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Abstract
In a recent survey, Schmidt compiled equivalences between generalized bent functions, group
invariant Butson Hadamard matrices, and abelian splitting relative difference sets. We estab-
lish a broader network of equivalences by considering Butson matrices that are cocyclic
rather than strictly group invariant. This result has several applications; for example, to the
construction of Boolean functions whose expansions are generalized partially bent functions,
including cases where no bent function can exist.
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arrays · Cocycles
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1 Introduction

Let f : Zn
2 → Z2 be a Boolean function with n a positive integer, and set F(v) = (−1) f (v)

for v ∈ Z
n
2 (throughout, we view Zt for an integer t > 1 as {0, 1, . . . , t − 1} under addition

modulo t). The Walsh–Hadamard transform F̂ of F is defined by

F̂(u) =
∑

v∈Zn
2

(−1)u·vF(v),
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where u · v denotes the inner product uv� of u and v. The Walsh–Hadamard transform is
used to analyze cryptographic properties of Boolean functions. A Boolean function f is bent
if |F̂(u)| is constant for all u ∈ Z

n
2. Parseval’s theorem (see, e.g., [5, (8.36), p. 322]) gives

∑

v∈Zn
2

F̂(v)2 = 22n .

Hence, f can be bent only if n is even. If the Walsh–Hadamard transform takes no more than
one non-zero absolute value, then it is plateaued.

A bent function is so-called because it is as far from being linear as possible. However,
bent functions are not balanced (another desirable cryptographic property), while plateaued
functions can be balanced and have large nonlinearity. These highly non-linear functions
offer a robust defence against linear cryptanalysis [6, Chapter 3].

Bent functions are equivalent to certain Hadamard matrices and difference sets; see, e.g.,
[11, Lemma 14.3.2] and [6, Corollary 3.30]. The concept has been generalized, yielding
equivalences between associated objects. Indeed, our paper is inspired by Schmidt’s sur-
vey [16], which describes equivalences between generalized bent functions, group invariant
Butson Hadamard matrices, and splitting relative difference sets. There is also a connection
to perfect arrays, not covered in [16].

We study how the aforementioned equivalences are affected when the property of being
group invariant is broadened to cocyclic development. For example, a group-invariant Butson
Hadamard matrix is a type of cocyclic matrix. As a consequence, we incorporate generalized
partially bent functions [18], and construct a family of generalized partially bent functions
with domain for which no generalized bent functions exist.

We now outline the paper. Preliminary definitions and results are given in Section 2. Sec-
tion 3 is devoted to generalized perfect arrays and generalized partially bent functions. In
Section 4, we prove the main theorem: a series of equivalences between cocyclic Butson
Hadamard matrices, generalized perfect arrays, non-splitting relative difference sets, gener-
alized plateaued functions, and generalized partially bent functions. (For certain parameters,
the equivalences that we exhibit have those in [16] as special cases.) In Section 5 we give
some examples illustrating the main theorem.

2 Background

We adopt the following definition from [16]. For integers q,m, h > 0, and ζk the complex
kth root of unity exp (2π

√−1/k), a map f : Zm
q → Zh is a generalized bent function (GBF)

if ∣∣∣
∑

x∈Zm
q

ζ
f (x)
h ζ−w·x

q

∣∣∣
2 = qm ∀ w ∈ Z

m
q ,

|z| as usual denoting the modulus of z ∈ C. Thus, a GBF for q = h = 2 and even m is a bent
function. For h = q , Kumar, Scholtz, and Welch [9] prove that GBFs exist if m is even or
q �≡ 2 mod 4. However, no GBF with h = q , m odd, and q ≡ 2 mod 4 is known [10, p. 2].

A further generalization is relevant to our paper. If the values of

∣∣∣
∑

x∈Zm
q

ζ
f (x)
h ζ−w·x

q

∣∣∣
2
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as w ranges over Zm
q lie in {0, α} for a single non-zero α, then f is a generalized plateaued

function (cf. the definition of plateaued Walsh–Hadamard transform). Mesnager, Tang, and
Qi [14] discuss such functions under the conditions that q is prime and h is a q-power. They
call f an s-generalized plateaued function when α has the form qm+s .

We examine the role of GBFs and generalized plateaued functions in cocyclic design
theory [3, 6]. Some requisite definitions follow. LetG andU be finite groups, withU abelian.
A map ψ : G × G → U such that

ψ(a, b)ψ(ab, c) = ψ(a, bc)ψ(b, c) ∀ a, b, c ∈ G

is a cocycle (over G, with coefficients in U). Cocycles ψ are assumed to be normalized,
meaning that ψ(1, 1) = 1. For any (normalized) map φ : G → U , the cocycle ∂φ defined
by ∂φ(a, b) = φ(a)−1φ(b)−1φ(ab) is a coboundary. The set of cocycles ψ : G × G →
U equipped with pointwise multiplication is an abelian group, Z2(G,U ). Factoring out
Z2(G,U ) by the subgroup B2(G,U ) of coboundaries gives the second cohomology group,
H2(G,U ). The elements of H2(G,U ), namely cosets of B2(G,U ), are cohomology classes.
Eachψ ∈ Z2(G,U ) is displayed as a cocyclic matrix Mψ . That is, under an indexing of rows
and columns by the elements of G, the |G| × |G| matrix Mψ has entry ψ(a, b) in position
(a, b). We focus on abelian G and cyclic U ; say G = Zs1 × · · · × Zsm and U = 〈ζh〉 ∼= Zh ,
where 〈ζh〉 := {ζ ih | 0 ≤ i ≤ h − 1} is generated (multiplicatively) by ζh .

