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Chapter 1

Brief introduction to quantum
computing

Nowadays, quantum computing is of great interest because of its advantages over
classical computing due to its potential to overcome current classical supercomputers
in the simulation of many-body systems. Next, we will explore the key distinctions
between the components employed in quantum computing and classical computing.

1.1 Basic of quantum computing

In classical computing, the bit is used as the main element, which can be either
in state 0 or in state 1. In quantum computing, however, the main element is the
quantum bit or qubit. The qubit, unlike the classical bit, corresponds to a linear
combination between two states, state |0⟩, and state |1⟩ [1]

|ψ⟩ = α|0⟩+ β|1⟩, (1.1)

being |0⟩ and |1⟩ the computational basis states, which are represented as

|0⟩ =
[
1
0

]
|1⟩ =

[
0
1

]
. (1.2)

In this manner, a qubit can be found in a continuum set of possible states between
|0⟩ and |1⟩.

In the case of bits, we can easily determine whether they are in state 0 or 1
by examining them, and the measurement always yields a definite result with a
probability of 1. However, the situation is different for qubits. According to the
principles of quantum mechanics, measurements of qubits involve a probabilistic
aspect. When we measure a qubit, it can collapse into either the state |0⟩ or the
state |1⟩ with probabilities of |α|2 and |β|2 respectively. In this manner, α and β
have to satisfy

|α|2 + |β|2 = 1. (1.3)

Given the normalization condition of Eq. (1.3), we can write a qubit state as
follows, ignoring a exp (iγ) factor that represents a global phase of the state |ψ⟩
which is irrelevant for the measurement,

|ψ⟩ = cos

(
θ

2

)
|0⟩+ exp (iφ) sin

(
θ

2

)
|1⟩. (1.4)
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Figure 1.1: Bloch sphere, obtained from [1]. Every qubit, Eq. (1.1), represented by
angles θ, φ, Eq. (1.4), corresponds to a vector in a coordinate space (with axes x,
y, z) with origin in the center of the sphere and end on its surface.

Hence, to visualize them geometrically, we can represent with a sphere, called Bloch
sphere, all the possible states of a qubit in terms of the parameters θ and φ, to
visualize them geometrically. Fig. (1.1) represents the Bloch sphere.

In the case that we had two bits in a classic computer, we would have four
possible states: 00, 01, 10, and 11. Likewise, in the case of having a two-qubit
system, it can be written as a superposition

|ψ⟩ = α00|00⟩+ α01|01⟩+ α10|10⟩+ α11|11⟩, (1.5)

with |00⟩, |01⟩, |10⟩, and |11⟩ the computational basis state of two qubits. Analo-
gously to the case of having only one qubit, when we measure the state of the two
qubits system, we will obtain one of the computational basis states with a probability
of |α00|2, |α01|2, |α10|2 and |α11|2 respectively, with the normalization condition,

|α00|2 + |α01|2 + |α10|2 + |α11|2 = 1. (1.6)

Furthermore, in a two-qubit system, it is possible to measure the state of one of
the qubits. For example, measuring the first qubit we obtain |0⟩ with a probability

Pq1→|0⟩ = |α00|2 + |α01|2, (1.7)

and we obtain |1⟩ with a probability

Pq1→|1⟩ = |α10|2 + |α11|2. (1.8)

In the case that we observe |0⟩, the remaining state corresponds to the superposition

|ψ′⟩ = α00|00⟩+ α01|01⟩√
|α00|2 + |α01|2

. (1.9)

In contrast, if we measure for the first qubit the state |1⟩, the state of two qubits
will collapse to

|ψ′′⟩ = α10|10⟩+ α11|11⟩√
|α10|2 + |α11|2

, (1.10)
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since the states after measurement have to be normalized.
After measuring the first qubit, we have the option to perform a second mea-

surement on the second qubit. For example, if we observe the state |1⟩ on the first
qubit, which occurs with a probability of Eq. (1.8), and subsequently have the state
|ψ′′⟩, the probability of obtaining the state |0⟩ on the second qubit is given by

Pq2→|0⟩ =
|α10|2

|α10|2 + |α11|2
. (1.11)

By multiplying these probabilities, Eq. (1.8) and Eq. (1.11), we can recover the
probability of obtaining the state |10⟩, which is |α10|2.

Therefore, we can extend this concept to systems with multiple qubits. If we
have nq qubits, the system corresponds to 2nq computational basis states, resulting
in an exponential increase of the number of the classical states with a linear increase
in the number of quantum qubits. As a result, in a quantum computer, even with a
small number of qubits, we can access states that would require a large number of
classical bits in a classical computer. This fundamental characteristic of quantum
computing provides a significant advantage over classical computing when it comes
to information storage.

1.2 Quantum gates

In the case of classical computing, logic gates are used to manipulate information.
For a single bit, there is the NOT gate as an example. A NOT gate acts on a bit that
is at 0, it will become 1, but if it was at 1 it will become 0. In quantum computing,
analogously, there is a gate that changes the states |0⟩ for |1⟩ and |1⟩ for |0⟩, so if we
have a qubit in an arbitrary state such as the expression in Eq. (1.1), after passing
through the gate, the qubit is transformed into the state

X|ψ⟩ = α|1⟩+ β|0⟩. (1.12)

This gate, represented as X, can be defined as an operator, which can be written
as a matrix in the computational states basis on a single qubit as

X ≡
[
0 1
1 0

]
, (1.13)

and fulfills

X

[
α
β

]
=

[
β
α

]
. (1.14)

There are different gates, mapped into quantum mechanics operators, that act
on a single qubit and can be represented by 2×2 matrices. To maintain the nor-
malization condition, Eq. (1.3), which guarantees the conservation of probability,
operators must be unitary, so they must meet the following condition:

U †U = I, (1.15)

with U an arbitrary operator and I the identity matrix, in the same dimensions as
U .
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Figure 1.2: Controlled-NOT gate representation, obtained from [1], acting on the
two-qubit system |AB⟩. While qubit |A⟩ stays the same, an X gate acts on qubit
|B⟩, since |A⟩ corresponds to the control qubit and |B⟩ to the target qubit.

