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A B S T R A C T

Fault detection is crucial for ensuring optimal operation and maintenance of solar plants. This paper proposes
a methodology for fault detection and isolation using artificial neural networks (ANNs) in a model of a 50
MW parabolic-trough solar plant that employs a defocusing strategy. The proposed methodology focuses on
detecting three different types of faults in the collector area, namely, faults in the optical efficiency, flow
rate, and thermal losses. The methodology is divided into three steps. Firstly, a feedforward dynamic neural
network that internally models the concentrated parameter model of the system is used to detect faults and
output the fault type. Secondly, information on the defocusing mechanism is added to the inputs of the neural
network. Finally, the range of faults considered is adjusted based on the neural networks’ ability to detect
each fault size and its impact on the plant’s outlet temperature. The accuracy of fault detection is evaluated
through several simulations, and the proposed methodology shows promising results. The accuracy of fault
detection is found to be 71.72%, 83.96%, and 90.62% for the first, second, and third approaches, respectively.
The proposed methodology based on ANNs has the potential to improve the operational efficiency and reduce
maintenance costs of solar plants.
1. Introduction

The use of renewable energies in industry is constantly increasing,
either for electrical energy production applications or other purposes
such as temperature regulation. This is mainly due to two factors:
energy demand is always increasing and public awareness of the impact
of non-renewable energies is growing. Accordingly, climate change and
energy security have thus established themselves as the major concerns
of the century [1]. In order to prevent climate change and global
warming and to promote economic growth, it is necessary to promote
the development of renewable and nuclear energy sources [2].

Solar energy is the oldest energy source [3] and is considered the
cleanest renewable energy form [4]. In fact, solar thermal energy is a
key element of the energy transition and serves as a good substitute for
fossil fuels used for heat production [5]. This work is based on the use
of parabolic trough collectors (PTCs), which are a type of solar thermal
power plants.

A challenge for renewable energy sources, and more specifically
solar energy, is that they are very dependent on weather conditions,
which makes them difficult to predict and challenges the ability to
control and maintain plant safety [6]. In addition, faults in solar
collectors are highly coupled. For these reasons, the development of
advanced fault detection techniques is of great importance.

∗ Corresponding author.
E-mail addresses: srmoreno@us.es (S. Ruiz-Moreno), agallego2@us.es (A.J. Gallego), efcamacho@us.es (E.F. Camacho).

Fault detection and diagnosis (FDD) [7] is a research field divided
into two sections: fault detection, which aims to trigger some alarms
after the appearance of a fault in a system, and fault diagnosis, which
provides deeper information about the fault. The diagnosis part, in
turn, is divided into two sections: fault isolation, which describes the
fault type and location, and fault identification, which determines its
magnitude. This work focuses on the subcategory of fault detection and
isolation (FDI). FDD techniques can be divided into three types [8,9]:
quantitative model-based methods based on mathematical relation-
ships, qualitative model-based methods based on qualitative functions
and process history-based methods that use historical data.

Until 1990s, most of the research in fault detection was developed
in national defense, automobile industry, process plants, aircraft and
nuclear power plants [7]. However, today it is becoming more and
more widespread, with numerous recent applications in various fields
and, specifically, in energy production. He et al. [10] apply multi-
label learning for fault diagnosis in a photovoltaic array addressing the
problem of faults coupling. Bououden et al. [11] propose an observer-
based method for robust fault-tolerant control in wind turbine systems.
Another fault-tolerant control approach is proposed by Zafra-Cabeza
et al. [12] in the field of microgrids.
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Nomenclature

𝛼(t) Fault multiplier −
𝛿𝑞 Flow rate additive fault
𝛿𝑠 Declination
𝜔𝑠(t) Hourly angle
𝜙 Latitude
𝜌(𝑇 ) Density kg/m3

𝐴 Pipe cross-sectional Area m2

𝐶(𝑇 ) Specific heat capacity J/(kg ◦C)
𝑒𝑓𝑓𝑑𝑒𝑓 Defocus efficiency −
𝐺 Collector aperture m
𝐻𝑙(𝑇 ) Thermal loss coefficient W/(m2 ◦C)
𝐻𝑡(𝑇 ) Convective heat transfer coefficient W/(m2

◦C)
𝐼(𝑡) Direct solar irradiance W/m2

𝐾𝑜𝑝𝑡 Optical efficiency −
𝐿 Tube perimeter m
𝐿𝑙𝑜𝑜𝑝 Loop length m
𝑛𝑜(𝑡) Geometric efficiency −
𝑛𝑠𝑖(𝛥𝑡) Number of defocusings in a period 𝛥𝑡 of the

𝑖th collector −
𝑞(𝑡) Volume flow rate m3s
𝑆 Total area of the field m2

𝑠𝑑𝑖(𝑡) Defocusing state of the 𝑖th collector −
𝑡 Time s
𝑇 (𝑡) Temperature ◦C
𝑥 Spacem
𝑋(𝑡) Neural network’s input vector
𝑘 Timestep −
𝑓 Fluid
𝑖𝑛 Input
𝑙𝑜𝑜𝑝 Mean for the entire loop
𝑚 Metal
𝑚𝑒𝑎𝑛 Mean between input and output
𝑜𝑢𝑡 Output
ANN Artificial neural network
DNI Direct normal irradiance
FDD Fault detection and diagnosis
FDI Fault detection and isolation
HTF Heat transfer fluid
PTC Parabolic-trough collector

Thermal solar plants are nonlinear systems with highly coupled
aults, which hinders the problem of FDD with traditional methods. To
olve this, a previous work [13] proposed a method based on a multi-
abel, multi-layer perceptron combined with a decoupling strategy.
achine learning techniques are great problem solvers that facilitate

he detection of faults in complex systems and are on the rise, with
ecent applications in many different fields. Rodríguez et al. [14]
pply recurrent neural networks to wind turbines for fault detection
nd offset error prediction. He et al. [10] propose the use of the k-
earest neighbor method with random forests and residual networks to
lassify different types of faults in photovoltaic systems. In the work
y Ahmadipour et al. [15], a support vector machine is combined with
he maximal overlap discrete wavelet packet transform and augmented
agrangian particle swarm optimization to classify faults in a microgrid.