Denote the set of n×nmatrices with entries in a set S byMn(S). AmatrixM ∈ Mn(〈ζk〉)
is a Butson (Hadamard) matrix if MM∗ = nIn , where In is the n×n identity matrix and M∗
is the complex conjugate transpose of M . We write BH(n, k) to denote the (possibly empty)
set of all Butson matrices in Mn(〈ζk〉). For example, at every order n we have the Fourier
matrix

[
ζ

(i−1)( j−1)
n

]n
i, j=1 ∈ BH(n, n). Hadamard matrices of order n are the elements of

BH(n, 2). We quote a number-theoretic constraint on the existence of elements of BH(n, k).

Theorem 1 ([3, Theorem 2.8.4]) If BH(n, k) �= ∅ and p1, . . . , pr are the primes dividing k,
then n = a1 p1 + · · · + ar pr for non-negative integers a1, . . . , ar .

Two matrices H , H ′ ∈ Mn(〈ζk〉) are equivalent if PHQ∗ = H ′ for monomials P, Q ∈
Mn(〈ζk〉 ∪ {0}). This equivalence relation induces a partition of BH(n, k).

Our interest is in cocyclic Butson matrices. Let G be a group of order n. A cocycle
ψ ∈ Z2(G, 〈ζk〉) such that Mψ ∈ BH(n, k) is orthogonal. In particular, group invariant
Butson matrices are cocyclic. The orthogonal cocycles involved here are coboundaries, as
we now explain. A matrix X ∈ Mn(〈ζk〉) is group invariant, over G, if X = [xa,b]a,b∈G
and xac,bc = xa,b for all a, b, c ∈ G. Such an X is equivalent to a group-developed matrix
[χ(ab)]a,b∈G for some map χ : G → 〈ζk〉 (see, e.g., [3, 10.2.2]). In turn [χ(ab)] and M∂χ

are equivalent: setting P to be the G-indexed diagonal matrix with χ(a) in row a, we have
P[χ(ab)]P∗ = M∂χ . A group-developed Butson matrix has constant row and column sum
(in C). Together with Theorem 1, there are strong restrictions on group-developed elements
of BH(n, k).

Lemma 1 ([4, Lemma 5.2]) Set r j = Re(ζ j
k ) and s j = Im(ζ

j
k ). A matrix in BH(n, k) with

constant row and column sums exists only if there are x0, . . . , xk−1 ∈ {0, 1, . . . , n} such that( ∑k−1
j=0 r j x j

)2 + ( ∑k−1
j=0 s j x j

)2 = n and
∑k−1

j=0 x j = n.

It follows from Lemma 1 that if k = 2 then n is an integer square, and if k = 4 then n is
the sum of two integer squares.
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Cocyclic designs give rise to relative difference sets, and vice versa [3, Sections 10.4,
15.4]. Let E be a group with normal subgroup N , where |N | = n and |E : N | = v. A
(v,n,k,λ)-relative difference set in E relative to N (the forbidden subgroup) is a k-subset R of
a transversal for N in E such that |R ∩ x R| = λ for all x ∈ E \ N . We call R abelian if E is
abelian, and splitting if N is a direct factor of E .

The final piece of background concerns arrays. Let s = (s1, . . . , sm) be an m-tuple of
integers si > 1, and let G = Zs1 × · · · × Zsm . A h-ary s-array is just a set map φ : G → Zh

(normalized when necessary). If h = 2, then the array is binary. For w ∈ G, the periodic
autocorrelation of φ at shift w, denoted ACφ(w), is defined by

ACφ(w) =
∑

g∈G
ζ

φ(g)−φ(g+w)
h .

If ACφ(w) = 0 for all w �= 0, then φ is perfect.

Lemma 2 Let Dm be the mth Kronecker power of the q × q Fourier matrix, i.e., (Dm)i, j =
ζ

αi−1·α j−1
q , where α0 = (0, . . . , 0), α1 = (0, 0, . . . , 1), . . . , αqm−1 = (q − 1, . . . , q − 1).
Then, for any map φ : Zm

q → Zh,

(ACφ(α0), . . . , ACφ(αqm−1))Dm = (∣∣∣
∑

x∈Zm
q

ζ
φ(x)
h ζ−α0·x

q

∣∣∣
2
, . . . ,

∣∣∣
∑

x∈Zm
q

ζ
φ(x)
h ζ

−αqm−1·x
q

∣∣∣
2)

.

Proof We adapt the proof of the lemma (for Boolean functions) in [2, Section 2]. First,
∑

i≥0

ACφ(αi )ζ
αi ·α j
q =

∑

i≥0

∑

k≥0

ζ
φ(αk )−φ(αk+αi )
h ζ

αi ·α j
q .

