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A bound on the existence of the maximum jointly invariant set
of input-coupled systems

A. Sánchez-Amores, J. M. Maestre, P. A. Trodden, and E. F. Camacho

Abstract— We present a set-theoretical characterization of a
bound on the maximal portion that an agent can cede of its
input variable to another agent. By ceding control authority,
agents can decompose coupling variables into public and private
parts, which is of interest in situations of partial cooperation. In
particular, sufficient conditions under which the non-existence
of the maximum robust control invariant set is guaranteed
are provided, expressed in terms of support functions and the
dominant system eigenvalue. Finally, the results are illustrated
via stable and unstable example systems with different coupling.

I. INTRODUCTION

The increasing size and complexity of systems, justify the
need for alternatives to centralized control approaches [1].
Non-centralized control methods partition the overall system
into a set of dynamically coupled smaller subsystems, each of
them assigned to a local controller or agent. Here, we distin-
guish distributed strategies, where agents share data through
a communication network, from decentralized ones, where
no data exchange occurs. In general, distributed strategies
increase the demand for communication and computation [2],
but the lack of coordination in decentralized schemes can
compromise performance [3]. An intermediate solution is to
dynamically adjust the control network so that only strongly
coupled agents communicate [4]. That is, agents are clustered
into time-varying coalitions to improve global performance,
optimizing the communication resources; see, e.g., [5].

One of these methods of partial cooperation is the robust
coalitional control scheme presented in [6], where agents
can cede control authority on part of their input space to
help neighbors. Thus, performance can be increased while
minimizing the cooperation efforts and preserving privacy
on local variables. Consequently, coupled variables are par-
titioned into a private part, which is locally controlled, and a
public part that is ceded to other agents. The bounds on the
latter can be negotiated, as the need arises, in a distributed
fashion.

The objective of this article is to characterize the maximal
portion of input space that agents can cede to their neighbors
so that the global problem remains feasible in the previously
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mentioned variable decomposition method. To this end, we
provide a bound on the portion that an agent can cede to
other agents, which are expected to cede a part of its input,
so that the state constraint set is reachable. This work is
related to [7], which considers a constrained autonomous
system subject to additive uncertainties bounded through a
scaled disturbance set. In particular, the authors characterize
the bounds of the scale of the disturbance set that renders im-
possible to find a robust positive invariant set, and therefore,
to guarantee constraint satisfaction. Moreover, [8] proposes
a set-theoretical analysis in the context of actuation attacks,
setting a condition on the size of the attacker’s input set
so that the system cannot be robustly defended. Indeed,
the framework of the latter is taken as a reference point
for developing the conditions presented here. In contrast to
these previous results, in this article we study a pair of input
coupled subsystems working under the previously mentioned
partially cooperative framework of [6], and provide limits of
the joint shared portion of the input space for which the
nonexistence of an invariant set is guaranteed. This way,
agents can be provided with limits regarding the extent of
their partial cooperation. This research is also connected
with the results of [9], which introduces the concept of a
distributed maximum robust positively invariant set, and can
be of interest for works as [10], which propose a clustering
method based on the volume of the robust positively invariant
set that a coalition of agents can attain. Finally, we would like
to remark that although our end goal is to characterize this set
for a generic multi agent system, in this work we restrict our
attention to the specific case of two agents, which will pave
the way to the previously mentioned objective. Likewise,
a two agent system allows a simpler and more effective
representation to illustrate the results of our approach.

