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1. Introduction

Most numerical methods using reduced order models based on proper orthogonal decomposition (POD-
ROM methods) apply basis functions based on the snapshots (or values at different times) of the full order
model (FOM). Recently, it has been shown that adding their first divided differences to the snapshots, or
even using only these divided differences to obtain the basis functions, allows for pointwise-in-time error
bounds [1-4]. However, all pointwise-in-time error bounds in the literature are only first order with respect
to time.

Although the first divided differences are only first order approximations to the time derivatives of the
snapshots, we show in this note that for POD-ROM methods based only on them it is possible to obtain
pointwise-in-time second order error bounds if the two step backward differentiation formula (BDF2) is used
to integrate the POD-ROM equations. This result is a theoretical support for the observation that second
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order methods allow for larger step sizes than first order ones without spoiling the error, thus resulting in
more efficient POD-ROM simulations.

2. Model problem and proper orthogonal decomposition

Throughout this note, standard notations for Sobolev spaces and their norms will be used. As a model
problem, we consider the heat equation

Opu(t,x) —vAu(t,x) = f(t,x), (t,x)€ (0,T]x £,
u(t,x) = 0, (t,x) € (0,T] x 012,
u(0,x) = u’(x), x€ 2,

in a bounded domain 2 C R%, d € {2,3}. Let C,, be the constant in the Poincaré inequality
[vllo < CpllVullo, v € H(92). (1)

Let us denote by X ,ll a finite element space based on piece-wise continuous polynomials of degree [ that
satisfies the homogeneous Dirichlet boundary conditions. The semi-discrete Galerkin approximation, the
FOM, consists in finding uy, : [0,T] — X}, such that

(atuha Uh) + V(Vuh7 V'Uh) = (fa Uh)) v Up € X;L

If w € L>®(0,T; H*1(2)) and dyu € L2(0,T; H*+1(R2)), the following error estimation is well-known (see
e.g., [5, Theorem 1.2]):

OISI{%XT (J[(w — ur)(s)|lo + bl (w — ur)(s)]]1) < C(u)h“‘l. @

Fix T > 0 and set At =T/M. Let t" =nAt,n=0,...,M, N = M + 1, and define the space

uh(tl) - uh(to) uh(tQ) - uh(tl) uh(tM) - uh(tjw_l)
U= N e
span {\/ wo, T v T T, e T 7 ,
where wqg is either wy = ux(tY) or wy = U, = Zj]vio up(t?)/(M + 1), and 7 is a time scale to

make the snapshots dimensionally correct. The following analysis only requires 7 > 0. Denote U =
span{y},y7,...,y) }. Let X be either X = L?(£2) or X = H{({2), and denote the correlation matrix by
K = ((kij)) € RNVN with k; ; = (yz,yi)X/N, i,7 =1,...,N, and (-,-)x being the inner product in X.
We denote by A1 > Aa... > Ag > 0 the positive eigenvalues of K and by vi,...,vq € RV the associated
eigenvectors. There are eigenvalues with O(72?) when 7 — oo, and, when 7 — 0, \; — ||w0||§(, while the
other eigenvalues tend to 0. Thus, 7 = O(1) is an appropriate choice in practice. The orthonormal POD
basis functions of U are given by ¢} = (Zj\;l vkyl)/(VNVAL), where v] is the jth component of vy. For
any 1 < r < d denote by U" = span {¢1,¢a,...,¢,}, and denote by P" : X! — U” the X-orthogonal
projection onto U". Then, it holds

N d
1 , y
N E lyh, — Py ll% = E Ak (3)
=1 k=rt1

The stiffness matrix of the POD basis is given by S = ((s;;)) € R™? with s;; = (Vi Ve,)x. If
X = L?(02) the following inequality holds for all v € U, see [6, Lemma 2],

IVullo < VIISl2flvllo- (4)
2
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3. Error analysis

Let us denote by D'v™ = (v —v"~1)/At and by D?v™ = ((3/2)v™ — 20"~ + (1/2)v"~2)/ At, then the
POD-ROM method is defined in the following way: Find u; € U" such that

(Dul,v) +v(Vuy, Vo) = (f*,v), Yve U,

where D=D!forn=1and D=D?for2<n< M.

