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Chiral spin channels in curved graphene pn junctions
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We show that the chiral modes in circular graphene pn junctions provide an advantage for spin manipulation
via spin-orbit coupling compared to semiconductor platforms. We derive the effective Hamiltonian for the spin
dynamics of the junction’s zero modes and calculate their quantum phases. We find a sweet spot in parameter
space where the spin is fully in-plane and radially polarized for a given junction polarity. This represents
a shortcut to singular spin configurations that would otherwise require spin-orbit coupling strengths beyond
experimental reach.
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I. INTRODUCTION

Graphene has attracted exceptional interest as a quantum
material with Dirac cones at the Fermi energy and other
unique electronic properties [1–3]. One appealing feature is
the possibility of tuning electrostatically the charge carriers’
polarity in pn junctions of linear [4–9] and circular shape
[10–18]. The latter have been created by different means,
such as the tip potential of a scanning tunneling microscope
[10,14,16,18] or by placing impurities in the substrate [11,13].
In both approaches, experiments have shown that it is possi-
ble to single out and steer individual electronic eigenstates.
Importantly, pn junctions are essential building blocks for
graphene-based electron-optical elements and edge-state in-
terferometers [14,19–21] also exploiting the so-called snake
states [9,22,23].

The electronic spin degree of freedom is usually ne-
glected in the study of graphene pn junctions because of the
weak atomic spin-orbit coupling (SOC) of carbon [24–27].
However, theoretical predictions followed by experimental
realizations proved that strong SOCs can be induced, e.g.,
by proximity with transition metal dichalcogenide (TMD)
substrates [28–37]. These advances open the exciting possi-
bility of including the spin functionality in graphene-based
electron optics, with the further benefit that the versatility
of pn junctions allows for the design of curved waveguides
for spin and charge carriers. This is particularly interesting
in view of the intense current theoretical and experimental
research activity on the spin dynamics triggered by SOC in
curved geometries [38–41]. The effects of SOC in graphene
have been also investigated in other geometries [42–45].
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In this article, we investigate circular pn junctions in the
presence of (i) a perpendicular magnetic field, coupled to the
electronic charge (developing Landau levels in the quantum
Hall regime) and spin (through Zeeman coupling), and (ii)
proximity-induced SOCs of different types. We provide the
exact solution of graphene’s Dirac equation for this system
and formulate an effective one-dimensional (1D) model for
the spin and angular dynamics of the states localized at the
pn interface. This resembles the model for semiconductor
rings subject to Rashba SOC (RSOC) [46], with a meaning-
ful difference: the chiral nature of the propagating modes.
We identify a remarkable sweet spot in the parameter space,
where the spin eigenstates align locally with the effective
magnetic field produced by the SOC. This point coincides
with the Rabi condition for electronic spin resonance in a
magnetic field and represents a shortcut to adiabatic spin
dynamics unavailable in its semiconductor equivalent. We
confirm this result within the original full model and propose a
setup to identify this sweet spot via spin interferometry, open-
ing a promising route to spin state manipulation in graphene.

The article is organized in the following way. In Sec. II,
we introduce the model system. In Sec. III, we present a
low-energy model for the system under investigation, where
we show the presence of the sweet spot in the parameter
space. In Sec. IV, we provide a proposal for an interferometric
experiment to detect the presence of this sweet spot. We dis-
cuss in Sec. V the interpretation of the experimental proposal
and its range of validity. Finally, in Sec. VI, we provide our
conclusions. All the technical details are presented in the
Supplemental Material (SM) [47].

