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1. Native Artemia from Cabo de Gata (Spain) was extremely resistant to Hg 1 

2. Native and invasive Artemia from Aveiro showed similar Hg tolerance  2 

3. Hg may play a role limiting/delaying invasion in some native populations 3 

4. All studied Artemia populations showed similar tolerance to Zn  4 
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Abstract  

In recent decades, brine shrimps of the genus Artemia has suffered a major biodiversity 5 

loss in the Mediterranean region due to the introduction of the highly invasive A. 6 

franciscana. Pollution has been proposed as an important factor limiting this global 7 

invasion. Contrary to the general acceptation that pollution tends to favour invasive 8 

species, it has been postulated that local adaptation of native Artemia to pollution may 9 

prevent or delay colonization by the exotic species. To provide insight into this “pollution 10 

resistance hypothesis”, we investigated the individual effect of acute toxicity of mercury 11 

(Hg) and zinc (Zn) on the survival of six different native and invasive Artemia populations 12 

from the Iberian Peninsula collected from areas with different levels of Hg- and Zn-13 

pollution. The Hg and Zn 24h-LC50 values for Artemia nauplii of the different 14 

populations varied between 20 and 70 mg Hg L-1, and between 350 and 450 mg Zn L-1, 15 

respectively. Native Artemia from Cabo de Gata (SW Spain) showed significantly higher 16 

survival at high Hg concentrations than other populations, which may be explained by the 17 

longer history of Hg-pollution in that area from mining activities, compared to the other 18 

sites. In contrast, differences between populations in response to high Zn levels were 19 

weak, and inconsistent with the environmental differences in Zn concentrations. 20 

Discussion of the results of this work was done in relation to the “pollution resistance 21 

hypothesis” and conclude that Hg pollution may limit the invasion by A. franciscana in 22 

some study sites for an uncertain length of time.  23 

  24 

Key words: metal pollution; biological invasion; pollution resistance hypothesis; 25 

Artemia franciscana; Artemia parthenogenetica 26 

 27 
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1. Introduction 28 

Biological invasions are a major threat to biodiversity and ecosystem functioning 29 

worldwide (Simberloff et al., 2013). Therefore, it is crucial to understand the factors 30 

affecting the invasibility of ecosystems (Ruiz et al., 2001) and the attributes allowing 31 

native populations to survive invasions. Most studies up to now show that environmental 32 

contamination enhance invasions (e.g., Piola and Johnston, 2009; Crooks et al., 2010). 33 

However, most of these studies consider scenarios of recent environmental pollution or 34 

emerging pollutants (e.g., Varó et al., 2015), and environments where invasive species 35 

have succeeded (Soltysiak and Brej, 2014; Guarnieri et al., 2017); little is known about 36 

how local adaptation of native species to pollution may limit the establishment of invasive 37 

species. In areas with historic pollution (e.g., with prehistoric or ancient mining) native 38 

communities have had time to adapt to the presence of pollutants by evolutionary 39 

acquisition of chemical tolerance (e.g., Barata et al., 2002; Lopes et al., 2006; Ruggeri et 40 

al., 2019), and therefore may be more resistant to the establishment of newly arriving 41 

invasive species (Sánchez et al., 2016; Pais-Costa et al., 2019).  42 

The brine shrimp Artemia (Branchiopoda, Anostraca), a key taxon in hypersaline 43 

ecosystems, is an interesting model system to study interactions between contaminants 44 

and invasions. This genus is suffering a major biodiversity decline worldwide (e.g., Amat 45 

et al., 2007; Horváth et al., 2018) due to the introduction, since the 1950s, of the North 46 

American Artemia franciscana for aquaculture purposes (Amat et al., 2005; Muñoz et al., 47 

2014). In Europe, A. franciscana was first detected in Portugal in the 1980s (Hontoria et 48 

al., 1987) and a decade later in France (Thiery and Robert, 1992). Since then, it has 49 

progressively invaded most hypersaline ecosystems of the Mediterranean basin, including 50 

those of Spain and Italy (Amat et al., 2005, 2007; Horváth et al., 2018), North Africa 51 

(Morocco, Tunisia) (Amat et al., 2005, 2007; Naceur et al., 2010), and has reached the 52 
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Middle East (Iran, Egypt, Arab Emirates) (Hajirostamloo and Pourrabbi, 2011; Sheir et 53 

al., 2018; Saji et al., 2019). It is also present in Australia, Brazil, India, China and Kenya 54 

(Ruebhart et al., 2008; Camara, 2001; Zheng et al., 2004; Krishnakumar and 55 

Munuswamy, 2014; Ogello et al., 2014). The establishment of the exotic species in the 56 

Mediterranean region has led to a rapid local extinction of native A. salina and A. 57 

parthenogenetica; currently these species are listed as Endangered and Vulnerable 58 

respectively, in the Iberian Peninsula (IUCN red list; García-de-Lomas et al., 2017).  59 

