6).

Proof. By (3.5), we know that for t ∈ R+, τ ∈ R and ω ∈ Ω, there exists T = T (τ, ω,D, δ) > 0
such that, for all t ≥ T ,

Φ(t, τ − t, θ−tω,D(τ − t, θ−tω)) ⊆ K(τ, ω). (3.15)

Now, we show that K ∈ D. Let α0 = min{λ − 4m2
1

λ
− α, λ

4
}, by (3.6) and (3.14) we have, for

t ≤ 0,

e
λ
2
tR(τ + t, θtω)

= e
λ
2
t

∫ 0

−∞
e(λ− 4m2

1
λ

)r(‖J(r + τ + t, ·)‖2 + |ζδ(θr+tω)|
2q−2
q−η + |ζδ(θr+tω)|2 + 1)dr

= e−
λ
2
τe

λ
2

(τ+t)

∫ 0

−∞
e(λ− 4m2

1
λ

)r‖J(r + τ + t, ·)‖2dr

+ e
λ
4
t

∫ 0

−∞
eαr+(λ− 4m2

1
λ
−α)r+λ

4
t(|ζδ(θr+tω)|

2q−2
q−η + |ζδ(θr+tω)|2 + 1)dr

≤ e−
λ
2
τe

λ
2

(τ+t)

∫ 0

−∞
e(λ− 4m2

1
λ

)r‖J(r + τ + t, ·)‖2dr

+ e
λ
4
t

∫ 0

−∞
eαr+α0(r+t)(|ζδ(θr+tω)|

2q−2
q−η + |ζδ(θr+tω)|2 + 1)dr. (3.16)

By the same method as [38, Lemma 3.4], we can deduce that there exist b1 = b1(ω, δ) > 0 and
b2 = b2(ω, δ) > 0 such that, for all r, t ≤ 0

0 < eα0(r+t)|ζδ(θr+tω)|
2q−2
q−η < b1, 0 < eα0(r+t)|ζδ(θr+tω)|2 < b2. (3.17)

Hence, by (3.4) and (3.17), it follows from (3.16) that, for t ≤ 0,

lim
t→−∞

e
λ
2
tR(τ + t, θtω) = 0. (3.18)

Therefore K ∈ D as desired.
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Now we establish the D-pullback asymptotic compactness of Φ.

Lemma 3.3. Suppose that H1-H7, (2.14)-(2.15) hold. Then Φ is D-pullback asymptotically
compact in Cγ,H .

Proof. Let τ ∈ R, ω ∈ Ω, D ∈ D, and xn ∈ Φ(tn, τ − tn, θ−tnω, uτ−tn) with uτ−tn ∈ D(τ −
tn, θ−tnω) and tn →∞. Then

xn(s) = unτ (s, τ − tn, θ−τω, uτ−tn), ∀s ∈ (−∞, 0], (3.19)

where un is a solution of (2.4). We need to show {unτ (s, τ−tn, θ−τω, uτ−tn)}∞n=1 has a convergent
subsequence in Cγ,H .

(1) We will verify that there exists W ∈ C([−T, 0];H) and a subsequence of {xn} (not
relabeled) such that xn → W in C([−T, 0];H) for every T > 0.

Let T be a positive integer, similar to (3.11) and (3.13) in Lemma 3.1, there exist n0 =

n0(τ, ω,D) ≥ 1 and cT = c0e
(λ− 4m2

1
λ

)T > 0 such that, for all n ≥ n0 and tn ≥ T ,

‖unξ ‖2
Cγ,H
≤ cTR(τ, ω), ∀ξ ∈ [τ − T, τ ], (3.20)

where R(τ, ω) is defined in (3.6) and then

‖un(ξ)‖2 ≤ cTR(τ, ω), ∀ξ ∈ [τ − T, τ ], n ≥ n0. (3.21)

Consider

Y n(ξ) = un(ξ − T ), ∀ξ ∈ [τ, τ + T ]. (3.22)

By (3.21), we have

‖Y n(ξ)‖2 ≤ cTR(τ, ω), ∀ξ ∈ [τ, τ + T ], n ≥ n0. (3.23)