Notation: The set of natural numbers is N. A = 0 is a
matrix of zeros. λΩ ≜ {λx|x ∈ Ω} scales a set Ω ⊂ Rn by
a factor λ ∈ R. AΩ represents the image of a set Ω ⊂ Rn

under the linear mapping A : Rn → Rp, and A−1Ω describes
the preimage. For Ω,Φ ⊂ Rn, the Minkowski set addition is
Ω⊕Φ ≜ {x+y : x ∈ Ω, y ∈ Φ}, and x⊕Ω = {x}⊕Ω. The
Minkowski set difference is Ω⊖Φ ≜ {x ∈ Rn : Φ+x ⊂ Ω}.
The support function of a non-empty set Ω in the direction
of the vector η is hΩ(η) ≜ sup{η⊤x : x ∈ Ω}. A C-set is a
compact and convex set containing the origin, and a PC-set
is a C-set containing the origin in its interior.

II. PROBLEM SETTING

We consider a discrete-time LTI system divided into a set
N = {1, 2} of two input-coupled subsystems



x1(k + 1) = A11x1(k) +B11u1(k) +B12u2(k),

x2(k + 1) = A22x2(k) +B22u2(k) +B21u1(k),
(1)

where xi(k) ∈ Rnxi and ui(k) ∈ Rnui are the state and
control input of subsystem i ∈ N at instant k, subject to the
constraints xi(k) ∈ Xi and ui(k) ∈ Ui, for all k ≥ 0.

Assumption 1. The constraint sets Xi and Ui are PC-sets,
and the input constraint set is assumed to be symmetrical
about the origin, i.e., Ui = −Ui, for both subsystems i ∈ N .

Remark 1. Equation (1) is satisfied naturally, e.g., by multi-
ple industrial processes, traffic flow models, electrical net-
works, and irrigation canals. Likewise, the symmetry of
Assumption 1 can be easily satisfied in situations where norm
bounds are imposed performing a change of variable.

Let us consider the public and private variable decom-
position proposed in [6], where a local variable ui(k) is
decomposed as ui(k) = upr

i (k) + upu
ij (k). The so-called

private part of ui, i.e., upr
i , is exclusively controlled by the

agent i that owns it. On the other hand, upu
ij is the portion

of ui that agent i cedes to its neighboring agent j, as it is
affected by ui, i.e, {j ∈ N : Bji ̸= 0, j ̸= i}. Moreover,
we define different scale factors to limit the constraint sets
of the partitioned variables. That is, upr

i (k) ∈ αi(k)Ui, with
αi(k) ∈ [0, 1], and upu

ij (k) ∈ αij(k)Ui, with αij(k) ∈ [0, 1].
To fulfill ui ∈ Ui, the following inequality must be met

αi(k) + αij(k) ≤ 1. (2)

Note that each agent i will locally control the private part of
its input variable upr

i , and the public part of its neighboring
input upu

ji , as {Bij ̸= 0, j ̸= i} with i, j ∈ N . Variables
that cannot be controlled locally by agent i are treated
as disturbances, that is, the public part upu

ij of ui, and
the neighbor’s private part upr

j . Therefore, considering the
previous variable decomposition, we can express (1) as

x1(k + 1) = A11x1(k) +B11u
pr
1 (k) +B12u

pu
21(k) + w1(k),

with w1(k) = B11u
pu
12(k) +B12u

pr
2 (k),

x2(k + 1) = A22x2(k) +B22u
pr
2 (k) +B21u

pu
12(k) + w2(k),

with w2(k) = B22u
pu
21(k) +B21u

pr
1 (k).

(3)

Consequently, the input variables controlled by agent 1 are
constrained within upr

1 ∈ α1U1, upu
21 ∈ α21U2, while those

controlled by agent 2 are constrained within upr
2 ∈ α2U2,

upu
12 ∈ α12U1. Moreover, the bounds of the uncertainties

induced by the interaction between subsystems wi(k) ∈ Wi,
for both subsystems i ∈ N , are defined as

W1 ≜ B11α12U1 ⊕B12α2U2,

W2 ≜ B22α21U2 ⊕B21α1U1,
(4)

with W1 and W2 being C-sets, as they are mapped sets
derived from U1 and U2 (see Assumption 1).