Lemma 1. Let T >0, let X be a Banach space, 2" = z(t") € X, then

max [|2¥[% < 2[12°[3 +EiHDlz I3 (5)
0<k<M X = XU M — X
872 & 2 M
k2 2 1 . ~_ j
OQ%XM”Z % < 2HZHX+W§:1HD Zn”Xv with Z—E%Z]/(M"‘l)- (6)
n= j=

Proof. The proof of (5) can be found in [1, Lemma 3.3]. For proving (6), we observe that

k M
1
k_ .0 1n  —=_ 0 11, . 1n
z-z+At§Dz7 zZ=2z + 1<AtDz+ —i—AtEDz). (7)

n=1 n=1

Taking norms yields ||2*||x < [|2°||x + At Zﬁil | D'z and [|2°)|x < ||Z||x + At Z,ﬂvjzl |D'z so that

"| "|
X X7

M M 1/2
121 x < |IZllx +24t Y ||D'2"|| < [I2]lx +2T"/(At)'/?2 (Z HDlz”Hi) ,

n=1 n=1

from which we reach (6). O

In the sequel we define C' = 1 if wy = up(t°) and C' = 4 if wy = Uy, and Cx = 1 if X = L?(2) and
Cx = C2fX = H ().

Lemma 2. The following bound holds

_ T2 d
n _ pr,ni2 -
s~ P < (2+4072)cxkz“xk. )

Proof. Taking z = up — P"uy in (5) or (6), depending on the selection of the first element in U, and
applying (3) and N < 2M, we reach (8). O

Lemma 3. Let {z"})_ € U" and {mP}_,, {2}, € X}, satisfying

(D", v) + v(Vz",Vv) = (11',v) + v(V73,Vv), YoveU, (9)

where D = D' forn =1 and D = D? for 2 <n < M. Then, it holds for At <T/4 andn > 1

n N
1212+ 20 Y At V2|2 < et | 17)2002 + 28(At)? |[7d]| + 24T Y |l ls
Jj=1 Jj=2
N
14V AL Vs |5 + 2vAt Y [V lls | - (10)
j=2
3
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Proof. We take v = Atz" in (9). If n = 1 then D = D! and Young’s inequality yields
1 1
S = 1013 + v AtV 3 < Ab(rd, o) + vAu(V 3, Va1, ()

For n > 2 then D = D? and one gets

1 n 1 sn 1 n— 1 sn— n n n n n
ZIE I3+ 113 = 1R = 18R + v AUV < At 27 + v AUV, Va7,

where 2" = 22" — 2"~!. The Cauchy-Schwarz and Young inequality give

At(ry', 2") + v AU VT, V2") < o l2 o +—— Il HoJrAt*HVZ \|O+At V7315 (12)

Multiplying by 4, applying (12), and summing from 2 to n, one gets
12" +20 Y AtV (S < 121G+ 1215 +2 Y =l I5 +2T > Atllrd I + 20 > AtV 5. (13)
j=2 j=2 j=2 =2

Young’s inequality yields |[21||2 < 6212 + 3||2°]|2, so that ||z1[|3 + |22 < 7]|21|2 + 3]|2°||?. Using again

Young’s inequality gives
At(ri, 2Y) + v AV Ty, V') < i 1242 + (A6)? |72 + Atf V212 + At Hv721||0,
so that we obtain from (11)
Ml + 204t 921 lg < 2| llg + 442 |17 [ + 240 | V73]

Together with (13), it follows that for n > 1
" " ; 2 At - ;
12115 + 20 Y AtV 1§ < 17120115 + 28(A6)° |1 |, +2 > Z= 112715 + 2T > Al I3
j=1 j=2 j=2
+ AWV |5+ 20 > At VA3,
j=1
from where (10) follows by applying Gronwall’s Lemma [7, Lemma 5.1] for At <T/4. O

Let X = L?(f2) and let us denote by e = u? — P"u}! and by ! = P"u}! — u}. Arguing as in the proof
of [2, Theorem 4.6], one gets

(Der,v) +v(Vel, Vv) = (Owup — Duy,v) —v(Vnp,Vv), YwveU". (14)

T

Lemma 4. The following bounds hold
At

Hatu,ll — DluiHj < -5 01<nax ||6ttuh|| j=0,1, (15)
n 1/2
[Opupy — D2uj||, < V/5(At)%2 </ |Oeeen (B)] dt) . n=2...,N, j=0,1. (16)
tp—2

Proof. For D = D!, (15) follows easily from

tn tn tn
opuy — Dujf = = (Orun(tn) — Opun(s)) ds = i/ < Aurun(t) dt) ds.

