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ABSTRACT 
Navigation systems implemented in mobile devices allow users to search for the shortest routes between 
pairs of points. Many of the existing commercial products assume in a simplified way that the travel 
time to cross each arc of a road network is fixed, once a starting time has been established. However, 
the real travel time along a road section within cities depends on many factors that are related to traffic 
congestion, weather conditions, possible incidents, etc., and consequently, it depends on the time. As 
can easily be shown, determining the shortest itineraries in a network whose arcs are time-dependent 
can result in a diversity of optimal routes for a same origin–destination pair based on different departure 
times. Assuming the availability of the estimated data of the time required to travel along each section 
of the street network, once the departure time has been previously set, we propose in this work an 
efficient algorithm for obtaining faster routes on time-dependent arcs, in such a way that the sum of 
driving times is minimized, which in parallel allows improving fuel consumption and reducing 
associated polluting emissions. The possibility of introducing waiting periods in the nodes to optimize 
the total time spent on the trip has also been considered in the design of the proposed procedure. An 
experimental evaluation is carried out to show the effectiveness of the provided algorithm. 
Keywords: route planning, guided transport systems, mobility, transport networks, Dijkstra’s 
algorithm. 

1  INTRODUCTION 
From a theoretical point of view, the problem of finding a shortest path from one node to 
another in a graph with fixed lengths (or fixed travel times) on its arcs is satisfactorily solved. 
In route planning problems for a single objective, Dijkstra’s algorithm (Dijkstra [1]) is 
preferably used to obtain the solution to the problem of determining the shortest path between 
two nodes of a connected graph. Its algorithmic complexity is O (m + n log n), where n is 
the number of nodes and m the number of arcs of the underlying graph (Cormen et al. [2]). 
     However, this algorithm in its simplest form can be impractical in many real application 
scenarios. One of such situations arises when the travel time between arcs is depending on 
the traffic intensity existing between their respective starting and ending nodes at certain 
period, which is known as time-dependent arcs. This circumstance can occur both in the 
determination of optimal public transport routes (bus, metro or dense networks of commuter 
train) and in private transport routes (own motorized vehicle, bicycle or similar). Therefore, 
it arouses great practical interest.  
     As illustration, Fig. 1 shows the evolution of the average intensity in the city of Seville 
(Spain) throughout the current day (red) compared to the evolution of yesterday (blue), 
expressed in number of vehicles per lane every 5 minutes. This figure also shows the 
occupancy levels (green), both today and yesterday, which empirically shows the existence 
of a correlation between both variables and explains the daily evolution of the circulating 
difficulty. 
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Figure 1:   Evolution of the average intensity in the city of Seville along a day. (Source: 
http://trafico.sevilla.org/.) 

     In general, routing is the process of selecting the “best” paths in a graph G = (V, A), where 
V is a set of nodes and A is a set of directed arcs. Most studies on routing problems have 
been carried out under the assumption that all the information needed to formulate such 
routing problems is time invariant (Toth and Vigo [3]). In many practical applications, this 
assumption is generally not satisfied since travel times can vary exogenously due to traffic 
congestion, weather conditions, etc., or endogenously, depending on the decisions freely 
adopted by the driver, like modifying the speed of the vehicle at its discretion (for example, 
to adjust fuel consumption) or altering the travel time by including rest periods in driving. A 
classification of time-dependent routing problems with respect to various criteria can be seen 
in Pillac et al. [4]. 
     Planning routes for vehicles in general on geographical maps, at a city, region or country 
scale, is a problem of great practical interest (Preuss and Syrbe [5]). The route calculation 
offered by Google Maps allows users to know an estimated time of arrival at the selected 
destination along the itinerary. We can assume that this calculation is made using the 
maximum allowed speed (1) and the recommended speed in each section (2) as input data. 
These values, in turn, could be averaged considering the intensity of traffic in real time (3), 
as well as historical data recorded by other users on previous occasions, if available (4). For 
a central server that had to respond to a potentially very large number of online requests from 
clients through a web interface, it would be desirable that the maximum response time of the 
system, providing a good solution, be limited in a way reasonable (Delling and Wagner [6]). 
In any case, the procedure followed to obtain these predictions offered by commercial web 
applications is subject to business confidentiality. 
     Currently, there are multiple operators that provide information on traffic conditions based 
on the observed speed of movement of vehicles along the sections. However, this information 
is not complete since it does not cover all circulating vehicles, either because there is a “non-
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connected” portion in the fleet of vehicles, or because the sources of this information do not 
cover all browsers, telephone operators or types of vehicles. For example, Google-Traffic 
and InfoTransit are two real-time traffic information servers that operate in Spain based on 
data from telephone operators, specific vehicle fleets (insurers, carriers, automobile clubs, 
etc.), fixed traffic sensors, fixed traffic and GPS navigation systems. Eglese et al. [7] examine 
the problems related to the construction of a database of time-dependent travel times for an 
application developed in England. 
     Time-dependent routing problems have been treated as a variant of the vehicle routing 
problem (VRP) for a multiplicity of contexts. Among them (see Gendreau et al. [8]): 

