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Abstract

In this Master thesis I analyze the 28Si nucleus within the nuclear shell model us-
ing state-of-the-art numerical diagonalizations complemented with the generator-
coordinate method (GCM) with quadrupole-constrained Hartree-Fock-Bogoliubov
(HFB) wavefunctions. Experimentally, 28Si presents shape coexistence between the
oblate ground state and an excited prolate structure with bandhead at 6.7 MeV.
Although the standard USDB interaction, which is very successful in describing the
nuclear structure of nuclei in this mass region, reproduces well the oblate ground
state, it fails at establishing a prolate band. Therefore, a modification of the USDB
interaction must be introduced to reproduce the experimental spectrum. Guided by
analytical Elliot’s SU(3) scheme, I show that this is achieved by slightly lowering
the gap between the nearly degenerate 1d5/2-2s1/2 doublet and the 1d3/2 orbital. My
calculations suggest that the oblate ground state is mostly 0p-0h configurations in
the 1d5/2-2s1/2 orbitals, whereas the prolate band consists mainly of 4p-4h excita-
tions into the 1d3/2 orbital.

Additionally, I study whether 28Si can exhibit a superdeformed structure at
higher energies. In order to achieve such deformations, excitations from the sd
to the pf shell must be taken into account. I find that most of the deformation
contribution comes from the 1f7/2-2p3/2 doublet and that the most favorable states
are prolate 2p-2h and 4p-4h excitations into the pf shell. In contrast to previous
studies, my numerical calculations suggest that this superdeformed structure would
mix with normal-deformed configurations, and therefore 28Si would not present a
superdeformed band.



1. Introduction to deformation in nuclei

The strong interaction among protons and neutrons allows the existence of self-
bound systems known as atomic nuclei. As a result of the intricate characteristics of
the strong interaction, collective phenomena emerge, wherein nucleons cooperate to
exhibit behaviors such as rotations or vibrations centered around a specific intrinsic
shape. Apart from the spherical shape, atomic nuclei can exhibit axially symmet-
ric quadrupole deformations, including prolate shapes, which are axially symmetric
spheroids elongated along one axis, and oblate shapes, which are flattened. Further-
more, atomic nuclei can manifest triaxial deformations, in which elongation takes
place along distinct axes, resulting in an intermediate shape that presents additional
complexity.

Across the nuclear chart, an abundance of ground states exhibit quadrupole
deformations, which originate from the quadrupole-quadrupole interactions of the
nucleons. Among these deformations, axially symmetric shapes and prolate configu-
rations stand out as the most common shapes. However, the scenario becomes even
more complex as multiple states with distinct intrinsic shapes can coexist within the
same nucleus, occupying a narrow energy range of a few MeV. The occurrence of this
phenomenon, known as shape coexistence, has been observed across various regions
of the nuclear chart [1], indicating its widespread presence. Hitherto, medium-mass
nuclei, including 32S [2], 36Ar [3], 40Ar [4], 40Ca [5], 42Ca [6], and 44Ti [7] have been
identified as examples where competition between spherical and various types of
deformed states occurs. For instance, the 40Ca nucleus is as a doubly magic nucleus
with a spherical ground state. However, Fig. 1.1 shows that at an excitation energy
of ∼3 MeV, a prolate normal deformed shape emerges, and at ∼5 MeV it presents
a prolate superdeformed shape [8], which is of particular interest due to its extreme
deformation. This superdeformed states have been studied in numerous nuclei such
as 24Mg [9], 28Si [10, 11], 32S [12], and 40Ar [13, 14].

In this work, I explore the nuclear structure of 28Si, an even-even nucleus com-
posed of 14 protons and 14 neutrons, which exhibits the phenomenon of shape
coexistence between oblate and prolate deformations. Previous studies [15, 16] have
shown that the three lowest-energy 0+ states are bandheads of an oblate rotational
band, a vibrational band of the oblate ground state and a prolate rotational band,
as shown in Fig. 1.1. These rotational bands are manifestations of a permanent in-
trinsic deformation, shared among the states that belong to the band, each of which
is labeled by its total angular momentum number, J . Therefore, 28Si demonstrates
shape coexistence between prolate and oblate states, while the spherical state does
not persist, in contrast with the prediction of the spherical mean field of Mayer and
Jensen [17, 18]. In addition, there have been recent attempts at finding a superde-
formed band in 28Si [19], predicted by a theoretical calculation [16].

The objective of this study is to gain insight into the nuclear structure of 28Si by
employing both simple analytical models such as SU(3) as well as state-of-the-art
numerical shell model calculations that shed light on its shape coexistence.
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Figure 1.1: Experimental data of the band structure of 28Si, from [15], and 40Ca,
from [5]. The 28Si nucleus exhibits an oblate rotational band and its vibration as
well as a prolate rotational band. On the other hand, 40Ca presents a spherical
ground state and two prolate rotational bands: one with normal deformation and
another one that is superdeformed. The arrows’ width indicate the B(E2) transition
strength between states of a particular band. Outband transitions and other low-
energy states are not shown for clarity.

1.1 Collective models

An atomic nucleus in a deformed state can exhibit collective rotational or vibrational
motion, which can be discerned by a characteristic energy spectrum.

In order to understand collective motion in nuclei, two frames of reference are re-
quired: the laboratory frame and the intrinsic frame. For axially symmetric shapes,
the quantum number associated to the projection of the total angular momentum
(J⃗) in the laboratory frame is denoted as M while in the intrinsic frame it is K, as
represented in Fig. 1.2.

Rotational motion is exclusive to permanently deformed nuclei, as any rotation
around a symmetry axis leaves the surface invariant, except for an insignificant global
phase in the wavefunction [20]. In consequence, spherical shapes are invariant under
any rotation and axially-symmetric nuclei are invariant under rotations around their
symmetry axis. A straightforward approach to modeling the rotations of a deformed
nucleus is to treat it as an ideal rigid rotor [20] characterized by a constant moment
of inertia, denoted as I. The Hamiltonian of an axially-symmetric rotor about a
principal axis, denoted as 3 in the intrinsic frame of reference, is

Hrot =
(J⃗2

1 + J⃗2
2 )

2I
=

(J⃗2 − J⃗2
3 )

2I
, (1.1)

where J⃗i are the components of the total angular momentum J⃗ . By quantizing the
values of the total angular momentum and its projection on the symmetry axis we
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Figure 1.2: Projections of the total angular momentum (J⃗) of a prolate spheroid
on the laboratory frame of reference (M), defined by the {X,Y,Z} axes, and on the
intrinsic frame of reference (K), where the symmetry axis is labeled as 3.

end up with the expression

Erot =
J(J + 1)−K2

2I
, (1.2)

where J is the total angular momentum number and natural units are employed
(ℏ = 1). The energy levels exhibit a proportionality to J(J + 1), manifesting a
distinct pattern that can be readily identified in the spectrum. This succession of
levels with energies proportional to J(J + 1) that share a permanent deformation
is called a rotational band. The values of angular momentum J are dependent on
their projection along the symmetry axis K such as

K ̸= 0 −→ J = K,K + 1, K + 2...; M = −J, ..., J ; (1.3)

K = 0 −→ J = 0, 2, 4...; M = −J, ..., J , (1.4)

where the K = 0 case only admits even values of J due to axial symmetry [20]. This
sequence of levels that are spaced out by the E ∝ J(J +1) proportionality provides
a strong indication of the presence of deformation in a nucleus.

1.2 Quadrupole moment and deformation

parameters

The interaction between the nucleus and the electromagnetic field yields valuable
information regarding the nuclear properties. By employing gamma radiation, it is
possible to excite the nucleus to higher energy levels, and analyzing the character-
istics of the emitted radiation can offer valuable insight into its structure.

The surface of a nucleus can be described in terms of the spherical harmonics
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Yλµ(θ, φ) [20]:

R(θ, φ) = R0

[
1 +

∞∑
λ=0

λ∑
µ=−λ

αλµYλµ(θ, φ)

]
, (1.5)

where R0 is the radius of the spherical nucleus, (r, θ, φ) are the spherical coordinates
and αλµ are the expansion coefficients. In the context of nuclear excitations, the
monopole term (λ = 0) corresponds to a change of the nuclear volume, which
necessitates a significant amount of energy due to the high incompressibility of
nuclear matter. On the other hand, the dipole term (λ = 1) describes a shift of the
center of mass, which is an insignificant translation. The remaining terms represent
different deformations of the nucleus, although modes with λ ≥ 5 are generally
negligible. The most common types of deformation across the nuclear chart are the
quadrupole deformations (λ = 2).

The distribution of the electric charge in a nucleus can be described by the
electromagnetic multipole moments

Qλµ = rλYλµ(θ, φ). (1.6)

We can also define its hermitian average operator as [21]

Qλµ =
1

2
[Qλµ + (−1)µQλ−µ] . (1.7)

For quadrupole deformations, there are three relevant quadrupole moments Q20,
Q21 and Q22. With these operators, we can define a set of dimensionless quadrupole
deformation parameters (β, γ) that characterize an arbitrary triaxial shape

β =
4π

3R2
0Ab

2

√
⟨Q20⟩2 + 2⟨Q22⟩2, (1.8)

γ = arctan

(√
2⟨Q22⟩
⟨Q20⟩

)
, (1.9)

with the nucleus mean radius R0 ≃ 1.2A1/3 fm and ⟨O⟩ ≡ ⟨Ψ|O|Ψ⟩ indicates the
mean value of an operator for a given nucleus state |Ψ⟩. The harmonic oscillator
parameter b can be derived using the expression [22]

b =

√
ℏ

mNω
=

√
ℏ

mNω
·

√
ℏc√

ℏ
√
c2

=
ℏc√

(mNc2)(ℏω)
≃ 197.33 MeVfm√

938.9 MeV · ℏω
, (1.10)

where ℏ represents Planck’s reduced constant, c denotes the speed of light, ω rep-
resents the angular frequency of the harmonic oscillator, and mN corresponds to
the mass of a nucleon. By utilizing the Blomqvist–Molinari formula [23], ℏω =
(45A−1/3 − 25A−2/3) MeV, and simplifying the constants as 41.4 MeV fm2 , we can
arrive at the standard parametrization

b2 ≃ 41.4/(45A−1/3 − 25A−2/3) fm2 (1.11)

for the harmonic oscillator parameter.
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Figure 1.3: Hill-Wheeler coordinates (β, γ) for the representation of quadrupole
deformations. Oblate and prolate shapes are represented with principal axes along
the z-axis (green), y-axis (red) and x-axis (blue). Figure extracted from [24].

Revisiting the set of deformation parameters (β, γ), the parameter β quantifies
the magnitude of deformation in a nucleus, which can be related to the axis ratio
of spheroid shapes. In normal deformed states (ND), typical values fall within the
range of 0.2 ≤ β ≤ 0.3, corresponding to an axis ratio of 3:2. On the other hand,
superdeformed states (SD) exhibit β ≥ 0.5, resulting in a 2:1 axis ratio.