After replacing αi by αi − αk , the double summation becomes
∑

i≥0

∑

k≥0

ζ
φ(αk )−φ(αi )
h ζ

αi ·α j−αk ·α j
q =

∑

k≥0

ζ
φ(αk )
h ζ

−αk ·α j
q

∑

i≥0

ζ
−φ(αi )
h ζ

αi ·α j
q

=
∣∣∣

∑

x∈Zm
q

ζ
φ(x)
h ζ

−α j ·x
q

∣∣∣
2
,

as required. �

Our fundamental motivating result is extracted mostly from [16].

Theorem 2 Let f : Zm
q → Zh be a map. The following are equivalent:

1. f is a GBF;
2. M∂ f ∈ BH(qm, h);
3. f is a perfect h-ary (q, . . . , q)-array.

Additionally, if h is prime and divides qm, then (1)–(3) are equivalent to

4. {( f (x), x) | x ∈ Z
m
q } is a splitting (qm, h, qm, qm/h)-relative difference set in Zh ×Z

m
q .

Proof The equivalences (1) ⇔ (2) ⇔ (4) come from Propositions 2.3 and 2.7 of [16] (h
prime is a sufficient condition to ensure (2) ⇒ (4)). Lemma 2 implies (1) ⇔ (3). �

We investigate the effect on Theorem 2 when non-coboundary cocyclic Butson matrices,
generalized perfect arrays, and non-splitting abelian relative difference sets are considered
in (2), (3), (4), respectively. To this end, we need some material of a more specialized nature,
which is presented over the next two sections.
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3 More on arrays and bent functions

There is an equivalence between binary arrays and non-splitting abelian relative difference
sets, as set out in [8]. Subsequently, a bridge to the theory of cocyclic Hadamard matrices was
identified [7]. The main tool here is the notion of a generalized perfect binary array (GPBA).
Guided by [1, Section 3], we extend the notion of GPBA from binary to h-ary arrays, h ≥ 2,
and show how this conforms with a variant of bent functions.

Definition 1 Letφ : G → Zh be an s-array, where s = (s1, . . . , sm) andG = Zs1 ×· · ·×Zsm .
Let z = (z1, . . . , zm) ∈ {0, 1}m . The expansion of φ of type z is the map φ′ from E :=
Z(z1(h−1)+1)s1 × · · · × Z(zm (h−1)+1)sm to Zh defined by

φ′ : (g1, . . . , gm) �→ φ(a) + b mod h,

where b = ∑m
i=1�gi/si� and a ≡ (g1, . . . , gm) mod s, i.e., a = (g1 mod s1, . . . , gm mod

sm).

We distinguish two subgroups of the extension group E in Definition 1:

L = {(g1, . . . , gm) ∈ E | gi = yi si with 0 ≤ yi < h if zi = 1, and yi = 0 if zi = 0},
K = {(g1, . . . , gm) ∈ L | ∑

i (gi/si ) ≡ 0 mod h}.
Note that

L ∼= Z
n
h where n = wt(z) = ∑

i zi ;
E/L ∼= G;
if z �= 0 then L/K = 〈(0, . . . , 0, si , 0, . . . , 0) + K 〉 ∼= Zh , for any i such that zi = 1.

With these subgroups of E now defined, we will be able to see how the expansion of an
s-array is natural, and how it allows us to generalize the notion of perfect array.

Lemma 3 Let φ be a h-ary (s1, . . . , sm)-array with expansion φ′ : E → Zh. If e ∈ E and
g = (g1, . . . , gm) ∈ L, then φ′(e + g) ≡ φ′(e) + b mod h where b = ∑

i gi/si .

Proof This is routine, from the definitions. �

Corollary 1 Under the hypotheses of Lemma 3, ACφ′(g) = ζ−b
h |E | for any g ∈ L.

Definition 2 A h-ary s-array φ with expansion φ′ : E → Zh of type z is generalized perfect
if ACφ′(g) = 0 for all g ∈ E \ L; in short, φ is a GPhA(s) of type z. We write GPhA(cm)

when s is the vector (c, . . . , c) of length m for a constant c.

So a GPhA(s) of type 0 is exactly a perfect h-ary s-array.

Definition 3 (cf. [18, Definition 2.2]) A map f : Zm
q → Zh such that |AC f (x)| ∈ {0, qm}

for all x ∈ Z
m
q is a generalized partially bent function (GPBF).

Let φ be a h-ary (q, . . . , q)-array of type 1. By Corollary 1, |φ′(g)| = (hq)m ∀g ∈ L . If
φ is generalized perfect, then by definition |φ′(g)| = 0 ∀x ∈ Z

m
hq \ L , so φ′ is generalized

partially bent. However, the converse does not hold, as evidenced by the following simple
example. Define φ : Z2

2 → Z2 by φ(0, 1) = 1 and φ(0, 0) = φ(1, 0) = φ(1, 1) = 0. The
expansion of φ of type 1 is a GPBF, but φ is not a GP2A(22) of type 1 (writing 1 for the all
1s vector). We obtain the converse by imposing more conditions.
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Proposition 1 Let φ be an array Zm
h → Zh such that for each y = (y1, . . . , ym) ∈ Z

m
h \ {0}

with
∑

i yi ≡ 0 mod h, there exists x = (x1, . . . , xm) ∈ Z
m
h satisfying

φ(x + y) +
∑

i

�(xi + yi )/h� �≡ φ(x) + φ(y) mod h. (1)

Then the expansion φ′ of φ of type 1 is a GPBF if and only if φ is a GPhA(hm) of type 1.