The objective of this work is to characterize a bound on
the maximal portion α12 that agent 1 can cede to 2 of its
input variable and vice versa based on the nonexistence of the
jointly invariant set, for agents will not be able to find control

laws of partial cooperation able to guarantee the infinitely
reachability of their constraints sets {X1,X2} in a robust
manner.

III. DEFINITIONS AND PREVIOUS RESULTS

In this section, we will study some theoretic concepts and
previous results for the reachability of a given set. To this
end, let us consider a general linear system

x(k + 1) = Ax(k) +Bv(k) + Ed(k), (5)

subject to the constraints x(k) ∈ X, v(k) ∈ V and d(k) ∈ D.
Our goal is to maintain the system within its state constraint
set X, applying an admissible input v(k) ∈ V, regardless of
the realization of the uncertainty.

A. Set invariance theory

Hereafter, we study the reachability [11]–[13] of the set X.
In this regard, a set Ω is said to be infinitely reachable if there
exist a control law v(·) and some initial state x(0) ∈ Ω such
that, for every possible realization of the uncertainty d(k) ∈
D, the state satisfies x(k) ∈ Ω, with v(k) ∈ V. Similarly, a
set Ω is said to be strongly reachable if there exists a control
law v(·) such that, for all initial states x(0) ∈ Ω and for every
possible realization of the uncertainty d(k) ∈ D, the state
satisfies x(k) ∈ Ω, with v(k) ∈ V. The latter is equivalent
to saying that Ω is a robust control invariant (RCI) set. Both
definitions are strongly related, as a set is said to be infinitely
reachable if it contains an RCI set.

The largest strongly reachable set of a given set Ω is
denoted as the maximal robust control invariant set. The com-
putation of this set stems from the k-step robust constraint
admissible set Ck(Ω), which is the set of all initial states that
can be kept within the set Ω for at least k steps, fulfilling
the input constraints v ∈ V, and for any realization of the
disturbance d ∈ D. It satisfies (i.) Ck+1(Ω) ⊆ Ck(Ω), (ii.)
Ck(Ω) = ∩k

n=0Cn(Ω), (iii.) C∞(Ω) := limk→∞ Ck(Ω) =
∩∞
n=0Cn(Ω), where C∞(Ω) corresponds to the maximal RCI

set, which is finitely determined if, for a certain time step
k, Ck+1(Ω) = Ck(Ω) ̸= ∅, and therefore C∞(Ω) = Ck(Ω).
However, if Ck(Ω) = ∅ for a given k, then C∞(Ω) = ∅. In
this regard, the set Ck(X) can be computed as

Ck+1(X) = Q (Ck(X)) ∩ X, with C0(X) = X, (6)

where Q(·) is the robust one-step set [14]:

Q(Φ) ≜ {x : ∃v ∈ V | Ax+Bv ⊕ ED ∈ Φ}
= (A)−1 ((Φ⊖ ED)⊕ (−BV)) .

(7)

The term (A)−1(·) represents the preimage of the linear
transformation A(·), and exists even if the matrix A is not
invertible. Therefore, we can rewrite (6) as

Ck+1(X) = (A)−1 ((Ck(X)⊖ ED)⊕ (−BV)) ∩ X. (8)

B. Closely-related known results

In this section, we recover some of the main results of [8],
which have served as a starting point for the development of
the results presented in this paper. The authors study the



existence of the maximal RCI set by analyzing the sequence
of sets {Ck(X)}, since when, for a given k, the set Ck(X) is
empty, it will be satisfied that C∞(X) = ∅. More precisely,
Propositions 9, 12 and 13 of the aforementioned reference
are considered:

• The set Ck(X) is bounded as

Ck(X) ⊆
k⋂

n=0

(An)
−1

Tn(X), (9)

where

Tk+1(X) = (Tk(X)⊖AkED)⊕Ak(−BV),
with T0(X) = X.

(10)

• If Tk∗(X) = ∅ for some k∗ > 0, then Ck(X) = ∅ for
all k ≥ k∗.