 Route planning aircraft, ships or submarines in two-dimensional or three-dimensional 
space, where decisions include not only the determination of the itinerary, but also the 
adjustment of power. The time dependency factor can be caused by air currents, ocean 
swell, or underwater flow. The objective to be minimized is usually the journey time, 
fuel consumption (or, equivalently, CO2 emissions) or a combination of them (Perakis 
and Papadakis [9] and Norstad et al. [10]). 

 Other causes that may imply a dependency on the travel time for the determination of 
the length of an optimal route would be the need to refuel mobile units (Helvig et al. 
[11]), or the necessary interception of the trajectories of other vehicles (Jiang et al. [12]).  

 Finally, the presence of moving obstacles could also be a determining factor when 
planning the robot movement for such contexts (Sutner and Maass [13], Latombe [14] 
and Fujimura [15]). 

     We will assume in this work that the objective that the user always pursues is the 
achievement of a minimum travel time, which means reaching the destination in the shortest 
possible time once the starting time for the trip has been established at the origin point. This 
specific perspective is not the only one that can arouse interest in the specialized literature 
on transport. For example, public transport users may show different personal preferences 
when establishing their own concept of optimality (user point of view), which would imply 
an adaptation of the initial algorithms to accommodate the formulation of other types of 
optimality. advantageous situations or penalties. Among these adaptations is the 
consideration of the use of algorithms that produce K-shortest paths (known as KSP problem) 
to obtain a reasonable number (K) of shortest feasible paths and rank them based on the 
incorporation of user preferences. 
     The preferences of public transport users are usually several. As an example: 

1. Achieve a minimum travel time, which means reaching the destination in the shortest 
possible time from the departure time established as the start from the point of origin. 

2. Minimize the number of transfers: some travellers prefer to travel in a single vehicle (bus 
or train), rather than endure the inconvenience of transfers, even though the overall 
journey time may be longer. 

3. Achieving a minimum travel distance route: A traveller loaded with heavy or 
uncomfortable objects might prefer to walk to the nearest bus stop, as a first step, instead 
of traveling a greater distance to another bus stop, although this second option would 
mean a faster route in time. 

     The calculation of the fastest routes between points in very extensive road networks, 
whose arcs depend on time, must be carried out through the participation of centralized 
information services based on an accessible web, where both congestion patterns and traffic 
data updated in real time are managed. 
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2  MODELLING THE PROBLEM 
Following on, the notation previously used in the work of Dreyfus [16] is now described, 
where the travel times required to connect a pair of adjacent nodes may be dependent on the 
time at which the effective travel through the arc begins. 
     Let the graph 𝐺  𝑉, 𝐴  where 𝑉 is a finite set of 𝑛 nodes or vertices, and 𝐴 is a finite 
set of 𝑚 arcs that connect the nodes. Each arc can be denoted as the ordered pair 𝑖, 𝑗  when 
it corresponds to the pair of vertices 𝑖 and 𝑗. Let 𝑂 (origin or initial node) and 𝐷 (destination 
or terminal vertex) be two given nodes of 𝐺; a path 𝑝 from 𝑂 to 𝐷 in 𝐺 is defined as the 
alternating sequence of vertices and arcs: 𝑝 𝑂 𝑣 , 𝑎 , 𝑣 , 𝑎 , 𝑣 , … , 𝑎 , 𝑣 𝐷 , such 
that: 

 𝑎 ∈ 𝐴, ∀𝑖 1, … 𝑘; 𝑣 ∈ 𝑉, ∀𝑖 1, … 𝑘 1. 
 𝑎 𝑣 , 𝑣 ∈ 𝐴, ∀𝑖 1, … 𝑘. 
 𝑂, 𝐷 ∈ 𝑉\ 𝑣 , 𝑣 , … , 𝑣 . 