Two widely used single-qubit gates correspond to the Z gate and the Hadamard
gate, H. The operator Z corresponds to

Z ≡
[
1 0
0 −1

]
, (1.16)

which leaves the state |0⟩ untouched and changes the state |1⟩ by −|1⟩,

Z

[
α
β

]
=

[
α
−β

]
. (1.17)

The Hadamard gate corresponds to

H ≡ 1√
2

[
1 1
1 −1

]
, (1.18)

which turns the state |0⟩ into
|0⟩+ |1⟩√

2
, (1.19)

and turns the state |1⟩ into
|0⟩ − |1⟩√

2
. (1.20)

In a general state, the transformation performed by the Hadamard gate can be
described as follows

H

[
α
β

]
=

1√
2

[
α + β
α− β

]
. (1.21)

For classical computing, several gates act on multiple bits. The most used are
the OR, AND, and XOR gates. For quantum computing, the main multi-qubit gate

Table 1.1: A two-qubit state before (In) and after (Out) applying the CNOT oper-
ator.

In Out
|00⟩ |00⟩
|01⟩ |01⟩
|10⟩ |11⟩
|11⟩ |10⟩
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Figure 1.3: Controlled-U gate representation, obtained from [1]. The main difference
compared to the CNOT gate shown in Fig. (1.2), where there is only one target qubit
(|B⟩), is that in this case, the target qubits are represented with multiple lines before
and after the U operator. Also, the operator applied is U instead of X.

corresponds to the controlled-NOT (CNOT). Fig. (1.2) represents the action of a
CNOT gate on a two-qubit system, one of which corresponds to the control qubit
and the other to the target qubit. The control qubit is untouched, while the X
operator acts on the target qubit only if the control qubit is on the state |1⟩. Then
the transformations are represented in Table 1.1. Considering the first qubit as the
control qubit, the CNOT gate can be represented as a matrix:

UCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (1.22)

By applying the H gate and then the CNOT gate to the states of the compu-
tational basis of two qubits, we obtain a set of correlated states known as the Bell
states. These states hold great significance in the field of quantum computation
due to their various applications, one of which involves using them in circuits for
quantum state teleportation. The different Bell states are given in Table 1.2.

Likewise, one can build a generalized multi-qubit controlled-U gate, represented
in Fig (1.3), with U being any operator applicable to a qubit. In this way, the

Table 1.2: Computational basis states (first column) and the Bell states (second
column) resulting from applying the Hardmard and the CNOT gate to the compu-
tational basis states.

In (computational) Out (Bell)

|00⟩ |00⟩+|11⟩√
2

≡ |β00⟩

|01⟩ |01⟩+|10⟩√
2

≡ |β01⟩

|10⟩ |00⟩−|11⟩√
2

≡ |β10⟩

|11⟩ |01⟩−|10⟩√
2

≡ |β11⟩
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controlled-U operator applied on a system of qubits can be written as

UCU =

[
I 0
0 U

]
. (1.23)

This gate leaves the first qubit corresponding to the control qubit invariant while
applying the U operator to the target qubits if the control qubit is in the state |1⟩.
Finally, to represent the measurement of a qubit, we use a meter symbol as shown
in Fig. (1.4).

Figure 1.4: Quantum circuit symbol for single qubit measurement, obtained
from [1]. The two lines after measurement refer to a bit and not a qubit, since
the state has collapsed, with M being the measured state.

1.3 Quantum circuits and algorithms

A quantum circuit is constructed using a collection of gates, which are depicted on
separate lines. Each line corresponds to a different qubit that needs to be prepared.
It is important to note that the circuit is read from left to right, indicating the
temporal progression. Furthermore, every circuit includes at least one measurement,
as measurements are necessary to extract physical information from the system. In
nowadays implementations, the initial state preparation involves cooling atoms to
their motional ground state and hyperfine ground state [1].

One of the primary objectives of quantum computing is to explore and create
new algorithms that surpass the capabilities of classical algorithms. In recent years,
an algorithm called the Variational Quantum Eigensolver (VQE) has been developed
using quantum circuits [2]. VQE utilizes the variational principle, using an ansätze
and classical optimization [3], to compute the ground state energy of a given Hamil-
tonian. This kind of problem is important in various physical applications like to
mimic the complexity of the internucleon interactions [4] or show 24O as the drip line
nucleus of the oxygen chain [5]. Subsequently, other more sophisticated algorithms
have been developed, such as the ADAPT-VQE algorithm [6].

Most recently, an innovative algorithm called the rodeo algorithm has emerged,
offering a significant advancement in quantum computing. Unlike other variational-
based algorithms that are limited to finding only the ground state energy or the first
excited state [7], the rodeo algorithm can be used to find all the eigenenergies of a
quantum system [8]. This is a major advance considering the importance of finding
excited states in nuclear physics [9]. In addition, with this algorithm, information
can also be obtained on the corresponding squared amplitudes, probabilities, of each
of the eigenvectors in a reference state considered, which can give us information
about the nuclear structure and transitions, in case we deal with realistic nuclear
systems. Therefore, this algorithm can be very useful, among other branches, for
the study of nuclear physics.
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The rodeo algorithm involves the preparation of a quantum state and the de-
termination of an energy spectrum to identify eigenenergies within that spectrum,
as well as the probabilities of measuring these eigenenergies for the reference state.
This is done by filtering the state [10]. Unlike traditional quantum algorithms, the
rodeo algorithm incorporates temporal evolution along with auxiliary qubits called
ancilla qubits [11]. Initial testing of the rodeo algorithm has been carried out using
simple Hamiltonians like the Heisenberg model. However, our work focuses on ap-
plying this algorithm to a realistic Hamiltonian for the 6Li nucleus, opening up new
possibilities for the study of nuclear physics.