• If Sk∗(X) = ∅ for some k∗ > 0, then Tk(X) = ∅ for
all k ≥ k∗, where

Sk(X) ≜ X⊕

[
k−2⊕
n=0

An(−BV)

]
⊖

[
k−1⊕
n=0

AnED

]
.

(11)

In the framework of actuation attacks, where the attacker
has a portion of the input available, i.e., D ≜ αV for the
system (5), the goal of the referenced paper was to determine,
for any k∗, the smallest value of the scale factor α for which
Ck∗(X) is empty: αk∗ ≜ inf{α : Ck∗(X) = ∅, α ∈ [0, 1]}.
This was achieved by determining a critical value of α, i.e.,
ᾱk∗ , for which Sk(X) is empty, which in turn guarantees
Ck(X) is empty.

Remark 2. The property (A∩B)⊕C ⊆ (A⊕C)∩(B⊕C) is
used when deriving (9) using (8) and (6), which means that
the Minkowski sum is not distributive under set intersections
(see [8, Remark 10] for details). As a consequence, (9) does
not hold with strict equality, and the theoretical bound will
satisfy ᾱk∗ ≥ αk∗ . Therefore, the admissible set Ck(X) may
be empty for a value of α below the value determined by
the theoretical bound ᾱk∗ , since the inclusion is not tight.

IV. LIMITS OF THE MAXIMUM SHARED PORTION
OF THE INPUT SET

This section presents the main results of this work, where
or extend the results of [8] to the distributed setting consid-
ered in this paper. In particular, we study two input-coupled
subsystems and the limits of the portion of the input that
both agents can cede to each other in a partially cooperative
framework. That is, both agents must keep their states within
their constraints {X1,X2} for any possible realization of the
input of the neighboring agent considering that they can use
the entire portion of the input that has been ceded to them,
satisfying the input constraints.

To this end, we will consider condition (2) with strict
equality, that is, α1 = 1 − α12 and α2 = 1 − α21. For
notational convenience, we define γ ≜ α12 as the portion of
u1 that agent 1 cedes to 2, and β ≜ α21 as the portion of
u2 that agent 2 cedes to 1. We can adapt the definitions of

Section III to our particular setting (3) by identifying

B1V1 ≜ (1− γ)B11U1 ⊕ βB12U2,

E1D1 ≜ γB11U1 ⊕ (1− β)B12U2,

B2V2 ≜ (1− β)B22U2 ⊕ γB21U1,

E2D2 ≜ βB22U2 ⊕ (1− γ)B12U1.

(12)

A. Bounds on γ and β

The definitions in Section III can be particularized for
both subsystems (3), obtaining an expression of Ck, Tk, and
Sk for each of them. In this regard, we will identify these
particularized terms with the superindex γ,β , as we want to
obtain a bound on these scaling factors. In what follows,
we proceed as in [8] to develop the conditions on {γ, β} so
that the constraint admissible sets Cγ,β

k (Xi) become empty;
this ensures the non-existence of finitely determined maximal
RCI sets Cγ,β

∞ (Xi) for both i ∈ N . To this end, we will
investigate when that the set Sγ,β

k (Xi) is empty for both
i ∈ N , where (11) can be adapted for each subsystem, with
Xi the local state constraint set and BiVi and EiDi defined
according to (12). Since we are in a partially cooperative
framework in which constraint satisfaction is sought at the
global system level, it is sufficient for one of the two sets
{Cγ,β

∞ (X1), C
γ,β
∞ (X2)} to be empty to no longer be able to

guarantee constraint satisfaction. However, we develop the
conditions in both scale factors, since they are symmetrical.

Remark 3. Note that each agent i shares a part of its control
input ui, but that its neighboring agent j has in turn ceded
part of its input uj to it. As a consequence, the value of the
maximum portion that an agent can cede will depend on the
value of what has been ceded to it by its neighbors.