In the case of thermal solar systems, the number of existing applica-
ions in the literature is much lower because the faults in the collectors
2

rea are highly coupled, focusing mainly on just fault detection and
in hot water systems. The work by Correa-Julian et al. [16] analyzes
different deep learning techniques for fault detection and performance
prediction, and Jiang et al. [17] propose the use of support vector
machines to classify types of faults in solar water systems. Schmelzer
et al. [18] propose a method based on fractional solar consumption for
fault detection in a solar combi system. A more specific application is
the work by Brennet et al. [19], which focuses on soiling determination
in PTCs.

This work proposes an FDI approach for faults located in the col-
lectors area and takes into account three types of faults: faults in the
optical efficiency, flow rate and thermal loses. Moreover, it analyzes the
effect of each type and size of fault on the plant output. In accordance
with this analysis, this work proposes a range of fault sizes that are
detectable by the neural networks (ANNs). This range is based on a
combination of the neural network’s ability and the fault effect.

Commercial solar plants are equipped with a defocusing mechanism
to reduce the energy due to safety limitations. This makes the FDD
problem even more complex since the reflectivity reduction due to the
defocusing can be confused with an optical efficiency fault, as they
affect the system similarly. This paper proposes the use of artificial
neural networks that take into account some information of the de-
focusing strategy to improve the ability of distinguishing both effects.
Previous works [20,21] focused on isolating faults with artificial neural
networks in the ACUREX plant, a small, experimental plant without
defocusing mechanism, which is an important mechanism included in
all commercial plants.

The contributions of this paper compared with the previous works
are the following:

• Fault detection and isolation in a model of a solar thermal plant
of 50 MW that includes a defocusing strategy.

• Use of the defocusing angle and number of defocusings during a
time horizon as inputs to the neural networks.

• Analysis of the faults effect on the outlet temperature.
• Selection of a new range of faults of each type.

The remainder of this paper is as follows. Section 2 gives a descrip-
tion of the system, the defocusing strategy and the faults considered.
Section 3 provides an overview of the neural networks applied. Next,
the methodology is described in Section 4 and a summary of the results
is provided in Section 5 together with a discussion. The conclusions and
future work are given in Section 6. In Appendix, two dynamic models
are provided: one for simulation and the second one for designing
purposes.

2. Description of the system

A parabolic trough collector plant is a type of solar thermal facility
composed by several loops of parabolic mirrors, as shown in Fig. 1.
Each of these mirrors receives solar direct normal irradiance (DNI) and
reflects it onto its focal line. Along the focal line, there is placed a pipe
that contains the heat transfer fluid (HTF) circulating. The fluid gets
heated up by the DNI and then is directed to a heat exchanger, where
it produces steam to drive a turbine generator.

This work uses a model of a 50 MW plant [22] that contains 90 loops
of 620 m with 4 collectors each one. The collectors are north–south
aligned and have a tracking system that makes them rotate around an
axis that is parallel to the pipe to track the sun. The active part of
the loop is the one that receives solar radiation and is 593 m long.
The heat transfer fluid is Therminol VP-1 [23]. The nominal operating
temperature is about 390–393 ◦C. The plant is simulated using the
distributed parameter model, and the concentrated parameter model

is used for control and FDD purposes. Both are described in Appendix.
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Fig. 1. Scheme of a parabolic-trough collector field for electric power production without thermal storage.
2.1. Flow-rate control

The HTF flow rate is manipulated for outlet temperature tracking.
For this purpose, a feedforward controller is designed using the concen-
trated parameter model in steady-state, as given by Eq. (1). To compute
the control signal, the non-faulty scenario is assumed (fault multipliers
equal to 1).

𝑞 =
𝑛𝑜𝐾𝑜𝑝𝑡𝑆𝐼 −𝐻𝑙𝐴(𝑇𝑚𝑒𝑎𝑛 − 𝑇𝑎)

𝑃𝑐𝑝(𝑇𝑟𝑒𝑓 − 𝑇𝑖𝑛)
(1)

The control sample time is 30 s and the flow rate and outlet
temperature constraints to protect the HTF and the components are
those of Eqs. (2) and (3).

9 m3∕h ≤ 𝑞 ≤ 33 m3∕h (2)

𝑇𝑜𝑢𝑡 < 400 ◦C (3)

2.2. Defocusing strategy

On many occasions, commercial plants need to defocus one or sev-
eral collectors, i.e., to modify the angles of the collectors and take them
out of focus. This way, the incidence angle between the solar beam
and the normal direction to the mirror plane is augmented causing that
the collector receives less energy and thus its efficiency decreases. The
need to defocus the collectors is produced when the outlet temperature
surpasses the maximum allowed value and the oil flow cannot be
increased because of pumps or steam generator limitations, maybe due
to energy constraints or to a high value of irradiance during a period
of time [22].