     The cost associated with arc 𝑖, 𝑗  is defined as a positive real number 𝑐 . In this way, the 
cost of a path 𝑝 will be equal to the accumulated sum of the costs of the arcs that compose it: 

 𝑐 𝑝 ∑ 𝑐, ∈ . (1) 

     Let 𝑃  be the set of all paths from 𝑖 to 𝑗 in the graph 𝐺. Following the notation of Dreyfus 
[16], the problem of finding the fastest path between points 𝑂 and 𝐷 where the travel time 
between point 𝑖 and point 𝑗 depends on the starting time of point 𝑗 can be formulated as 
follows. Let us denote by 𝑓 𝑡  the minimum invested travel time until reaching destination 
𝐷 starting from point 𝑖 at time 𝑡. Moreover, let 𝑑 𝑡  be a positive value that represents the 
travel time invested when travelling arc 𝑖, 𝑗  starting from point 𝑖 at time 𝑡. 
     The recurring scheme: 

 
𝑓  𝑡 min

  
   𝑑  𝑡   𝑓  𝑡  𝑑  𝑡

𝑓  𝑡   0,
 (2) 

allows us to design an iterative algorithm that, based on the procedure devised by Dijkstra 
[1], provides the fastest route, in this context of travel times in time-dependent arcs, to obtain 
𝑓  𝑡 .  
     Originally, Dijkstra’s algorithm is designed to solve the problem of obtaining optimal 
paths in networks with not time-dependent arcs. An encoding of this algorithm is presented 
below.  

Dijkstra’s algorithm (not time-dependent arcs) 
 

1. Read graph G= (V, A), adjacency matrix Ady and matrix D of displacement costs 
between pairs of adjacent points. 

2. Build vector f that will store the minimum displacement costs to the origin from each 
node of G (initially, only the nodes adjacent to the origin will not have infinite value).  

3. Build vector p that stores the successor nodes to each node of G in the optimal path 
(initially, only nodes adjacent to the origin can be determined). 

4. Initialize set S of nodes explored by including only the origin point. Initialize set 
LIST=G\S.  

5. While LIST is not empty:  
5.1 Identify index j* 

  LISTjjfArgj  :)(min:*
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5.2 Remove index j* from LIST 

5.3 For each successor k of j* included in LIST: 

If 
(0)d + f(j*) > f(k) *kj then  

a. Update 
(0)d + f(j*) : f(k) k*j

  

b. Update *j : p(k)   
6. End. 

     The following two figures graphically reproduce the same example used in Wen et al. [17] 
to illustrate the operation of Dijkstra’s algorithm and its limitations when the network is time 
dependent. In Fig. 2 a static situation is considered, where the weights of the arcs do not vary 
with time. 
 

 

Figure 2:  Quickest path between nodes 1 and 5 using Dijkstra’s algorithm. 

     As illustrated in Fig. 2, the solution to the problem is the path 1-2-3-4-5, and the time 
spent is 7.4 (2.5 + 1.2 + 2.5 + 1.2) minutes, as can be verified by applying the step-by-step 
algorithm. Let now assume that arc (3,5) is time-dependent in the following way: 

1. When the trip along arc (3,5) is started at node 3 in a time t included in the interval [0,4], 
the total time needed to traverse arc (3,5) is 4.5 minutes, as in the previous static case. 

2. However, when the trip through the arc (3,5) starts after time 4, then the travel time 
needed to traverse arc (3,5) decreases to the value of 1.3 minutes. In that case, as shown 
in Fig. 3, the fastest path between nodes 1 and 5 would be the sequence 1-3-5, with the 
time invested corresponding to 5.8 (4.5 + 1.3) minutes. 

     As found in Wen et al. [17], Dijkstra’s algorithm, coded as described above, cannot 
identify the shortest paths for this context of networks with arcs whose lengths may depend 
on time. Dijkstra’s algorithm is also not initially designed to manage other user strategies, 
such as setting wait times on some nodes to benefit from shorter travel times after waiting. 
     Among the descriptive data of this new network context is the identification of those arcs 
𝑖, 𝑗  whose travel time 𝑑 𝑡  changes according to the exit time of node 𝑖. We will assume 

that the form of variation of 𝑑 𝑡  corresponds to a step function that changes its value at 
certain instants (increasing or decreasing) and remains at that level until the next milestone. 
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Figure 3:   Quickest path between nodes 1 and 5 with time-dependent arcs and no waiting 
at nodes. 

     In order to adapt the algorithm of Dijkstra to solve the problem of determining shortest 
paths in networks with arc lengths that depend on time when starting the trip along the arc, 
we will make a series of modifications to the original network.  
     First, we will immerse the planar network in three-dimensional space by raising an axis 
orthogonal to the base plane for each of the nodes of the network. These axes will indicate 
the temporal progress at their respective node. For each arc that, starting from node 𝑖 (at 
height 0), changes the value of 𝑑 𝑡  in time 𝑡 , such node 𝑖 will have to be replicated along 
its axis, exactly at height 𝑡 . Additionally,  

 The distance between nodes 𝑖 (level 0) and 𝑖 (level 𝑡 ) should be interpreted as waiting 
time, since geographically there is no change in position. 