In the following sections, we present a theoretical framework for the rodeo circuit.
Our objective is to conduct a detailed study to determine the optimal parameters
required in the circuit, minimizing computational effort while obtaining the desired
energies and probabilities. Additionally, we have developed an algorithm specifically
designed to identify both the eigenenergies and probabilities of interest for a specific
state and Hamiltonian, focusing on the case of 6Li nuclei. We use a phenomenological
state-of-the-art Hamiltonian that describes 6Li well within the framework of the
nuclear shell model. By comparing the results obtained with our implementation
of the rodeo algorithm with the exact values obtained by the diagonalization of the
Hamiltonian, we aim to validate the effectiveness and accuracy of our algorithm.



Chapter 2

Rodeo Algorithm

In this chapter, we introduce the rodeo circuit, which encompasses a set of gates
along with their corresponding functions. Furthermore, we derive probability ex-
pressions for the expected results of the measurements of the qubits involved, that
enable us to examine how these probabilities change in response to the various pa-
rameters employed within the circuit. The primary objective of the circuit is to
determine the eigenenergies of the Hamiltonian of a system, based on filtering the
possible results of an energy measurement of a given reference state. The circuit is
designed to manipulate the quantum state in such a way that it provides insight into
the eigenenergies of interest, enabling us to study and analyze the energy spectrum
of the system.

2.1 Rodeo circuit

Fig. (2.1) shows the general diagram of the rodeo circuit. The circuit requires N
ancilla qubits, all of them in the state |1⟩, in addition to an initial or reference state
|ψI⟩, which can be decomposed into eigenstates of the Hamiltonian of which we
would like to obtain its eigenvalues. The auxiliary qubits are additional qubits used
in the circuit that do not correspond to any specific physical state of study. They
serve as intermediate computational resources to enable certain quantum operations
or transformations within the circuit. Initially to each of the ancilla qubits, we apply
the Hardmard gate, which consists of applying the operator H, given in matrix form
in Eq. (1.18).

Then, the controlled-U gate is applied to the subspace of the first ancilla qubit
and the |ψI⟩ state (|1⟩⊗ |ψI⟩), where U is the time evolution operator, exp (−iHobjt1),
Hobj the Hamiltonian of the system state |ψI⟩, and t1 the time at which the time
evolution operator is applied. This gate is equivalent to making the time operator
act to the |ψI⟩ state, only if the ancilla qubit is in state |1⟩, so it is equivalent to
the operator

exp (−iHobjt1) [|1⟩ ⊗ |ψI⟩] =
[
I 0
0 exp (−iHobjt1)

]
, (2.1)

where I is the identity matrix, in the same dimensions as state |ψI⟩, and we use
ℏ = 1. To maintain consistency with the units of energy, we will express the times
tn in units obtained by dividing ℏ by the units we are using for energy. Next, the
phase rotation gate, P (Et1), is applied to the same ancilla qubit. This corresponds

9
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Figure 2.1: Rodeo algorithm circuit, obtained from [8]. For a detailed explanation
of all parts of the circuit see the text.

to multiplying by the phase exp (iEt1) if the qubit is in the state |1⟩ and leaving
the qubit untouched if it is in the state |0⟩. Here the E parameter, corresponding
to energy values, is appropriately chosen by us. Thus, the operator acting on the
subspace of the first ancilla qubit and the state |ψI⟩ (|1⟩ ⊗ |ψI⟩) corresponds to

P (Et1) [|1⟩ ⊗ |ψI⟩] =
[
I 0
0 exp (iEt1)

]
. (2.2)

In the rodeo circuit, the same operations are applied to each ancilla qubit using the
individual time tn, with each time corresponding to a distinct rodeo cycle. Following
these operations, the circuit applies the Hadamard gate to each ancilla qubit and
then measures their states.

The initial subspace before measuring the ancilla qubits, |1⟩⊗|ψI⟩, after applying
the aforementioned gates, corresponds to the entangled state resulting from the
combined operations on the ancilla qubits and the initial state |ψI⟩:

|1⟩ ⊗ |ψI⟩
Rodeo−−−→

1√
2

[
1 1
1 −1

] [
I 0
0 exp (iEtn)

] [
I 0
0 exp (−iHobjtn)

]
1√
2

[
1 1
1 −1

] [
0

|ψI⟩

]

=

[( I
2
− 1

2
exp (−itn[Hobj − E])

)
|ψI⟩( I

2
+ 1

2
exp (−itn[Hobj − E])

)
|ψI⟩

]
.

(2.3)

Therefore, the probability that an ancilla qubit n is in state |1⟩, represented as Pn,
is

Pn = ⟨ψI |
∣∣∣∣( I

2
+

1

2
exp (−itn[Hobj − E])

)∣∣∣∣2 |ψI⟩

= ⟨ψI | cos2
(
tn(Hobj − E)

2

)
|ψI⟩,

(2.4)

corresponding to the conjugate product of the projected resultant state in the state
of ancilla qubit |1⟩. Writing the state |ψI⟩ in the eigenvector basis Hobj, we arrive
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at the following expression

Pn =
∑
i

ci
2 cos2

(
tn(Eobj i − E)

2

)
, (2.5)

being ci the projections of the |ψI⟩ state on each eigenvector,

|ψI⟩ =
∑
i

ci|Eobj i⟩, (2.6)

and Eobj i the eigenvalues of Hobj,

Hobj|Eobjı⟩ = Eobj i|Eobjı⟩, (2.7)

where i runs through all Hobj eigenvalues. After NC rodeo cycles, corresponding to
considering the evolution of NC ancilla qubits with the initial state |ψI⟩, the final
state just before measuring each ancilla qubit and projecting all the ancilla qubits
onto the state |1⟩, can be expressed as:

⟨1| ⊗ ...⊗ ⟨1| ⊗ I
[
|1⟩ ⊗ ...⊗ |1⟩ |ψI⟩

Rodeo−−−→
]

(
I
2
+

1

2
exp−it1[Hobj − E]

)
...