Therefore, our main goal is to find, for every k∗ ∈ N, the
smallest scale factors {γk∗ , βk∗} such that

γk∗ ≜ inf{γ : Cγ,β
k∗ (X1) = ∅, γ ∈ [0, 1], β ∈ [0, 1]},

βk∗ ≜ inf{β : Cγ,β
k∗ (X2) = ∅, β ∈ [0, 1], γ ∈ [0, 1]}.

(13)

Consequently, the portion an agent can cede to its neighbor
{γ, β} is upper bounded by the minimum value from which
we can guarantee the non-existence of an invariant set, that is,
if γ > γk∗ or β > βk∗ for a certain value of k, Cγ,β

k (Xi) = ∅.
In this regard, let Fk∗ ≜ {γ ∈ [0, γk∗), β ∈ [0, βk∗)} be the
set that contains all the scale factors {γ, β} that have a value
below the real bounds {γk∗ , βk∗} for some k∗ ∈ N.

Assumption 2. The dominant eigenvalue of Aii is real and
positive for both i ∈ N .

Remark 4. Assumption 2 is naturally fulfilled by some
types of systems, such as positive systems (the Perron-
Frobenius theorem guarantees that the largest eigenvalue is
real), systems with triangular A matrices with real elements
on their diagonal, and first-order systems.

In what follows, we refer to the dominant eigenvalue of
the square matrix Aii of subsystem i ∈ N as ρi. Moreover,
the set Vi ≜ {v1i , . . . , v

nv
i ,−v1i , . . . ,−vnv

i } contains the
nv linearly independent eigenvectors related to ρi and their
opposites. Also, let us define the following support function



ratios for both subsystems {i, j} ∈ {1, 2} and i ̸= j

Hij
XU ≜

hXi(v̄i)

hBijUj
(v̄i)

, Hij
BU ≜

hBiiUi(v̄i)

hBijUj
(v̄i)

. (14)

where v̄i is the eigenvector that minimizes

v̄i ≜ arg min
vi∈V

hXi
(vi)

hBiiUi
(vi)

. (15)

Assumption 3. We can find at least a non-zero support of
the mapped set BiiUi in one of the directions of Vi. We
also assume the support of BijUj to be non-zero in the
direction v̄i.

Considering the previous expressions, we can obtain, for
any k∗ ∈ N, two theoretical bounds: γ̄k∗ so that Sγ,β

k (X1) =

∅, and β̄k∗ so that Sγ,β
k (X2) = ∅, if k ≥ k∗.

Theorem 1. If, for some k∗ ∈ N, γ > γ̄k∗ , with γ̄k∗ < 1,
then Cγ,β

k (X1) = ∅ for all k ≥ k∗. The value of γ̄k∗ depends
on the dominant eigenvalue as follows

• If ρ1 ̸= 1

γ̄k∗ ≜
1

H12
BU

[
H12

XU (1− ρ1) +H12
BU (1− ρk

∗−1
1 ) + ρk

∗
1 − 1

2− ρk
∗−1

1 − ρk
∗

1

+ β

]
,

(16)
• If ρ1 = 1

γ̄k∗ ≜
1

H12
BU

[
H12

XU +H12
BU (k

∗ − 1)− k∗

2k∗ − 1
+ β

]
. (17)

Proof 1. Let us consider (11) for the first subsystem, with
B1V1 and E1D1 defined in (12)

Sγ,β
k (X1) = X1 ⊕

[
k−2⊕
n=0

An
11(1− γ)B11U1

]
⊕

[
k−2⊕
n=0

An
11βB12U2

]

⊖
[

k−1⊕
n=0

An
11γB11U1

]
⊖
[

k−1⊕
n=0

An
11(1− β)B12U2

]
.