Proof In this proposition, E = Z
m
h2

and L = {0, h, . . . , (h − 1)h}m ∼= Z
m
h . Suppose that φ

′

is a GPBF. Then φ is a GPhA(hm) if |ACφ′(g)| < h2m for all g ∈ E \ L . So we prove that
φ′(w) − φ′(w + g) �≡ φ′(x) − φ′(x + g) mod h for some w, x ∈ E . Taking w = 0, and
assuming that φ is normalized, this non-congruence becomes φ′(x + g) �≡ φ′(x) + φ′(g).

Suppose that

φ′(0) − φ′(g), φ′(g) − φ′(2g), . . . , φ′((h − 1)g) − φ′(hg)

are all congruent modulo h (otherwise, the required x may be found as a multiple of g).
Adding these h terms gives

φ′(0) − φ′(hg) ≡ 0 mod h ⇒ φ′(hg) ≡ 0 mod h.

Consequently
∑

i gi ≡ 0 mod h.
If g = (g1, . . . , gm) with 0 ≤ gi < h, then the right-hand side of (1) for y = g is

φ′(x) + φ′(g), and the left-hand side is φ′(x + g); so we are done.
Now let g = a + l with a = (g1 mod h, . . . , gm mod h) and l ∈ L . Then

∑
i ai ≡ 0,

because hg = ha in E . Using Lemma 3, and adding b = ∑
i li/h to both sides of (1) for

y = a, we see that φ′(x + g) �≡ φ′(x) + φ′(g). This completes the proof. �

4 Equivalences between arrays, bent functions, and associated
combinatorial objects

Let s, z, G, K , L , E be as in Section 3, with z �= 0. We have a short exact sequence

1 −→ 〈ζh〉 ι−→ E/K
β−→ G −→ 0, (2)

where β(g+K ) ≡ g mod s and ι sends ζh to a generator of L/K ∼= Zh . In the standard way
we extract a cocycle μz ∈ Z2(G, 〈ζh〉) from (2), depending on the choice of a transversal
map τ : G → E/K (see, e.g., [3, § 12.1.3]). Set τ(x) = x + K (a mild abuse of notation),
so that β ◦ τ = idG ; then μz(x, y) = ι−1(τ (x) + τ(y) − τ(x + y)).

Proposition 2 (cf. [7, Lemma 3.1]) Define γt ∈ Z2(Zt , 〈ζh〉) by γt ( j, k) = ζ
�( j+k)/t�
h . Then

(i) μz(x, y) = ∏
i with zi=1 γsi (xi , yi );

(ii) μz ∈ B2(G, 〈ζh〉) if and only if si is coprime to h whenever zi = 1.

In the opposite direction, each cocycle ψ ∈ Z2(G, 〈ζh〉) determines a central extension
Eψ of 〈ζh〉 by G: namely, the group with elements {(ζ j

h , g) | 0 ≤ j < h, g ∈ G} and mul-
tiplication defined by (u, g)(v, h) = (uvψ(g, h), gh). More properly, the central extension
is the short exact sequence

1 −→ 〈ζh〉 ι′−→ Eψ
β ′

−→ G −→ 0, (3)

where ι′(u) = (u, 0) and β ′(u, x) = x .
The next two results mimic Proposition 4 and Lemma 3 of [1], respectively.
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Proposition 3 Ifμz andψ ∈ Z2(G, 〈ζh〉) are in the same cohomology class, sayψ = μz∂φ,
then (2)and (3)are equivalent as short exact sequences. Specifically, for the transversalmap τ

as defined before Proposition 2, themap� sending (u, x) ∈ Eψ to ι(uφ(x)−1)+τ(x) ∈ E/K
is an isomorphism that makes the diagram

1 −→ 〈ζh〉 ι′−→ Eψ
β ′

−→ G −→ 0

‖ �
⏐� ‖

1 −→ 〈ζh〉 ι−→ E/K
β−→ G −→ 0

commute.

Remark 1 In Proposition 3, the φ has multiplicative target group 〈ζh〉. When considering φ

as an array, we may replace the multiplicative group 〈ζh〉 by the additive group Zh , without
bothering to change notation. Likewise, note that Eψ is treated multiplicatively, whereas E
and its subgroups and quotients are treated additively.

Lemma 4 Assuming the set-up of Proposition 3, � maps the subset {(1, x) | x ∈ G} of Eψ

onto {g + K ∈ E/K | φ′(g) ≡ 0 mod h}.
Proof Asφ′ is constant on each coset of K in E byLemma 3, the stated subset of E/K is well-
defined. If φ(x) = ζ

j
h then �((1, x)) = − j y + x + K where ι(ζh) = y + K generates L/K .