Aty At Jy

n—1

4



B. Garcia-Archilla, V. John and J. Novo Applied Mathematics Letters 146 (2023) 108836

For D = D?, Taylor series expansion with integral reminder reveals that

1 [In 1
Orup — Dujy = AL / (2(75 —tn_1)d — 5(75 - tn—2)2) Opsrup, dt,
tn—2

where z1 = max(0, z), for © € R. Then, a straightforward calculation shows that

n n 2\[ 3/2 tn 2 12
|0y — Duf], < ( = f) (At ( / Ve (B2 dt)

and then (16) follows by noticing that 2 4+ 2v/2 < 5. O

Lemma 5. Let X = L%(02). It holds

VZAtHVnhHO < TSz <2—|—4C ) Z Ak (17)

j=1 k=r+1

Proof. The proof of (17) follows easily by applying (4) and (8). O

Theorem 1 (Bound for X = L*(2)). Let X = L*({2), then it holds for At < T/4

T
max |l — u"[|§ < 60¢* <|€9||3+(At) max || Oyeun(s )\\3+T(At)4/ 1Deesun (5)115 d8>
1<n<M 0<s 0

+3(1 + 14Twvet||S))2) (2 +4C0— ) Z Ak + 3C (u)2R20+D), (18)
k=r+4+1

, (16) (noting that most integrals over time intervals [t;_1,1;]

Proof. From (10) and (14), applying (15)
(17), we obtain

appear twice when summing over n), and

n|2 7112 < 4 0112 4 2
IeF 13 +v 32 AlVell < e (17||er|0+7<4t> Jmax, |9 (5)
=

T
+20T(At)4/ |Opeeun (s)||2ds 4+ 14T S]] <2+4C ) Z Ak>
0

k=r+1

To simplify, we replace the factors 17 and 7 and 20 by their maximum. To finish the proof, apply the
decomposition u]! — u" = (ul) — Ppu}) + (Prup —ull) + (uff —u™), followed by (2) and (8). O

Let X = H}(£2). Arguing as in the proof of [2, Theorem 4.1] yields
(Del,v) +v(Ver, Vo) = (Qyuf — Py (Duy),v), VYveU'.

Applying Lemma 3 with 2" = e}, 7{* = Oyuy; — P.Duj and 72 = 0 we get

n N
el +20 > At|Ved|R < et 1723 +28(A0)% ||} |5 + 24T Y |75 | - (19)
j=1 j=2
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Theorem 2 (Bound for X = HA()). Let X = H}(R2), At < T/4, and C, = 4e* (10 + At/T) + 2 + 4C.
Then it holds

T
max [l — "3 < 6oc* <||e9|3+<At> o (9)F +2040° [ 0usun 0} dt)

+30102< ) Z Ak 4 3C2 (w) 2D, (20)
j=r+1

Proof. The last two terms on the right-hand side of (19) are bounded by the triangle inequality
2 2 : 2
17115 = 19eus, — PT(Dup)|§ < 2[|9euf; — (Dup) g+ 2 |(I = PT) (Dup)[3 - (21)

For n =1, the first term is bounded by (15) and the second one by (1) and (3), giving

9 (At)4 4T d
(a2 || < 5 ol [[Oerun(s) 15 + TﬁchtkglAk'

For n > 2, the first term of (21) is estimated by (16). To bound the other term observe that

3 1
DQUZ _ 7Dlun o 7Dlun71’
2 2

and, consequently,

2|1~ Py (D)2 < 5 T = PPy (D ag) 3+ 5 1 — P (DHap) |

ly < o+

so that, by using (1) and (3), one obtains

QTZ At H I Pr) (D2 )HO < 10TZAt H I Pr) (Dl )HO < 2002 ( ) Z Ae.

j=2 Jj=1 j=r+1

Collecting the estimates for n = 1 and n > 2 leads to

n||2 JN2 < ot [ 1701012 & 14 4 2
le 15 + 20 At|Vel|§ < et | 17]|elF + 14(A¢) omax || Geun(s)lo

j=1

T At T2
+40(AD)" / ||atttuh<>||odt+4(1o+) Y
0

] =r+1

Now, the proof is finished in the same way as the proof of Theorem 1. [

Second order error bounds in time of form (18) and (20) can be derived if the finite differences in U are
replaced with the temporal derivatives {0;u}! M, with only slight modifications in the analysis. If the set
of snapshots is {u? }} ), then a second order estimate for Zj\il At||u — u™||2 can be shown along the lines
of the presented analysis but neither pointwise estimates nor optimal estimates in the H' norm seem to be
possible with the present approach, for the reasons explained in [3]. If for a problem an analysis for a first
order temporal discretization is known, like for the incompressible Navier—Stokes equations in [2], it can be

extended to BDF2 using the techniques of this note to handle the temporal discretization.

Data availability

No data was used for the research described in the article.
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