Taking support functions in the direction of v̄1, and grouping
the summations, we can express the previous as

h
S
γ,β
k

(v̄1) ≤ hX1(v̄1) + (1− 2γ)

k−2∑
n=0

hAn
11B11U1(v̄1)

+ (2β − 1)

k−2∑
n=0

hAn
11B12U2(v̄1)

− γh
Ak−1

11 B11U1
(v̄1)− (1− β)h

Ak−1
11 B12U2

(v̄1).

By definition, hMΩ(η) = hΩ(M
⊤η) for a set Ω and matrix

M . Since v̄1 is the eigenvector of A11 corresponding to the
dominant eigenvalue ρ1 it holds that Aj

11v̄1 = ρj1v̄1. Also, as
ρ1 > 0, we can express hΩ(ρ1η) = ρ1hΩ(η).

h
S
γ,β
k

(v̄1) ≤ hX1(v̄1) + (1− 2γ)hB11U1(v̄1)

k−2∑
n=0

ρn1

+ (2β − 1)hB12U2(v̄1)

k−2∑
n=0

ρn1

− γhB11U1(v̄1)ρ
k−1
1 − (1− β)hB12U2(v̄1)ρ

k−1
1 .

For ρ1 ̸= 1, the geometric series
∑k−2

n=0 ρ
n
1 =

1−ρk−1
1

1−ρ1

h
S
γ,β
k

(v̄1) ≤ hX1
(v̄1) +

[
(1− 2γ)

1− ρk−1
1

1− ρ1
− γρk−1

1

]
hB11U1

(v̄1)

+

[
(2β − 1)

1− ρk−1
1

1− ρ1
− (1− β)ρk−1

1

]
hB12U2

(v̄1).

If hSγ,β
k∗

(v̄1) < 0 → Sγ,β
k∗ (X1) = ∅, therefore, solving for γ

γ >
1

H12
BU

[
H12

XU (1− ρ1) +H12
BU (1− ρk

∗−1
1 ) + ρk

∗
1 − 1

2− ρk
∗−1

1 − ρk
∗

1

+ β

]
.

On the other hand, for ρ1 = 1:
∑k−2

n=0 ρ
n
1 = k − 1

h
S
γ,β
k

(v̄1) ≤ hX1(v̄1) + [(1− 2γ)(k − 1)− γ]hB11U1(v̄1)

+ [(2β − 1)(k − 1)− 1 + β]hB12U2(v̄1).

Therefore, if hSγ,β
k∗

(v̄1) < 0 → Sγ,β
k∗ (X1) = ∅,

γ >
1

H12
BU

[
H12

XU +H12
BU (k

∗ − 1)− k∗

2k∗ − 1
+ β

]
.

■

The results for β̄k∗ are derived analogously based on
Theorem 1, using the corresponding eigenvalue ρ2 and ratios
H21

BU , H21
XU , and substituting γ̄k∗ → β̄k∗ and β → γ.

Thus, if, for some k∗ ∈ N, β > β̄k∗ , with β̄k∗ < 1, then
Cγ,β

k (X2) = ∅ for all k ≥ k∗. In this sense, we define
F̄k∗ ≜ {γ ∈ [0, γ̄k∗), β ∈ [0, β̄k∗)} as the set that contains
all the scale factors {γ, β} that have a value below the
theoretical limits for some k∗ ∈ N.

As noted in [8], the theoretical bounds are sufficient
conditions but not necessary to determine the emptiness of
the maximal RCI set, since they are derived from (9), which
is not met with strict equality. Thus, according to Remark 2,
it is satisfied that γ̄k∗ ≥ γk∗ and β̄k∗ ≥ βk∗ , which means
that the set F̄k∗ contains some {γ, β} where Cγ,β

k (Xi) = ∅,
for both i ∈ N , while for every pair {γ, β} ∈ Fk∗ , we
have non-empty sets Cγ,β

k (Xi) for both i ∈ N . However,
the actual bounds on both scale factors {γk∗ , βk∗} need
to be calculated by exhaustive search over different values
of {β, γ}, so that the definition of the set Cγ,β

k (Xi) (8)
for a given value of k is empty, while for the theoretical
boundaries simply we have to evaluate an expression.