Remember that y may be chosen as (0, . . . , 0, si , 0, . . . , 0) for some i . Again by Lemma 3,
φ′(− j y + x) = j − j

∑
i (yi/si ) ≡ 0 mod h. Conversely, suppose that φ′(g) = 0. Put

a ≡ g mod s and b ≡ ∑
i�gi/si� mod h; so φ(a) = φ′(g) − b ≡ −b mod h. Therefore,

because g − a − (0, . . . , 0, bsi , 0, . . . , 0) ∈ K , we get that g + K = ι(φ(a)−1) + a + K =
�((1, a)). �

Remark 2 {(1, x) | x ∈ G} is a full transversal for the cosets of 〈ζh〉 in Eψ .

Next we present two lemmas about special subsets of E , to be used in the proof of the
impending theorem. For 0 ≤ i ≤ h − 1, define Ni

φ′ = {g ∈ E | φ′(g) ≡ i mod h} and
Li = {g ∈ L | ∑k(gk/sk) ≡ i mod h}.
Lemma 5 Ni

φ′ + L j = Ni+ j
φ′ (elementwise sum in E), reading indices modulo h.

Proof If x ∈ Ni
φ′ and g ∈ L j , then φ′(x + g) ≡ φ′(x) + ∑

k(gk/sk) ≡ i + j by Lemma 3.

Hence Ni
φ′ + L j ⊆ Ni+ j

φ′ . Since −L j = Lh− j , this containment implies that Ni+ j
φ′ − L j ⊆

Ni
φ′ , and so Ni+ j

φ′ = Ni
φ′ + L j . �

Lemma 6 For all i, j and e ∈ E, |Ni
φ′ ∩ (e + Ni

φ′)| = |N j
φ′ ∩ (e + N j

φ′)|.

Proof The equation x−y = e has precisely |Ni
φ′ ∩(e+Ni

φ′)| solutions (x, y) ∈ Ni
φ′ ×Ni

φ′ . By

Lemma 5, for g ∈ L j−i each such (x, y) gives a solution (x̃, ỹ) = (x+g, y+g) ∈ N j
φ′ ×N j

φ′

of the equation x̃ − ỹ = e. Thus |Ni
φ′ ∩ (e+ Ni

φ′)| ≤ |N j
φ′ ∩ (e+ N j

φ′)|. The equality follows
after swapping i and j . �

We also need a fact about vanishing sums of roots of unity (see, e.g., [3, Lemma 2.8.5]).

Lemma 7 For prime h, if
∑h−1

i=0 αiζ
i
h = 0 with αi ∈ Z, then α0 = α1 = · · · = αh−1.
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Theorem 3 Let φ be a h-ary s-array of type z �= 0, where h is a prime dividing v := |G| =∏
i si (Definition 1), and let

R = {g + K ∈ E/K | φ′(g) ≡ 0 mod h}.
Then φ is a GPhA(s) of type z if and only if R is a (v, h, v, v/h)-relative difference set in
E/K with forbidden subgroup L/K.

Proof For e ∈ E and 0 ≤ k < h, define B(e)
k = ∑h−1

i=0 |Ni
φ′ ∩ (Ni−k

φ′ − e)|. We readily see
that

ACφ′(e) =
∑

g∈E
ζ

φ′(g)−φ′(g+e)
h =

h−1∑

k=0

B(e)
k ζ k

h .

If e /∈ L then we use Lemma 7 and
∑h−1

k=0 B
(e)
k = |E | to infer

ACφ′(e) = 0 ⇔ B(e)
k = |E |/h ∀ k. (4)

Suppose that φ is generalized perfect. If e /∈ L then |Ni
φ′ ∩ (e+Ni

φ′)| = |E |/h2 by (4) and
Lemma 6. On the other hand, |Ni

φ′ ∩ (e + Ni
φ′)| = 0 if e ∈ L \ K , by Lemma 3. Hence the

number of solutions (x+K , y+K ) ∈ R×R of x+K−(y+K ) = e+K is 0 if e ∈ L \K and
|E |/(|K |h2) if e /∈ L . Accordingly R is an

(|E : L| , |L : K | , |R| , |E |/(|K |h2))-relative
difference set in E/K , with forbidden subgroup L/K . Also |E : L| = |G|, |L : K | = h, and
|R| = |G| by Lemma 4. Thus R has the claimed parameters.

Now suppose that R is a (v, h, v, v/h)-relative difference set in E/K with forbidden
subgroup L/K . Then |Ni

φ′ ∩ (Ni
φ′ − e)| = |E |/h2 for any e ∈ E \ L; thus B(e)

0 = |E |/h.
Further, if z ∈ Lk then Ni−k

φ′ − e + z = Ni
φ′ − e by Lemma 5, giving B(e)

0 = B(e−z)
k . Since

B(e)
0 is constant as e ranges over E \ L , this means that

B(e)
0 = B(e)

i = |E |/h ∀ i and ∀ e /∈ L.

By (4), φ is a GPhA(s). �

Remark 3 For an equivalence between difference sets and almost perfect arrays, see [15].