The defocus curve shown in Fig. 2 depicts the relation between the
efficiency and the defocus angle. Since this relation is not linear, it
is necessary to design a defocusing mechanism that selects the angle.
The work by Sánchez et al. [24], for example, proposes a method and
compares the results by defocusing two and four collectors. Since the
objective of this study is not the design of the defocusing mechanism,
but of the FDD mechanism, a simple scheduling-based mechanism has
been selected.

This paper applies a defocus strategy based on three states: solar
tracking (0 ◦), partial defocus (2 ◦C) and total defocus (5 ◦C). Collectors
3 and 4 are allowed to achieve the three states, while collectors 1
and 2 are not allowed the second state. The defocus state is selected
depending on the temperature at the center of each collector, as shown
in Fig. 3. This strategy has been chosen because it is the one commonly
used in commercial plants.
3

Fig. 2. Defocus curve.

Fig. 3. Defocus strategy.

2.3. Faults considered

This work considers three types of faults in the collectors area:

• Faults in the optical efficiency, modeled as multipliers 𝛼𝐾𝑜𝑝𝑡
< 1.

The optical efficiency takes into account factors such as reflectiv-
ity and soiling of the mirrors, tube absorptance or interception
factor. Within this category of faults are mirror defects, break-
age, dirt, degradation, corrosion and deterioration of the tubes
coating.
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Fig. 4. Test profiles.

• Faults in the flow rate, modeled as 𝛼𝑞 ≠ 1. For convenience, flow
failures are introduced as additive failures that can be positive or
negative, as this is more intuitive. These faults are then translated
into their corresponding multiplicative factor. These faults are
related to flowmeter errors and unbalances of the loops with
respect to the whole plant.

• Faults in the thermal loses, modeled as 𝛼𝐻𝑙 > 1. These faults can
be due to vacuum losses in the tubes because of the effect of dirt,
wear, insulation and breakage of the pipes.

3. Artificial neural networks

In this work, the fault detection and classification is obtained by
means of artificial neural networks, which are function approximators,
specifically, multilayer perceptrons. An ANN is formed by connections
of neurons organized in layers. Each neuron solves a linear regression
problem and includes an activation function and its output to transform
the data into an activated or non-activated state [25].

The activation functions in this work are a softmax function at the
output to scale the data in the range [0, 1] and hyperbolic tangent
sigmoid functions at the rest of layers. The weights are trained using
the scaled conjugate gradient backpropagation algorithm [26] and the
architecture of the neural networks is selected by trial and error.

The inputs to the neural networks are scaled in the range [−1,+1],
randomized and divided into three subsets: training, validation and test
sets. Additionally, new simulations with the trained neural networks
are carried out to analyze their behavior in the complete system.

4. Methodology

The FDI methodology consists of an ANN applied in parallel with
the control system with a sample time of 30 s. The inputs to the
neural network are the variables of the concentrated parameter model
to help it learn the dynamics of the system internally. First, a bunch
of simulations is created to obtain a dataset with synthetic clear-day
irradiance profiles randomly selected. Then, a dataset is created to train
the neural networks using real irradiances, ambient temperatures and
inlet temperatures corresponding to clear days. Finally, new simula-
tions are carried out with new data to test the FDI system. Fig. 4 shows
the profiles used for testing.

The ANNs are evaluated based on the classification accuracy
(Eq. (4)) and the F1-score (Eq. (5)), where TP is rate of true positives.
FP is the rate of false positives, TN is the rate of true negatives and FN
is the rate of false negatives.

𝐴𝑐𝑐 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

(4)

𝐹1 = 2 ⋅ 𝑅𝑒𝑐 ⋅ 𝑃𝑟𝑒
𝑅𝑒𝑐 + 𝑃𝑟𝑒

,

where 𝑃𝑟𝑒 = 𝑇𝑃 and 𝑅𝑒𝑐 = 𝑇𝑃 (5)
4

𝑇𝑃 + 𝐹𝑃 𝑇𝑃 + 𝐹𝑁
Fig. 5. Structure of the ANN with the first approach.

Table 1
Training hyperparameters of the neural networks.
𝜎 𝜆 Perform.

goal
Max
epochs

Min
gradient

Max
valid. checks

5−5 5−7 0 4 ⋅ 103 10−6 6

Table 2
Accuracies on the three subsets and training times for the ANNs of the
first approach.

ANN Tr. Val. Test Tr.
Acc (%) Acc (%) Acc (%) time (h)

30 71.4 71.2 71.3 1.18
30–20 84.0 83.9 83.9 1.85
30–20–8 79.0 78.9 78.9 2.09
60–30 89.2 89.1 89.2 3.03
60–30–12 89.1 89.1 89.0 3.45
120–60 93.7 93.6 93.7 5.37
120–60–20 92.3 92.2 92.2 6.13
350–180 96.7 96.7 96.7 15.5

4.1. First approach: Without defocusing information

The first approach consists of analyzing the ability of multilayer
perceptrons to detect and isolate the three types of faults without
knowing information about the defocusing strategy, as in [20]. The
structure of the ANN is shown in Fig. 5.