We can obtain the theoretical bounds {γ̄∞, β̄∞} for which
Cγ,β

∞ = ∅ by taking limits when k∗ → ∞ of (16) and (17):

γ̄∞ ≜


1

H12
BU

[
H12

XU (1− ρ1) +H12
BU − 1

2
+ β

]
if ρ1 < 1

1

H12
BU

[
H12

BU − ρ1
1 + ρ1

+ β

]
if ρ1 ≥ 1

(18)
accordingly, β̄∞ can be deduced analogously.

V. NUMERICAL EXAMPLES

In this section, we illustrate the results of Section IV
through different case studies, where the subsystems are ex-
pressed according to (3). Accordingly, we define the matrices
that we will use as example systems



E1 : A11 = A22 =

[
0.55 0.5
0 0.8

]
, E2 : A11 = A22 =

[
1.5 0.1
0.2 1.2

]
,

E3 : A11 = A22 =

[
1 1
0 1

]
, E4 : A11 = {Aii}E1

, A22 = {Aii}E2
.

First, we will study the case in which both subsystems
are equal (E1 to E3) and therefore have the same dominant
eigenvalues. Furthermore, we will consider E4, where the
matrix of one subsystem is stable, while the other is unstable.
For all cases, we consider the following matrices

B11 = B22 =

[
0.5
0.7

]
, B12 = B21 =

[
0.15
0.05

]
.

Figure 1 represents the real bounds {γk∗ , βk∗} in solid
lines, and the theoretical bounds {γ̄k∗ , β̄k∗} are plotted in
dashed lines, for the step values k∗ = 5 and k∗ = 20.
Accordingly, the real bounds {γk∗ , βk∗} delimit the set Fk∗ ,
where we can guarantee finding a non-empty set Cγ,β

k (Xi)
for both subsystems, represented in yellow for k∗ = 5 and
in green for k∗ = 20. Moreover, the set F̄k∗ is delimited
by the theoretical bounds {γ̄k∗ , β̄k∗}, and is represented in
orange for k∗ = 5 and in light-purple color for k∗ = 20. In
this regard, Figure 1 illustrates what is stated in Remark 2,
as we can appreciate the differences on what the theoretical
and real bound determine.

For stable subsystems, such as E1 (see Figure 1a), where
the dominant eigenvalues of matrices A11 and A22 satisfy
ρ1, ρ2 < 1, agents can cede a greater portion of its input to
other agents guaranteeing that it will be possible to find a
non-empty set Cγ,β

k (Xi). That is, the set Fk∗ for the system
E1 covers a wider range of {γ, β} for which it is possible
to guarantee a finite determined set Cγ,β

k (Xi), where the
constraints will be satisfied for at least k∗ steps compared to
the set Fk∗ for system E2 (see Figure 1b). In the latter, both
subsystems are unstable as the dominant eigenvalues satisfy
ρ1, ρ2 > 1. Therefore, agents are required to cede a smaller
portion of their input to neighboring agents to guarantee
constraint satisfaction. Also, it can be seen in Figure 1b that
when we increase the number of steps to k∗ = 20, we are not
able to find a finitely determined Cγ,β

k (Xi) set, and therefore,
we cannot guarantee constraint satisfaction.

A combination of the above cases can be observed in
Figure 1d, since E4 is composed of a stable subsystem 1
(ρ1 < 1) and subsystem 2, which is unstable (ρ2 > 1).
For this case, we can observe that subsystem 1 is able to
cede a greater portion of its input through the scale factor γ
compared to subsystem 2. However, subsystem 2 will be able
to cede a greater portion of its input β compared to the case
where both systems are unstable (see Figure 1b), since it can
receive a greater portion of its neighboring input through γ.
Note, however, that the more a subsystem receives, the more
it will be able to perform from its input applies to all cases.