In SW Europe, few populations of native Artemia persist and most of them are in highly 60 

polluted areas. In Portugal, one of the last refuges of native A. parthenogenetica is the 61 

saltpans complex of Ria de Aveiro (Portugal), highly polluted by mercury (Hg). However, 62 

in the same saltpans complex there are A. franciscana populations and the reasons for the 63 

resistance of the native species to the invasion are unknown. Rodrigues et al. (2012) 64 

studied the physicochemical and biological parameters that may explain the distribution 65 

of these native and invasive species but found that their environments were rather similar. 66 

They then hypothesized (but did not demonstrate) that the presence of pollutants (as Hg) 67 

may play a decisive role in the prevention of the invasion. Pinto et al. (2013, 2014) 68 

subsequently studied the effects of water temperature, salinity, photoperiod and food 69 

supply on the survival and reproduction of these native populations and concluded that 70 

their persistence remained an unexplained phenomenon, pointing out again to the 71 

potential role of a chemical barrier related to the pollution. This “pollution resistance 72 

hypothesis” has been partially supported for contaminants other than Hg, for some 73 

populations from the southern Iberian Peninsula (arsenic (As): Sánchez et al., 2016; zinc 74 

(Zn): Pais-Costa et al., 2019). However, information is extremely limited and fragmented, 75 

and more data are critical to understand the role of pollution in preventing or delaying the 76 
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colonization of the last native Artemia populations by the exotic A. franciscana (Pinto et 77 

al., 2014).  78 

The aim of the present study was to provide insights into the pollution resistance 79 

hypothesis (Rodrigues et al., 2012; Pinto et al., 2013, 2014; Sánchez et al., 2016) by which 80 

high levels of pollution may be slowing down or even avoiding the invasion by A. 81 

franciscana. For that, native and invasive populations of Artemia were exposed to acute 82 

concentrations of Hg and Zn. Among the studied populations, native and invasive Artemia 83 

populations collected from the same locations as in Rodrigues et al. (2012) were used to 84 

evaluate if potential differences in environmental factors could explain the distribution 85 

pattern of both Artemia species. This work hypothesis is that native Artemia from highly 86 

Hg- and Zn-polluted areas would be locally adapted more resistant to the invasion than 87 

populations from less polluted areas.  88 

 89 

2. Material and Methods 90 

2.1 Study sites 91 

The selected Artemia populations were sampled in six different saltpans, located in the 92 

Iberian Peninsula: Ria de Aveiro (Troncalhada and Tanoeira saltpans) and Rio Maior in 93 

Portugal; and Odiel, Cádiz bay and Cabo de Gata in Spain (Figure 1). 94 
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 95 
Figure 1: Location of the six populations (P1-P6) of Artemia selected for this study. Cysts 96 
of A. parthenogenetica were collected from Aveiro (Troncalhada saltpan), Rio Maior, 97 

Odiel and Cabo de Gata saltpans; and A. franciscana from Aveiro (Tanoeira saltpan) and 98 
Cádiz saltpans. [source: Google Maps 2020].  99 

 100 

Ria de Aveiro is recognized as one of the most Hg-contaminated aquatic systems in 101 

Europe (Pereira et al., 1998). The Hg contamination of this lagoon derived from 102 

discharges of a chloralkali plant (active from 1950s to 1994) located in Estarreja near 103 

Aveiro (Pereira et al., 1998). Troncalhada saltpan (N, Portugal; 40°38′41.52″N; 104 

8°39′45.81″W), where native A. parthenogenetica still persists, (Pinto et al., 2013, 2014), 105 

due to its location (Figure 1), is one of the first areas to receive the contaminated effluents 106 

from the Ria (Rodrigues et al., 2012). On the other hand, Tanoeira saltpan (N, Portugal, 107 

40°39′0.70″N, 8°40′46.95″W), already invaded by A. franciscana (Pinto et al., 2013, 108 

2014), is located much farther away from the main channels of the Ria, thus receiving 109 

lower levels of contamination compared to Troncalhada. Ria de Aveiro also presents high 110 

concentrations of Zn (Martins et al., 2015; Cachada et al., 2019), which may be related to 111 

the Pb-Zn-(Cu-Ag) hydrothermal veins deposits in Portugal, known and exploited since 112 

the 19th century (Guimarães dos Santos, 1948).  113 
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The Rio Maior saltpans (NW, Portugal, 39°21′49.90″N, 8°56′ 38.93″W), the other area 114 

where native A. parthenogenetica persist in Portugal, are considered a low polluted 115 

system due to its inner/inland location and the fact that the brine supply comes from a 116 

long and deep streak of rock salt located in Serra de Aires e Candeeiros Natural park 117 

(Calado and Brandão, 2009). However, Rio Maior presents high concentrations of Zn 118 

naturally present in the soil and subsoil of the area (Duarte, 1979) or perhaps due to nearby 119 

coal mining (Suárez-Ruiz et al., 2006). 120 

The Odiel and Tinto estuary (SW, Spain, 37°15′29″N, 6°58′25″W), where native A. 121 

parthenogenetica cysts were collected,  is  considered one of the most polluted estuarine 122 

systems in the world, due to high concentrations of As, cadmium (Cd), copper (Cu), lead 123 