(
I
2
+

1

2
exp−itNC

[Hobj − E]

)
|ψI⟩.

(2.8)

Thus, the probability that NC ancilla qubits are in state |1⟩, represented as PNC
,

corresponds therefore to

PNC
= ⟨ψI |

NC∏
n=1

cos2
(
tn(Hobj − E)

2

)
|ψI⟩, (2.9)

and in the eigenvector basis of Hobj, it corresponds to

PNC
=

∑
i

ci
2

NC∏
n=1

cos2
(
tn(Eobj i − E)

2

)
. (2.10)

Considering Eq. (2.10), we can anticipate that the probability of obtaining all ancilla
qubits in the |1⟩ state, denoted as PNC

, will be proportional to the square of the
coefficient PNC

= c2i when the energy is one of the eigenenergies E = Eobj i, since
the maximum value of the cosine is one. Furthermore, as we move away from
the eigenenergies, the probability of obtaining all ancilla qubits in the |1⟩ state is
expected to decrease.

In a quantum computer, rather than dealing with probability expressions directly,
we measure the final state of the ancilla qubits. Based on this measurement, we can
calculate the probability of obtaining all the ancilla qubits in the state |1⟩ by dividing
the number of ancilla qubits observed in the state |1⟩ by the total number of ancilla
qubits, NC .

When dealing with a small number of ancilla qubits, this approach provides
limited information. To mitigate this limitation, we can perform the rodeo cycle
multiple times, NC , and average the probabilities obtained. For example, if we
consider three cycles of the rodeo circuit and perform the circuit once, we may
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observe 0, 1, 2, or 3 ancilla qubits in the state |1⟩. Consequently, the resulting
probabilities obtained using this single measurement would be 0, 1

3
, 2

3
, or 1.

To obtain more accurate probabilities, we can repeat the circuit multiple times,
Nav, with the same number of cycles and average the probabilities obtained from
each run. By increasing the number of repetitions, we can obtain a more reliable
estimation of the probabilities associated with the desired outcome.

2.2 Analysis of rodeo algorithm

To effectively implement the rodeo algorithm on a quantum computer, it is crucial to
optimize the circuit parameters. This optimization serves to improve result accuracy
and reduce computational effort. In the upcoming sections, we explore the impact of
various timing configurations on the performance of the rodeo circuit. By studying
and analyzing different timing schemes, we aim to identify strategies that enhance
the circuit’s efficiency and overall effectiveness.

To begin the analysis of the rodeo algorithm, let us consider a simple Hamiltonian
in arbitrary units (A.U.), represented by 2×2 matrix, that we use throughout the
section, as an example:

Hobj =

[
4 −1
−1 3

]
. (2.11)

The choice of a symmetric matrix is significant because it corresponds to a real
Hamiltonian since in quantum mechanics, physical observables are represented by
Hermitian operators, which have real eigenvalues. This Hamiltonian has two eigen-
values, λ± = 7±

√
5

2
, λ1 ≃ 4.618, λ2 ≃ 2.382, that we find by diagonalizing the matrix.

By doing so we also obtain the eigenvectors.

2.2.1 Choice of times tn

Eq. (2.10) indicates that the probability of obtaining the state |1⟩ in NC ancilla
qubits depends on the times, tn, associated with the time evolutions of the Hamil-
tonian and the phase rotation in each rodeo cycle. As an initial approach, we can
employ a constant time throughout the entire rodeo cycle.

Constant times

First, we choose for the |ψI⟩ reference state each of the eigenvectors of the Hamil-
tonian in Eq. (2.11) and calculate the probability of obtaining |1⟩ in each of the
ancilla qubits considered by taking different numbers of cycles, NC , for different
energy values E. Fig. (2.2) shows the probabilities of finding all the states of the
ancilla qubits |1⟩ for different energies, for each of the eigenvectors of the Hamilto-
nian, Eq. (2.11). For each color, and therefore for each eigenvector, we expect to
find a probability of 1, PNC

= 1, when the energy is the eigenenergy, and we expect
to see it decrease as we move away from the eigenenergy, so we expect to see only
one peak corresponding to its eigenenergy. However, Fig. (2.2) features more than
one peak for each color.

These spurious energy values identified by the rodeo algorithm in Fig. (2.2) can be
understood because the expression of the probability, Eq. (2.10), is proportional to a
cosine squared. Therefore, in addition to the peak due to the energy corresponding
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Figure 2.2: Rodeo cycle probability for different number of cycles, NC = 3,6,9,12
as a function of the energies E (in A.U.)., taking as reference the state |ψ1⟩, the
eigenvector associated to Eobj1 ≃ 4.618 (blue) and |ψ2⟩, the eigenvector associated
to Eobj2 ≃ 2.382 (orange), for the Hamiltonian in Eq. (2.11). The value of the
times used for each cycle corresponds to tn = 2. The vertical solid lines correspond
to the energy eigenvalues, in red for Eobj1 and in green for Eobj2. The dashed
lines correspond to energies associated to each reference state with probability = 1
without being the eigenenergies.

to the eigenenergy, there are other peaks which appear due to the periodicity of the
cosine. In fact, for each eigenvector as reference state, the probability of the rodeo
cycle is 1, the maximum, for the energies that fulfill the following expressions:

cos2
(
tn(Eobj i − E)

2

)
= 1,

→ E = Eobj +
2πk

tn
,

(2.12)

where k is an integer. In Fig. (2.2), the first blue peak is due to the energy E =
Eobj1−π (k = −1) represented with a dashed red line. The second peak is due to the
eigenenergy E = Eobj1 (k = 0) represented with a solid red line and the third peak
is due to the energy E = Eobj1+π (k = 1), represented with a dashed red line, since
we have considered tn = 2. Indeed, the probability on a broader energy range shows
more peaks corresponding to the different integers k of the Eq. (2.12). Likewise,
Fig. (2.2) shows spurious peaks associated with eigenvalue λ2 = 2.382, represented
by the orange peaks with dashed green lines. The true eigenvalue is given by the
orange peak with a solid green line. Fig. (2.2) also highlights that using more cycles
of the rodeo algorithm, the peaks become narrower, making it easier to distinguish
the maximum probability energies of each peak.