The parameter γ characterizes the type of deformation. Initially, γ can assume
values between 0◦ and 360◦. However, considering that Q21 determines only the
orientation of the shape in space, it can be set to Q21 = 0, narrowing down the
interval to 0◦ ≤ γ ≤ 60◦ as illustrated in Fig. 1.3. A value of γ = 0◦ corresponds
to a prolate shape, while γ = 60◦ represents an oblate shape. Any other value of γ
within this range indicates a triaxial deformation. In the case of axially symmetric
shapes, it is standard to simplify the description by using only the parameter β. The
differentiation between prolate and oblate shapes is then determined by the sign of
β. Positive values indicate a prolate shape, while negative values indicate an oblate
shape. This two shapes are for instance represented in green in Fig. 1.3, taking z
as the symmetry axis.

Using the set of quadrupole deformation parameters (β, γ), we can establish
an intrinsic shape for the nucleus. However, we still need a method to connect this
intrinsic description with the experimental data in the laboratory frame of reference.

The electric quadrupole moment provides a measure of the nucleus’ deformation,
as it characterizes the deviation of the charge distribution from a spherical shape.
In the case of spherical shapes, the quadrupole moment vanishes. In the laboratory
frame, a microscopic description of the quadrupole moment is [22]

Qspec ≡
√

16π

5

√
J(2J − 1)

(J + 1)(2J + 1)(2J + 3)
(J ||Q2||J), (1.12)

where Q2 =
∑A

j=1 ejr
2
jY20(θj, φj): ej are the effective nuclear charges of the nucleons
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and A is the mass number. The expression features the (J ||Q2||J) reduced matrix
element, which does not depend on the projection of the angular momentum M
according to the Wigner-Eckart theorem [25]. In fact, this definition ofQspec matches
the classical limit for the intrinsic quadrupole moment Q0, which is related to the
spectroscopy one by [26]

Q0,s =
(J + 1)(2J + 3)

3K2 − J(J + 1)
Qspec(J), with K ̸= 1. (1.13)

Positive intrinsic quadrupole moments indicate prolate shapes while negative ones
represent oblate shapes. For a K = 0 rotational band, Eq. (1.13) simplifies to

Q0,s =
−(2J + 3)

J
Qspec(J). (1.14)

Another way to quantify the quadrupole moment comes from the reduced B(E2)
transition strength between an initial (Ji) and a final (Jf ) state, which are greatly
enhanced within a rotational band:

B(E2; Ji → Jf ) ≡
1

2Ji + 1
|(Ji||Q2||Jf )|2. (1.15)

We can extract the intrinsic quadrupole moment [8] from these transitions as

Q0,t = ±

√
16πB(E2, J → J − 2)

5|⟨J200|J − 2, 0⟩|2
, (1.16)

where ⟨J200|J − 2, 0⟩ is a Clebsch-Gordan coefficient with the ⟨j1j2m1m2|JM⟩ no-
tation. Both the B(E2) and Qspec are measurable observables that provide insight
on the intrinsic shape of the nucleus, as indicated by Eqs. (1.13) and (1.16). For
a rotational band associated with a well-established permanently deformed shape,
the intrinsic quadrupole moments fulfill Q0,s ≈ Q0,t.



2. Theoretical framework

2.1 Spherical mean field

Describing atomic nuclei is challenging. Fundamentally, the nucleus is a self-bound
system composed of strongly-interacting nucleons, protons (Z) and neutrons (N).
However, the intricacies of the strong force at low energies are poorly known from
first principles due to the non-perturbative nature of Quantum Chromodynamics
(QCD) in the typical nuclear scale, with Fermi momenta of ≃ 200 MeV. Moreover,
the inherent complexities of solving many-body systems necessitate the implemen-
tation of approximate methods. Therefore, in the case of a non-relativistic system
comprising A nucleons with two-body interactions, the many-body problem can be
formulated using the following Hamiltonian

H =
A∑
i

ti +
A∑
i,j

Vij, (2.1)

where ti is the kinetic energy operator and Vij is the two-body interaction. Although
three-body forces are not taken into account explicitly, it is possible to include their
effects indirectly through density-dependent or normal-ordering terms in the one-
body and two-body interaction interaction [27].

The subsequent task involves solving the time-independent Schrödinger equation

H|Ψ⟩ = E|Ψ⟩, (2.2)

which entails determining the eigenvectors and eigenenergies of the system. How-
ever, numerous challenges arise from this seemingly straightforward problem. Firstly,
the description of the nucleus considering explicitly all nucleons interacting through
realistic interactions, known as ab initio or first-principles methods, is only possible
for light nuclei [28, 29] and selected heavier systems [30, 31]. For instance, Quantum
Monte Carlo (QMC) techniques are limited to A ≤ 12 [32] and no-core shell model
(NCSM) to A ≤ 22 [33, 34], only with the selection of the most relevant configu-
rations. Thus, approximate methods are required to treat medium and heavy-mass
nuclei.

A commonly employed approach is to assume that the particles move inde-
pendently within the average potential generated by all other nucleons (vi). This
method, known as the mean-field approximation, significantly simplifies the problem
by reducing it to finding solutions for a particle moving within a potential

hi|ϕi⟩ = (ti + vi)|ϕi⟩ = ϵi|ϕi⟩, (2.3)

where hi is the single-particle Hamiltonian, |ϕi⟩ are the single-particle levels and
ϵi are the single-particle energies. Throughout the years, the spherical harmonic

10
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Figure 2.1: Single-particle states of the spherical harmonic oscillator with spin-orbit
term. The black circles represent the filling for 28Si ground state in the spherical
mean field. Different valence spaces used throughout the work are highlighted: sd
shell in red, sdpf in green and spd5/2 in blue. Figure modified from [26].

oscillator has demonstrated its reliability as a suitable choice for the mean-field
description. Its numerous symmetries enable the assignment of states with well-
defined quantum numbers. However, it is crucial to supplement this choice with
a robust spin-orbit term, denoted as vLS, to accurately reproduce experimental
observations such as the presence of magic numbers [17]. Then, the spherical mean-
field potential is

v = vH.O. + vorb + vLS =
1

2
mω2r⃗ 2 + Al⃗

2
+Bl⃗ · s⃗, (2.4)

where ω is the angular frequency, l⃗ is the orbital angular momentum, s⃗ is the spin
and A and B are constants. The major oscillator shells are labeled with the principal
number P and their energies are ϵP = (P+ 3

2
)ℏω with degeneracyD = (P+1)(P+2).

Next, they are split by their values of the orbital angular momentum number l, since
⟨lm|⃗l2|lm⟩ = l(l+1). Finally, the orbits are labeled with the quantum numbers |nlj⟩,
for neutrons and protons, with degeneracy D = 2j + 1 due to the spin-orbit term,
where n is the radial quantum number. Figure 2.1 shows the final single-particle
states of the spherical harmonic oscillator.

In summary, we have simplified the challenging task of solving a complex Hamil-
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tonian H for the many-body problem to one that is, in principle, readily solvable
H0 =

∑
i hi. The many-body wavefunction |ΦSlater⟩ is derived by filling the single-

particles levels with A particles, a Slater determinant, and the energy is calculated
as the sum of their individual energies

|ΦSlater⟩ =
1√
A!

det

{
A∏
i

|ϕi⟩

}
, (2.5)

E =
A∑
i

ϵi. (2.6)

This Slater determinant can be written in a more convenient way using the second
quantization formalism:

|ΦSlater⟩ =
A∏
i

c†i |−⟩, (2.7)

where c†i are the creation operators and |−⟩ is its bare vacuum.
According to this simple picture, for 28Si, the spherical mean-field orbits should

be filled up to the 1d5/2 orbit, inclusive, with 14 protons and 14 neutrons, as shown in
Fig. 2.1. Therefore, the ground state wavefunction is represented by a single Slater
determinant, resulting in a spherical shape. However, experimental data reveals
that 28Si is an oblate nucleus, and calls for a more complex formalism.

2.2 Analytical SU(3) scheme

Elliot’s SU(3) model [35] offers a straightforward explanation of the deformation
of atomic nuclei. The model begins with the assumption of a one-body spherical
harmonic oscillator potential. However, to simplify the calculations, three approxi-
mations are made. Firstly, the consideration is limited to a single major harmonic
oscillator shell P . Secondly, the energy levels associated with the orbits within this
major shell are assumed to be degenerate, as the spin-orbit coupling is neglected.
Lastly, the interactions between particles are restricted to two-body quadrupole-
quadrupole interactions, which are actually one of the main components of the
nuclear force [36]. The spherical harmonic oscillator Hamiltonian (with m = 1 and
ω = 1) is

H0 = T + V =
1

2
(p⃗ 2 + r⃗ 2) =

1

2
(p⃗+ ir⃗)(p⃗− ir⃗) +

3

2
ℏ =

(
A⃗†A⃗+

3

2

)
, (2.8)

where A⃗ = (p⃗+ir⃗)/
√
2 and p⃗ is the linear momentum. These complex vectors belong

to the symmetry group U(3), which has nine generators. From the antisymmetric
combinations we recover the three components of the orbital angular momentum
vectors Lx, Ly and Lz. The six symmetric bi-linears are reduced to five because the
trace, the mean field energy, is constant. This is the reason why the relevant group
is SU(3) instead of U(3). Then the five remaining generators are the components of
the quadrupole operator

q(2)µ =

√
6

2ℏ
(
(p⃗× p⃗)(2)µ + (r⃗ × r⃗)(2)µ

)
. (2.9)
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For a system of N particles in a major harmonic oscillator shell the total quadrupole
moment and angular orbital moment are

Q(2)
µ =

N∑
i=1

q
(2)
µ,i , (2.10)

L⃗ =
N∑
i=1

l⃗i, (2.11)

and the Casimir operator of SU(3), which is the operator that commutes with every
generator of the group, is introduced as

CSU(3) =
3

4
(L⃗ · L⃗) + 1

4
(Q(2)

µ ·Q(2)
µ ). (2.12)

The Casimir operator eigenvalues can be determined as

CSU(3)(λ, µ) = λ2 + λµ+ 3(λ+ µ) (2.13)

and they are expressed in terms of the usual SU(3) irreducible representations (λ, µ),
which are related to the cartesian quantum numbers of the harmonic oscillator by
nx = ny + µ, nz = ny + λ+ µ and 3ny + λ+ 2µ = NP .

Then, the Hamiltonian

H = H0 + χ(Q(2) ·Q(2)), (2.14)

can be rewritten as

H = H0 + 4χCSU(3) − 3χ(L⃗ · L⃗). (2.15)

The eigenenergies of this Hamiltonian are finally

E = ℏω
(
P +

3

2

)
+ 4χ

[
λ2 + λµ+ 3(λ+ µ)

]
− 3χL(L+ 1). (2.16)

In atomic nuclei, the quadrupole interactions among nucleons are attractive (χ <
0) and they tend to be significant. As a result, the ground state of a nucleus
corresponds to the representation (λ, µ) that maximizes the intrinsic quadrupole
moment of the nucleus, as shown in Eq. (2.14). The formation of rotational bands
is a natural consequence of this, where states within a given (λ, µ) representation,
which determines the deformation, follow a sequence with energies proportional to
L(L + 1). If spin is included this L(L + 1) dependence changes to a J(J + 1) one,

coupling orbital angular momentum to spin J⃗ = L⃗+ S⃗.
With the SU(3) formalism, one can make a new prediction for 28Si. In this

context, the task at hand involves identifying the configuration that maximizes
the quadrupole moment. To maximize the quadrupole moment, we examine the
distribution of 6 neutrons and 6 protons within the sd shell, which corresponds to
the P = 2 major harmonic oscillator shell (orbitals inside the red box in Fig 2.1).
Diagram 2.2 a) provides a way to calculate the Q0 value within the SU(3) model.
Each level exhibits a fourfold degeneracy in quadruple moment contribution, arising
from the combination of spin and isospin.
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Figure 2.2: Quadrupole diagrams of the different SU(3) variants considered in this
work. The dimensionless quadrupole moment Q0/(eb

2) is represented for each avail-
able 2|m| value, where m is the projection of the total angular number j. Oblate
states are obtained by filling from below and prolate ones from above.