(Pb), antimonium (Sb) and Zn (Nelson and Lamothe, 1993; Ruiz, 2001). The pollution in 124 

this area derives from drainage from abandoned mines and from industrial discharges 125 

(Nelson and Lamothe, 1993; Ruiz, 2001). Although, this system presents very high 126 

concentration of Zn, it has low concentrations of Hg (Rosado et al., 2015; Elbaz-Poulichet 127 

et al., 2001; Bermejo et al., 2003).  128 

The Puerto de Santa María saltpans (S, Spain, 36°35.799′N, 6°12.597′W), where A. 129 

franciscana cysts were collected, are in Cádiz Bay (Spain), within the Gulf of Cádiz. The 130 

amount of highly toxic heavy metals discharged by the Odiel and Tinto Rivers produce a 131 

plume of contaminants in the Gulf of Cádiz (Palanques et al., 1995; Hanebuth et al., 2108) 132 

reaching the Strait of Gibraltar (Elbaz-Poulichet et al., 2001, Periáñez, 2009; Pérez-López 133 

et al., 2011). Thus, this area has high levels of some contaminants such as As (Suñer et 134 

al., 1999) but moderate concentrations of Zn and low concentrations of Hg (Hanebuth et 135 

al., 2018; Morillo et al., 2007; Carrasco et al., 2003). 136 
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Cabo de Gata, where one of the last native A. parthenogenetica still persist in Spain, is 137 

located at southern of Cabo de Gata-Níjar Natural Park and southwest of Cartagena-Cabo 138 

de Gata metallogenic belt, an historical mining area exploited in the 19th century for Hg 139 

extraction (Viladevall et al., 1999). The area presents high levels of Hg (Navarro et al., 140 

2006, 2009; Bori et al., 2016; Ramos-Miras et al., 2019) and moderate concentrations of 141 

Zn (Bori et al., 2016; Navarro et al., 2006, 2009; Flores and Rubio, 2010). 142 

Based on the study site description the level of resistance to metals for the different 143 

Artemia populations should follow the descending order of Cabo de Gata > Troncalhada 144 

(Aveiro) > Tanoeira (Aveiro) > Odiel > Cádiz > Rio Maior for Hg exposure; and Odiel > 145 

Troncalhada (Aveiro) > Tanoeira (Aveiro) > Cádiz > Cabo de Gata > Rio Maior for Zn 146 

exposure. 147 

2.2 Cyst sampling 148 

Cysts from six Artemia populations were collected in 2014 from the shores of evaporation 149 

ponds of low-medium salinity (90–150 g L-1).  The selected six populations were sampled 150 

in the above sites located in the Iberian Peninsula (Figure 1). The Junta de Andalucía and 151 

Câmara Municipal de Aveiro provided permission to sample. Cysts were transported to 152 

the laboratory and sieved through 500, 300, and 100 mm sieves (cyst size is normally 153 

∼250 mm). Retained cysts were cleaned by differential flotation in freshwater and 154 

saturated brine (after Sorgeloos et al., 1977; Amat, 1985). Cysts were then dried at 45 ºC 155 

for 24 h and stored at 5 ºC until use in experiments.  156 

2.3 Hatching of cysts 157 

Before the toxicity tests, cysts were hatched in artificial seawater prepared with 35 g L-1 158 

of sea salt (Tropic Marin - Wartenberg, Germany), under a photoperiod of continuous 159 
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illumination and aeration, at 28 ± 1°C. After hatching, the nauplii were immediately 160 

separated from their shells and transferred to clean media with continuous air supply 161 

25±1°C, where they were kept for subsequent acute toxicity experiments. For every 162 

population studied, the toxicity tests were performed with nauplii at an age when at least 163 

90% of the population was of instar II (the most sensitive stage of the Artemia life cycle; 164 

Leis et al., 2014), as checked by observation under a stereomicroscope. 165 

2.4 Acute toxicity test 166 

The endpoint relative mortality nauplii (24-h median lethal concentration [LC50]) was 167 

used to quantify the toxicity independently for Hg and Zn in the six Artemia populations. 168 

A stock solution of mercury chloride (HgCl2 (99.9% purity) from Sigma-Aldrich 169 

(Germany)) and of zinc sulphate heptahydrate (ZnSO4*7H2O (Merck Millipore)) (40 g 170 

Hg L-1 and 100 g Zn L-1, respectively) was prepared in milliQ water for the LC50 171 

experiment. Experimental solutions were prepared from this stock by diluting with 172 

artificial seawater to obtain the desired concentrations. Preliminary range-finding tests 173 

were conducted to determine the concentration ranges to be used in definitive tests 174 

(ASTM, 2014). Based on that preliminary tests,  the ranges used for the definitive tests 175 

for Hg were 0-40 mg Hg L-1 for A. parthenogenetica from Odiel and A. franciscana from 176 