Thus, for fixed T , {Y n} is bounded in L∞(τ, τ + T ;H). Note that Y n is a solution of the
following system:

dY n

dξ
= −∆pY

n − λY n + f̃(ξ, x, Y n) + g̃(x, Y n(ξ − %(ξ))) (3.24)

+

∫ 0

−∞
F̃ (x, l, Y n(ξ + l))dl + J̃(ξ, x) + h̃(ξ, x, Y n)ζδ(θξω), ∀ξ ∈ [τ, τ + T ],

with initial data Y n
τ = unτ−T . It can be inferred from (3.20) that

‖Y n
τ ‖2

Cγ,H
≤ cTR(τ, ω), ∀n ≥ n0. (3.25)

From (3.22) and (3.24), we consider for all ξ ∈ [τ, τ + T ],

f̃(ξ, x, Y n) = f(ξ − T, x, un), g̃(x, Y n(ξ − %(ξ))) = g(x, un(ξ − T − %(ξ − T )))

F̃ (x, l, Y n(ξ + l)) = F (x, l, un(ξ − T + l)), h̃(ξ, x, Y n) = h(ξ − T, x, un). (3.26)
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Therefore, using the same method as (3.7), we have for all r ∈ [τ − T, τ ],

C2e
−λT

∫ τ

τ−T
(‖un(r)‖pV + ‖un(r)‖qq)dr

≤ C2

∫ τ

τ−T
eλ(r−τ)(‖un(r)‖pV + ‖un(r)‖qq)dr

≤ ce−λT‖unτ−T‖2
Cγ,H

+
4m2

1

λ

∫ τ

τ−T
eλ(r−τ)‖unr ‖2

Cγ,H
dr

+ c

∫ τ

τ−T
eλ(r−τ)(‖J(r, ·)‖2 + |ζδ(θr−τω)|

2q−2
q−η + |ζδ(θr−τω)|2 + 1)dr

≤ ce−λT‖unτ−T‖2
Cγ,H

+
4m2

1

λ

∫ τ

τ−T
eλ(r−τ)‖unr ‖2

Cγ,H
dr

+ c

∫ 0

−∞
eλr(‖J(r + τ, ·)‖2 + |ζδ(θrω)|

2q−2
q−η + |ζδ(θrω)|2 + 1)dr. (3.27)

Plugging (3.20) into (3.27) and thanks to λ > λ− 4m2
1

λ
, we have∫ τ

τ−T
(‖u(r)‖pV + ‖u(r)‖qq)dr ≤ c0e

λTR(τ, ω), (3.28)

which means that {Y n} is bounded in Lp(τ, τ + T ;V ) and Lq(τ, τ + T ;Lq(O)) in view of

(3.22). In addition, we are able to show {f̃(·, x, Y n)} and {ζδ(θtω)h̃(·, x, Y n)} are bounded in

L
q
q−1 (τ, τ + T ;L

q
q−1 (O)). Owing to the above estimates, there exists Y ∈ L∞(τ, τ + T ;H) ∩

Lp(τ, τ + T ;V ) ∩ Lq(τ, τ + T ;Lq(O)) such that{
Y n → Y weakly star in L∞(τ, τ + T ;H),

Y n → Y weakly in Lp(τ, τ + T ;V ) and Lq(τ, τ + T ;Lq(O)).
(3.29)

By Remark 2.1, Remark 2.2 and (3.20), we deduce that g̃(x, Y n
· ) is bounded in L2(τ, τ + T ;H)

and
{ ∫ 0

−∞ F̃ (x, l, Y n
· (l))

}
is bounded in L2(τ, τ + T ;H). Similar to the proof of Theorem 2.8,

we can come to this conclusion

Y n → Y in C([τ, τ + T ];H). (3.30)

Let W (s) := Y (s+ τ + T ) for s ∈ [−T, 0]. By (3.29), then using the diagonal technique we
can obtain that there exist a function W ∈ C((−∞, 0], H) and a subsequence of {n} (relabeled
the same) such that xn = unτ → W in C([−T, 0];H) on every interval [−T, 0]. Thus, by (3.20)
we have for any T > 0,

lim
n→∞

sup
s∈[−T,0]

e2γs‖unτ (s)‖2 = sup
s∈[−T,0]

e2γs‖W (s)‖2 ≤ cTR(τ, ω), (3.31)

that is, W ∈ Cγ,H and

‖W (s)‖2
Cγ,H
≤ cTR(τ, ω), ∀s ∈ [−T, 0], for any T > 0. (3.32)