 The arc 𝑖, 𝑗  starting at level 0 indicates that no wait has been carried out at node 𝑖 by 
the user before continuing the journey to node 𝑗. On the other hand, the arc 𝑖, 𝑗  that 
starts at level 𝑡  indicates that the user has made a wait in node 𝑖 whose duration is 𝑡 . 

 According to the previous assertion, the arc 𝑖, 𝑗  that starts at level 0 will be weighted 
with the value 𝑑 0 , while the arc 𝑖, 𝑗  that starts at level 𝑡  will have the value 𝑑 𝑡  
as the travel cost. 

     Furthermore, among the descriptive data of this new network context is the functional 
characterization of those arcs 𝑖, 𝑗  whose travel time 𝑑 𝑡  changes according to the exit 
time of node 𝑖. We will assume that the form of variation of 𝑑 𝑡  corresponds to that of a 
step function that changes its value at certain instants (increasing or decreasing) and staying 
at that level until the next milestone.  
     In Fig. 4 has graphically been represented an example of a step function that indicates that 
the time required to traverse the arc 𝑖, 𝑗  is 5, if the start of the trip takes place in time interval 
[0, 7]; 9, if the start of the trip takes place in time [7, 10]; and so, on until the daily interval 
[0, 24] is completed. 
     Let us note that the number of times it would be necessary to replicate a node 𝑖 along its 
vertical axis of waiting time will be a function of the number of arcs that start from said node 
𝑖 towards other vertices 𝑗 and the number of staggered segments 𝑛 𝑗  that have been 
considered for explain the behaviour of the function 𝑑 𝑡 . Denoting by Succ(i) to the set of 
vertices 𝑗 accessible from node 𝑖, the number of replications of node 𝑖 will be, in principle: 
∑ 𝑛∈  𝑗 . 
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Figure 4:  Instance of step function describing 𝑑 𝑡 . 

     Actually, if we carry out a control of the time progress in each of the vertical axes that 
start from each node of the network, the number of replicated nodes can be substantially 
reduced. In fact, it will only make sense to consider the incorporation of the node associated 
with a travel time 𝑑 𝑡 ,, obtained after a waiting time 𝑡  at node 𝑖, if the sum of both times 
𝑡  and 𝑑 𝑡 , improves, i.e., is less than the set value without the need to enter waits. 
     The following example, that will be explained step by step, will explain the proposed 
methodology. Consider the planar network illustrated in Fig. 5 (8 nodes and 13 arcs), which 
has previously been embedded in three-dimensional (3D) space. Suppose that origin and 
destination nodes are labelled 1 and 8, respectively. At the midpoint of each arc of the graph, 
a numerical value appears, in blue, which corresponds to the time needed to traverse such arc 
when it is not subject to dependence on the period in which the traversal takes place. In this 
static context, the fastest path between origin and destination points for these weights is the 
sequence {1,2,5,7,8} with a total length of 12.5. 
 

 

Figure 5:  Instance of planar network embedded in 3D-space. 

     Starting from each node of the network, vertical axes will be established where the new 
nodes to be replicated can be located. In order to have a reliable control of the time when we 
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analyse the possible alternatives, we will relocate the intermediate nodes (that is, nodes 2–7) 
to the heights that correspond on their respective axes with the shortest access time from the 
origin. In Fig. 6, all 8 nodes have been replicated in three-dimensional space (in red). The 
origin (1) and destination (8) nodes have not changed their location, while the intermediate 
nodes have been relocated to the corresponding level with the time necessary to reach them 
from the origin. 
 

 

Figure 6:  Network with replicated nodes in 3D-space. 

     Suppose now that two of the three arcs starting from node 4 are time dependent. 
Specifically, from t = 5, in the arc (4.5) its travel time decreases from 4 to 1.5. For that same 
mark of t = 5, the arc (4,6) changes its travel time from 6 to 3. Fig. 7 shows the graphs 
corresponding to the functions 𝑑 𝑡  and 𝑑 𝑡 . 
 

 

Figure 7:  Graphical display of functions 𝑑 𝑡  and 𝑑 𝑡 . 
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     Since node 4 is reachable from the origin point (1) in a time t = 4, the user will have two 
options if node 4 were part of the optimal route to the destination point (8): 

1. Immediately explore the arcs starting from node 4 as possible continuation alternatives 
of an optimal route candidate. This option will not involve modifications in the outgoing 
arcs from node 4, which graphically is at the elevation level that corresponds to the 
access time from the origin point. 