Cádiz, 0-50 mg Hg L-1 for A. parthenogenetica from Rio Maior, 0-80 mg Hg L-1 for A. 177 

parthenogenetica and A. franciscana from Aveiro, and 0-200 mg Hg L-1 for A. 178 

parthenogenetica from Cabo de Gata; and for Zn 0-1150 mg Zn L-1 for all populations 179 

except, for A. parthenogenetica from Odiel for which 0-1100 mg Zn L-1 was used. Details 180 

of the eight nominal concentrations use for each population are given in Table S1 of the 181 

supplementary material. Nauplii were divided into the control and the different 182 

treatments. Three replicates per concentration were tested in groups of 15 animals per 183 

well of 24-well microplates (volume of 1 ml per well). Plates were covered during the 184 
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assays to prevent evaporation and accidental contaminations. Bioassays were conducted 185 

for 24 h in a temperature-controlled room (25 ± 1°C), in dark conditions. After 24 h of 186 

incubation, nauplii mortality was checked under a stereomicroscope. Lack of movement 187 

for 10 seconds was the criterion for animal death determination. The percentage mortality 188 

in the controls did not exceed 10%. 189 

2.5 Statistical analysis 190 

Relative mortality of nauplii was used to quantify the toxicity to Hg and Zn in the six 191 

study populations. The test validation criterion was a percentage mortality in controls of 192 

less than 10%. The median acute lethal concentration (24h-LC50) and its 95% confidence 193 

limits were calculated and compared between the different Artemia populations, using 194 

Trimmed Spearman-Karber (TSK) analysis for lethal tests (Hamilton et al, 1977). Higher 195 

LC50 (lethal concentration causing the death of 50% of the group of test animals) values 196 

are less toxic because greater concentrations are required to produce 50% mortality in 197 

exposed animals. Statistical differences among LC50 values were based on non-198 

overlapping confidence limits (CL) (APHA, 1995). Generalized Linear Models (GLMz) 199 

with binomial distribution and logit link function were used to test the effect of 200 

populations and replicates as fixed factors, and concentrations as covariates, and the 201 

population x concentration interaction on mortality (dependent variable, with a fixed 202 

number of 15 individuals per replicate). A backward stepwise procedure was used to 203 

select the final models, excluding predictor variables (except replicate) when they had 204 

non-significant effects, except for predictors implicated in a significant interaction. For 205 

significant effects, marginal mean pairwise tests were conducted for multiple 206 

comparisons. Results were considered significant when p < 0.05. Analyses were 207 

performed in SPSS (IBM SPSS Statistics for Windows, Version 23). 208 
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 209 

3. Results 210 

3.1 Acute test – Hg 211 

The values of 24h-LC50 for nauplii from the different Artemia population tested were 212 

between 18 and 70 mg Hg L-1. The sensitivity to Hg varied in the following direction: A. 213 

franciscana-Cádiz = A. parthenogenetica-Odiel > A. parthenogenetica-Rio Maior = A. 214 

franciscana-Aveiro = A. parthenogenetica-Aveiro > A. parthenogenetica-Cabo de Gata 215 

(Figure 2). The LC50 values for Hg indicate that the invasive A. franciscana from Cádiz 216 

(18.44 mg Hg L-1) together with the native A. parthenogenetica from Odiel (19.90 mg Hg 217 

L-1) were the most sensitive populations, whereas native A. parthenogenetica from Cabo 218 

de Gata (70.54 mg Hg L-1) was the most tolerant one. 219 

Based on non-overlapping 95% Confidence Limits (CL), Hg acute exposure showed a 220 

significant effect on the percentage of mortality in different Artemia populations. The 221 

24h-LC50 was significantly higher for A. parthenogenetica from Cabo de Gata, a Hg-222 

polluted site, almost four-fold higher compared to the Artemia populations from other 223 

sites – Aveiro: Hg-polluted; Rio Maior, Odiel and Cádiz: comparatively much less Hg-224 

polluted. On the other hand, A. franciscana from Cádiz and A. parthenogenetica from 225 

Odiel presented a significantly higher percentage of mortality compared to the A. 226 

parthenogenetica from Rio Maior (Figure 2). 227 

 228 
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 229 
Figure 2. Values of Hg concentrations that were lethal for 50% of individuals over 24-h 230 

(LC50) recorded for the six Artemia populations (P1-P6) tested, with 95% confidence 231 
intervals. Native A. parthenogenetica (Ap) from Aveiro (Av), Rio Maior (RM), Odiel 232 

(Od) and Cabo de Gata (CG), and invasive A. franciscana (Af) from Aveiro and Cádiz 233 
(Cd). Different letters indicate significant differences among Artemia populations.  234 

 235 

GLMz analysis showed that there were no differences among replicates but that the 236 

interaction between Hg concentration and population was highly significant (Table 1; 237 

Figure 3), i.e. that the relationship between Hg concentration and the probability of 238 

Artemia survival varied among populations.   239 

 240 

Table 1. Generalized linear model (GLMz) on nauplii mortality of the six Artemia 241 
populations (P1-P6) under different mercury (Hg) concentrations within 24h, using a 242 

Binomial error distribution and logit link. Native A. parthenogenetica (Ap) from Aveiro 243 
(Av), Rio Maior (RM), Odiel (Od) and Cabo de Gata (CG), and invasive A. franciscana 244 

(Af) from Aveiro and Cádiz (Cd). Estimates for “Af-CG” and replicate “3” are not 245 
included as they were aliased, but they are effectively zero.  246 

Effect Level of effect Estimates SE df 
Wald Chi-

Square 
Sig. 