II. MODEL

The low-energy model for graphene with proximity-
induced SOCs reads

H = H0 + Hspin, (1)
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FIG. 1. (a) Sketch of the system, with p and n regions drawn in
yellow and blue. (b) Energy spectrum versus angular momentum j
for V0 = 0.51, ξ0 = 5.1, λR = 0.5, and λZ = λKM = 0. (c) Same as
in (b) but for λZ = 0.1. In (b) and (c), the red dots highlight the zeroth
Landau levels.

where H0 is the Dirac Hamiltonian in a perpendicular mag-
netic field

H0 = vF(τσx�x + σy�y) + V, (2)

with Fermi velocity vF and kinetic momentum � = −ih̄∇ +
e
c A, with A = B

2 (−y, x) in the symmetric gauge. Here, τ = ±1
denotes the valley index and σ = (σx, σy) are Pauli matrices in
sublattice space [3]. The potential

V (r) = V0 sgn(R − r) (3)

defines a circular pn junction of radius R, with a p-doped
region for r < R (the “dot”) and an n-doped region for r > R.
The system is sketched in Fig. 1(a). The spin-dependent part
Hspin = HZ + HR + HKM + HVZ includes both Zeeman and
SOCs terms [28,29,48]:

HZ = λZsz, (4a)

HR = λR

2
(τσxsy − σysx ), (4b)

HKM = λKMτσzsz, (4c)

HVZ = λVZτ sz. (4d)

Here λZ = gsμB

2 B and s = (sx, sy) denotes the Pauli matrices
in spin space. The terms HR, HKM, and HVZ are the Rashba,
Kane-Mele, and valley-Zeeman SOC, respectively [24,26,49].
Precise estimates for the SOCs depend on the specific het-
erostructure, e.g., the relative orientation between graphene
and substrate [35,36]. The RSOC and the VZSOC range from
few hundredths of meV up to few meV, while the KMSOC
is typically much smaller [35,37]. We are mainly concerned
with the effects of the Zeeman and RSOC terms. The valley-
Zeeman term can be included by means of a valley-dependent
shift of the Zeeman coupling and will be considered sepa-

rately in the Discussion section below. For λVZ = 0, the valley
degree of freedom just leads to a degeneracy factor, so we
can focus on a single valley and set τ = +1. Throughout
this paper, we measure lengths in units of magnetic length
�B = √

h̄c/eB = 25.65 nm/
√

B[T] and energies in units of
cyclotron energy h̄ωc = h̄vF/�B ≈ 26 meV

√
B[T] and assume

a typical field B ∼ 1 T [37].
In this model, the wave function is a four-component spinor

	T = (	A↑, 	B↑, 	A↓, 	B↓). The Hamiltonian H commutes
with the total angular momentum J = Lz + 1

2 (σz + sz ), with
Lz = −i∂θ the orbital angular momentum; hence its eigen-
states 	 j (r), expressed in terms of confluent hypergeometric
functions [47,50–52], can be labeled by an integer j ∈ Z. The
spectrum is illustrated in Figs. 1(b) and 1(c). In particular, we
find two “zero-energy” Landau levels (LLs), the “top” (T) and
“bottom” (B) zero modes, highlighted in red in the figures. In
the absence of SOCs, they have zero energy for V0 = 0, but
develop a dispersion in j for finite V0 [22,47]. Their energy
at j = 0 and at j � −1 approaches the value of the potential
V (r) inside and outside the dot, respectively; see Fig. 1(b). In
the presence of RSOC, the two modes acquire a spin splitting,
similar to the case of a two-dimensional electron gas (2DEG)
[27,53]. A finite Zeeman coupling produces an additional
vertical splitting—see Fig. 1(c). We present in the SM [47] the
exact solution of the model (1), including a detailed analysis
of the spin splitting as a function of λR.

III. EFFECTIVE 1D MODEL

In order to describe the low-energy physics around the
Fermi energy (set at the charge neutrality point, EF = 0), we
introduce an effective 1D Hamiltonian for the zero modes lo-
calized at the pn interface. We follow an analogous derivation
for a semiconductor ring with RSOC [54]; see the SM [47] for
details. We first perform a unitary transformation, H → H̃ =
UHU −1, with U = ei σz

2 (θ+ π
2 )ei sz

2 θ . In this rotating frame, we
factorize the wave function as 	̃ = ψ̃0(r)χ̃ (θ ), where ψ̃0(r)
is the sublattice spinor for the (spin degenerate) zero mode
of the radial part of H̃0, and χ̃ (θ ) is a spinor in spin space,
containing the angular dependence. The projection of H̃ onto
the zero mode ψ̃0(r) leads to the effective 1D Hamiltonian
controlling the dynamics of χ̃ (θ ):