(2) We will prove that xn → W in Cγ,H . To that end, we consider for every ε > 0 there
exists nε such that, for all n ≥ nε

sup
s∈(−∞,0]

e2γs‖unτ (s)−W (s)‖2 ≤ ε. (3.33)
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Due to λ− 4m2
1

λ
< λ < 2γ, for every ε > 0 there exists Tε > 0 such that

c0e
−[2γ−(λ− 4m2

1
λ

)]TεR(τ, ω) ≤ ε

2
. (3.34)

By (3.11) we have

‖unτ (s)‖2 ≤ c0e
−(λ− 4m2

1
λ

)sR(τ, ω). (3.35)

Then, (3.34) and (3.35) yield

sup
s≤−Tε

e2γs‖unτ (s)‖2 ≤ c0 sup
s≤−Tε

e[2γ−(λ− 4m2
1

λ
)]sR(τ, ω) ≤ ε

2
. (3.36)

Given k ≥ 0, by (3.32) and (3.34), we have for all s ∈ [−(Tε + k + 1),−(Tε + k)]

e2γs‖W (s)‖2 ≤ c0e
−2γ(Tε+k)e(λ− 4m2

1
λ

)(Tε+k+1)R(τ, ω)

≤ c0e
λ− 4m2

1
λ e−[2γ−(λ− 4m2

1
λ

)](Tε+k)R(τ, ω) ≤ ε

2
, (3.37)

which means that

sup
s≤−Tε

e2γs‖W (s)‖2 ≤ ε

2
. (3.38)

It can be inferred from (3.36) and (3.38) that for all n ≥ nε

sup
s∈(−∞,−Tε]

e2γs‖unτ (s)−W (s)‖2 ≤ ε. (3.39)

From (1), the convergence of unτ (·) to W is true in compact intervals. Therefore, together with
(3.39) we conclude (3.33).

Then, we prove the existence of a pullback attractor in Cλ,H . Let us first recall the definition.

Definition 3.4. [34] A ∈ D is called a D-pullback attractor for Φ if the following conditions
(i)-(iii) are satisfied: for every τ ∈ R and ω ∈ Ω,

(i) A(τ, ω) is compact in Cλ,H ;
(ii) A(τ, ω) is strictly invariant, i.e.

Φ(t, τ − t, θ−tω,A(τ − t, θ−tω)) = A(τ, ω), ∀t ≥ 0.

(iii) A(τ, ω) is pullback attracting, that is, for each D ∈ D,

lim
t→+∞

distCλ,H (Φ(t, τ − t, θ−tω,D(τ − t, θ−tω)),A(τ, ω)) = 0.

Theorem 3.5. Suppose that H1-H7, (2.14)-(2.15) hold. Then the multi-valued cocycle Φ
generated from the p-Laplace equation (2.4) has a unique D-pullback attractor A ∈ D.

Proof. Given t ∈ R+, τ ∈ R and ω ∈ Ω. We can obtain the multi-valued cocycle Φ is upper
semi-continuous by the result in Lemma 2.14. Proposition 3.2 yields the existence of a closed
D-pullback absorbing set K ∈ D. Lemma 3.3 gives the asymptotic compactness of the multi-
valued cocycle Φ. Thus we come to this conclusion in view of [4, Theorem 3.4].
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3.2. Measurability of the pullback attractor

We recall (see [1]) that Ω, a subspace of C(R,R), can be equipped with the Fréchet metric

d(ω1, ω2) =
∞∑
n=1

1

2n
supt∈[−n,n]|ω1(t)− ω2(t)|

1 + supt∈[−n,n]|ω1(t)− ω2(t)|
, ∀ω1, ω2 ∈ Ω,

and F is the Borel σ-algebra B(Ω) with respect to the metric.
For m ∈ N, we introduce the subset of Ω as

Ωm :=
{
ω ∈ Ω : |ω(t)| ≤ |t|, ∀|t| ≥ m

}
. (3.40)

Lemma 3.6. ([14]) Let δ ∈ (0, 1] and Ωm ⊆ Ω given by (3.40) for m ∈ N.
(i) If ωn → ω with ωn, ω ∈ Ωm, then ζδ(θtω

n) → ζδ(θtω) uniformly for t in any compact
interval of R as n→∞.