Specifically, the inputs to ANN 1 are 𝑋(𝑘) = [𝑇𝑖𝑛(𝑘), 𝜇𝑇𝑖𝑛 (𝑘−5 ∶ 𝑘−1),
𝜇𝑇𝑖𝑛 (𝑘 − 20 ∶ 𝑘 − 6), 𝑇𝑜𝑢𝑡(𝑘), 𝜇𝑇𝑜𝑢𝑡 (𝑘 − 5 ∶ 𝑘 − 1), 𝜇𝑇𝑜𝑢𝑡 (𝑘 − 15 ∶ 𝑘 − 6),
𝜇𝑇𝑜𝑢𝑡 (𝑘−30 ∶ 𝑘−16), 𝑇𝑎(𝑘), 𝐼(𝑘)𝑛𝑜(𝑘), 𝜇𝐼𝑛0 (𝑘−5 ∶ 𝑘−1), 𝜇𝐼𝑛0 (𝑘−20 ∶ 𝑘−6),
𝑞(𝑘), 𝜇𝑞(𝑘 − 3 ∶ 𝑘 − 1), 𝜇𝑞(𝑘 − 10 ∶ 𝑘 − 4)], where 𝜇 denotes the average
value.

A dataset of 1487360 instances (2688 days) was created to train the
ANNs. The data corresponds to different simulations with and without
faults between 10:00 h and 17:59 h. The reference temperatures for
the controller were randomly chosen between 369 ◦C and 390 ◦C, and
the maximum irradiance values were also randomly selected between
750 W/m2 and 1000 W/m2. The faults in these first experiments are
in the following ranges: 𝛼𝐾𝑜𝑝𝑡

∈ [0.1, 0.9] for the optical efficiency
faults, 𝛿𝑞 ∈ [±1.65,±3.3] m3/h for the flow rate additive faults and
𝛼𝐻𝑙

∈ [1.1, 2] for the thermal losses faults.
The neural networks were trained with the hyperparameters of

Table 1.
Table 2 shows the accuracies of the trained neural networks in the

three subsets. The column ANN indicates the number of neurons in each
layer. All deep architectures (the ones with more than one hidden layer)
perform well and there is a low overfitting, judging from the accuracy
evolution between subsets. The results show that the addition of a third
hidden layer worsens the accuracy.

To reduce false alarms during a day, the output of the ANN is
filtered with a certain time constant and, whenever one output corre-
sponding to a fault surpass a certain threshold, an alarm is triggered.
384 simulations of one day were performed using the test profiles of
Fig. 4 for three selected neural network with different thresholds and
filter time constants. The results are gathered in Table 3. The highest
accuracies are over 70%. They are achieved with the ANN of 120 and
60 neurons with a limit of 50% and the ANN of 30 and 20 neurons with
a limit of 75%, both with a 90 min filter.
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Table 3
Simulation results of the first FDD approach with the selected neural networks.

ANN Threshold, Faultless F1-score (%) Acc.

filter 𝐾𝑜𝑝𝑡 fault 𝑞 fault 𝐻𝑙 fault (%)

30–20 0.5, 60 46.6 66.1 53.9 50.5 53.4
120–60 0.5, 60 49.0 67.7 61.4 40.9 52.1
350–180 0.5, 60 47.5 81.5 59.6 54.2 61.2
30–20 0.5, 90 59.3 65.7 51.5 54.9 57.6
120–60 0.5, 90 76.2 80.3 69.0 64.4 71.7
350–180 0.5, 90 37.5 81.3 43.5 46.7 51.5
30–20 0.75, 90 78.7 81.0 67.4 60.3 71.7
120–60 0.75, 90 73.7 79.1 65.0 60.1 68.8
350–180 0.75, 90 71.3 92.1 49.0 58.4 69.4

Fig. 6. Structure of the ANNs with the second approach.

Table 4
Accuracies on the three subsets and training times for the ANNs of the
second approach.

ANN Tr. Val. Test Tr.
Acc (%) Acc (%) Acc (%) time (h)

ANN 2:
30–20 89.0 89.1 89.0 1.97
120–60 97.9 97.7 97.7 5.64
350–180 99.2 99.0 99.0 11.2
ANN 3:
30–20 89.9 89.9 89.9 1.57
120–60 95.1 95.0 94.9 5.97
350–180 99.4 99.2 99.2 15.1

4.2. Second approach: With defocusing information

The second approach involves taking into account the defocusing
information. For this purpose, two new variables are created: the
defocusing state 𝑠𝑑𝑖 and the number of defocusings in a time period
𝑛𝑑𝑖 for each collector 𝑖. The ANN structures used in this approach are
shown in Fig. 6.