Proposition 4 ([4, Theorem4.1]) Let H be a finite groupwhose order is divisible by a prime h.
Thenψ ∈ Z2(H , 〈ζh〉) is orthogonal if and only if {(1, x) | x ∈ H} is a (|H |, h, |H |, |H |/h)-
relative difference set in Eψ with forbidden subgroup 〈(ζh, 1)〉.

Theorem 4 For prime h, a (normalized) h-ary s-array φ is a GPhA(s) of type z �= 0 if and
only if μz∂φ is orthogonal.

Proof This is a consequence of Theorem 3, Proposition 4, and Lemma 4. �

The next theorem connects generalized plateaued functions to GPhAs.

Theorem 5 Let φ : Zm
q → Zh be a map, where h is a prime dividing q. The following are

equivalent:
1. φ is a GPhA(qm) of type 1;
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2. The expansion φ′ : Zm
hq → Zh of φ of type 1 is a generalized plateaued function, i.e.,

∣∣∣
∑

x∈Zm
hq

ζ
φ′(x)
h ζ−v·x

hq

∣∣∣
2 =

{
(h2q)m v ∈ F

0 v ∈ Z
m
hq \ F,

where F = {v ∈ Z
m
hq | v ≡ 1 mod h}.

Proof Let u = (y1q, . . . , ymq) ∈ L and v = (y′
1q + a1, . . . , y′

mq + am) ∈ E = Z
m
hq where

0 ≤ y j , y′
j ≤ h − 1 and 0 ≤ a j ≤ q − 1. Then u · v ≡ (a1y1 + · · · + am ym)q mod hq .

Hence, if φ is a GPhA(qm) of type 1, then by Lemma 2 and Corollary 1,

∣∣∣
∑

x∈Zm
hq

ζ
φ′(x)
h ζ−v·x

hq

∣∣∣
2 =

∑

u∈L
ACφ′(u)ζ u·v

hq = (hq)m
∑

0≤y1,...,ym≤h−1

ζ
−(y1 + ··· + ym )q + u·v
hq

The rightmost displayed summation is equal to

(hq)m
∑

0≤y1,...,ym≤h−1

ζ
(a1−1)y1 + ··· + (am−1)ym
h =

{
(h2q)m ak ≡ 1 mod h ∀ k

0 otherwise.

This proves (1) ⇒ (2). We get (2) ⇒ (1) similarly, appealing once more to Lemma 2 and
taking into account that DmD∗

m = (hq)m Im . �

Now we can fulfil our intention as stated just after Theorem 2.

Theorem 6 Let h be a prime divisor of q, and let φ : Zm
q → Zh be an array with expansion

φ′ of type z �= 0.

(a) The following are equivalent:
(i) μz∂φ is symmetric and orthogonal, i.e., Mμz∂φ is a symmetric Butson Hadamard

matrix;
(ii) φ is a GPhA(qm) of type z;
(iii) {g+K ∈ E/K | φ′(g) = 0} is a non-splitting (qm, h, qm, qm/h)-relative difference

set in E/K with forbidden subgroup L/K.

(b) If z = 1 then (i)–(iii) are equivalent to

(iv) φ′ is a generalized plateaued function, i.e.,

∣∣∣
∑

x∈Zm
hq

ζ
φ′(x)
h ζ−v·x

hq

∣∣∣
2 =

{
(h2q)m v ∈ F

0 otherwise,

where F = {v ∈ Z
m
hq | v ≡ 1 mod h}.

(c) Let h = q and z = 1. Suppose that, for all y ∈ Z
m
h \ {0} with ∑

yi ≡ 0 mod h, there
exists x ∈ Z

m
h satisfying (1). Then (i)–(iv) are equivalent to

(v) φ′ is a GPBF.

Proof The equivalences (i) ⇔ (ii), (ii) ⇔ (iii), (ii) ⇔ (iv), and (ii) ⇔ (v) follow from
Theorems 4, 3, 5, and Proposition 1. (Proposition 2 (ii) justifies non-splitting in (iii).) �
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Remark 4 In [18, Definition 2.2], a map φ : Zm
q → Zq is called a generalized partially bent

function if (qm − NF )(qm − NC ) = qm where

NF = |{v ∈ Z
m
q |

∑

x∈Zm
q

ζφ(x)−v·x
q = 0}| and NC = |{v ∈ Z

m
q | AC−φ(v) = 0}|.

Previously, Carlet [2, Definition 1] introduced partially bent functions for q = 2. The coin-
cidence with our Definition 3 is shown in [17, Theorem 2] and [13, Proposition 8]. Observe
that, for z = 1, we have |L| · |F | = (hq)m , |L| = (hq)m − NC , and |F | = (hq)m − NF .

Remark 5 For q prime, if φ : Zm
q → Zq is a GPqA(qm) of type 1, then φ′ is a 2m-generalized

plateaued function.

5 Examples

Example 1 Let φ be the map on Z3
2 with layers

A0 =
[
0 1
1 1

]
and A1 =

[
0 1
0 0

]
.