In addition, Figure 1 introduces a normalized index of
the degree of partial cooperation that can occur in a system
in which this method is applied. For systems with an area
of Fk∗ close to one would indicate that cooperation can be
maximum a priori. On the other hand, systems with an area
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Fig. 1. Comparison of the theoretical {γ̄k∗ , β̄k∗} and the real bounds
{γk∗ , βk∗} for systems E1 to E4 for a value of k∗ = 5 and k∗ = 20.

of Fk∗ close to zero would indicate that they cannot afford to
cede too much to their neighbors because otherwise they will
not be able to find a jointly invariant set. Moreover, Figure 1
leads us to study the asymmetrical case where an agent cedes
control authority to an agent that needs it, but does not
receive anything in return. That is, setting γ or β equal to
zero and looking at the maximum value that an agent could
provide to its neighbor. For instance, when one subsystem
is under-actuated or under-powered, while the other has a
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Fig. 2. Representation of the k-steps constraint admissible sets, Cγ,β
k (Xi),

for system E3 for k < 20.

surfeit of actuation capability. In this case, there is a trade-
off between the improvement afforded to the receiving agent
and the deterioration experienced by the providing agent.

Furthermore, Figure 2 illustrates the computation of
Cγ,β

k (Xi) through (8). To this end, we have calculated these
sets for the integrator of system E3, until k = 20 and using as
scale factors γ = 0.35, β = 0.1. As can be seen in Figure 1c,
these selected values satisfy {γ = 0.35, β = 0.1} ∈ F5, and
{γ = 0.35, β = 0.1} /∈ F20. In this sense, for subsystem 1
we can identify Cγ,β

11 (X1) = ∅, which means that for these
values of the scale factors, it is impossible to find a finitely
determined set Cγ,β

∞ (X1). Conversely, subsystem 2 converges
in two steps to its maximal RCI set, since Cγ,β

3 (X2) =
Cγ,β

2 (X2), and therefore Cγ,β
∞ (X2) = Cγ,β

2 (X2). Let kc

denote the time step in which convergence to Cγ,β
∞ (Xi) is

achieved, that is, kc = 2 for subsystem 2. Consequently, in
Figure 2b we have only represented the set Cγ,β

k (X2) for
the first 3 time steps, as for a given time step k > kc the
set Cγ,β

k (Xi) = Cγ,β
∞ (Xi). However, since we are within a

partially cooperative approach where we want constraints to
be satisfied at the global system level if for a given subsystem
(subsystem 1 in this case) there is no finite maximal RCI set,
we cannot guarantee constraint satisfaction.

VI. CONCLUSIONS

This article considers a decomposition method in which
coupling variables are partitioned into multiple versions shar-
ing a common constraint space, and are distributed among
local agents. In this regard, we characterize a bound on the
maximal size of the portion that an agent can cede of its

input variable, considering that other agents will behave in
an analogous manner so that we can compute a finitely deter-
mined jointly robust control invariant set for each subsystem.
This bound has been characterized analytically and it is
simple to evaluate. However, our results are based on several
assumptions that might limit their applicability. Firstly, the
system is required to be linear, although the extension to
a nonlinear case might be achieved leveraging the robust
nature of the approach to account for modeling errors. Also,
the largest eigenvalue of the system is required to be real,
but this condition is fulfilled naturally by some type of sys-
tems. Likewise, constraints must be expressed symmetrically
with respect to the origin –which can be attained for most
practical situations with a change of variable– and subsystem
dynamics must be expressed using only input coupling.

Future work will address the relaxation of these require-
ments and the extension towards a multi-agent scenario,
since the different interaction possibilities of such a scenario
require careful consideration, making the analysis and deriva-
tion of the corresponding expressions more complex.
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