H̃eff = ω0(Lz + �) +
(

ωZ − ω0

2

)
sz − ωRsx. (5)

The frequencies in Eq. (5) are defined by

ω0 =
〈σx

r

〉
0
, (6a)

ωZ = λZ + λKM〈σz〉0, (6b)

ωR = λR

2
〈σx〉0, (6c)

where 〈. . . 〉0 denotes the (radial) expectation value in the
state ψ̃0(r). (We note that σx is the azimuthal component of
the velocity operator in the rotating frame.) The parameter
� ≈ ξ0 = BπR2/�0 denotes approximately the magnetic flux
through the dot in units of the flux quantum �0. Since H̃spin is
treated perturbatively, this projection is justified as long as h̄ωc

is much larger than the Zeeman and SOCs. The Hamiltonian
(5) describes a 1D spinful chiral mode propagating along
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the curved pn interface, with angular velocity controlled by
the gate voltage difference across the junction. Importantly,
the polarity of the junction determines the signs of ω0 and
ωR [55]. For V0 > 0 both are positive. Inverting the polarity,
V0 → −V0, reverses the propagation direction, changing both
signs. This feature has crucial implications for the experimen-
tal setup discussed below.

Diagonalizing H̃eff, we obtain the eigenvalues

Em,± = ω0(m + �) ±
√(

ωZ − ω0

2

)2

+ ω2
R, (7)

where m ∈ Z under periodic boundary conditions. This for-
mula predicts a linear dependence of the energy on m, which
we observe in the exact solution close to zero energy, and
provides an approximate analytical expression for the slope
of the dispersion. The corresponding eigenstates are

χ̃m,+ = eimθ

√
2π

(
cos γ

2

− sin γ

2

)
, (8a)

χm,− = eimθ

√
2π

(
sin γ

2

cos γ

2

)
, (8b)

where

eiγ = ωZ − ω0
2 + iωR√(

ωZ − ω0
2

)2 + ω2
R

. (9)

We find a sweet spot for ωZ = ω0
2 (γ = π

2 ), where the spin
eigenstates (8) point along the radial direction in the xy plane
for any value of ωR. This situation is remarkable. It recalls
the Rabi condition for spin resonance in the rotating wave
approximation (RWA), with the difference that there is no
Bloch-Siegert shift [56] as a function of the driving amplitude
(represented by ωR): here, the RWA is exact. Notice that an
inversion of the junction polarity, changing the chirality of
the propagating spin channels (ω0 → −ω0), would take the
system off resonance. This is in sharp contrast to the case
of semiconductor-based Rashba rings [46,57], where counter-
propagating channels coexist, and a full in-plane alignment of
the spinors is only achieved in the adiabatic limit of very large
RSOC (ωR � ω0) [46].

The resonance condition, exact in the projected model (5),
holds with excellent accuracy also in the full model (1). This
is shown in Fig. 2, where for simplicity we set λKM = 0.
Here, we define the angular frequency ω0 as the expectation
value 〈σx/r〉λR=0 on the j state closest to zero energy. From
Fig. 2(a), we can see that ω0 decreases as a function of the ra-
dius R and presents a staircase behavior due to the discreteness
of j. In Figs. 2(b)–2(d), we show the expectation values of the
perpendicular and radial components of the spin, sz and sr , in
the top and bottom j states closest to zero energy for different
sets of parameters. We observe that, at the value of ξ0 where
the resonance condition ωZ = ω0

2 is realized, 〈sz〉 is almost
zero, whereas 〈sr〉 is close to 1. The results in Fig. 2 show an
excellent agreement between the prediction of the projected
model and the full solution. In particular, they confirm that the
resonance condition is independent of the RSOC. The small
discrepancies are due to the coupling of the zero modes to the
higher LLs via the RSOC, neglected in the projected model.