Intercept  -2.406 0.283 1 546.725 0.000 

Population 

P1-Ap Av -0.764 0.416 

5 5.033 0.412 

P2-Af Av -0.582 0.406 

P3-Ap RM -0.423 0.408 

P4-Ap Od -0.107 0.395 

P5-Af Cd -0.499 0.376 

Concentration  0.075 0.007 1 573.128  0.000 

P1-Ap Av*Concentration 0.046 0.014 5 158.187  0.000 
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Population * 

Concentration 

P2-Af Av*Concentration  0.063 0.015 

P3-Ap RM*Concentration  0.041 0.008 

P4-Ap Od*Concentration  0.009 0.011 

P5-Af Cd*Concentration  0.026 0.012 

Replicate 
1 <0.0001 0.134 

2 0.719 0.698 
2 0.098 0.134 

 247 

 248 
Figure 3. Relationship between the predicted mortality at different mercury (Hg) 249 
concentrations for the six studied populations (P1-P6). Native A. parthenogenetica (Ap) 250 

from Aveiro (Av), Rio Maior (RM), Odiel (Od) and Cabo de Gata (CG), and invasive A. 251 
franciscana (Af) from Aveiro and Cádiz (Cd).  Lines show locally estimated scatterplot 252 

smoothing (LOESS) for each population. 253 

 254 

3.2 Acute test – Zn 255 

The values of 24h-LC50 for nauplii from the different Artemia populations ranged from 256 

354 and 458 mg Zn L-1. The sensitivity to Zn varied among the different populations 257 

tested: A. parthenogenetica-Odiel > A. parthenogenetica-Aveiro, A. parthenogenetica-258 

Rio Maior, A. franciscana-Aveiro; and sensitivity of A. parthenogenetica-Cabo de Gata 259 

= A. franciscana Cd ≥ A. parthenogenetica-Aveiro = A. parthenogenetica-Rio Maior = 260 
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A. franciscana-Aveiro (Figure 4). The LC50 values for Zn indicate that A. 261 

parthenogenetica from Odiel (354.51 mg Zn L-1) was the most sensitive population, and 262 

A. parthenogenetica from Aveiro, A. franciscana from Aveiro and A. parthenogenetica  263 

from Rio Maior were the most tolerant (458.06, 436.86, 445.33 mg Zn L-1; Figure 4). 264 

Based on non-overlapping 95% CL, Zn exposure showed a significant effect on the 265 

percentage of mortality in the different Artemia populations tested. After 24 h of Zn 266 

exposure, A. parthenogenetica from Odiel, a highly Zn-polluted site, showed significantly 267 

higher percentage of mortality compared with A. parthenogenetica and A. franciscana 268 

from Aveiro, and A. parthenogenetica from Rio Maior, less Zn-polluted sites (Figure 4). 269 

 270 

 271 

Figure 4. Values of Zn concentrations that were lethal for 50% of individuals over 24-h 272 

(LC50) for six Artemia populations (P1-P6), with 95% confidence intervals. Native A. 273 
parthenogenetica (Ap) from Aveiro (Av), Rio Maior (RM), Odiel (Od) and Cabo de Gata 274 

(CG), and invasive A. franciscana (Af) from Aveiro and Cádiz (Cd). Different letters 275 
indicate significant differences among Artemia populations.  276 

 277 
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GLMz analysis showed no differences among replicates and no significant interaction 278 

between Zn concentration and population. However, there was a significant main effect 279 

of population, and a positive significant effect of Zn concentration on mortality (Table 2; 280 

Figure 5), indicating that independently of Zn concentration there are significant 281 

differences on survival between some of the populations. In this sense, pairwise 282 

comparisons (Table 3) showed higher mortality of A. franciscana from Cádiz compared 283 

to A. parthenogenetica from Rio Maior and both of A. parthenogenetica and A. 284 

franciscana from Aveiro, and higher mortality of A. parthenogenetica from Odiel 285 

compared to A. parthenogenetica from Rio Maior. 286 

 287 

Table 2.  Generalized linear model (GLMz) on nauplii mortality of the six Artemia 288 

population (P1-P6) under different zinc (Zn) concentrations within 24h, using a Binomial 289 

error distribution and logit link. Native A. parthenogenetica (Ap) from Aveiro (Av), Rio 290 

Maior (RM), Odiel (Od) and Cabo de Gata (CG), and invasive A. franciscana (Af) from 291 

Aveiro and Cádiz (Cd). Estimates for “P6-Ap_CG” and replicate “3” are not included as 292 

they were aliased, but they are effectively zero. 293 

Effect Level of effect Estimates SE df 
Wald Chi-

Square 
Sig. 