The prolate state of the nucleus is obtained by filling diagram 2.2 a) from the
top, where the dimensionless quadruple moment contribution of each nucleon is
represented by the y-axis value of each level. Thus, we add up the 4 particles (2
protons and 2 neutrons) in the Q0/(eb

2) = 4 level, and the remaining 8 particles on
2 Q0/(eb

2) = 1 levels. This results in a quadrupole moment of Q0/e = (4 · 4+4 · 1+
4 · 1 + 3)b2 = 27b2. It is important to note that a term of 3b2 needs to be added in
order to match the quadrupole values of ideal rotors [37]. Similarly, the oblate state
is constructed by filling the diagram in a bottom-up manner, yielding a quadrupole
moment of Q0/e = (−2 · 12 − 3)b2 = −27b2. To obtain the physical values, we
incorporate the nuclear effective charges eZ = 1.5e for protons and eN = 0.5e for
neutrons. Multiplying Q0/e by these charges and the nuclear dimension of b2 ≃ 3.42
fm2 obtained from Eq. (1.11), we find that

|Q0| = (|Q0,Z | · eZ + |Q0,N | · eN + 3e) · b2 (2.17)

= (12 · 1.5e+ 12 · 0.5e+ 3e) · 3.42 fm2 = 92.3 e fm2. (2.18)

Consequently, the SU(3) model predicts 28Si to possess degenerate oblate and prolate
states with the aforementioned quadrupole moment values. Nevertheless, the exper-
imental data shows that the ground state is oblate and the prolate state appears
almost 7 MeV higher in energy.

The measured deformation for the ground state corresponds toQ0 = −57.3±0.7 e
fm2, which is overestimated by SU(3), and it is clearly oblate. Several factors related
to the SU(3) approach are responsible for this discrepancy. First of all, the spin-
orbit splitting of the sd-shell orbits is neglected, which makes them all degenerate
in energy. This scenario is unrealistic since the energy separation between the 1d5/2-
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2s1/2 orbits is merely 0.7 MeV, in contrast to the approximately ∼ 5 MeV separation
observed between the doublet and 1d3/2 (single-particle energies extracted from the
USDB interaction [38, 39]).

To solve this issue, alternative SU(3) schemes sacrifice some degree of symmetry
in exchange of a more realistic view [40]. One of the variants of the SU(3) model is
the quasi-SU(3) scheme, specifically adapted to accommodate orbitals with ∆j = 2
angular momentum differences. This scheme takes advantage of the fact that ∆j = 1
single-particle matrix elements of q

(2)
0 are weaker compared to those with ∆j = 2

[41]. An example within the sd shell involves the 1d5/2-2s1/2 doublet. Figure 2.2 b)
illustrates the Q0 values corresponding to the quasi-SU(3) model for this doublet.

An additional variation of the SU(3) model is known as the single-orbit limit.
This situation occurs when an orbit is significantly separated from the others. For
example, the 1d3/2 orbit is placed between the nearly degenerate 1d5/2-2s1/2 doublet
and a major shell closure. The quadrupole moment contribution of a single orbit
with total angular momentum j and projection m is [40]

Q0/e =
∑
m>0

(
P +

3

2

)
j(j + 1)− 3m2

2j(j + 1)
b2, (2.19)

which verifies the fact that any filled orbit corresponds to a spherical shape Q0 = 0,
as described in the spherical mean field picture. The contribution of a single 1d3/2
orbit to Q0 is represented in Fig. 2.2 c).

Given the substantial energy gap between the 1d5/2-2s1/2 doublet and the 1d3/2
orbit, a (1d5/2-2s1/2) + 1d3/2 prescription holds the greatest physical significance,
where the 1d5/2-2s1/2 orbits are treated as degenerate. The particle-hole notation
is introduced as np-nh, where n denotes the number of particles that are promoted
from the lower space, 1d5/2-2s1/2, to the upper one, 1d3/2. For instance, filling the
levels from Fig 2.2 and recovering the appropriate units, the oblate 0p-0h configu-
ration has intrinsic quadrupole moment

Q0 = (4 · (−2) + 2 · 0.5− 3) · (0.5 + 1.5)e · 3.42 fm2 = −58.1 e fm2, (2.20)

and the 4p-4h prolate configuration has

Q0 = (2 · 3.5 + 2 · 0.5 + 2 · 1.4 + 3) · (0.5 + 1.5)e · 3.42 fm2 = 84.1 e fm2. (2.21)

The quadrupole moments corresponding to remaining prolate and oblate np-nh con-
figurations are indicated in Table 2.1. The significant quadrupole moment observed

Table 2.1: Quadrupole moments (e fm2) for the experimental GS and ND bands,
the possible spherical state and the np-nh configurations in the analytical (1d5/2-
2s1/2)+1d3/2 scheme. I also present SU(3) predicted values for prolate and oblate
configurations, following Eq (2.17) and Fig. 2.2.

Q0,spherical Qexp,GS Qexp,ND

0 -57.3±0.7 70±7

Analytical 0p-0h 2p-2h 4p-4h 6p-6h 8p-8h Pure SU(3)
Q0,prolate 37.6 60.9 84.1 71.1 58.1 92.3
Q0,oblate -58.1 -71.1 -84.1 -60.9 -37.6 -92.3
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in the oblate 0p-0h configuration is remarkable due to the substantial correlation
gain achieved by the simple addition of the 2s1/2 orbit, compared to the filled 1d5/2
spherical picture. The proximity of the s1/2 orbit to the 1d5/2 orbit, coupled with
the substantial increase in collectivity, leads the system to prefer an oblate deformed
shape over a spherical one.

In the case of the ND prolate band, the primary contenders are the 2p-2h and
4p-4h prolate configurations. The prolate 0p-0h configuration exhibits significantly
lower deformation compared to the oblate configuration, rendering it energetically
unfavorable. Conversely, prolate np-nh configurations with n ≥ 6 display lower
deformation than the 4p-4h configuration at the expense of promoting more parti-
cles. I anticipate that the 4p-4h prolate configuration will prevail over the 2p-2h
configuration. This is because both the 2p-2h and 4p-4h configurations yield the
same increase in quadrupole moment compared to the prolate 0p-0h configuration.
However, since the correlation energy is quadratically related to the quadrupole mo-
ment and the single-particle energy of np-nh configurations increases linearly with
the number of excited particles, the 4p-4h configuration may be a more favorable
candidate, provided that the quadrupole force is strong enough.

2.3 Nuclear shell model

The interacting nuclear shell model, or in short the nuclear shell model (NSM), is a
method of solving the nuclear many-body problem formulated as an effective many-
body Hamiltonian in a valence space. There are three key features for this method:
a relatively small configuration space, an effective interaction and how to solve the
Schrödinger equation (2.2).

The necessity of a valence space arises naturally from the approach to the prob-
lem itself when dealing with medium-mass or heavy nuclei. Initially, the starting
point involves the spherical mean-field, whose states serve as the single-particle ba-
sis. However, as the single-particle Hilbert space is infinitely large, the associated
many-body space becomes infeasible to handle. Consequently, a boundary is re-
quired to render the problem tractable. The simplest solution involves considering a
truncation of the Hilbert space, primarily delimited by the major shells of the mean
field potential from Eq. (2.4), although only for light nuclei. The large energy gaps
between these shells, due to the magic numbers [17], make mixing between them
difficult. Nonetheless, selecting the appropriate valence space is more intricate, as
certain operators may depend on properties such as parity changes, which cannot
be accommodated solely within a major shell.

Moreover, the dimensions of the many-body basis, the Slater determinants, ex-
pand combinatorially, rendering some choices of the space numerically unfeasible.
This introduces the necessity of an inert core comprising a fraction of the nucleons,
which can be represented by a single Slater determinant obtained through the filling
of the spherical mean-field levels.

Taking into account all these considerations, the analysis leads us to identify
three distinct parts of the single-particle Hilbert space:

1. The inert core, which comprises orbits represented by a single Slater deter-
minant that fills up the core particles Acore = Ncore+Zcore to a lower boundary
of the single-particle Hilbert space.
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2. The valence space, which encompasses orbits where the remaining nucleons
Av = Nv + Zv can interact according to the effective interaction.

3. The empty space, which consists of orbits that are always assumed to be
unoccupied, defined by an upper boundary of the single-particle Hilbert space.

Since we have introduced a change from the original Hamiltonian, defined in the
infinite Hilbert space, to a specific valence space, the Hamiltonian must undergo an
adaptation to an effective form that suits the problem at hand. Consequently, the
effective Hamiltonian Heff incorporates the single-particle energies and the two-body
matrix elements associated to the orbits within the valence space. This adjustment
ensures the appropriate description of the system within the reduced valence space.
The effective Hamiltonian captures the effects, such as correlations, that are disre-
garded in the simplified mean field approach, Eq. 2.3, and can be understood as a
residual interaction Hres:

Heff =
A∑
i

(ti + vi) +

(
A∑
i,j

Vij −
A∑
i

vi

)
= H0 +Hres. (2.22)

In summary, the initial many-body problem is simplified to the task of diagonal-
izing an effective Hamiltonian within the defined valence space:

H|Ψ⟩ = E|Ψ⟩ −→ Heff|Ψeff⟩ = E|Ψeff⟩. (2.23)

The bare operators also must undergo a transformation to assume a new effective
form that suits the characteristics of the valence space

⟨Ψ|O|Ψ⟩ −→ ⟨Ψeff|Oeff|Ψeff⟩. (2.24)

The final step involves seeking a suitable method for determining eigenvectors and
eigenenergies of the problem.

2.3.1 Exact diagonalization

The first method I have used to solve the many-body Schrodinger equation involves
performing an exact diagonalization of the effective Hamiltonian in the valence space
[26]. The basis for this method consists of all possible Slater determinants |Φα⟩ that
can be built within the valence space, denoted as m-scheme. Then, the eigenstates
|ΨNSM⟩ are linear combinations of the spherical mean field states

|ΨNSM⟩ =
∑
α

Cα|Φα⟩, (2.25)

which is configuration mixing of states. However, it results in a basis with maximal
dimensions, which may pose numerical challenges due to the large size of the prob-
lem. The number of Slater determinants that can be constructed within a valence
space with Ωi states, where i = Z represents protons and i = N neutrons, and Zv

valence protons and Nv neutrons is

dim =

(
ΩZ

Zv

)(
ΩN

Nv

)
. (2.26)
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For instance, a calculation of 28Si in the sd-shell (ΩN = ΩZ = 12) with a core of 16O
(Nv = Zv = 6) involves

dim =

(
ΩZ

Zv

)(
ΩN

Nv

)
=

(
12
6

)(
12
6

)
≈ 1 · 106, (2.27)

which is a dimension that is not demanding for modern computer standards. Nev-
ertheless, a calculation involving the sd and pf major shells increases the dimension
significantly to around

dim =

(
ΩZ

Zv

)(
ΩN

Nv

)
=

(
12 + 20

6

)(
12 + 20

6

)
=

(
32
6

)(
32
6

)
≈ 1 · 1012, (2.28)

which exceeds the scope of this project as even record calculations of d ≈ 1 ·1011 [42]
do not reach the required dimensions. It is important to mention that in practice,
these dimensions can be slightly reduced by taking advantage of certain symmetries,
for instance not necessitating all the total angular momentum projections, m.