This way, the inputs for ANN 2 are 𝑋(𝑘) = [𝑇𝑖𝑛(𝑘), 𝜇𝑇𝑖𝑛 (𝑘−5 ∶ 𝑘−1),
𝜇𝑇𝑖𝑛 (𝑘 − 20 ∶ 𝑘 − 6), 𝑇𝑜𝑢𝑡(𝑘), 𝜇𝑇𝑜𝑢𝑡 (𝑘 − 5 ∶ 𝑘 − 1), 𝜇𝑇𝑜𝑢𝑡 (𝑘 − 15 ∶ 𝑘 − 6),
𝜇𝑇𝑜𝑢𝑡 (𝑘−30 ∶ 𝑘−16), 𝑇𝑎(𝑘), 𝐼(𝑘)𝑛𝑜(𝑘), 𝜇𝐼𝑛0 (𝑘−5 ∶ 𝑘−1), 𝜇𝐼𝑛0 (𝑘−20 ∶ 𝑘−6),
𝑞(𝑘), 𝜇𝑞(𝑘 − 3 ∶ 𝑘 − 1), 𝜇𝑞(𝑘 − 10 ∶ 𝑘 − 4), 𝑠𝑑1(𝑘), 𝑠𝑑2(𝑘), 𝑠𝑑3(𝑘), 𝑠𝑑4(𝑘),
𝜇𝑠𝑑1 (𝑘 − 60 ∶ 𝑘), 𝜇𝑠𝑑2 (𝑘 − 60 ∶ 𝑘), 𝜇𝑠𝑑3 (𝑘 − 60 ∶ 𝑘), 𝜇𝑠𝑑4 (𝑘 − 60 ∶ 𝑘)], and
for ANN 3 are 𝑋(𝑘) = [𝑇𝑖𝑛(𝑘), 𝜇𝑇𝑖𝑛 (𝑘 − 5 ∶ 𝑘 − 1), 𝜇𝑇𝑖𝑛 (𝑘 − 20 ∶ 𝑘 − 6),
𝑇𝑜𝑢𝑡(𝑘), 𝜇𝑇𝑜𝑢𝑡 (𝑘−5 ∶ 𝑘−1), 𝜇𝑇𝑜𝑢𝑡 (𝑘−15 ∶ 𝑘−6), 𝜇𝑇𝑜𝑢𝑡 (𝑘−30 ∶ 𝑘−16), 𝑇𝑎(𝑘),
𝐼(𝑘)𝑛𝑜(𝑘), 𝜇𝐼𝑛0 (𝑘 − 5 ∶ 𝑘 − 1), 𝜇𝐼𝑛0 (𝑘 − 20 ∶ 𝑘 − 6), 𝑞(𝑘), 𝜇𝑞(𝑘 − 3 ∶ 𝑘 − 1),
𝜇𝑞(𝑘 − 10 ∶ 𝑘 − 4), 𝑠𝑑1(𝑘), 𝑠𝑑2(𝑘), 𝑠𝑑3(𝑘), 𝑠𝑑4(𝑘), 𝜇𝑠𝑑1 (𝑘 − 60 ∶ 𝑘),
𝜇𝑠𝑑2 (𝑘 − 60 ∶ 𝑘), 𝜇𝑠𝑑3 (𝑘 − 60 ∶ 𝑘), 𝜇𝑠𝑑4 (𝑘 − 60 ∶ 𝑘), ∑ 𝑛𝑑1(𝑘 − 60 ∶ 𝑘),
∑

𝑛𝑑2(𝑘 − 60 ∶ 𝑘), ∑ 𝑛𝑑3(𝑘 − 60 ∶ 𝑘), ∑ 𝑛𝑑4(𝑘 − 60 ∶ 𝑘)].
A new dataset is created again and neural networks are trained

with the same characteristics as the three selected from the previous
experiment, but with different the inputs. The accuracies in the three
subsets are those of Table 4. The accuracies with this second approach
are higher that with the first approach.
5

Table 5
Simulation results of the second FDD approach with the selected neural networks.

ANN Threshold, Faultless F1-score (%) Acc.

filter 𝐾𝑜𝑝𝑡 fault 𝑞 fault 𝐻𝑙 fault (%)

ANN 2:
30–20 0.5, 60 90.7 85.9 64.2 60.1 75.5
120–60 0.5, 60 75.3 81.8 46.9 74.9 69.3
350–180 0.5, 60 72.2 83.4 70.4 50.0 68.3
30–20 0.5, 90 87.3 94.4 63.4 60.6 77.4
120–60 0.5, 90 75.9 82.3 38.1 56.9 62.1
350–180 0.5, 90 64.0 83.5 64.4 47.2 63.3
30–20 0.75, 90 84.2 91.9 62.6 44.7 72.9
120–60 0.75, 90 74.4 82.8 40.5 54.8 62.3
350–180 0.75, 90 80.2 90.1 68.2 57.1 74.7
ANN 3:
30–20 0.5, 60 93.5 96.7 69.1 70.1 84.0
120–60 0.5, 60 77.6 81.6 47.0 63.1 67.2
350–180 0.5, 60 49.548 76.4 58.2 55.9 60.0
30–20 0.5, 90 85.1 97.3 68.2 68.2 81.0
120–60 0.5, 90 70.1 85.4 45.3 51.5 63.7
350–180 0.5, 90 49.5 75.6 50.8 49.5 55.3
30–20 0.75, 90 84.2 94.0 73.3 64.0 80.0
120–60 0.75, 90 67.1 87.8 47.0 49.2 64.4
350–180 0.75, 90 46.3 76.9 48.3 46.7 53.4

As shown in Table 5, the best accuracies are around 10% better
than without the defocusing information, with F1-scores in the non-
faulty output and the 𝐾𝑜𝑝𝑡 fault over 90%, and the best ANNs need less
neurons. The highest accuracies and F1-scores with ANN 3 are obtained
with the neural network of 30 and 20 neurons and with the one of 350
and 180 neurons for ANN 2, and with the one with 30 and 20 neurons
for ANN 3.

4.3. Third approach: Selecting range of faults

One question that arises during the training process is about the
goodness of the considered range of faults, as it is designed to cover a
wide space that may not be realistic and not take into account the real
effect of the faults on the plant. Moreover, the analysis of the ANNs
accuracies does not take into account the ability of the ANNs to classify
each fault size. For this reason, this work proposes to create a new fault
range based on these aspects.

The first analysis focuses on the hit rate for each fault rate, measured
with the specific recall. This metric takes the number of test simulations
performed for each fault size and keeps track of the rate of correct
classifications. It is computed for a subset of the simulations with a
specific value of fault multiplier as in Eq. (6), where 𝑇𝑃𝛼𝑖 is the number
of correctly detected faults of a specific value of one fault multiplier 𝛼𝑖
and 𝐹𝑁𝛼𝑖 is the number of non-detected faults of that type and size.