(a)

(b)

(c)

(d)

FIG. 2. Sweet spot identification in the full model. (a) The angu-
lar frequency ω0 as a function of ξ0 = R2/2�2

B, at a fixed magnetic
field. The green and red horizontal lines describe two representative
values of 2ωZ and the vertical dashed lines the corresponding values
of ξ0 at which the resonance condition 2ωZ = ω0 is realized. (b)–
(d) The exact expectation values of the radial and perpendicular spin
components in the top and bottom modes as a function of ξ0, for λZ =
0.047 and λR = 0.2 in (b) and for λZ = 0.033 and λR = 0.2, 0.3 in
(c) and (d), respectively. In (b)–(d), the top curve shows 〈sr〉B, the
bottom one 〈sr〉T, and the two central ones 〈sz〉T and 〈sz〉B. In all the
panels, V0 = 0.51.

We present additional results, including the effect of λKM, in
the SM [47].

IV. EXPERIMENTAL PROPOSAL

We propose two setups based on linear and circular pn
junctions to implement interferometric circuits for spin car-
riers. Thanks to the chiral nature of the propagating channels,
we find that, depending on the junction polarity, the inter-
ferometers respond differently to the Zeeman coupling ωZ

(assuming λKM = 0 for simplicity), making possible a unique
geometric characterization of the propagating spin states.

Figure 3 depicts the circuits’ architecture built upon n
[Fig. 3(a)] and p [Fig. 3(b)] dots. Contact 1 at voltage V is
the carrier source, while the grounded contacts 2 and 3 act
as drains. The grounded contact 4 contributes with an empty
channel. Importantly, either setup can be turned into the other
by simply inverting the pn polarity, relabeling the contacts,
and swapping voltages, meaning that a single sample could
realize both interferometers in the laboratory.

Carriers injected from contact 1 propagate along a lin-
ear pn junction. Traveling toward contact 2, they can
enter the circular pn junction with probability 0 < τ1 < 1,
from which they can escape at the opposite end towards
contact 3 with probability 0 < τ2 < 1. The tunnel barriers τ1

and τ2 operate as beam splitters (BSs) for the chiral modes.
Their spin-dependent probability amplitudes are determined
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FIG. 3. (a) Circuit’s architecture with an n-doped dot. (b) The
same as in (a), but with opposite junctions’ polarity. (c), (d) Differ-
ential conductance G21 for the circuits in (a) and (b), respectively,
as a function of the dimensionless Rashba and Zeeman coupling
strengths. (e) Cut of the differential conductance for the cases in
(c) and (d) with QZ = 0 (blue line) and for the case in (d) with
QZ = 1/2 (red dashed line).

by projecting the propagating spin modes on the local basis
[47].

We calculate the quantum conductance G21 from con-
tact 1 to contact 2 for the zero modes following the
Landauer-Büttiker approach [58,59]. (By unitarity, G21 +
G31 = 2e2/h, since we are considering a single valley.) Ob-
taining the quantum transmission requires the combination of
the BS scattering matrices [59], taking into account the spin-
dependent phases mπ gathered by the carriers propagating
between the tunnel barriers along the circular junction [47].
These phases are obtained by setting Em,s = 0 in Eq. (7),
where m is not necessarily an integer for open pn junctions,
since periodic boundary conditions do not apply in the pres-
ence of contact leads. Figures 3(c)–3(e) summarize our main
results. We plot the conductance G21 for the two opposite
junction polarities, as a function of dimensionless Rashba
QR = ωR/ω0 and Zeeman QZ = ωZ/ω0 coupling strengths.
Without loss of generality, we set τ1 = τ2 = 1/2 (50% BSs)
and � ∈ N. Other settings can modify the relative amplitudes
and phases of the patterns, but their general composition re-
mains the same. We observe that the patterns in Figs. 3(c) and
3(d) differ by a relative �QZ = 1 shift along the Zeeman axis.
This shift reveals significant information on the spin-state
geometry of propagating channels, as explained below.