Intercept  -2.655 0.190 1 527.618 0.000 

Population 

P1-Ap Av -0.270 0.197 

5 16.318 0.006 

P2-Af Av -0.309 0.197 

P3-Ap RM -0.367 0.197 

P4-Ap Od 0.071 0.197 

P5-Af Cd 0.271 0.197 

Concentration  0.006 0.0002 1 713.316 0.000 

Replicate 
1 0.048 0.139 

2 2.558 0.278 
2 0.212 0.139 

 294 



17 
 

 295 

Figure 5. Predicted mortality at different zinc (Zn) concentrations for the six studied 296 

populations (P1-P6) of Artemia. Native A. parthenogenetica (Ap) from Aveiro (Av), Rio 297 

Maior (RM), Odiel (Od) and Cabo de Gata (CG), and invasive A. franciscana (Af) from 298 

Aveiro and Cádiz (Cd). Lines show locally estimated scatterplot smoothing (LOESS) for 299 

each area. 300 

 301 

Table 3.  Pairwise comparisons of nauplii mortality among populations (P1-P6) after 302 

acute exposure to zinc (Zn). Native A. parthenogenetica (Ap) from Aveiro (Av), Rio 303 

Maior (RM), Odiel (Od) and Cabo de Gata (CG), and invasive A. franciscana (Af) from 304 

Aveiro and Cádiz (Cd). 305 

Comparison SE Sig. 

P1-Ap Av vs. P2-Af Av 0.049 0.844 

P1-Ap Av vs. P3-Ap RM 0.049 0.623 

P1-Ap Av vs. P4-Ap Od 0.047 0.081 

P1-Ap Av << P5-Af Cd 0.046 0.006 

P1-Ap Av vs. P6-Ap CG 0.047 0.168 

P2-Af Av vs. P3-Ap RM 0.049 0.768 

P2-Af Av vs. P4-Ap Od 0.047 0.052 

P2-Af Av << P5-Af Cd 0.046 0.003 

P2-Af Av vs. P6- Ap CG 0.048 0.115 

P3-Ap RM << P4-Ap Od 0.047 0.025 

P3-Ap RM << P5- Af Cd 0.046 0.001 

P3-Ap RM vs. P6-Ap CG 0.048 0.061 

P4-Ap Od vs. P5- Af Cd 0.044 0.306 

P4-Ap Od vs. P6-Ap CG 0.046 0.718 
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P5-Af Cd vs. P6-Ap CG 0.045 0.168 

 307 

4. Discussion 308 

The present work hypothesized that native Artemia from highly Hg-polluted areas and 309 

highly Zn-polluted areas would be locally adapted and consequently be more resistant to 310 

the invasion than native populations from less polluted areas (pollution resistance 311 

hypothesis) (Rodrigues et al, 2012). Based on this hypothesis it was expected that native 312 

Artemia from Cabo de Gata and Troncalhada (Aveiro) – two of the most Hg-polluted 313 

areas – would present the highest resistance to Hg, and native Artemia from Odiel, – the 314 

most Zn-polluted area – would present the highest resistance to Zn.   315 

 316 

4.1 Effect of Hg on the survival of Artemia 317 

The results from the acute toxicity tests showed that, of the six brine shrimp populations, 318 

native A. parthenogenetica from Cabo the Gata was the most tolerant species to Hg, 319 

whereas the native A. parthenogenetica from Odiel and the invasive A. franciscana from 320 

Cádiz were the most sensitive populations. Our results suggest that A. parthenogenetica 321 

from Cabo de Gata is locally adapted to withstand high levels of Hg pollution, which may 322 

explain the persistence of this relict native population in south Spain, where most A. 323 

parthenogenetica and A. salina populations have been replaced by the exotic species. 324 

Cabo de Gata is in the Cartagena-Cabo de Gata volcanic belt and contains high levels of 325 

metals including Hg (Navarro et al., 2006, 2009). This area has been exploited for mining 326 

since ancient times, more than 2,000 years ago (Ruano et al., 2000). In particular, Hg was 327 

extracted from the Valle del Azogue Hg mines from 1873 to 1890. Gold exploitation in 328 

the Cartagena-Cabo de Gata volcanic belt (Ruano et al., 2000) has also contributed for 329 
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Hg contamination in the area, as Hg is commonly used for gold extraction (Esdaile and 330 