2. Establish a strategic stop at node 4, with the expectation of obtaining a more competitive 
travel time on some outgoing arc. This second option forces node 4 to be replicated at 
the higher vertical level that results after adding the waiting time to the arrival time at 
the node 4. Node 9, on the same vertical axis of node 4, represents the option to spend 
one unit of waiting time at node 4 before choosing to continue towards node 5, where 
the arc (9,5) would be weighted with the value 1.5 instead of 4, or towards node 6, where 
the arc (9,6) would be weighted with the value 3 instead of 6. Note that it has not been 
necessary to replicate more times the node 4 because the value changes of the functions 
𝑑 𝑡  and 𝑑 𝑡  overlap at the same milestone 𝑡 4. 

     Fig. 8 illustrates the resulting final graph on which, applying a standard Dijkstra’s 
algorithm, the optimal connection route from point 1 to point 8 could be determined, which 
would be the sequence {1,2,4,9,6,8} with a total length of 11.5. The presence of node 9 in 
the optimal node sequence indicates that, in this case, the strategy of setting a waiting time 
at node 4 has been successful. 
 

 

Figure 8:  Optimal route connecting points 1 and 8 in 3D-space. 

3  AN ADAPTED ALGORITHM 
The algorithm presented below includes the necessary modifications to be able to determine 
the fastest paths between pairs of nodes within a network, with the weights of their arcs being 
subject to variations according to known or forecast schedules in advance. 

Urban and Maritime Transport XXVIII  33

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 212, © 2022 WIT Press



Adapted Dijkstra’s algorithm with time-dependent arcs 
 
1. Read graph G= (V, A), adjacency matrix Ady and matrix D of displacement costs between 
pairs of adjacent points. 
 
2. Build vector f that will store the minimum displacement costs to the origin from each node 
of G (initially, only the nodes adjacent to the origin will not have infinite value).  

3. Build vector p that stores the successor nodes to each node of G in the optimal path 
(initially, only nodes adjacent to the origin can be determined). 

4. Initialize set S of nodes explored by including only the origin point. Initialize set 
LIST=G\S.  

5. While LIST is not empty:  

5.1 Identify index j* 

 * : min ( ) :j Arg f j j LIST     

5.2 If all output arcs from node j* do not change in time then 

5.2.1 Remove index j* from LIST 

5.2.2 For each successor k of j* included in LIST: 

If 
(0)d + f(j*) > f(k) *kj then  

i. Update 
(0)d + f(j*) : f(k) k*j

  

ii. Update *j : p(k)   

5.3 else For each output arc from node j* towards some not visited node that 
changes over time and for each modification of the weight of this arc: 

5.3.1 Replicate node j* (let be j*’), updating set V. 

5.3.2 Add an arc from j* to j*’, weighted with the required wait time at 
node j*.  

5.3.2 Repeat for the new node j*’ the same out connections that node j* 
already had (with the corresponding new weights).  

5.3.3 Add an arc from j* to j*’, weighted with the required wait time at 
node j*.  

5.3.4 Update set A according to 5.3.2 and 5.3.3. 

5.3.5 Include node j*’ in set LIST. 

6. End  
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     Note that the added programming block mainly corresponds to the section labelled 5.3, 
and it is activated when time-dependent output arcs are detected. The complexity of this 
algorithm, that maintains the same structure of the original Dijsktra’s algorithm, depends 
precisely on the number of arcs whose weights are subject to time-dependent changes, as 
well as the number of changes to be incorporated along the time horizon for each arc. 

4  CONCLUSIONS 
In this article, the problem of determining the fastest paths with time-dependent arcs in 
transport networks has been analysed. There are numerous existing bibliographical 
contributions related to this subject, mainly due to the relevance that this issue acquires in 
logistics and travel planning for all types of users. Specifically, the methodology presented 
in Wen et al. [17], where two heuristic methods were proposed to solve the least cost path 
problem between a pair of nodes with a time-varying road network and a congestion charge. 
The tool developed by these authors was based on modifications of Dijkstra’s algorithm, 
where a wait ban had been established on the nodes.  
     The fastest path algorithmic search technique with time-dependent arcs introduced in this 
contribution follows this methodological line of adaptation of Dijkstra’s algorithm to this 
context, which guarantees a high level of efficiency for the calculation of solutions. On the 
other hand, the original graph must be conveniently extended, both in number of nodes and 
in new arcs (some of them unidirectional, which are those that indicate the time progress). It 
would be possible, however, to limit this growth of the solution container graph, having a 
reliable control of the time when the possible alternatives are analysed. 
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