Using a general state as a reference state, as described by Eq. (2.6), which can
be expressed in terms of the eigenvector basis, we can expect the rodeo algorithm
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Figure 2.3: Same as Fig. (2.2), but taking the reference state |ψI⟩ =
√
0.5|Eobj1⟩ +√

0.5|Eobj2⟩. The height of the solid lines corresponds to the probability of finding
a given eigenenergy when measuring the reference state.

to exhibit peaks in the probability distribution corresponding to each eigenvalue of
energy. These peaks are expected to occur around Eobj± 2πk

tn
, where k represents an

integer and only k = 0 corresponds to the true eigenvalue. Figs.(2.3) and (2.4) shows
the rodeo probability using a reference state ψI =

√
0.5|Eobj 1⟩ +

√
0.5|Eobj 2⟩ and

ψI =
√
0.9|Eobj 1⟩ +

√
0.1|Eobj 2⟩, respectively. As anticipated, both figures exhibit

the expected behavior, with the maximum probability of each peak is given by c2i .
Additionally, we observe in Figs.(2.3) and (2.4) that for a smaller number of

cycles, such as NC = 3, it becomes challenging to distinguish closely located peaks
as they tend to overlap. This overlap occurs because the peaks become broader
when the number of cycles is reduced, as also observed in Fig (2.2). This effect is
more pronounced when there are more distinct differences in probabilities, as shown
in Fig. (2.4), where only the highest peak is distinguishable due to its significantly
higher probability.

Uniform/Gaussian distribution times

To address the issue of spurious peaks caused by using constant times in the rodeo
algorithm, we can employ random times instead. By introducing randomness in the
timing configurations, we aim to mitigate the undesirable effects and improve the
accuracy in identifying the eigenenergies of the Hamiltonian.

We calculate the average probability analytically of obtaining the state |1⟩ on
a single ancilla qubit, denoted as n, considering the case where random times are
utilized. The analytical expression for this average probability depends on the ran-
dom time distribution. Thus the expression Eq. (2.5) using the analytical average
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Figure 2.4: Same as Fig. (2.2), but taking the reference state |ψI⟩ =
√
0.9|Eobj1⟩ +√

0.1|Eobj2⟩. The height of the solid lines corresponds to the probability of finding
a given eigenenergy when measuring the reference state.

for random numbers takes the expression:

⟨Pn⟩ρ(tn) =

〈∑
i

ci
2 cos2

(
tn(Eobj i − E)

2

)〉
tn→ρ(tn)

=
∑
i

ci
2

∫
dtn cos

2

(
tn(Eobj i − E)

2

)
ρ(tn),

(2.13)

where ρ(t) is the density function of the probability distribution. The calculation of
the average probability of obtaining the state |1⟩ on a single ancilla qubit involves a
summation over all eigenenergies and an integral of the squared cosine term, which
accounts for the contribution of the random times, with respect to the distribution
density of the random numbers at those times. Using a uniform distribution

ρU(ta, tb) =
1

tb − ta
, (2.14)

where all times between ta and tb have the same probability of occurrence, the
average probability of obtaining the n qubit ancilla in the state |1⟩ corresponds to:

⟨Pn⟩ρU (ta,tb)
=

∑
i

ci
21

2

[
1 +

sin ((Eobj i − E)tb)− sin ((Eobj i − E)ta)

(tb − ta)(Eobj i − E)

]
. (2.15)

Sinusoidal terms appear considering uniform distribution. After NC cycles of the
rodeo algorithm, the probability of obtaining the NC qubits ancilla in the state |1⟩,
considering each cycle independent respect the others, is

⟨PNC
⟩ρU (ta,tb)

=
∑
i

ci
2 1

2NC

[
1 +

sin ((Eobj i − E)tb)− sin ((Eobj i − E)ta)

(tb − ta)(Eobj − E)

]NC

.

(2.16)
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Figure 2.5: Rodeo probability average for NC = 1,3,6 and 9 rodeo cycles, for different
values of energy (in A.U.) taking the reference state |ψI⟩ =

√
0.5|Eobj1⟩+

√
0.5|Eobj2⟩

for the Hamiltonian of Eq. (2.11). Random times are used with uniform distribution
U(µ, σt) in Eq. (2.14), dashed line, and Gaussian distribution G(µ, σt) in Eq. (2.19),
solid line. The distributions are centered in µ = 0 for different values of the standard
deviation, σt = 2 in red and σt = 5 in green. The vertical solid lines correspond to
the energy eigenvalues, in blue for Eobj1 and in orange for Eobj2, and their height
represents the probability of measuring such energy for |ψI⟩.

Eq. (2.16) is obtained by taking the product of the probabilities for each cycle,
corresponding to Eq. (2.15), raised to the power of NC , given the overall probability
of obtaining the desired outcome across all cycles of the rodeo algorithm.