(ii) Ωm is a closed subset of Ω and Ω =
∞⋃
m=1

Ωm.

(iii) Given ω ∈ Ωm, we have for all t ≤ −m,

|ζδ(θtω)| ≤ 2

δ
|t|+ 1. (3.41)

Lemma 3.7. Suppose that H1-H6, (2.14)-(2.15) hold. Let T > 0,M > 0, τ ∈ R, ωn → ω with
ωn, ω ∈ Ωm. Then there exists c = c(δ, τ, T,M, ω) > 0 such that the solutions of (2.4) satisfy

‖ut(·, τ, θ−τωn, ϕ)‖2
Cγ,H
≤ c, (3.42)

and ∫ t

τ

e−λ(t−r)(‖u(r, τ, θ−τω
n, ϕ)‖pV + ‖u(r, τ, θ−τω

n, ϕ)‖qq)dr ≤ c, (3.43)

for all n ∈ N, t ∈ [τ, τ + T ] and the initial condition ϕ ∈ Cγ,H with ‖ϕ‖Cγ,H ≤M .

Proof. Since ω, ωn ∈ Ωm, by Lemma 3.6 (i) there exists N = N(δ, T, τ, ω) ≥ 1 such that, for all
n ≥ N and r ∈ [τ, τ + T ],

|ζδ(θr−τωn)| ≤ |ζδ(θr−τω)|+ 1,

which, with the continuity of ζδ(θsω) in s, imply that there exists c1 = c1(δ, T, τ, ω) > 0 such
that, for all r ∈ [τ, τ + T ],

|ζδ(θr−τω)| ≤ c1, so |ζδ(θr−τωn)| ≤ 1 + c1. (3.44)

Replacing ω in (2.18) with θ−τω
n, and plugging (3.44) into (2.18) imply (3.42). Analogously,

replace ω by θ−τω
n and let r = τ in (2.36). Then, by (3.44), we can also figure out (3.43).

Now, we will show the multi-valued cocycle Φ is random in the sense of the following
definition:

Definition 3.8. ([4]) A multi-valued cocycle Φ is said to be random if

Φ(·, τ, ·, ·) : R+ × Ω× Cγ,H → C(Cγ,H) is B(R+)×F × B(Cγ,H)-measurable,

that is, for any open set O in Cγ,H , the set {(t, ω, x) ∈ R+ × Ω× Cγ,H : Φ(t, τ, ω, x) ∩ O 6= ∅}
belongs to B(R+)×F × B(Cγ,H).

28



Lemma 3.9. Suppose that H1-H6, (2.14)-(2.15) hold. Then, for every τ ∈ R, the mapping

(t, ω, ϕ)→ Φ(t, τ, ω, ϕ)

is B(R+)×F × B(Cγ,H)-measurable.

Proof. (1) Given n ∈ N, t0 > 0, let tn → t0, ϕn → ϕ0 in Cγ,H and ϕn, ϕ0 ∈ Cγ,H , ωn → ω0 with
ωn, ω0 ∈ Ωm. By [4, Lemma 2.5], we need to verify the above mapping is upper-semicontinuous,
that is, we will show that for any sequence χn ∈ Φ(tn, τ, ωn, ϕn), there exists a subsequence χnk

converging to some χ0 ∈ Φ(t0, τ, ω0, ϕ0) in Cγ,H .
We assume that, for all n ∈ N,

0 ≤ tn ≤ 1 + t0 and ‖ϕn‖2
Cγ,H
≤ 1 + 2‖ϕ0‖2

Cγ,H
. (3.45)

By the definition of Φ in (2.99), then χn = unτ+tn(·, τ, θ−τωn, ϕn). On account of (3.42) in
Lemma 3.7, we have the sequence {un(·, τ, θ−τωn, ϕn)} is bounded in L∞(τ, τ + 1 + t0;H). By
similar reasons to the ones in (3.43), {un(·, τ, θ−τωn, ϕn)} is bounded in Lp(τ, τ + 1 + t0;V )
and Lq(τ, τ + 1 + t0;Lq(O)). Similar to the proof of Theorem 2.8, there exist a subsequence
{unk(·, τ, θ−τωnk , ϕnk)} and u0(·, τ, θ−τω0, ϕ0) ∈ L∞(τ, τ + 1 + t0;H) ∩ Lp(τ, τ + 1 + t0;V ) ∩
Lq(τ, τ + 1 + t0;Lq(O)) such that

unk(·)→ u0(·) in C([τ, τ + 1 + t0];H). (3.46)