As demonstrated by this example, direct diagonalization of such large matrices is
impracticable due to limitations imposed by computer capabilities. Hence, alterna-
tive algorithms are implemented such as the Lanczos method. The Lanczos method
entails constructing an orthonormal basis by initiating with a pivot state |Ψ1⟩ and
subsequently applying the Hamiltonian operator Heff to it. In the first step (k = 1):

Heff|Ψ1⟩ = E11|Ψ1⟩+ E12|Ψ1⟩, (2.29)

where E11 = ⟨Ψ1|Heff|Ψ1⟩. Then, E12 is obtained by normalization:

E12|Ψ2⟩ = Heff|Ψ1⟩ − E11|Ψ1⟩. (2.30)

The next step (k = 2) involves

Heff|Ψ2⟩ = E21|Ψ1⟩+ E22|Ψ2⟩+ E23|Ψ3⟩. (2.31)

Since the Hamiltonian is hermitian E12 = E21. Then E22 = ⟨Ψ2|Heff|Ψ2⟩ and

E23|Ψ3⟩ = (Heff − E22)|Ψ2⟩ − E21|Ψ1⟩. (2.32)

The following steps follow the relation

Heff|Ψk⟩ = Ekk−1|Ψk−1⟩+ Ekk|Ψk⟩+ Ekk+1|Ψk+1, ⟩ (2.33)

and the normalization is applied in each step. Through this procedure, a tridi-
agonal matrix is constructed, wherein the mean values of the Hamiltonian appear
sequentially. These mean values are regarded as eigenvalues when the difference
between each iteration falls below a certain tolerance. It is important to note that
the Lanczos iteration process exhibits characteristics similar to those of variational
methods, as the eigenvalues converge progressively rather than being immediately
exact. However, the convergence of the eigenvalues is highly efficient and exhibits a
well-behaved behavior [26]. Therefore, despite not being strictly an exact method,
I refer to this approach as an “exact solution” due to its reliable convergence prop-
erties. In practice, all states obtained in this work by exact diagonalization are
converged in energy to better than 0.5 keV, which exceeds the precision required for
nuclear-scale phenomena.

In this work I use the nuclear shell model ANTOINE code [43–45], which per-
forms the exact diagonalization of the effective Hamiltonian by the Lanczos method.



CHAPTER 2. THEORETICAL FRAMEWORK 19

2.3.2 Variational method

The exact diagonalization method provides the most accurate solution to Eq. (2.2)
within the valence space. However, its applicability is limited due to the combi-
natorial scaling of the many-body basis, as shown in Eq. (2.26), which quickly
restricts the dimensions of the space. Hence, approximate methods are necessary
to solve the eigenvalue problem [46]. The dimensionality issue arises from using
all possible Slater determinants in the valence space as the many-body basis. To
overcome this challenge, a viable approach is to employ a smaller yet more complex
set of wavefunctions obtained through variational techniques. Subsequently, con-
figuration mixing of these variational wavefunctions allows for the determination of
approximate solutions instead of exact diagonalization [47].

According to the Ritz variational principle [48], the energy obtained from a trial
wavefunction |ϕ0⟩ for the ground state is always higher than or equal to the lowest
energy obtained from the exact diagonalization of the Hamiltonian (E0):

E [|ϕ0⟩] =
⟨ϕ0|Heff|ϕ0⟩
⟨ϕ0|ϕ0⟩

≥ E0, (2.34)

where both energies agree when the trial wavefunction coincides with the exact
ground state. Variational methods involve finding the wavefunction that exhibits
the closest resemblance to the exact wavefunction within a variational space. This is
accomplished by minimizing a set of parameters that determine the characteristics
of the possible wavefunctions.

When employing product-like wavefunctions, the implementation of this varia-
tional method leads to the formulation of Hartree-Fock equations. However, this
assumption is overly restrictive since correlations between particles play a crucial
role in describing atomic nuclei. Therefore, in order to expand the variational space,
certain symmetries such as particle number, rotational invariance or parity are inten-
tionally broken. For instance, to incorporate pairing correlations between fermions,
the independent particle description is modified to include quasiparticles, which re-
sults in a violation of the conservation of particle number. This approach is the
Hartree-Fock-Boguliubov (HFB) method [49], where the HFB wavefunction |ϕHFB⟩
is the vacuum of a set of fermionic operators βk:

βk|ϕHFB⟩ = 0 → |ϕHFB⟩ =
∏
k

βk|−⟩; ∀k = 1, ..,M, (2.35)

where M is the number of single-particle states of the valence space, and |−⟩ is the
true vacuum. The HFB transformation is defined as

β†
k =

∑
l

(Ulkc
†
l + Vlkcl), (2.36)

βk =
∑
l

(U∗
lkcl + V ∗

lkc
†
l ) (2.37)

with Ulk and Vlk matrices that define the state and act as the variational parameters
and c†l (cl) the creation (annihilation) operators of a single particle basis. In this
work, I am using the TAURUS code [21], which employs the spherical mean field
levels as the single particle basis and considers real U and V matrices.
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As the transformation itself violates the conservation of particle number, it be-
comes essential to implement constraints to conserve quantities at the mean-field
level. This is achieved by modifying the energy functional to minimize

H′
eff = Heff − λZOZ − λNON −

∑
i

λiOi, (2.38)

where OZ and ON are particle number operators for the protons and neutrons spaces,
respectively, and λi are the Lagrange multipliers. Additional constraints such as
quadrupole moments or parity correlations can be added to respect the expectation
value of any given operator O

⟨O⟩ ≡ ⟨ϕHFB|O|ϕHFB⟩. (2.39)

The minimization process is carried out using a gradient method, with the fol-
lowing schematic procedure. It begins with an initial trial wavefunction |ϕ0⟩ defined
by the HFB matrices (U0, V0). These matrices can be defined to preserve any desired
symmetry, such as spherical symmetry, axial symmetry, or parity. Afterwards, the
gradient of the energy is computed, and a direction for minimization is determined.
A new wavefunction is proposed, and if it minimizes the Hamiltonian, it is retained.
This iterative process continues until convergence is achieved. For a more detailed
understanding, refer to [21].

In this study, the focus is on investigating the shapes displayed by 28Si. To
explore the energy surfaces associated with possible deformations, constraints on the
quadrupole moments are utilized, as defined in section 1.2. Rather than imposing
constraints directly on the quadrupole moments ⟨Q20⟩ and ⟨Q22⟩, the restrictions are
applied to the deformation parameters (β, γ). Additionally, the constraint ⟨Q21⟩ = 0
is included, so the definitions made in Section 1.2 hold.

To restore the symmetries violated by the previously obtained HFB functions
|ϕHFB⟩, quantum number projection is required. This involves restoring proton
number, neutron number, and total angular momentum. The HFB wavefunctions
can be expressed as linear combinations of states with good quantum numbers:

|ϕHFB⟩ =
∑
N,Z,J

aN,Z,J |ϕN,Z,J⟩. (2.40)

To obtain symmetry-conserving wavefunctions, the corresponding projectors (PO)
are applied to the HFB states

|ϕN,Z,J⟩ = PNPZP J
MK |ϕHFB⟩. (2.41)

The particle number projectors for neutrons and protons are

PN =
1

2π

∫ 2π

0

eiφN (N−N)dφN , (2.42)

PZ =
1

2π

∫ 2π

0

eiφZ(Z−Z)dφZ , (2.43)

with φN and φZ being the gauge angle, associated to this U(1) symmetry.
Finally, the restoration of good total angular momentum involves

P J
MK =

2J + 1

16π2

∫
Ω

DJ∗
MKR(Ω)dΩ, (2.44)
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where DJ∗
MK are the Wigner D matrices [25] with M and K the third components

of J in the laboratory and intrinsic frames of reference, as explained in section 1.1.
Then, the SO(3) rotation operator is R(Ω) = e−iαJze−iβJye−iγJz , with Ω ≡ (α, β, γ)
the Euler angles [49].

The expected value of an operator O of the projected states can be calculated
as

⟨ONZJ⟩ = ⟨ϕ|OPNPZP J
MK |ϕ⟩

⟨ϕ|PNPZP J
MK |ϕ⟩

, (2.45)

where I have used that (P i)2 = P i, (P i)† = P i and the fact that the involved
operators commute with each other. The restoration of symmetries in the HFB
wavefunctions is computationally the most demanding step in this variational pro-
cess, as it requires the evaluation of multiple numerically intensive integrals.

Having obtained a set of wavefunctions with well-defined quantum numbers and
different deformations, they can be employed to approximate an exact solution by
considering linear combinations of states characterized by different deformation pa-
rameters, akin to configuration mixing in exact diagonalization. This approach is
known as the generator-coordinate method (GCM), where the generator coordinates
(q) are represented by the deformation parameters (β, γ). The GCM wavefunction
can be expressed as

|ΨNZJM
σ,GCM⟩ =

∑
qK

fJMNZ
σ;qK PNPZP J

MK |ϕHFB(q)⟩, (2.46)

where |ϕHFB(q)⟩ are the unprojected HFB wavefunctions, fJMNZ
σ;qK is the coefficient of

each projected wavefunction and σ orders the states with the same quantum numbers
Γ ≡ NZJM . However, the set of states considered might be linearly dependent,
which requires a previous diagonalization of the norm overlap matrix

N Γ
qKq′K′ = ⟨ϕHFB(q,K)|PNPZP J

KK′ |ϕHFB(q
′, K ′)⟩ (2.47)

to find an independent basis, denoted as the natural basis:∑
q′K′

N Γ
qKq′K′uΓ

λ;q′K′ = nΓ
λu

Γ
λ;qK . (2.48)

In principle, the diagonalization of the overlap matrix would yield a spectrum
of non-zero eigenvalues, corresponding to linearly independent natural basis states,
as well as null eigenvalues that represent linear combinations of the independent
basis states. However, due to the use of numerical methods in the diagonalization
process, it becomes challenging to distinguish between small eigenvalues and true
zero eigenvalues due to numerical errors. In practice, only eigenstates uΓ

λ;qK with
eigenvalues nΓ

λ above a certain threshold, typically in the range of nΓ
λ ≈ 10−10, are

taken into account. However, the specific threshold value is arbitrary, and including
more states than necessary can result in numerical difficulties that lead to divergence
of operator mean values [50].

Figure 2.3 displays the convergence behavior of the first three 0+ states of 20Ne. It
is evident that as more states are included in the natural basis, the difference between
the exact diagonalization and the variational approach decreases. Specifically, when
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Figure 2.3: Energy evolution of the first three 0+ states in 20Ne with the GCM
method as the number of included natural states increases using the USDB interac-
tion. The exact energies are shown in thick dashed lines.