Chalker, 2018). Waste produced by mine activity poses a threat to the surrounding areas 331 

even after the mines are closed (Dudka and Adriano, 1997). Mercury-rich mine tailings 332 

are prone to erosion (Henriques and Fernandes, 1991) and may be dispersed by 333 

atmospheric emissions, mechanical dispersion, or leachates from waste deposits (Navarro 334 

et al., 2006, 2009). On the other hand, despite Odiel and Cádiz are considered 335 

contaminated systems (especially Odiel, with high levels of As), both have very low 336 

concentrations of Hg (Elbaz-Poulichet et al., 2001; Bermejo et al., 2003). This could 337 

explain the high sensitivity to Hg of these Artemia populations. The LC50 values of A. 338 

parthenogenetica from Odiel were close to those reported by Leis et al. (2014) for A. 339 

parthenogenetica collected from a non-contaminated site in Italy (19.9 mg Hg L-1 and 340 

17.9 mg Hg L-1, respectively). 341 

Artemia populations from Aveiro (A. parthenogenetica from Troncalhada saltpan and A. 342 

franciscana from Tanoeira saltpan) and Rio Maior (A. parthenogenetica) showed 343 

intermediate resistance to Hg acute exposure compared to the Artemia populations 344 

mentioned above. Unlike Cabo de Gata, Ria the Aveiro is considered a recent highly Hg-345 

contaminated system, caused by 44 years (1950s until 1994) of discharges from a 346 

chloralkali plant (Pereira et al., 1998). In the case of Rio Maior, it is considered non-347 

polluted system (Calado and Brandão, 2009). These two systems are the last refugia of 348 

native Artemia in Portugal. Ria de Aveiro saltpan complex currently harbours both native 349 

and invasive Artemia species (Pinto et al., 2013, 2014). Rodrigues et al. (2012) and Pinto 350 

et al. (2013, 2014) tried to explain the persistence of native Artemia in Troncalhada based 351 

on differences related to environmental factors between both saltpans and to the 352 

physiological response for each species under a variety of environmental conditions. They 353 

concluded that native strain´s survival remained an unexplained phenomenon, pointing 354 
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out to the potential role of other unstudied local factors, as a chemical barrier related to 355 

the pollution, as the main driver, mainly based on the different location of these saltpans 356 

within Aveiro complex. The results of the present work do not support this hypothesis for 357 

Hg, as native and invasive Artemia from Rio Aveiro showed similar sensitivity to this 358 

pollutant. However, this similar sensitivity detected in the present study could be related 359 

to the fact that the invasive strain from Ria de Aveiro is the only population of A. 360 

franciscana in the Mediterranean more closely related genetically to the population from 361 

Great Salt Lake (Utah, USA) (Muñoz et al., 2014), a system which also has a recent 362 

history of Hg contamination (Naftz et al., 2008). The persistence of this native A. 363 

parthenogenetica population could be related to other contaminants present in Ria de 364 

Aveiro as other metals (Martins et al., 2015; Cachada et al., 2019), persistent organic 365 

pollutants (Ribeiro et al., 2016; Rocha and Palma, 2019) and/or sewage contaminants 366 

(Rada et al., 2016; Rocha et al., 2016). 367 

Both A. parthenogenetica and A. franciscana from Aveiro showed sensitivity to Hg 368 

comparable with A. parthenogenetica from Rio Maior (24.7 mg Hg L-1). This is surprising 369 

since Rio Maior has no known relevant chemical contamination (Calado and Brandão, 370 

2009). The LC50 values of A. parthenogenetica from Rio Maior, are significantly higher 371 

than those observed by Leis et al. (2014) for A. parthenogenetica collected from a non-372 

contaminated area in Italy (24.7 mg Hg L-1 and 17.9 mg Hg L-1, respectively), suggesting 373 

that the population from Rio Maior may be naturally more resistant to Hg. Pinto et al. 374 

(2013, 2014) suggested that A. parthenogenetica from Rio Maior is a very well adapted 375 

population to its specific biotope characteristics, which, together with its inland 376 

localisation (far from the main bird migration routes and fish farming), may favours the 377 

resistance to the invasion. However, they didn’t identified factors involved in the 378 
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persistence and remained on the idea that a chemical barrier related to heavy metals or 379 

pesticides may be preventing the invasion. 380 

 381 

4.2 Effect of Zn on the survival of Artemia 382 

The 24-h LC50 results for nauplii showed that A. parthenogenetica from Odiel population 383 

appears to be the most sensitive to Zn among the six populations tested. However, 384 

although the LC50 value was lower than those for the Portuguese populations, it showed 385 

no differences with the Spanish populations. This results contrast, in part, with the fact 386 

that, according to the literature, the Odiel estuary presents the highest Zn concentrations 387 

among the study sites analysed, thus it was expected that this population would present 388 

the highest tolerance to this metal. Zn concentrations in the Odiel estuary are very high, 389 

with means around 2,000-2,800 mg Zn Kg-1 in sediments (Rosado et al., 2015), much 390 

higher than Zn concentrations for the other study sites, where Zn concentrations ranged 391 

from 100-400 mg Zn Kg-1 (i.e., Aveiro: 400 mg Zn Kg-1, Cachada et al., 2019; Martins et 392 

al., 2015; Cádiz: 100-200 mg Zn Kg-1, Hanebuth et al., 2018; Cabo de Gata: 240-430 mg 393 