Here Ai is the layer on {i} × Z2 × Z2, and φ(i, j, k) = Ai ( j, k). Then φ is a GPBA(23),
i.e., a GP2A(23) of type 1. It has orthogonal cocycle μ1∂2∂3∂4∂6, where ∂i = ∂φi for the
multiplicative Kronecker delta φi of αi , with α0 = (0, 0, 0), α1 = (0, 0, 1), etc. We label
rows and columns with the elements of Z3

2 = {α0, . . . , α7} in this ordering, and display
the cocyclic Hadamard matrix Mμ1∂φ as a Hadamard (entrywise) product Mμ1 ◦ M∂φ in
logarithmic form:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0
0 0 0 0 1 1 1 1
0 1 0 1 1 0 1 0
0 0 1 1 1 1 0 0
0 1 1 0 1 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

◦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1
0 1 0 1 1 0 1 0
0 1 1 0 1 0 0 1
0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1
0 1 0 1 1 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 1 1 0 0 1 1 0
0 1 1 0 1 0 0 1
0 0 0 0 1 1 1 1
0 0 1 1 1 1 0 0
0 1 0 1 1 0 1 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The expansion φ′ : Z3
4 → Z2 is defined by the layers Bi on {i} ×Z4 ×Z4, 0 ≤ i ≤ 3, where

Bi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
A0 A0 ⊕ J

A0 ⊕ J A0

]
i = 0, 2

[
A1 ⊕ J A1

A1 A1 ⊕ J

]
i = 1, 3,

J denoting the all 1smatrix.We have L=〈(2, 0, 0), (0, 2, 0), (0, 0, 2)〉={(0, 0, 0), (0, 0, 2),
(0, 2, 0), (0, 2, 2), (2, 0, 0), (2, 0, 2), (2, 2, 0), (2, 2, 2)},

ACφ′(v) =
{

(−1)wt(v) 64 v ∈ L
0 v /∈ L,
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F = {(1, 1, 1), (1, 1, 3), (1, 3, 1), (1, 3, 3), (3, 1, 1), (3, 1, 3), (3, 3, 1), (3, 3, 3)}, and
∣∣∣

∑

x∈Z3
4

ζ
φ′(x)
2 ζ−v·x

4

∣∣∣
2 =

{
512 v ∈ F
0 v /∈ F .

Therefore φ′ is a GPBF.

Example 2 The map φ =

⎡

⎢⎢⎣

0 1 1 1
1 1 0 1
0 1 0 0
0 0 0 1

⎤

⎥⎥⎦ on Z
2
4 is a GPBA(42) of type 1. It has orthogonal

cocycle μ1∂φ. If we label rows and columns with the elements of Z2
4 = {α0 = (0, 0), α1 =

(0, 1), α2 = (0, 2), . . . , α15 = (3, 3)}, then the cocyclic Hadamard matrix Mμ1 ◦ M∂φ in
logarithmic form is the Hadamard product of

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0
0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0
0 1 1 1 0 1 1 1 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 0
0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0
0 1 1 1 0 1 1 1 1 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 1 1 1 0 1 1 1 0
0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0
0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 1 1 0 1 0 0 1
0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 1
0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0
0 1 1 0 0 0 0 0 1 1 0 0 1 0 1 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 1 1 1 0 1 0 0 1 1 0 1 1 1 1
0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0
0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0
0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 1
0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1
0 1 0 1 0 0 1 1 0 0 0 0 0 1 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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which is equal to ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 1 0 1 1 1 1 0 0 0
0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
0 0 0 1 1 1 1 0 1 0 1 1 0 1 0 0
0 1 0 1 1 0 0 1 1 0 1 0 1 0 0 1
0 1 1 1 0 0 0 1 1 1 0 1 0 1 0 0
0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1
0 1 0 0 1 1 0 1 0 0 0 1 0 1 1 1
0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
0 1 0 0 0 1 0 0 1 1 1 0 1 1 1 0
0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0
0 1 1 1 0 1 1 1 0 0 1 0 0 0 1 0
0 1 1 0 1 0 1 0 0 1 1 0 0 1 0 1
0 0 0 1 0 1 1 1 0 1 0 0 1 1 0 1
0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1
0 0 1 0 1 0 1 1 1 0 0 0 1 1 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The expansion φ′ : Z2
8 → Z2 is defined by

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 0 0 0
1 1 0 1 0 0 1 0
0 1 0 0 1 0 1 1
0 0 0 1 1 1 1 0
1 0 0 0 0 1 1 1
0 0 1 0 1 1 0 1
1 0 1 1 0 1 0 0
1 1 1 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with L = {(0, 0), (0, 4), (4, 0), (4, 4)},

ACφ′(v) =
{

(−1)wt(v) 64 v ∈ L
0 v /∈ L,

F = {(1, 1), (1, 3), (1, 5), (1, 7), (3, 1), (3, 3), (3, 5), (3, 7), (5, 1), (5, 3), (5, 5), (5, 7),
(7, 1), (7, 3), (7, 5), (7, 7)},

and ∣∣∣
∑

x∈Z2
8

ζ
φ′(x)
2 ζ−v·x

8

∣∣∣
2 =

{
256 v ∈ F
0 v /∈ F .

Therefore φ′ is a GPBF.