20 states of the natural basis are considered, out of the initial 47 projected HFB
wavefunctions, the discrepancy reaches nearly 10 keV. However, upon including
additional states, there is a sharp decline in the energy of the ground state (85 MeV),
which falls below the value obtained from exact diagonalization. This sudden drop
in energy is also observed for the other excited states. Such behavior serves as an
indication that the employed basis exhibits issues such as linear dependence.

With the choice of a threshold, the natural basis states are

|ΛΓ
λ⟩ =

∑
q′K′

uΓ
λ;q′K′

(nΓ
λ)

1/2
PNPZP J

MK |ϕHFB(q)⟩. (2.49)

Then, the GCM wavefunction in the natural space is

|ΨΓ
σ,GCM⟩ =

∑
λ

GΓ
σ;λ|ΛΓ

σ⟩ (2.50)

and the coeficients GΓ
σ;λ are determined solving the Hill-Wheeler-Griffin (HWG)

equation ∑
λ′

⟨ΛΓ
λ|Heff|ΛΓ

λ′⟩GΓ
σ;λ′ = EΓ

σG
Γ
σ;λ, (2.51)

which is also an eigenvalue problem. In addition to the energies of the GCM states,
the mean value of any given operator can be obtained as

⟨ΨΓ
σ|O|ΨΓ′

σ′⟩ =
∑
λλ′

∑
qKq′K′

GΓ∗
σ;λ

uΓ∗
λ;qK

(nΓ
λ)

1/2
⟨ϕΓ(q)|O|ϕΓ′

(q′)⟩GΓ′

σ′;λ′
uΓ′

λ′;q′K′

(nΓ′
λ′)1/2

. (2.52)
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Among these operators, the electromagnetic transitions and quadrupole moments
can be evaluated to explore the deformations of different GCM states for a given
nucleus.

Finally, the probability of finding the GCM state in one of its HFB states can
be calculated using the collective wave functions

|F Γ
σ (q)|2 = |

∑
Kλ

GΓ
σ;λu

Γ
λ;qK |2. (2.53)

Taurus [47] is a numerical suite that incorporates the complete variational process
outlined in this section. Initially, the quadrupole-constrained HFB wavefunctions
are generated. Then, the projection onto good quantum numbers is carried out.
Finally, the GCM is used to combine the projected HFB functions and generate the
complete 28Si states.



3. Shape coexistence in 28Si

In this section I describe the properties of 28Si employing the nuclear theory tech-
niques discussed in Section 2. The section is organized based on the different collec-
tive structures either observed or proposed in previous works among the low-lying
states of 28Si. These structures include the observed oblate rotational band as-
sociated with the ground state (Section 3.1), the measured prolate rotational band
(Section 3.2), and the potential existence of a superdeformed structure (Section 3.3).

3.1 Ground state and oblate band

The ground state of 28Si cannot be adequately explained by a simplistic spheri-
cal mean-field model, wherein the nucleons occupy the 1d5/2 orbit and the nucleus
adopts a purely spherical shape. By incorporating particles into the 2s1/2 orbit using
the analytical SU(3) model, which takes into account the nearly degenerate 1d5/2-
2s1/2 doublet, significant quadrupole correlations are gained (Q0 = −58.1 e fm2).
These correlations establish the oblate deformation (β ≃ −0.21) as the ground state
in 28Si, which is in agreement with the experimental data [15] as indicated in Table
2.1.

However, to gain further insight in the structure of 28Si I employ state-of-the-art
shell model calculations with an exact diagonalization performed using the AN-
TOINE code [43], and a variational method using the TAURUS suite [21, 47]. Both
methods are implemented within a valence space that encompasses the sd shell
(Figure 2.2) and utilize the USDB interaction [38], which is the established effective
interaction for this space. For electromagnetic properties, I assume the standard
effective nuclear charges for the sd shell: eZ = 1.5e and eN = 0.5e. The inert core
consists of a 16O nucleus, while the remaining 12 particles interact with each other
explicitly within the valence space.

First, I discuss the variational approach to solving the many-body problem. As
I have shown in section 2.3.2, the initial step is to generate a a set of quadrupole-
constrained HFB wavefunctions. The constraints are imposed on the particle num-
bers ⟨Nv⟩ = ⟨Zv⟩ = 6 and the quadrupole parameters (0 ≤ β ≤ 0.27, 0◦ ≤ γ ≤ 60◦)
with spacing of δβ = 0.02 and δγ = 15◦ respectively. In addition, I constrain
⟨Q21⟩ = 0, to be consistent with the definitions of Section 1.2.

Figure 3.1 (left panel) presents the unprojected energy surface. The plot shows
that the absolute minimum energy corresponds to an oblate shape (γ = 60◦). Mean-
while, prolate shapes (γ = 0◦) are energetically disfavoured, even when compared
to spherical shapes (β ≃ 0). Based on these results, the ground state acquires an
oblate deformation with β ≃ −0.24, which aligns with the predictions of the SU(3)
model as well as experimental observations.

However, these HFB wavefunctions mix states with good quantum numbers, thus
requiring projection to obtain well-defined quantum number states. In our basis,

24
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Figure 3.1: Energy surfaces of 28Si in the (β, γ) plane using the USDB interaction
for the unprojected (left) and projected to J = 0 (right) quadrupole-constrained
HFB wavefunctions. Each black circle represents a HFB wavefunction of the mesh.

there are 66 HFB states, and the integrals involving the gauge angles of the particle
numbers, Eq. (2.43), are discretized into 10 points, while those involving Euler an-
gles, Eq. (2.44), are discretized into 16 points. Parity projection is not considered
as all orbits of the sd shell have positive parity. This projection process requires a
day of computation, in contrast to the minutes it takes to obtain the unprojected
HFB basis, making it the computationally most demanding step. During the pro-
jection process, certain states may encounter numerical challenges associated with
the evaluation of involved integrals. In my calculations, I have excluded the HFB
wavefunctions with β = 0.27 and γ = 15◦, 30◦, and 45◦ because they did not contain
any contribution with J = 0.

Figure 3.1 (right panel) shows the results of the energy surface projected to
J = 0. First and foremost, it is important to highlight that the restoration of
symmetries leads to a reduction in the energy of the states [51], by removing artificial
constraints and restoring physical symmetries in the model. The absolute minimum
remains oblate with a similar deformation of approximately β ≃ −0.25, similar to
the unprojected case. However, in the projected results, two additional minima
appear in the prolate region at β ≃ 0.15, with a skew towards γ = 15◦, and at
β ≃ 0.22. When applying projection to J = 0, the spherical state is found to be
energetically more unfavorable.

The final step involves the GCM to perform configuration mixing of the quadrupole-
constrained HFB states. As discussed in Section 2.3.2, it is necessary to find an
orthogonal basis due to the potential presence of linear dependencies among the
considered projected HFB wavefunctions. For this purpose the overlap matrix is
diagonalized following Eq. (2.48). Subsequently, using the orthogonal states re-
ferred to as the natural basis, the HWG equation (2.51) is solved to determine the
eigenvalues and eigenstates. The criterion to determine the threshold for the linear
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Figure 3.2: (Top panel) Energy evolution of the first three 0+ states in 28Si with the
GCM method as the number of included natural states increases using the USDB
interaction. The calculated values using exact diagonalization (Diag.) are indicated
with horizontal lines. (Bottom panel) Energy difference between the GCM and exact
diagonalization as a function of the number of natural states.

independence of the states of the natural basis is determined with the convergence
of the energies. Figure 3.2 (Top) shows the energy of the first three 0+ states of 28Si
with respect to the number of natural states included. My findings indicate that out
of the 63 HFB wavefunctions considered, only 44 form a stable and well-behaved
basis. However, when an additional state is included in the natural basis, the pres-
ence of linear dependencies leads to an energy divergence. The energy convergence
follows a plateau-like pattern, where each state has lower energy than the previous
one since it is a variational approach.

It is important to note that the variational approach is an approximate solution
to the diagonalization of the effective interaction, Eq. (2.23). Therefore, to validate
the results, I have conducted the exact diagonalization of the Hamiltonian using the
ANTOINE code, as described in Section 2.3.1. The energy values for the first three
0+ states obtained from exact diagonalization are also presented in Fig. 3.2. The
difference between the two methods is approximately 1 MeV, which is a reasonable
outcome for a complex nucleus like 28Si. In comparison, I have used 20Ne as a
benchmark for the variational method, where the energy difference between the two
methods is only a few keV. To calculate J ̸= 0 states in the variational approach, I
follow the same procedure with the only difference being that the basis is formed with
(2J + 1) · 63 states, resulting from the projections of the total angular momentum.

As discussed in Section 2.3.2, it is possible to calculate collective wavefunctions,
which indicate the contribution of a given HFB basis state to the mixed wavefunc-
tion, in order to visualize the shape of a GCM state. Fig. 3.3 displays the collective
wavefunctions of the first J = 0, J = 2, and J = 4 states, illustrating the contribu-
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Figure 3.3: Collective wavefunctions of the lowest-energy three states of the oblate
rotational band in 28Si, calculated using the USDB interaction.

tion of specific projected HFB wavefunction to the configuration-mixed state. The
ground state (Jπ

σ = 0+1 ) primarily occupies the region of highest oblate deformation,
with β = −0.27. However, it also exhibits some contribution from the β = 0.15 min-
imum. A comparison of the collective wavefunctions shows that the 0+1 state serves
as the bandhead of an oblate rotational band becomes apparent when examining
the collective wavefunctions of the 2+1 and 4+1 states. This is because they share the
same intrinsic deformation, as discussed in Section 1.1.

In order to provide additional evidence for the existence of this rotational band, I
calculate the B(E2) transition strengths between the states within the oblate band.
The results for the B(E2) transition strengths, obtained using both methods, the
exact diagonaliztation and the variational method, and compared to the experi-
mental values, are presented in Fig 3.4 (blue bands). First and foremost, there is
an excellent agreement between the variational approach and the exact diagonal-
ization method, giving even more confidence in the previous energy. Secondly, the
B(E2) values are large and correspond to β ≈ ±0.23 following Eq. 1.16, where the
USDB interaction slightly overestimates the experimental deformation β ≈ −0.20.
Finally, the ratio B(E2, 4+1 → 2+1 )/B(E2, 2+1 → 0+1 ) = 1.41 is in agreement with the
theoretical one

B(E2, 4+1 → 2+1 )

B(E2, 2+1 → 0+1 )
=

⟨4200|20⟩2

⟨2200|00⟩2
= 1.43,

where I have considered that Q0 is constant in Eq. (1.16), since states of a rotational
band share the same deformation. However, there is a discrepancy in the level
spacing, as the calculated value of Eex(4

+
1 )/Eex(2

+
1 ) = 4.6/1.9 = 2.42, which is

similar to the experimental value, differs from the theoretical prediction for a perfect
rotor of

Eex(4
+
1 )

Eex(2
+
1 )

=
4 · (4 + 1)

2 · (2 + 1)
=

10

3
≃ 3.33,

where Eex(J
π
σ ) = E(Jπ

σ )− E(Jπ
0 ) is the excitation energy of the state.