Now taking ta = −tb for symmetry, we can rewrite this expression in terms of

the standard deviation of the density, σt =
√∫

(t− µ)2ρ(t)dt, and its average value,

µ =
∫
tρ(t)dt, with µ = 0 in our case of symmetric initial and final times. The final

expression is

⟨PNC
⟩ρU (0,σt)

=
∑
i

ci
2 1

2NC

[
1 +

sin
(
(Eobj i − E)

√
3σt

)
(Eobj i − E)

√
3σt

]NC

. (2.17)

The term 1
2NC

represents the initial probability contribution for each eigenstate.
Meanwhile, the expression

sin
(
(E{obj i − E)

√
3σt

)
(Eobj i − E)

√
3σt

, (2.18)

incorporates the effect of the energy difference between the eigenvalue Eobj i and the
reference energy E, modulated by the standard deviation σt of the random time
distribution.

In addition, we calculate also the probability to get the NC ancilla qubits in the



2.2. ANALYSIS OF RODEO ALGORITHM 17

0.00

0.25

0.50

0.75
Pr

ob
ab

ilit
y

NC = 1 NC = 3

2 3 4 5
Energy

0.00

0.25

0.50

0.75

Pr
ob

ab
ilit

y

NC = 6

2 3 4 5
Energy

NC = 9 G(0,2)
U(0,2)
G(0,5)
U(0,5)
Eobj1, c2

1 = 0.9
Eobj2, c2

2 = 0.1

Figure 2.6: Same as Fig. (2.5) but taking taking the reference state |ψI⟩ =√
0.9|Eobj1⟩+

√
0.1|Eobj2⟩.

state |1⟩, but considering this time a Gaussian distribution:

ρG(t, µ, σt) =
exp

(
− (t−µ)2

2σ2
t

)
√
2πσt

, (2.19)

for the times tn. We can write the expression in terms of the standard deviation of

the density, σt =
√∫

(t− µ)2ρ(t)dt, and its average value, µ =
∫
tρ(t)dt,

⟨PNC
⟩ρG(µ,σt)

=
∑
i

ci
2 1

2NC

[
1 + exp

(
−σ

2
t

2
(Eobj i − E)2

)
· cos ((Eobj i − E)µ))

]NC

.

(2.20)
Considering times following a Gaussian distribution, we see that exponential terms
appear, instead of the sinusoidal terms that appear when considering a uniform
distribution, in Eq. (2.17). Taking also the centered time value µ = 0 for symmetry,
we finally obtain:

⟨PNC
⟩ρG(0,σt)

=
∑
i

ci
2 1

2NC

[
1 + exp

(
−σ

2
t

2
(Eobj i − E)2

)]NC

, (2.21)

where the cosine term disappears for this case. The rodeo probability expressions for
obtaining NC ancilla qubits in the state |1⟩ with a uniform distribution of times and
a Gaussian distribution of times centered at 0, µ = 0, share similar structures. In
the case of a uniform distribution, the probability expression gives rise to sinusoidal
behavior. On the other hand, when using a Gaussian distribution, the probability
expression involves exponential terms.

Fig. (2.5) and (2.6) illustrate the average probability of obtaining all NC ancilla
qubits in the state |1⟩ using two different reference states: |ψI⟩ =

√
0.5|Eobj 1⟩ +√

0.5|Eobj 2⟩ and |ψI⟩ =
√
0.9|Eobj 1⟩ +

√
0.1|Eobj 2⟩, respectively. The dashed lines
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Figure 2.7: Same as Fig. (2.5) but taking taking the reference state |ψI⟩ =√
0.8|Eobj1⟩+

√
0.2|Eobj2⟩ and using Gaussian distributions with µ = 2 and standard

deviation σt = 0.5 (red) and σt = 0.1 (green).

represent the results obtained using a uniform distribution of times (U), while the
solid lines depict the results with a Gaussian distribution of times (G). Each color
corresponds to a different standard deviation, σt, for the distributions.

In both figures, it is evident that additional spurious peaks no longer appear,
and the only peaks observed correspond to the eigenenergies. This aligns with the
expected behavior based on the derived analytical expressions for the probabilities.
For the uniform distribution, the presence of oscillations near the peaks and their
absence far from the peaks is consistent with the sinusoidal contribution in the
analytical expression, Eq. (2.17). In contrast, the Gaussian distribution exhibits no
oscillations due to the exponential nature of the function in the analytical expression,
Eq. (2.19), which decays without oscillatory behavior.

The magnitude of these oscillations decreases as the number of cycles increases.
Additionally, as for the constant times, the width of the peaks reduces as the number
of cycles increases, indicating improved resolution. The width of the peaks is also
influenced by the standard deviation σt, with narrower peaks observed for larger
values of σt, as the green peaks (σt = 5) are narrower as the red peaks (σt = 2).

Another important aspect that stands out compared to the case in which the
times tn are constant, is that the average probability is not zero far from the peaks,
there is a baseline probability that tends to a constant value. Nonetheless, as the
number of rodeo cycles increases, this constant value is closer and closer to zero.
Also, we note that the maximum probability of each peak does not correspond
exactly to the projection of the state we are considering into each eigenvector of
the Hamiltonian, c2i , but is overestimated. Again the probability becomes more and
more similar to the exact value as the number of cycles increases.

This baseline probability different from zero, combined with the oscillations dis-
cussed in the previous paragraph, results in the fact that for a small number of
cycles, the oscillations on the average probability using a uniform probability can be
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confused with another peak due to an eigenvalue. For this reason, in the following
we use random times with a Gaussian distribution for a better resolution.

Gaussian distributed times with small standard deviation

In Fig. (2.7), we present the average probability of obtaining all NC ancilla qubits
in the state |1⟩ using the reference state |ψI⟩ =

√
0.8|Eobj 1⟩ +

√
0.2|Eobj 2⟩. The

probability is calculated with a Gaussian distribution of random times with a small
standard deviation and a mean of µ = 2.