Zn Kg-1, Navarro et al., 2009; Flores and Rubio, 2010). Furthermore, Zn concentrations 394 

reported in Odiel estuary (e.g., Rosado et al., 2015) are just below the concentrations of 395 

3000 mg Zn Kg-1, suggested by the Spanish Center for Studies and Experimentation of 396 

Public Works (CEDEX, 1994) as corresponding to action level 2 (limit or intervention 397 

level) for dredged materials, from which sediments must be isolated into containers or 398 

into a contained area.  399 

The absence of a clear separation of the Artemia populations regarding Zn sensitivity 400 

suggests, therefore, that Zn contaminated systems would not potentially limit the A. 401 

franciscana invasion. Overall, in this work, the 24h- LC50 values ranged between 354-402 



22 
 

458 mg Zn L-1 and similar values were reported by Jiménez et al. (2006; ~300 mg Zn L-403 

1) and Damasceno et al. (2017; 401 mg Zn L-1) for commercial A. franciscana. On the 404 

other hand, the LC50 values are half of those found by Kokkali et al. (2011; 1,000 mg Zn 405 

L-1) for A. salina. This high tolerance shown by Artemia to Zn acute exposure might be 406 

explained because Zn is an essential metal necessary for normal physiological and 407 

biochemical process of organisms, unlike Hg which has no biological function (Clarkson 408 

and Magos, 2006),  its deficiency results in severe health consequences, being acute Zn 409 

toxicity rare, and only reported at very high concentrations (Frassinetti et al., 2006; Valko 410 

et al., 2005). 411 

The GLMz showed significant differences on mortality between some of the populations, 412 

which do not seem to be explained by those Zn concentrations used, suggesting intrinsic 413 

differences on mortality among populations, or the influence of other factors. Our results 414 

contrast with a recent study by Pais-Costa et al. (2019) who provided evidence of local 415 

adaptation of native species to Zn pollution based on life history and physiological data 416 

under realistic chronic Zn exposure conditions (0.2 mg Zn L-1). These findings highlight 417 

the importance of testing both chronic and acute exposure to the same contaminant and 418 

to different contaminants for more conclusive results.  419 

5. Conclusion 420 

Artemia is suffering a dramatic biodiversity loss at global scale due to the invasion of A. 421 

franciscana, so the conservation and characterization of last refuge of native Artemia have 422 

been pointed out as a priority (Pinto et al., 2014). Recent studies examining different 423 

abiotic factors highlight the necessity to study the potential role of contaminants 424 

(Rodrigues et al., 2012, Pinto et al., 2013, 2014). The results of the present study showed 425 

that A. parthenogenetica from Cabo de Gata are extremely resistant to Hg pollution, and 426 
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it may explain its resistance to the invasion by the exotic A. franciscana. However, no 427 

support was found to the “pollution resistance hypothesis” for the native population from 428 

Ria de Aveiro, which showed similar tolerance to Hg than A. franciscana population from 429 

the same area. Regarding Zn, differences between populations in response to high levels 430 

were weak, and inconsistent with the environmental differences in Zn concentrations. 431 

However, previous studies have shown that chronic exposure to Zn may limit the invasion 432 

of A. franciscana due to physiological resistance (Pais-Costa et al., 2019). Future studies 433 

should test i) the effects of other contaminants in native and invasive Artemia populations, 434 

ii) the effects of a mixture of different pollutants to provide a more realistic ecological 435 

context, and iii) expose populations to chronic effects, which are the most common type 436 

of contaminant impact found in the environment. Management efforts should focus in 437 

these relict native populations to preserve the remaining Artemia biodiversity and limit 438 

the probability of A. franciscana introduction.  439 
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Supplementary Material 727 

 728 

Table S1: Mercury (Hg) and Zinc (Zn) concentrations (mg L−1) used in LC50 tests for 729 
Ap (A. parthenogenetica) Af (A. franciscana), from Av (Aveiro, P1 and P2), RM (Rio 730 

Maior, P3) Od (Odiel, P4), Cd (Cádiz, P5) and CG (Cabo de Gata, P6). Different letters 731 
indicate significant differences among Artemia populations.  732 

 733 

P1- Ap Av P2 Af Av P3- Ap RM P4- Ap Od P5- Af Cd P6- Ap CG 

Hg Zn Hg Zn Hg Zn Hg Zn Hg Zn Hg Zn 

0 0 0 0 0 0 0 0 0 0 0 0 

10 100 10 100 6 100 5 50 5 100 25 100 

20 250 20 250 9 250 10 200 10 250 50 250 

30 400 30 400 12 400 15 350 15 400 75 400 

40 550 40 550 15 550 20 500 20 550 100 550 

50 700 50 700 20 700 25 650 25 700 125 700 

60 850 60 850 30 850 30 800 30 850 150 850 

70 1000 70 1000 40 1000 35 950 35 1000 175 1000 

80 1150 80 1150 50 1150 40 1100 40 1150 200 1150 
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