Thus, for a given ε > 0, we have

sup
s∈[−1−t0,0]

eγs‖unk(τ + tnk + s, τ, θ−τω
nk , ϕnk)− u0(τ + t0 + s, τ, θ−τω

0, ϕ0)‖

≤ sup
s∈[−1−t0,0]

eγs‖unk(τ + tnk + s, τ, θ−τω
nk , ϕnk)− u0(τ + tnk + s, τ, θ−τω

0, ϕ0)‖

+ sup
s∈[−1−t0,0]

eγs‖u0(τ + tnk + s, τ, θ−τω
0, ϕ0)− u0(τ + t0 + s, τ, θ−τω

0, ϕ0)‖

≤ ε

4
. (3.47)

For s ∈ (−∞,−1− t0], we have

sup
s∈(−∞,−1−t0]

eγs‖unk(τ + tnk + s)− u0(τ + t0 + s)‖

≤ sup
s∈(−∞,−1−t0]

eγs‖unk(τ + tnk + s)− u0(τ + tnk + s)‖

+ sup
s∈(−∞,−1−t0]

eγs‖u0(τ + tnk + s)− u0(τ + t0 + s)‖

≤ e−γt
nk‖ϕnk − ϕ0‖Cγ,H + sup

s∈(−∞,−1−t0]

eγs‖ϕ0(tnk + s)− ϕ0(t0 + s)‖. (3.48)

By the fact that ϕn → ϕ0 in Cγ,H , for large k we obtain

e−γt
nk‖ϕnk − ϕ0‖Cγ,H ≤

ε

4
. (3.49)

Owing to ϕ0 ∈ Cγ,H , there exists lims→−∞ e
γsϕ0(s) = ϕ ∈ H. Thus consider T > 1+ t0 we have

sup
s∈(−∞,−T ]

eγs‖ϕ0(tnk + s)− ϕ0(t0 + s)‖

≤ sup
s∈(−∞,−T ]

eγs‖ϕ0(tnk + s)− ϕ‖+ sup
s∈(−∞,−T ]

eγs‖ϕ− ϕ0(t0 + s)‖ ≤ ε

4
. (3.50)
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For s ∈ [−T,−1− t0], we have

sup
s∈[−T,−1−t0]

eγs‖ϕ0(tnk + s)− ϕ0(t0 + s)‖ ≤ ε

4
, (3.51)

for large k. It can be inferred from (3.47)-(3.51) that χnk → χ0 in Cγ,H as k → ∞. Then,
χ0 = u0

τ+t0(·, τ, θ−τω0, ϕ0) ∈ Cγ,H .
By the continuity of f, g, h (see H3-H5), Remark 2.3 and Lemma 3.6 (i), we know that u0

is a solution of equation (2.4), then χ0 ∈ Φ(t0, τ, ω0, ϕ0).
(2) Due to (1), we can obtain that the mapping (t, ω, ϕ)→ Φ(t, τ, ω, ϕ) is B(R+)× FΩm ×

B(Cγ,H)-measurable, where FΩm is the trace σ-algebra of F with respect to Ωm. Since Ωm is
a closed subset of Ω by Lemma 3.6 (ii), then Ωm ∈ F , which implies that FΩm ⊂ F . Then,

together with Ω =
∞⋃
m=1

Ωm by Lemma 3.6 (ii), we complete the proof.

Recall that the graph of a set-valued map ω 7→ F (ω) : Ω→ 2X is defined by

Gr(F ) = {(ω, x) ∈ Ω×X : x ∈ F (ω)}.

Lemma 3.10. Suppose that H1-H7, (2.14)-(2.15) hold and let m ∈ N, τ ∈ R. Then, for any
t ≥ 0, the map Ωm 3 ω → Φ(t, τ, ω,K(τ, ω)) is measurable with respect to the P-completion of
FΩm. In addition, Φ(t, τ, ω,K(τ, ω)) is closed.