We observe the reappearance of additional spurious peaks for the same eigen-
value. This behavior arises due to the random times becoming increasingly close to
each other, which effectively simulates the behavior seen with constant times. As
the times converge, the probability distribution exhibits peaks that are similar to
those observed when using constant times. Therefore, to avoid these spurious states
when using a Gaussian distribution for the times tn, the standard deviation of the
distribution needs to be sufficiently large.

To visualize these peaks clearly, in Fig. (2.7) the random times have been centered
around µ = 2 units instead of µ = 0. This adjustment is made to prevent the
probability from tending towards 1 as the times approach 0, which would make the
peaks difficult to discern.

2.2.2 Rodeo algorithm using random Gaussian times

As established in the previous section, Gaussian random times offer a more accurate
approach for identifying the eigenenergies of a system compared to uniform random
times or constant times. Therefore, in the following sections, we utilize Gaussian
random times to achieve more precise results in the rodeo algorithm.

In the context of quantum computing, where the purpose is to determine the
eigenenergies of a system, it is important to note that we do not have prior knowl-
edge of these eigenenergies. As a result, we cannot rely on the average probability
calculated based on known eigenvalues as we have used in section 2.2.1 for the av-
erage of the probabilities following a distribution for random times. Instead, in this
section we directly utilize the probability expression, Eq. (2.9), choosing the times
using a Gaussian distribution centered at µ = 0.

By employing Gaussian random times centered at µ = 0, we can explore the
probability landscape and analyze the behavior of the rodeo algorithm to effectively
identify the eigenenergies of the system. This approach allows us to leverage the
potential of quantum computing to simulate and solve complex problems related to
eigenenergy determination.

In this manner, without an average over the random times we therefore take the
following expression as the probability in the rodeo cycle:

(PNC
)tn→G(0,σt)

=

NC∏
n

∑
i

[
ci

2 cos2
(
tn(Eobj i − E)

2

)]
tn→G(0,σt)

. (2.22)

In Fig. (2.8), we represent the probability of obtaining all the ancilla qubits in
the state |1⟩ using random times drawn from a Gaussian distribution, as given by
Eq. (2.22), for various numbers of rodeo cycles considered in the circuit. In the
Figure, an eigenvector has been taken as a state to observe only one peak. The
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Figure 2.8: Same as Fig. (2.7) but for NC = 3,6,9,12 and the reference state |ψI⟩ =
|Eobj1⟩. The probabilities are given with color circles instead the lines in Fig. (2.7)
because we are representing rodeo probability using unaveraged random times from
Eq. (2.21), instead of the analytical expression corresponding to the average of the
Gaussian distribution from Eq (2.22).

figure demonstrates that the obtained spectra exhibit dispersion or noise, which
can make it challenging to resolve the individual peaks, especially when a smaller
number of cycles, such as NC = 3, is considered.

Increasing the number of cycles, NC , proves beneficial to mitigate the effects of
noise and improve peak resolution. As shown in Fig. (2.8), the noise diminishes
and the peaks become more distinct as NC increases. This noise reduction occurs
irrespective of the standard deviation of the Gaussian distribution for the random
times.

Additionally, Fig. (2.8) emphasizes that the width of the peak decreases when
both the standard deviation of the random Gaussian times distribution and the num-
ber of rodeo cycles, NC , are increased. This reduction in width indicates improved
resolution and precision in identifying the eigenenergies.

To mitigate the noise and enhance the accuracy of the probability estimates, an
alternative approach is to repeat the rodeo algorithm multiple times with different
sets of random times, and then average the resulting probabilities. By performing
this averaging procedure with a sufficiently large number of repetitions, we can
expect to recover the probability distributions depicted in Fig. (2.5) and (2.6), as
derived analytically. Averaging the rodeo probability Nav times yields the following
expression for the probability, represented as PNC

,

(PNC
)tn→G(0,σt) =

∑Nav

n

∏NC

n

∑
i ci

2
[
cos2

(
tn(Eobj i−E)

2

)]
tn→G(0,σt)

Nav

. (2.23)

Fig. (2.9) visualizes this approach, showing the probability distributions obtained
from averaging the rodeo probability over Nav repetitions. In this Figure, we take
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Figure 2.9: Same as Fig. (2.8) for a reference state |ψI⟩ = |Eobj1⟩ and NC = 2,4,6,8
and Gaussian distribution centered in µ = 0 and standard deviation σt = 1. The
probabilities are result of no averaging (blue), averaging 10 times (orange), averaging
100 times (green), and the analytically average probability in the dashed red line.

as the reference state |ψI⟩ = |Eobj1⟩ as we want to observe only one peak in order
to better observe the effects, and we show the probability taken different values for
the rodeo cycle. As the number of repetitions increases, the probability distribution
converges to the analytical expression Eq. (2.21) that was initially expected.

To calculate the parameters that define the peaks observed in the previous fig-
ures, where we consider the probability of the rodeo algorithm using random times
following a Gaussian distribution, Eq. (2.21), we can leverage the analytical func-
tion since it corresponds to the average probability. Using the analytically averaged
functions with random Gaussian times centered at 0, we can estimate the baseline
value, bl, which represents the probability that the rodeo algorithm tends to con-
verge to for energies far from the eigenenergies. Additionally, we can determine the
width of the peak as a function of the number of rodeo cycles, NC , and the standard
deviation σt of the Gaussian times distribution.

For simplicity, we use one of the eigenvectors as a reference state to have only
one peak in the spectrum. To estimate the peak width, we make an approximation
by fitting the analytical function for random times with a Gaussian distribution
centered at µ = 0 to a Gaussian function. Assuming only one peak we approximate

(PNC
)G(σ,0) =

1

2N

[
1 + exp

(
−σ

2
t

2
(Eobj − E)2

)]NC

≃ bl + a · exp
(
−(Eobj − E)2

2σ2

)
.