In regards to the vibrational band, the collective wavefunction of the 0+2 state is
also oblate and centered in β = −0.27. Thus, it is consistent with a β-vibration of
the ground state, as proposed in [16].

To complement these results, I have computed the quadrupole moments of fixed
np-nh configurations with the USDB interaction with the exact diagonalization,
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Figure 3.4: Band structure of the lowest-lying positive parity states of 28Si: left,
experiment [15]; center, calculation using the USDB interaction with the TAURUS
suite and right, calculation using ANTOINE. The arrows indicate in-band B(E2)
transition strengths (e2 fm4), with larger values associated to more deformed shapes.
The labels “vib”, “ND” and “GS” stand for vibrational band, normal deformed band
and ground state, respectively.

indicated in Table 3.1. The 0p-0h configuration is oblate and the remaining ones
are prolate, however the 2p-2h and 8p-8h configurations are not well established
as the intrinsic quadrupole moments extracted from the spectroscopic quadrupole
moments (Eq. 1.14) or from the B(E2, 2+ −→ 0+) (Eq. 1.16) transition strengths
differ. The 0+1 state has a larger deformation Q0,t = ±70.7 and Q0,s = −73.0
than the oblate 0p-0h configuration with Q0,t = ±41.6 and Q0,s = −45.7. This is
corroborated by examining the average occupation numbers of each orbit. For the
0+1 state, the USDB average occupation numbers are approximately 9.32 particles
in the 1d5/2 orbit, 1.25 particles in the s1/2 orbit (30% filled), and 1.43 particles in
the 1d3/2 orbit (15% filled). In contrast, for a spherical state, we would expect all 12
particles to be in the 1d5/2 orbit, and for the 0p-0h configuration of the quasi-SU(3)
scheme, the 1d3/2 orbit should be unoccupied. It is evident that the situation is quite
involved, and the analytical approaches serve as mere approximations to capture the
complexity of the system.

Table 3.1: Quadrupole moments (e fm2) the np-nh configurations in the shell model
numerical calculations. We also present the numerical GS and the possible ND band
results obtained with the USDB interaction.

Numerical 0p-0h 2p-2h 4p-4h 6p-6h 8p-8h GS ND?
Q0t,USDB ±41.6 ±49.4 ±68.2 ±53.9 ±45.2 ±70.7 ±46.6
Q0s,USDB -45.7 16.0 66.4 46.4 9.8 -73.0 31.2
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Figure 3.5: Collective wavefunctions of the first three states of the prolate rotational
band in 28Si, calculated using the USDB interaction.

3.2 Prolate band and modification of the interac-

tion

Moving to the prolate region, the experimental data suggests the presence of a
normal deformed (ND) prolate band, as highlighted in Fig. 3.4. The level spacing
follows a proportionality to J(J + 1) and the measured B(E2) transition strength
from the corresponding 4+ → 2+ states indicates a deformation of β ≈ 0.23. From
the exact diagonalization and GCM calculations with the USDB interaction, I do not
find any B(E2) that matches the experimental result. The ones that most closely
resemble this structure are indicated in red in Fig. 3.4, with B(E2, 4+3 → 2+3 )
values corresponding to a shape with β ≈ 0.15. Although the states follow a band
structure, these states display weak B(E2) values and are slightly higher in energy.

The exact diagonalization and variational approaches suggest the same results,
despite the variational method indicating a marginally lower deformation indicated
by weaker B(E2) transitions and higher energy. To gain insight on the shapes
that correspond to these states, I represent the collective wavefunctions in Fig.
3.5. The Jπ

σ = 0+3 state has most of its contribution coming from the β = 0.23
region. However, the 2+3 and 4+3 states are mainly in the β = 0.15 minimum. This
observation is consistent with the low values of B(E2) transitions, as the 2+3 and
4+3 states exhibit low deformation, and the 0+3 and 2+3 states are situated in distinct
regions. It is worth noting that these three states are the ones that most closely
resemble a prolate-shaped rotational band. The other states present in the spectrum
are excluded either due to lower B(E2) values or their failure to follow the J(J +1)
proportionality. From this discussion, I conclude that the USDB interaction fails at
establishing a well-behaved prolate band.

Based on the analytical SU(3)-based models, we have seen that the 4p-4h prolate
configuration is the most favorable candidate for establishing a ND band. This
conclusion is further supported by the numerical np-nh configurations presented in
Table 3.1 studied with exact diagonalization. In contrast, the 2p-2h configuration
fails to satisfy Q0,s ≈ Q0,t. In order to find what happens to this 4p-4h prolate
configuration |0+4p−4h⟩sd, we can utilize it as a pivot state to initialize the exact
diagonalization of the interaction in the full sd space, observing how it distributes
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convoluted with Gaussians of 200 keV width.

among the resulting mixed states |0+σ ⟩sd:

|0+4p-4h⟩sd =
1

N

∑
σ

S(σ)|0+σ ⟩sd, (3.1)

where N is the normalization factor and S2(σ) is the so-called Lanczos strength
function, which denotes the probability of finding the lowest energy state with fixed
4p-4h configuration in the full sd-shell states. This approach reveals the fragmenta-
tion of the 4p-4h prolate configuration among the diagonalized states, as illustrated
in the top panel of Figure 3.6. The results obtained with the USDB interaction
are shown in the top panel, where the 0+3 state contains about a 10% component
from the 4p-4h configuration. The presence of this component alone is insufficient
to generate a coherent rotational band that can be directly associated with the
experimental observations.

Based on the previous discussion, the 4p-4h prolate configuration does not pro-
duce the expected well-behaved normal deformed band with the USDB interaction,
contrary to what is observed in experimental data. One possible explanation for this
discrepancy is that the increase in correlation energy is insufficient to compensate for
the promotion of four particles from the d5/2-s1/2 doublet to the d3/2 orbit. To favor
the formation of this 4p-4h configuration suggested by the analytical model, which
aligns with the experimental data in terms of deformation, I propose lowering the
energy gap between the d5/2-s1/2 and d3/2 orbits. Specifically, I modify the single-
particle energy of the d3/2 orbit, denoted as ϵ(d3/2), from 2.2 MeV to 0.9 MeV, while
keeping ϵ(d5/2) = −3.9 MeV and ϵ(s1/2) = −3.2 MeV unchanged. The modified in-
teraction leads to a new effective interaction denoted from now on as USDB-MOD.
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Figure 3.7: Band structure of the lowest-lying positive parity states of 28Si: left, ex-
periment [15]; center, calculation using the USDB-MOD interaction with the TAU-
RUS suite and right, using USDB-MOD.

It has no impact on the quadrupole moment of the np-nh configurations presented
in Table 3.1. Instead, it enables the structure to withstand configuration mixing
within the complete sd space. It is worth noting that this change is relatively small,
affecting only ϵ(d3/2) among the three single-particle energies and the 63 two-body
matrix elements that constitute the USDB interaction [38].

By employing the USDB-MOD interaction and conducting an exact diagonaliza-
tion, I have obtained the states shown in Figure 3.7 (right). Notably, the transition
B(E2, 4+3 −→ 2+2 ) now corresponds to 123 e2 fm4, in very good agreement with the
experimental value. Furthermore, the states 0+3 , 2

+
2 , and 4+3 exhibit a clear pro-

portionality to J(J + 1). Due to the modification that reduces the energy cost of
promoting particles to the d3/2 orbit, the prolate band head lies at a lower energy
level compared to the USDB interaction. While the oblate band and its vibra-
tion experience some additional collectivity, their overall properties remain largely
similar to the results obtained with the USDB interaction. Consequently, by lower-
ing the d3/2 orbit, I have successfully established a well-defined prolate band while
introducing only minor alterations to the oblate band and its vibration.

In order to gain a better understanding of the structure of the newly found prolate
band, I conduct a variational calculation using the USDB-MOD interaction. The
resulting energy surfaces, both unprojected and projected to J = 0, are presented in
Figure 3.8. In comparison to the USDB results, the unprojected surface exhibits a
more pronounced oblate minimum, while the prolate region appears to be relatively
flatter. When considering the projected surface, the preference for a spherical shape
diminishes further, and the prolate minimum at β = 0.23 is no longer discernible.

Using the projected HFB states as a basis, I use the GCM to determine the
configuration-mixed eigenstates of 28Si with the USDB-MOD interaction. The con-
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Figure 3.8: Energy surfaces of 28Si using the USDB-MOD interaction for the unpro-
jected (left) and projected to J = 0 (right) quadrupole-constrained HFB wavefunc-
tions. Each black circle represents a HFB wavefunction of the mesh.

vergence of the first three 0+ states is illustrated in Figure 3.9, where the number
of natural states included in the basis is varied. I find that the convergence of these
states is achieved with the inclusion of up to 47 states from the initial 62 projected
HFB states, before encountering any linear dependencies. The convergence pattern
observed in USDB-MOD is similar to that of the USDB interaction, demonstrating
a favorable agreement with exact diagonalization, as shown in Fig. 3.7.

By computing the GCM states, I am able to determine the collective wavefunc-
tions, which provide insight into the observed enhancement of collectivity indicated
by the increased B(E2) transition strengths. In Figure 3.10, the collective wavefunc-
tions of the 0+3 , 2

+
2 , and 4+3 states belonging to the normal deformed prolate band

are presented. The 0+3 bandhead primarily resides in the β ≈ 0.3 region, indicating a
larger deformation compared to the USDB result with β ≈ 0.23. Subsequently, the
2+2 state mixes with both the β ≈ 0.25 region and incorporates some contribution
from the β = 0.17 minimum. On the other hand, the 4+3 state exhibits reduced
deformation as it primarily resides in the β = 0.17 minimum, although it retains a
significant component from the β ≈ 0.25 region. Overall, this band demonstrates a
progressive decrease in deformation as J increases. However, it is noteworthy that
the deformations obtained with the USDB-MOD interaction are larger than those
obtained with USDB, and the enhanced transition from 4+3 to 2+2 is justified within
these results. These findings are consistent with the complementary information
obtained from the analysis of the USDB-MOD interaction with exact diagonaliza-
tion. The bottom panel of Fig. 3.6 shows that the 0+3 state of the full sd shell space
acquires nearly double the component of the |0+4p-4h⟩sd fixed configuration. This ad-
ditional probability is significant and supports the formation of a normal-deformed
prolate band, which was not observed with the non-modified USDB interaction.
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Figure 3.9: (Top panel) Energy evolution of the first three 0+ states in 28Si with the
GCM method as the number of included natural states increases using the USDB-
MOD interaction. (Bottom panel) Energy difference between the GCM and exact
diagonalization as a function of the number of natural states.
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Figure 3.10: Collective wavefunctions of the first three states of the oblate rotational
band in 28Si, calculated using the USDB-MOD interaction.

3.3 Superdeformation

In sections 3.1 and 3.2 I have discussed how the oblate rotational band, vibra-
tional band, and prolate rotational band, which exhibit normal deformations, can
be effectively described within the sd shell. However, the use of this valence space
limits on the available deformations among the states of 28Si. Fig. 3.11 shows the
deformation parameter value of different np-nh prolate configurations. The analyti-
cal (d5/2-s1/2) + d3/2 prescription reaches a maximum deformation of approximately
β ≈ 0.3 at 4p-4h (orange line), which falls short of producing a superdeformed state.
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Figure 3.11: Deformation parameters (β) and the intrinsic quadrupole moment (Q0)
for prolate states achieved using different SU(3) variations and numerical calcula-
tions.