𝑅𝑒𝑐(𝛼𝑖) =
𝑇𝑃𝛼𝑖

𝑇𝑃𝛼 + 𝐹𝑁𝛼𝑖
(6)

Subsequently, the average of the recall values for every fault type
and size among the best trained ANNs is obtained and a curve is
generated by cubic interpolation as in Fig. 7. This curve will be used
to select the new range of faults.

When deciding whether a failure is important or not, it is necessary
to know its effect on the system. The next step is to analyze the effect
of each fault on the outlet temperature. For this purpose, different
simulations under the same circumstances, but with and without faults,
are compared. The percentage temperature drop is shown in Fig. 8 as
blue crosses, together with the mean values 𝜇. Then, according with
to 3𝜎 rule – which states that 99.7% of the observed data following a
normal distribution are within 3 standard deviation of the mean –, a
curve is obtained to represent the 3 standard deviation over the mean
to cover a wide range. This curve is combined with the previous curve
obtaining the yellow one, which finally takes into account not only the
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Fig. 7. Average recalls and curves obtained.

Fig. 8. Effect on the output of each fault and curves obtained. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

Table 6
Accuracies on the three subsets and training times for the ANNs of the
third approach.

ANN Tr. Val. Test Tr.
Acc (%) Acc (%) Acc (%) time (h)

ANN 2:
30–20 93.8 93.8 93.8 1.26
350–180 99.4 99.4 99.3 15.3
ANN 3:
30–20 93.9 93.9 93.9 1.21

ability of the ANNs to detect each fault, but also the effect on the outlet
temperature.

The new ranges of faults are selected according to whether the
curve surpasses the 2% or not. This way, whenever the curve is lower
than 2%, the fault is considered unimportant and is taken out of the
fault range. The new values of the multipliers are 𝛼𝐾𝑜𝑝𝑡

∈ [0.1, 0.9],
𝛼𝑞 ∈ [−3.3,−1.5] ∪ [2.6, 3.3] and 𝛼𝐻𝑙

∈ [1.67, 2]. With these new fault
values, another dataset is created with the same characteristics as the
previous ones, and ANNs with the same hyperparameters and inputs
are trained. The architectures selected were the ones with the highest
accuracies in the second approach. The accuracies in the three subsets
and training times are shown in Table 6. The training results are slightly
better than with the second approach and the accuracies do not differ
between subsets.

As observed in Table 7, the accuracies and F1-scores are much
better, obtaining values around 90% for all the classes with the ANN
of type 3 that contains 30 neurons in the first hidden layer and 20
neurons in the second one, with a limit of 75% and a 90 min filter. The
filter time constants and output thresholds for each ANN architecture
are selected to be the same as in the second approach. The F1-scores
and accuracies surpass those of the previous approaches.
6

Table 7
Simulation results of the third FDD approach with the selected neural networks.

ANN Threshold, Faultless F1-score (%) Acc.

filter 𝐾𝑜𝑝𝑡 fault 𝑞 fault 𝐻𝑙 fault (%)

ANN 2:
30–20 0.5, 60 96 95.65 64.22 68.7 79.63
350–180 0.5, 60 98.97 96.77 58.79 48.17 73.3
30–20 0.5, 90 89.72 93.73 80.48 77.67 85.42
350–180 0.5, 90 96 95.65 73.58 65.12 82.81
30–20 0.75, 90 89.72 93.33 89.13 82.11 88.54
350–180 0.75, 90 95.68 95.65 79.41 79.21 87.5
ANN 3:
30–20 0.5, 60 85.71 88.66 76.47 69.52 79.48
30–20 0.5, 90 90.57 94.51 77.73 77.71 85.24
30–20 0.75, 90 90.57 93.33 92.13 86.87 90.62

Table 8
Best results for each approach.

Method F1-score (%) Acc

Faultless 𝐾𝑜𝑝𝑡 fault 𝑞 fault 𝐻𝑙 fault (%)

Without defocusing inputs 76.19 80.31 69.00 64.43 71.72
With defocusing inputs 93.51 96.73 69.14 70.12 83.96
New ranges 90.57 93.33 92.13 86.87 90.62

Fig. 9. ROC curves for each fault class.

5. Summary of the results and discussion

This work has addressed three approaches for FDI in a PTC plant
with a defocusing strategy. Table 8 collects the best results for each
approach based on the accuracy and F1-scores. These results demon-
strate that adding inputs to the ANNs that contain defocusing data can
lead to more than a 10% better accuracy and F1-scores over 90% in
the faultless and the optical efficiency fault cases. This means that the
neural networks can distinguish better between an optical efficiency
fault and a defocusing mode, and that the defocusings help the ANNs
decouple the faults more effectively. This way, the ANNs can internally
model the dynamics of the plant.

The Receiver operating characteristic (ROC) [27] curve provides a
visual representation of the true and false positive rates and is shown in
Fig. 9 for each one of the fault classes. The area under the curve (AUC)
for the non-faulty class is 81.77%, 97.40% and 96.53% for the ANN
without defocusing information, the one with defocusing information
and the one with new ranges, respectively. The AUCs for the optical
efficiency faults are 84.38%, 97.48% and 93.75%, the AUCs for the
flow rate faults are 76.97%, 79.83% and 92.71%, and the AUCs for the
thermal losses faults are 28.13%, 79.28% and 92.01%.