Example 3 The map φ =
⎡

⎣
0 0 0
0 1 0
2 2 1

⎤

⎦ onZ2
3 is a GP3A(32) of type 1. It has orthogonal cocycle

μ1∂φ. Labeling the rows and columns with the elements of Z2
3 = {α0 = (0, 0), α1 =
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(0, 1), α2 = (0, 2), . . . , α8 = (2, 2)}, we display the cocyclic Butson matrix Mμ1 ◦ M∂φ :

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1
0 1 1 0 1 1 0 1 1
0 0 0 0 0 0 1 1 1
0 0 1 0 0 1 1 1 2
0 1 1 0 1 1 1 2 2
0 0 0 1 1 1 1 1 1
0 0 1 1 1 2 1 1 2
0 1 1 1 2 2 1 2 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

◦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 0 0 1 2 0 0 2 1
0 0 0 0 2 1 2 0 1
0 1 0 2 1 1 1 1 2
0 2 2 1 2 1 0 0 1
0 0 1 1 1 2 1 1 2
0 0 2 1 0 1 2 0 0
0 2 0 1 0 1 0 2 0
0 1 1 2 1 2 0 0 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 0 1 1 2 1 0 2 2
0 1 1 0 0 2 2 1 2
0 1 0 2 1 1 2 2 0
0 2 0 1 2 2 1 1 0
0 1 2 1 2 0 2 0 1
0 0 2 2 1 2 0 1 1
0 2 1 2 1 0 1 0 2
0 2 2 0 0 1 1 2 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The expansion φ′ : Z2
9 → Z3 is defined by

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 1 2 2 2
0 1 0 1 2 1 2 0 2
2 2 1 0 0 2 1 1 0
1 1 1 2 2 2 0 0 0
1 2 1 2 0 2 0 1 0
0 0 2 1 1 0 2 2 1
2 2 2 0 0 0 1 1 1
2 0 2 0 1 0 1 2 1
1 1 0 2 2 1 0 0 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with L = {(0, 0), (0, 3), (0, 6), (3, 0), (3, 3), (3, 6), (6, 0), (6, 3), (6, 6)},

ACφ′((v1, v2)) =
{
81 ζ

−(v1+v2)/3
3 (v1, v2) ∈ L

0 (v1, v2) /∈ L,

F = {(1, 1), (1, 4), (1, 7), (4, 1), (4, 4), (4, 7), (7, 1), (7, 4), (7, 7)}, and
∣∣∣

∑

x∈Z2
9

ζ
φ′(x)
3 ζ−v·x

9

∣∣∣
2 =

{
729 v ∈ F
0 v /∈ F .

Thus φ′ is a GPBF. Also φ′ is a 4-generalized plateaued function (see Remark 5).

It may be checked that the sufficient condition (1) is satisfied in each of the Examples
1–3.

We now recite a bit more algebraic design theory in preparation for our penultimate result,
which provides an infinite family of GPhAs of type 1 arising from Example 1.

Proposition 5 (cf. [3, Theorem 15.8.4]) Let Gs = Zs1 × · · · × Zsm , Gt = Zt1 × · · · × Ztn ,
and G = Gs × Gt. Suppose that ψ∂φs ∈ Z2(Gs, 〈ζk1〉) and ρ∂φt ∈ Z2(Gt, 〈ζk2〉) are
orthogonal. Let k = lcm(k1, k2). Define ϕ ∈ Z2(G, 〈ζk〉) by

ϕ(gsgt , hsht ) = ψ(gs, hs)ρ(gt , ht ),

and define a map φ on G by
φ(gsgt ) = φs(gs)φt(gt ).

Then ϕ∂φ ∈ Z2(G, 〈ζk〉) is orthogonal, with cocyclic matrix [ψ∂φs] ⊗ [ρ∂φt].
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Corollary 2 Let h = q be prime. If there exist symmetric cocyclic matrices in BH(qm, h)

and BH(qn, h), corresponding to a GPhA(qm) of type 1 and a GPhA(qn) of type 1, respec-
tively, then there exists a symmetric cocyclic matrix in BH(qm+n, h) corresponding to a
GPhA(qm+n) of type 1.

Proof Since the Kronecker product of symmetric matrices is symmetric, it remains only to
observe that the product matrix in BH(qm+n, h) corresponds to an array of type 1. This also
follows from the construction and Theorem 6. �

Example 1 furnishes a symmetric orthogonal cocycleμ1∂φ ∈ Z2(Z3
2,Z2)with nontrivial

coboundary ∂φ. By iteration of Proposition 5 (Kronecker multiplying μ1∂φ by powers of
μ1 ∈ Z2(Z2,Z2)), we get a symmetric orthogonal cocycle μ1∂χ ∈ Z2(Zk

2,Z2). Then χ is
a GPBA(2k) of type 1. Thus, for all k ≥ 3 there exists a map Z

k
2 → Z2 with expansion a

GPBF; whereas for odd k, recall that no GBF—i.e., no bent function—can exist. We note that
for odd k this map is a Boolean near-bent function [12, Section 16.1.1]. Chapter 16 of [12]
may be consulted for similar existence results, e.g., on plateaued and partially bent functions.
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