Therefore, to reach more extreme deformations, the inclusion of orbitals from the
pf shell becomes necessary. The formation of superdeformed bands by promotion
of particles from the sd shell to the pf shell is a phenomenon that has been found
in 40Ca [8], 36Ar [3], 40Ar [13, 14], 44Ti [7] among others, and suggested for 28Si [16]
even though it has not been found experimentally despite some recent efforts [19].

We can begin our exploration by considering the SU(3) limit, which encompasses
the sd and pf shells. In this limit, all orbits within the same major shell are assumed
to have degenerate energies. The deformations resulting from promoting n particles
from the sd shell to the pf shell are as follows: β = 0.32, 0.45, 0.57, 0.61, 0.67 for
n = 0, 2, 4, 6, 8, as shown by the red crosses in Fig. 3.11. Within this framework,
promoting 2 particles is nearly sufficient to reach a superdeformed state. However,
it is important to note that the SU(3) limit is not realistic due to the assumption of
energy degeneracy among the orbits.

As the previous deformations are overestimated, I seek for a more realistic model
that can accurately predict the relevant configurations of np-nh configurations that
may form a superdeformed band. Based on my previous analysis of the sd shell,
the nearly degenerate doublet of (d5/2-s1/2) orbitals contributes significantly to the
deformation in the sd shell. Considering that promoting particles to the d3/2 orbit
does not yield sufficient deformation, it is likely that these particles occupy states
within the pf shell instead. As a result, the d3/2 orbital is expected to contain only
a small fraction of particles. The primary source of deformation within the pf shell
arises from the quasi-SU(3) orbits, specifically the (f7/2-p3/2) orbitals. These orbits
are closer in energy to the sd shell, as illustrated in Figure 2.1. This observation
is further supported by Figure 3.11, where the difference between the blue squares
representing the sd + pf shells and the red crosses representing only the sd shell
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with the inclusion of (f7/2-p3/2) orbits is relatively small.
Thus, the key orbits that play a significant role in determining the deformation

are the quasi-SU(3) orbits within the sd and pf shells, forming the dsfp ≡ (d5/2-
s1/2)+(f7/2-p3/2) valence space. The deformations of the np-nh configurations within
this space are indicated in green times symbols in Fig. 3.11. Notably, promoting
2 particles to the (f7/2-p3/2) orbits results in a deformation similar to promoting 4
particles to the d3/2 orbit, both yielding a deformation of approximately β ≈ 0.3.
The most significant enhancement in deformation, compared to their respective
previous configurations, is observed in the 2p-2h and 4p-4h configurations within the
(f7/2-p3/2) orbits, yielding an increase in deformation of approximately ∆β ≈ 0.2.
Considering that the promotion of particles across a major shell incurs a high single-
particle energy cost, it is anticipated that the np-nh configurations with n ≥ 6 will
be less relevant, as the marginal increase in deformation, ∆β ≈ 0.05, is outweighed
by the associated energy cost. Therefore, I expect that the superdeformed (SD)
state should be composed of the 4p-4h configuration in the dsfp space. The 2p-2h
configuration cannot be considered a SD shape since its β < 0.5. Another advantage
of the dsfp valence space is that, besides capturing the physics of deformation, exact
diagonalization is still manageable (dim ≈ 1·1010). In contrast, the complete sd+pf
space is not feasible due to its enormous dimension (dim ≈ 1 · 1012) resulting from
the combinatorial growth of the many-body basis, as described by Eq. (2.26).

Given the change in the valence space from the sd shell in Sections 3.1 and 3.2
(using the USDB interaction) to the sd+pf shells, a different effective interaction is
required. However, finding an interaction specifically tailored for 28Si in the sd+ pf
space proves challenging, as most interactions are either designed for nuclei with a
filled d5/2 orbit or assume a neutron-rich composition. Consequently, I have opted to
employ the SDPF-NR interaction [52], which was developed for neutron-rich silicon
isotopes such as 34,35Si.

In the sd+ pf space, the single-particle energies of the orbits are given in Table
3.2. Notably, there is a substantial energy gap between the d3/2 and f7/2 orbits,
indicative of a major shell closure. Additionally, the f7/2, p3/2, and f5/2 orbits are
nearly degenerate in energy. To perform the calculations, I reduce the space from
sd+pf to sd+(f7/2-p3/2) for the exact diagonalization. Excluding the p1/2 orbit is
justified due to its energy being approximately 4 MeV higher than the rest of the
pf shell orbits. Moreover, the f5/2 orbit can be neglected since, for quadrupole
properties, the dominant contribution arises from the quasi-SU(3) f7/2-p3/2 orbits.

The deformations associated with the np-nh configurations in the sd+(f7/2-p3/2)
valence space are shown in Fig. 3.11 in cyan asterisks. The agreement with the dsfp
scheme, in green times symbols, is noticeable, even though the exact diagonalization
includes the d3/2 orbit. This supports that the 4p-4h configuration provides the best
candidate for the formation of a superdeformed state.

Table 3.2: Single-particle energies (SPE) of the orbits in the sd + pf space for the
SDPF and SDPF-4MeV interactions. The SPE of the sd-shell orbits correspond to
those of the USDB interaction.

SPE d5/2 s1/2 d3/2 f7/2 p3/2 f5/2 p1/2

SDPF-NR (MeV) -3.699 -2.915 1.895 6.220 6.314 6.479 10.950
SDPF-4MeV (MeV) -3.699 -2.915 1.895 2.220 2.314 2.479 6.950
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Figure 3.12: Probability (%) of finding the lowest energy state with fixed 2p-2h
and 4p-4h configuration in the full sd+(f7/2-p3/2) states |0+σ ⟩sdfp with the SDPF-NR
interaction. Each eigenstate is convoluted with Gaussians of 200 keV width.

Following the same strategy as in Section 3.2, we can use the np-nh configurations
as a pivot state to perform an exact diagonalization in the full sd+(f7/2-p3/2) space

|0+np-nh⟩sdfp =
1

N

∑
σ

S(σ)|0+σ ⟩sdfp. (3.2)

Figure 3.12 illustrates the Lanczos strength function of the 2p-2h and 4p-4h con-
figurations using the SDPF-NR interaction. The former primarily resides at an
excitation energy of approximately 19 MeV, while the latter exhibits some fragmen-
tation in the region around 30 MeV, with a width of 1 MeV.

The approximate single-particle cost of promoting these particles can be esti-
mated by considering the gap between the d3/2 and f7/2 (or p3/2) orbits, which is
almost 10 MeV. For the 2p-2h configuration, the excitation energy is nearly 2 times
this value, approximately 19 MeV. Meanwhile, for the 4p-4h configuration, the ex-
citation energy lies around 10 MeV lower than expected, which can be attributed to
the increased quadrupole correlations resulting from its high deformation. However,
it is important to remark that due to its significantly higher energy, the Lanczos
strength function for the 4p-4h configuration is not fully converged in energy.

Then, if the SD band is dominated solely from a pure np-nh configuration, my
calculations predict that the 2p-2h configuration would appear at 19 MeV, and the
4p-4h configuration at 30 MeV in my calculations. However, this result is in contrast
with the findings of the study on superdeformation in 28Si [19], where a structure
with 4 particles promoted to the pf -shell yields a superdeformed bandhead at 13
MeV (β ≈ 0.6). The 4p-4h structure I find is less deformed (β ≈ 0.5) and lies much
higher in energy than the one found in the aforementioned study.

In order to identify a superdeformed state within the full sd+(f7/2-p3/2) space,
it would be necessary to compute the |0+σ ⟩sdfp states as well as the |2+σ ⟩sdfp states,
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Figure 3.13: Probability (%) of finding the lowest energy state with fixed 2p-2h and
4p-4h configuration in the full sd+(f7/2-p3/2) states |0+σ ⟩sdfp with the SDPF-4MeV
interaction. Each eigenstate is convoluted with Gaussians of 200 keV width.

since they are required for calculating the B(E2) transitions and the spectroscopic
quadrupole moments Qspec. However, considering an energy of Eexc ≤ 15 MeV, this
would involve calculating fully converged states with σ ≃ 10 for both J+

σ . This
calculation is extremely computationally demanding within such space. Therefore,
an alternative approach is needed.

The variational approach proves to be more convenient in this case. Once the
projection onto good quantum numbers of the HFB states is performed, which is
computationally the most demanding step, the solution of the HWG equation (2.51)
enables the computation of any |0+σ ⟩ state. Computing these states is enough to lo-
cate the SD states, as we can identify the SD states with the collective wavefunctions.
However, as σ increases, the variational approach provides a poorer approximation
to the exact diagonalization. To address this limitation, it is helpful to artificially
modify the interaction such that higher deformation states appear at lower energies
in the spectrum. This can be achieved by reducing the single-particle energies of the
pf -shell orbits. The modification I employ, referred to as SDPF-4MeV, is presented
in Table 3.2. The chosen adjustment in single-particle energies corresponds to a re-
duction of 4 MeV, which is the maximum energy that maintains the pf shell above
the sd-shell orbits without altering them. However, since the modification strongly
favors states with pf -shell excitations, these configurations may mix with lower en-
ergy states. Figure 3.13 displays the strength functions, Eq. (3.2), of the same 2p-2h
and 4p-4h configurations using the SDPF-4MeV interaction. With this modifica-
tion, the gap between the d5/2 and f7/2 decreases from approximately 10 MeV to
6 MeV. Consequently, the 2p-2h configuration shifts from 19 MeV to 12 MeV, and
the 4p-4h configuration moves from 30 MeV to 15 MeV, albeit fragmenting among
several states. Additionally, the 2p-2h configuration also contributes to the ground
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Figure 3.14: Energy surfaces of 28Si using the SDPF-NR (left) and the SDPF-4MeV
(right) interaction for the unprojected quadrupole-constrained HFB wavefunctions.
Each black circle represents a HFB wavefunction of the mesh.

state due to the artificial energy modification I have introduced. Nevertheless, the
results are consistent with the ones from the non-modified SDPF-NR interaction.
These results suggest that the SD structure does not survive configuration mixing.
In particular, the analysis strongly disfavors the appearance of the SD band below
15 MeV.

We can also examine the impact of the SDPF-NR and SDPF-4MeV interactions
on the unprojected HFB surfaces in the sd+(f7/2-p3/2) space, as shown in Figure
3.14. Both panels show that the absolute minimum remains in the oblate region
with a deformation of approximately β ≈ −0.25, which is consistent with the results
obtained using the USDB interaction shown in Figure 3.1. This indicates that the
inclusion of pf -shell orbits does not significantly alter the physics of the previously
described states within the sd shell. However, the addition of pf -shell orbits enables
higher deformations in the prolate region, from approximately β ≈ 0.3 to β ≈ 0.5.
These results support the capability of the SDPF-NR interaction to accommodate
highly deformed states using the SDPF-NR and SDPF-4MeV interactions. The
only difference is that the modified SDPF-4MeV interaction shows a smaller energy
range between the minimum and maximum values compared to the original SDPF-
NR interaction. This reduction in range is a result of the decreased single-particle
energy required to promote particles to the pf shell.