In Fig. 3(e) we plot G21 for QZ = 0 (solid line) and QZ =
1/2 (dashed line). For QZ = 0, the result holds for both n
and p polarities. Here we find quasiperiodic oscillations as a
function of QR, which tend to be periodic for QR � 1. This
limit corresponds to the regime of adiabatic spin dynamics,
where the local spin quantization axis is expected to point
along the radial Rashba field with γ → π/2 in Eq. (8). More-
over, after a round trip around the dot, the spin carriers collect
a geometric phase ϕg = −�/2, with � = 2π (1 − cos γ ) the
solid angle subtended by the spin states on the Bloch sphere.
In the adiabatic limit, one finds ϕg → −π . Similar results
have been reported for semiconductor Rashba rings [46,57].

The two polarities respond very differently to QZ. For the
n dot [see Eq. (9) and Fig. 3(c)], we find that QZ acts to the
detriment of in-plane spinor polarization, which still requires
large RSOC intensities QR. On the contrary, for the p dot [see
Eq. (9) and Figs. 3(d) and 3(e)], at the sweet spot QZ = 1/2 we
find perfectly periodic oscillations corresponding to fully in-
plane spin states (γ = π/2) regardless of the RSOC intensity,
picking up a geometric phase ϕg = −π .

V. DISCUSSION

All relevant features of Fig. 3(d) are captured by a low-
order semiclassical expansion of the conductance in terms of
Feynman paths corresponding to single windings around the
p dot [47]. In this approximation, we find

G21 ≈ 1 + cos φAB cos φS, (10)

with

φAB = 2π�, (11a)

φS = 2π

√(
QZ − 1

2

)2

+ Q2
R, (11b)

where φAB and φS are independent phase contributions origi-
nating in the orbital and spin degrees of freedom, respectively.
Equation (10) reproduces well the pattern of Fig. 3(d) show-
ing circular wave fronts centered at QR = 0 and QZ = 1/2.
For QZ = 0, we find from Eq. (10) that φS = 2πQR sin γ −
π cos γ = 2πQR sin γ − (π + ϕg). This phase reduces to
φS ≈ 2πQR in the adiabatic limit QR � 1, leading to periodic
oscillations of G21 as a function of QR. Thus a strong RSOC
drives the spin eigenstates to be in-plane, such that γ → π/2
and ϕg → −π . The physical realization of this formal limit is
difficult in the laboratory due to the required field intensities.
Alternatively, we find here a shortcut by setting QZ = 1/2. In
this sweet spot, the spin phase contribution reduces exactly
to φS = 2πQR even for weak RSOC fields, which assures
in-plane spin eigenstates that introduce a π phase shift of
purely geometric origin.

We emphasize that this precise characterization of the
propagating spin channels boils down to their chiral nature,
in contrast to the case of semiconductor Rashba rings, where
counterpropagating modes coexist [46,57,60]. The chirality
also protects the sweet spot from the effect of random im-
purities. Moreover, we expect that small deviations from a
perfectly circular shape breaking the rotational symmetry
might induce small oscillations of the out-of-plane component
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of the spin and thus blur the sweet spot, but will not qualita-
tively alter the physics discussed here [61].

Finally, we briefly address the effect of the VZSOC. In
the effective model (5), it leads to a valley-dependent shift
ωZ → ωZ + τλVZ. Hence, at ωZ = ω0/2, the spin states (8)
will have a residual out-of-plane component, opposite at the
two valleys. The valley-resolved conductances will be peri-
odic functions of QR only for λR � λVZ [47]; see Eqs. (10)
and (11b). The selection of substrates inducing the weakest
possible VZSOC [35,36] is thus essential to observing the
effects described in this work.

VI. CONCLUSIONS

We have shown that the chiral spin channels in curved
graphene pn junctions with proximitized SOCs can be pre-
cisely characterized and controlled. We uncovered a sweet
spot in the parameter space enabling an efficient manipulation
of spin-state configurations without requiring a strong RSOC,
which is difficult to achieve experimentally. This opens up
new possibilities for exploring quantum-state geometry and

advancing spintronics in graphene. Curved pn junctions thus
offer a versatile platform for investigating spin dynamics
phenomena induced by SOCs, providing an alternative to
traditional semiconductor systems.
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