Proof. Based on the above definition of graph, by [2], we have to verify the graph of the map
ω → Φ(t, τ, ω,K(τ, ω)) is closed in Ωm×Cγ,H . Let ωn → ω0 in Ωm and χn → χ0 in Cγ,H , where
χn ∈ Φ(t, τ, ωn,K(τ, ωn) . Thus, we only need to prove that χ0 ∈ Φ(t, τ, ω0,K(τ, ω0).

On account of χn ∈ Φ(t, τ, ωn, ϕn) and ϕn ∈ K(τ, ωn), we have

χn(s) = unτ (t+ s, τ, θ−τω
n, ϕn), ∀s ≤ −t,

where un is a solution of (2.4). Then ϕn → ϕ0 in Cγ,H .
By Lemma 3.6 (i), there exists cm > 0 such that, for all n ∈ N and r ∈ [−m, 0],

|ζδ(θrωn)|
2q−2
q−η + |ζδ(θrωn)|2 ≤ cm. (3.52)

In view of H7 and (3.52), applying the Lebesgue theorem, we have

lim
n→∞

∫ 0

−m
e(λ− 4m2

1
λ

)r(‖J(r + τ, ·)‖2 + |ζδ(θrωn)|
2q−2
q−η + |ζδ(θrωn)|2 + 1)dr

=

∫ 0

−m
e(λ− 4m2

1
λ

)r(‖J(r + τ, ·)‖2 + |ζδ(θrω0)|
2q−2
q−η + |ζδ(θrω0)|2 + 1)dr. (3.53)

Since ωn ∈ Ωm, by Lemma 3.6 (i), there exists cδ > 0 such that, for all n ∈ N and r ∈ (−∞,−m],

|ζδ(θrωn)|
2q−2
q−η ≤ cδ(|r|

2q−2
q−η + 1) and |ζδ(θrωn)|2 ≤ cδ(|r|2 + 1). (3.54)

In view of H7 and (3.54), applying the Lebesgue theorem, we have

lim
n→∞

∫ −m
−∞

e(λ− 4m2
1

λ
)r(‖J(r + τ, ·)‖2 + |ζδ(θrωn)|

2q−2
q−η + |ζδ(θrωn)|2 + 1)dr

=

∫ −m
−∞

e(λ− 4m2
1

λ
)r(‖J(r + τ, ·)‖2 + |ζδ(θrω0)|

2q−2
q−η + |ζδ(θrω0)|2 + 1)dr. (3.55)
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Thus, R(τ, ωn)→ R(τ, ω0).
Since ϕn ∈ K(τ, ωn), we deduce from Proposition 3.2 that ‖ϕn‖2

Cγ,H
≤ c0R(τ, ωn). Hence,

‖ϕ0‖2
Cγ,H
≤ c0R(τ, ω0) and ϕ0 ∈ K(τ, ω0). Using a similar argument as the proof of Lemma 3.9,

we deduce that χ0 ∈ Φ(t, τ, ω0, ϕ0) ⊂ Φ(t, τ, ω0,K(τ, ω0).

A pullback attractor A is random with respect to the P-completion F of the σ-algebra F ,
that is,

{ω ∈ Ω : A(τ, ω) ∩O 6= ∅} ∈ F ,

for any open set O ⊂ Cγ,H and τ ∈ R.

Theorem 3.11. Suppose that H1-H7, (2.14)-(2.15) hold. Then, the multi-valued random non-
autonomous dynamical system Φ generated from the p-Laplace equation (2.4) has a D-pullback
random attractor A over (Ω,F ,P).

Proof. By Lemma 3.10, the map ω → Φ(t, τ, ω,K(τ, ω)) is measurable w.r.t. the P-completion
of FΩm , that is

Cm := {ω ∈ Ωm : Φ(t, τ, ω,K(τ, ω)) ∩O 6= ∅} ∈ FΩm .

By Lemma 3.6 (ii), we have

{ω ∈ Ω : Φ(t, τ, ω,K(τ, ω)) ∩O 6= ∅} =
∞⋃
m=1

Cm ∈ F ,

together with the closedness of the graph proved in Lemma 3.10 and Lemma 3.9, we can deduce
the conclusion according to [4, Theorem 3.5].
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