By performing projection onto good quantum numbers and employing the GCM
method to mix the states, I can examine the collective wavefunctions of the SD
states in the sd+(f7/2-p3/2) space using the SDPF-4MeV interaction. Figure 3.15
highlights the notable prolate structures in the spectrum. Starting with the 0+3
state at an excitation energy of Eex = 7.22 MeV, this state exhibits a moderate
deformation with β ≈ 0.3, similar to the prolate bandhead obtained with the USDB-
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Figure 3.15: Collective wavefunctions of selected 0+ states with prolate deformation
in 28Si in the sd+(f7/2-p3/2) space, calculated using the SDPF-4MeV interaction.

MOD interaction in Figure 3.10. Furthermore, this state is predominantly contained
within the sd shell, with only a fraction of 0.5 out of 12 particles promoted to the
pf -shell orbits. This suggests that it corresponds to the equivalent of the ND prolate
bandhead from USDB using the SDPF-4MeV or SDPF-NR interaction, as the pf -
shell orbits play a negligible role in this state. Although not shown, the 0+1 and 0+2
states can also be associated with their respective USDB counterparts for the oblate
and vibrational bandheads based on their deformations and occupation patterns.
This provides further evidence that the SDPF-NR or SDPF-4MeV interaction is
well-suited to describe 28Si.

The lowest energy state exhibiting significant deformations is the 0+5 state at
12.5 MeV, predominantly composed of the β = 0.4 and γ = 0.15◦ projected HFB
state. The occupation numbers of pf -shell orbits in this particular HFB state are
approximately nf7/2 ≈ 2 and np3/2 ≈ 1, totaling 3 particles in the pf shell. Likewise,

the 0+7 state at 14.4 MeV displays a deformation of β = 0.45 and γ = 0.15◦, with
4 particles occupying the pf -shell. Although these states may exhibit properties
resembling SD states in 28Si, it is important to consider the impact of the modified
interaction used. The states obtained with the SDPF-4MeV interaction already
appear at 12.5 and 14.4 MeV, falling within the energy range expected for SD
states in 28Si according to previous studies [16]. However, if we naively add the
single-particle energy cost of 4 MeV/particle due to the reduced d5/2-f7/2 gap in
the SFPF-4MeV interaction, compared to the original SDPF-NR one, the 0+5 state
would be placed at 24 MeV and the 0+7 state at 28.5 MeV. This supposition is merely
qualitative, as the states obtained through configuration mixing would differ, since
the energy of the projected HFB states in the high deformation region would be
higher and thus less favorable on average. Therefore, according to my calculations,
it appears unlikely that a low-lying SD state exists in 28Si within the energy range of
Eex ≲ 15 MeV. Instead, a more realistic view is to suppose that the configurations
with particles in the pf shell mix with less deformed states of the sd shell, as
suggested by the fragmentation in Fig. 3.13, and the mixed sd-pf nature of the 0+5
state in Fig. 3.15.

Finally, I have performed a GCM calculation in the full sdpf space, considering
all orbits of the sd and pf shells. This calculation is only possible within the
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Figure 3.16: Collective wavefunctions of selected prolate states in the full sdpf space
using the SDPF-4MeV interaction.

variational approach, as the exact diagonalization is unfeasible. With the inclusion
of the additional pf -shell orbits, the deformations that can be reached increase from
β ≈ 0.5 to β ≈ 0.6. This observation aligns with my previous analysis of Fig. 3.11,
as the predominant source of deformation in the pf shell arises from its quasi-SU(3)
orbits.

Figure 3.16 presents the collective wavefunctions of the 0+2 state at 2.8 MeV
and the 0+8 state at 15 MeV. The 0+2 state exhibits a deformation of approximately
β ≈ 0.35 at an unusually low energy of only 2.8 MeV. The corresponding projected
HFB state with β ≈ 0.35 contains 3 particles distributed among the pf -shell orbits.
This state is likely an artifact arising from the modification of the interaction. Be-
cause the single-particle energy cost of pf shell excitations is greatly reduced, this
state captures additional correlations that brings it too low in energy, compared to
any experimental state. When searching for a genuine superdeformed (SD) state,
the 0+8 state at 15 MeV emerges as the only candidate. It exhibits a deformation
characterized by β = 0.45 and γ = 0.15◦. However, a similar issue arises as observed
in the analysis of the sd+(f7/2-p3/2) space. The energy at which the 0+8 state appears
is too high to be considered as a candidate for the formation of low-lying SD states
in 28Si.

In sum, the results obtained from the fixed np-nh calculation indicate that the
formation of superdeformed (SD) structures solely from pure np-nh configurations
extending to the pf shell is unlikely in the 10 − 15 MeV energy region. This con-
clusion is further supported by the GCM calculations, which also show no evidence
of such SD structures at low energy. Due to the significant energy cost associated
with promoting particles to the pf -shell, it is more likely that the mixing of these
states with normal-deformed configurations would give rise to moderately deformed
states within the the 10-15 MeV energy range rather than SD states.



4. Conclusions and Outlook

In this study, I focus on investigating shape coexistence in the nucleus 28Si. The
oblate rotational band and its corresponding vibration is successfully reproduced
by diagonalizing the effective USDB interaction within a valence space consisting
of the sd shell. Two methods, exact diagonalization and a variational approach,
are employed yielding excellent agreement not only with each other but also with
experimental data.

However, the rotational prolate band is not accurately reproduced with the
USDB interaction. Guided by Elliott’s SU(3)-variants, I find that the promotion
of four particles from the d5/2-s1/2 nearly-degenerated orbits to the d3/2 orbit is
compatible with the experimental prolate band. Therefore, I introduce a reduction
in the single-particle energy of the d3/2 orbit, denoted as USDB-MOD, to favor this
configuration. With the implementation of the USDB-MOD effective interaction, a
rotational prolate band in agreement with the experimental data is obtained, while
the band structure of the oblate rotational and vibrational bands is preserved.

The work also examines the potential formation of superdeformed structures at
higher energies. According to Elliott’s SU(3) schemes, it is established that the in-
clusion of the pf shell is necessary to achieve highly deformed states with β ≥ 0.3.
The primary contributions to deformation originate from the quasi-SU(3) orbits of
the pf -shell, the f7/2 and p3/2 orbits. Considering the significant energy required
to promote particles to the pf shell, it is concluded that the 4p-4h configuration,
with β ≈ 0.5, is the most promising candidate for a superdeformed structure. Previ-
ous studies have suggested the existence of superdeformed (SD) states in the energy
range of 10-15 MeV. However, my calculations using the exact diagonalization of the
SDPF-NR interaction for fixed np-nh configurations show that the 2p-2h and 4p-4h
states are located at approximately 20 and 30 MeV, respectively. The 4p-4h state
also exhibits fragmentation among the states in the full sd+(f7/2-p3/2) space. Al-
though the variational approach reveals potential almost superdeformed structures,
their excitation energies are also too high. Consequently, the numerical calculations
in this study suggest that the superdeformed state would mix with normal-deformed
configurations. My results strongly disfavor that 28Si exhibits a distinct superde-
formed band.

This study suggests several avenues for future research. Firstly, for the low-lying
states of 28Si, a more sophisticated modification of the USDB interaction can be
considered, focusing on adjusting the monopoles, the part of the two-body interac-
tion related to the effective evolution of the single-particle energies, instead of solely
modifying the single-particle energy of the d3/2 orbit. This approach may lead to a
more precise description of the coexisting band structures observed in the nucleus.
Additionally, the investigation of the hexadecapole moment of the ground state, as
recently measured [53], presents an opportunity for further exploration, testing the
theoretical predictions. Examining this observable can provide deeper insights into

41
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the nuclear structure of 28Si. Regarding the superdeformed (SD) states, a thorough
analysis can be conducted by diagonalizing the non-modified SDPF-NR interaction.
This would enable a more comprehensive understanding of the configuration mixing
between the normal-deformed and superdeformed states.

These avenues of research have the potential to enhance our understanding of
nuclear structure and provide valuable insights into the properties of 28Si and other
nuclei. For instance, the analysis employed in this study can be extended to other
nuclei, particularly those that have been proposed to exhibit superdeformed struc-
tures, such as 32S. An extensive analysis similar to that conducted for 28Si can be
carried out for these nuclei, providing valuable insight into their nuclear properties
and the possible presence of superdeformation driven by nucleons in the sd and pf
shells.
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12. Rodŕıguez-Guzmán, R., Egido, J. & Robledo, L. Properties of the predicted
superdeformed band in 32S. Physical Review C 62, 054308 (2000).

13. Taniguchi, Y. et al. Triaxial superdeformation in 40Ar. Physical Review C 82,
011302 (2010).

14. Yang, Y.-C., Liu, Y.-X., Sun, Y. & Guidry, M. Superdeformed band in the
N=Z+4 nucleus 40Ar: A projected shell model analysis. The European Physical
Journal A 54, 1 (2018).

15. Endt, P. Supplement to energy levels of A= 21–44 nuclei (VII). Nuclear Physics
A 633, 1 (1998).

16. Taniguchi, Y., Kanada-En’yo, Y. & Kimura, M. Cluster structures and su-
perdefomation in 28Si. Physical Review C 80, 044316 (2009).

17. Mayer, M. G. On closed shells in nuclei. II. Physical Review 75, 1969 (1949).

18. Haxel, O., Jensen, J. H. D. & Suess, H. E. On the “magic numbers” in nuclear
structure. Physical Review 75, 1766 (1949).

43

https://www.sciencedirect.com/science/article/abs/pii/S0146641021000922
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.88.064313
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.85.2693
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.85.2693
https://www.sciencedirect.com/science/article/pii/S0370269310002054
https://www.sciencedirect.com/science/article/pii/S0370269310002054
https://www.sciencedirect.com/science/article/abs/pii/0370269372901335
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.062501
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.062501
https://journals-aps-org.sire.ub.edu/prc/abstract/10.1103/PhysRevC.61.064314
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.75.054317
https://www.sciencedirect.com/science/article/pii/S0370269320306584
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.86.064308
https://www.sciencedirect.com/science/article/abs/pii/0375947486903891
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.62.054308
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.82.011302
https://link.springer.com/article/10.1140/epja/i2018-12651-x
https://link.springer.com/article/10.1140/epja/i2018-12651-x
https://www.sciencedirect.com/science/article/abs/pii/S0375947497006131
https://www.sciencedirect.com/science/article/abs/pii/S0375947497006131
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.80.044316
https://journals.aps.org/pr/abstract/10.1103/PhysRev.75.1969
https://journals.aps.org/pr/abstract/10.1103/PhysRev.75.1766.2


19. Morris, L. et al. Search for in-band transitions in the candidate superdeformed
band in 28Si. Physical Review C 104, 054323 (2021).

20. Greiner, W., Maruhn, J. A., et al. Nuclear models (Springer, 1996).

21. Bally, B., Sánchez-Fernández, A. & Rodŕıguez, T. R. Symmetry-projected
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33. Barrett, B. R., Navrátil, P. & Vary, J. P. Ab initio no core shell model. Progress
in Particle and Nuclear Physics 69, 131 (2013).
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