When there is a plant in which there are flow rate changes and
defocuses and the neural networks are provided with information about
the defocus and the time evolution, it is allowed to analyze the failures
in a way similar to the strategy performed in [13], but in an automatic



Solar Energy 262 (2023) 111909S. Ruiz-Moreno et al.

w
a
e
l
i
g
i
a
b

m
F
d
a
t
r
s

p
i
o
i
t

o
c
t
d

t

m

Fig. 10. Temperature, irradiance and flow rate with 𝛼𝐾𝑜𝑝𝑡
= 0.35 at 12:00.

Fig. 11. Fault classification of the three approaches with 𝛼𝐾𝑜𝑝𝑡
= 0.35 at 12:00.

ay. This is due to the fact that when the collectors are decoupled
nd the FDD system is aware of it, if the plant does not behave as
xpected, there is definitely a failure in the flow rate or the thermal
oses. If changes in input are also introduced and the ANN knows the
nlet and outlet temperature for several sampling times, the ANN is
iven the ability to internally extrapolate flow residence times. This
nformation is of great help in detecting flow failures. If no flow failures
re found and the system is not behaving correctly, it is more likely to
e a thermal losses failure.

On the other hand, the analyzable ranges of faults have been
odified and an improvement of almost 90% has been obtained, with

1-scores close to 90% in all classes. This means that ANN is able to
etect both positives and negatives in approximately the same way for
ll classes. Depending on the fault detection objectives, the second or
hird approach will be more suitable. The first approach covers a larger
ange of faults with lower accuracy, and the second approach covers a
maller range of more important faults with higher accuracy.

The results of the ANNs selected for each approach with the test
rofiles are shown below. Fig. 10 shows the temperature, flow rate and
rradiance of a day with a fault of 𝛼𝐾𝑜𝑝𝑡

= 0.35 in the optical efficiency
ccurring at 12:00. 𝑇 ∗

𝑜𝑢𝑡 is the value of the outlet temperature if there
s no fault. As shown in Fig. 11, the selected neural networks for the
hree approaches obtain a good classification of the fault.

Fig. 12 shows the temperature, flow rate and irradiance conditions
f a test were a flow rate fault of 𝛿𝑞 = 3.1 was introduced at 13:00. The
lassifications are shown in Fig. 13. A case has been shown in which all
hree approaches manage to detect the fault well, although with greater
ifficulty.

Finally, the temperature, flow rate and irradiance of a test with a
hermal loses fault of 𝛼𝐻𝑙

= 1.835 at 11:30 is shown in Fig. 14. Fig. 15
shows the classification results. In this case, only the ANNs of the first
and third approach could detect the faults correctly.

For obtaining the F1-scores and accuracies, simulations of 792 days
were used with an even split between the three profiles and fault sizes.
7

Table 9 gathers the 95% confidence intervals values of the accuracies t
Fig. 12. Temperature, irradiance and flow rate with 𝛿𝑞 = 3.1 at 13:00.

Fig. 13. Fault classification of the three approaches with 𝛿𝑞 = 3.1 at 13:00.

Fig. 14. Temperature, irradiance and flow rate with 𝛼𝐻𝑙
= 1.835 at 11:30.

Fig. 15. Fault classification of the three approaches with 𝛼𝐻𝑙
= 1.835 at 11:30.

and F1-scores of the selected neural networks after performing several
tests formed by different numbers of days, from 300 to 2100, with
random faults and parameters. Assuming a normal distribution, the
confidence intervals are defined as (�̄� − 𝑐 𝜎

√

𝑛
, �̄� + 𝑐 𝜎

√

𝑛
), where �̄� is the

ean, 𝑐 is the selected percentile, 𝜎 is the standard deviation and 𝑛 is
he sample size.
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Table 9
95% Confidence intervals of the evaluation metrics the selected methods.
Method F1-score (%) Acc

Faultless 𝐾𝑜𝑝𝑡 fault 𝑞 fault 𝐻𝑙 fault (%)

Without defocusing info (79.4, 84.66) (78.39, 84.41) (49.59, 59.68) (57.98, 62.62) (66.28, 70.9)
With defocusing info (96.36, 97.93) (95.65, 97.54) (65.27, 69.64) (65.3, 70.11) (81.03, 83.56)
New ranges (91.28, 93.9) (91.04, 92.62) (88.62, 93.12) (82.57, 85.28) (89.1, 90.88)
𝜌
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𝜌

+
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6. Conclusions and future work

This work has presented three steps for fault detection and diagnosis
in a 50 MW plant of parabolic trough collectors that has a defocusing
strategy. The proposed methods are based on the use of multi-label
classification neural networks and are trained and tested on sunny
days, where the plant variables are more stable than in days with great
clouds.

The results are supported by simulation tests that prove that adding
information about the defocusing state and the number of defocusings
in a time window improve the performance of the ANNs. Likewise, the
results can be improved to around 90% when adjusting the fault ranges
to ones that combine the detectability of the faults and their influence
to the plant output.

Future lines of development include the application of these meth-
ods to other plants, determining the magnitude of the detected faults,
and generalizing the approach to the entire field, including faults out-
side the collector area. Moreover, the possibility of testing the method
in real plants is being considered.
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Appendix. Physical plant model

A.1. Dynamic model of a loop

The methodology described in this work is applied to one collector
loop, since the procedure can be implemented collector by collector,
and is extensible to the entire plant. The dynamic model of a collector
loop is presented below. The system is described with the distributed
parameter model given by Eqs. (A.1) and (A.2), which represent the
energy balances in the fluid and the pipe using spatially distributed
variables [28,29]. It is a well-known model validated by Camacho
et al. [30] that has been used by researchers in many different stud-
ies such as the works by Masero et al. [31], and Gholaminejad and
Khaki-Sedigh [32].

The dimensions of the reflector and receiver are presumed to be
equal along the active part of the loop. For this reason, a uniform
local concentration ratio is assumed. The temperature of the metal is
assumed to be radially constant. To compute the equations, the loop is
discretized into 151 segments of 3.213 m. The integration time is 0.25
8

s.
The equations include three multipliers, each one corresponding to
one type of fault: faults in the optical efficiency 𝛼𝐾𝑜𝑝𝑡

, faults in the flow
rate 𝛼𝑞 and faults in the thermal losses 𝛼𝐻𝑙.

𝜌𝑚𝐶𝑚𝐴𝑚
𝜕𝑇𝑚
𝜕𝑡

= 𝛼𝐾𝑜𝑝𝑡
𝐼𝐾𝑜𝑝𝑡𝑒𝑓𝑓𝑑𝑒𝑓 𝑛𝑜𝐺+

−𝐻𝑙𝐺(𝑇𝑚 − 𝑇𝑎) − 𝐿𝐻𝑡(𝑇𝑚 − 𝑇𝑓 )
(A.1)

𝑓𝐶𝑓𝐴𝑓
𝜕𝑇𝑓
𝜕𝑡

+ 𝛼𝑞𝜌𝑓𝐶𝑓 𝑞
𝜕𝑇𝑓
𝜕𝑥

= 𝐿𝐻𝑡(𝑇𝑚 − 𝑇𝑓 ) (A.2)

The density 𝜌𝑓 and specific heat capacity 𝐶𝑓 of the Therminol VP-1
TF are given by Eqs. (A.3) and (A.4) [33].

𝑓 = −4.810 ⋅ 10−4𝑇 2
𝑓 − 8.110 ⋅ 10−1𝑇𝑓 + 9.537 ⋅ 102 (A.3)

𝐶𝑓 = 1.561 ⋅ 10−8𝑇 2
𝑓 + 1.707 ⋅ 10−1𝑇𝑓 + 1.574 ⋅ 102 (A.4)

The rest of the parameters are as follows. The pipe steel is DIN
1.4404, with density 𝜌𝑚 = 7800 kg/m3 and specific heat capacity
𝐶𝑚 = 550 J/Kg◦ C. The cross-sectional areas are 𝐴𝑚 = 2.1677 ⋅ 10−4
m2 and 𝐴𝑓 = 3.6 ⋅10−3 m2. The collector aperture is 𝐺 = 5.75 m and the
tube internal perimeter is 2.136 ⋅ 10−1 m. The thermal loss coefficient
and the coefficient of convective heat transfer are given by Eqs. (A.5)
and (A.6). These parameters were obtained from the Mojave Beta Solar
Plant. This is an actual solar trough plant which produces up to 140
MW of electrical power [33].

𝐻𝑙 = 1.137 ⋅ 10−8
(

𝑇𝑓 − 𝑇𝑎
)3 − 3.235 ⋅ 10−6

(

𝑇𝑓 − 𝑇𝑎
)2 +

1.444 ⋅ 10−4
(

𝑇𝑓 − 𝑇𝑎
)

+ 8.179 ⋅ 10−2 − 4.796
(

𝑇𝑓 − 𝑇𝑎
) (A.5)

𝑡 =
𝑞

3600
0.818

(−3.243 ⋅ 10−4𝑇 3
𝑓 + 2.442 ⋅ 10−1𝑇 2

𝑓 +

2.320 ⋅ 102𝑇𝑓 + 2.532 ⋅ 104) (A.6)

The geometric efficiency is known as 𝑛𝑜 or 𝑐𝑜𝑠(𝜃). It is a factor
hat depends on the collector dimensions, solar hour, hourly angle,
eclination, latitude and Julian day and is computed by means of the
elation between the radiation beam vector and the normal vector
f the mirror [34]. Given that this plant is north–south aligned, the
eometric efficiency is computed as in Eq. (A.7) [35].

0 =
(

(sin(𝜙) sin(𝛿𝑠) + cos(𝜙) cos(𝛿𝑠) cos(𝜔𝑠))2+

cos2(𝛿𝑠) sin
2(𝜔𝑠)

)

1
2 (A.7)

.2. Concentrated parameter model

To control the plant, a simpler description of the model was used.
he concentrated parameter model – or lumped parameter model
describes the internal energy variation of the HTF and is given

y Eq. (A.8). This model is well known and has been extensively used
n the literature. Examples of this are the works by Sánchez-Amores
t al. [36] and Velarde et al. [37]. In this work, the model was used
or design purposes: to develop a feedforward controller and to select
he inputs to the neural network.

𝑙𝑜𝑜𝑝
𝑑𝑇𝑜𝑢𝑡
𝑑𝑡

= −𝛼𝑞𝑞𝑃𝑐𝑝(𝑇𝑜𝑢𝑡 − 𝑇𝑖𝑛) − 𝛼𝐻𝑙
𝐻𝑙𝐴(𝑇𝑚𝑒𝑎𝑛 − 𝑇𝑎) +

𝛼𝐾𝑜𝑝𝑡
𝑛𝑜𝐾𝑜𝑝𝑡𝑆𝐼 (A.8)

ith the loop thermal capacity given by the expression 𝐶𝑙𝑜𝑜𝑝 =
𝐿 𝜌 𝐶 𝐴 and 𝑃 = 𝜌 𝐶 .
𝑙𝑜𝑜𝑝 𝑚 𝑚 𝑓 𝑐𝑝 𝑚 𝑚
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