(2.24)

In this way, we estimate the parameter σ which represents the width of the peak of
the probability distribution. We have made the approximation that the sum of a
constant and a Gaussian function raised to the power of the number of cycles can
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Figure 2.10: Baseline probability, bl, estimate as a function of the number of cycles,
NC , taking the reference state |ψI⟩ = |Eobj1⟩ for the Hamiltonian of Eq. (2.11).
The average rodeo probability is obtained using random times with a Gaussian
distribution centered in µ = 0 with σt = 50. The solid line represents the fit to the
function bl = 1

bNC
.

be approximated by the sum of a constant, bl, and a Gaussian function with height
a. This approximation allows us to simplify the analytical expression and obtain a
more manageable form for further analysis and interpretation.

The fitting function Eq. (2.24) also provides an estimation of the baseline prob-
ability, which corresponds to the probability far away from the peak. In Fig. (2.10),
we illustrate the estimated baseline for different numbers of rodeo cycles, NC , and
various values of σt, representing the standard deviation of the random times sam-
pled from a Gaussian distribution centered at µ = 0. Fig. (2.10) considers the rodeo
probability for energy values far away from the eigenenergy considered.

Remarkably, the baseline estimation does not depend on the value of σt but
solely on the number of cycles, NC . We estimate the baseline for different values of
NC ranging from 1 to 12 and fit the data to the function:

bl =
1

bNC
, (2.25)

As shown in Fig. (2.10), we obtain a very good fit, which gives the estimate

b = 1.99998± 0.00003. (2.26)

This value is very close to the theoretical expression Eq. (2.25), where b = 2,

bl =
1

2NC
. (2.27)

The close agreement between the fitted value and the theoretical expectation re-
inforces the validity of the analytical framework. Considering the theoretical basis
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Figure 2.11: Width, σ, as a function of NC obtained fitting Eq. (2.29) to the simu-
lation of the rodeo algorithm at fixed σt. We take the reference state |ψI⟩ = |Eobj1⟩
for the Hamiltonian of Eq. (2.11). Each color corresponds to a different σt value
used for random times. Solid line correspond to the fits σ = σ̃NC

1√
NC

.

we have developed, we find that for NC cycles of the rodeo algorithm, the average
probability of obtaining energies far from any eigenvalues can be approximated as:

bl = lim
|E|≫|Eobj |

1

2NC

[
1 + exp

(
−σ

2
t

2
(Eobj − E)2

)]NC

→ 1

2NC
, (2.28)

where the limit of the exponential term vanishes because its argument becomes very
large and negative. This expression is in good agreement with the results obtained
from the fitting of the simulation data, confirming the consistency between the
theoretical analysis and the results of the rodeo algorithm simulation.

Knowing the value of the baseline, bl = 1
2NC

, and since the maximum probability
of the peak for a state corresponding to an eigenvector is 1, we can rewrite Eq. (2.24)
into the following fit function:

(PNC
)G(σt,0)

≃ a · exp
(
−(Eobj − E)2

2σ2
t

)
+ bl

=

(
1− 1

2NC

)
exp

(
−(Eobj − E)2

2σ2

)
+

1

2NC
.

(2.29)

For the general case where the reference state is not an eigenvector, and c2 can be
any probability, between 0 and 1, the expression to be approximated by a Gaussian
function would be

(PNC
)G(σt,0)

≃ c2
(
1− 1

2NC

)
exp

(
−(Eobj − E)2

2σ2

)
+

1

2NC
. (2.30)
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Figure 2.12: Width, σ, as a function of NC obtained fitting Eq. (2.29) to the simu-
lation of the rodeo algorithm at fixed σt. We take the reference state |ψI⟩ = |Eobj1⟩
for the Hamiltonian of Eq. (2.11). Each color corresponds to a different NC used in
rodeo circuit. Solid line correspond to the fits σ = σ̃σt
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According to Ref. [11], the width of each peak that we see in the Figures where
we represent the rodeo probability concerning energies is

σ = σ̃
1

σt
√
NC

, (2.31)

where σ̃ is a constant. In the following, we test this relationship and find the
proportional parameter, σ̃.

First, we take the parameter σt constant and we fit the width, σ to the function

σ = σ̃NC

1√
NC

. (2.32)

for a different number of cycles. In Fig. (2.11) we show the fit for different values of
σt. We adjust for NC > 4, since NC ≤ 3, as we can see in the Figure, the behavior
deviates from the expected relation, indicated with a dashed line. However, from 5
to 12 cycles, and 0.5 < σt < 50, corresponding to the parameters we have taken for
the fit, the behaviours fits well to the expression in Eq. (2.32).

Then, we study the dependence of the width, σ, with the standard deviation, σt.
We keep the number of cycles NC constant and we fit the width of the peak to

σ = σ̃σt

1

σt
, (2.33)

for different values of NC . Fig (2.12) shows that this expression fits very well the
results for the parameters considered, from 1 < NC < 11, and from 0.5 < σt < 50.

To determine the constant of proportionality, σ̃, we multiply the respective con-
stant of proportionality, σ̃NC

and σ̃σt , by appropriate factors. In the first case, we
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multiply σ̃NC
by

√
σt, and in the second case, we multiply σ̃σt by NC . For the first

case, we obtain the values listed in Table 2.1, providing an average value for the
proportionality constant of 1.472± 0.007. The error is determined as the maximum
value among the error in all the data points and the average. For the second case,
we observe a slight deviation from the expected behavior for NC < 4, as seen in
Fig. (2.12). Therefore, we exclude these values when calculating the average. The
results are presented in Table 2.2, yielding an average value of 1.48 ± 0.01 for the
constant of proportionality.

Considering both sets of values, we take the average of ⟨σ̃⟩ = 1.48± 0.02, where
the error is the sum of the individual errors. Consequently, we can express the
deviation corresponding to the width of each peak as

σ = 1.48 · 1

σt
√
NC

. (2.34)

Table 2.1: Values of σ̃NC
· √σt estimated with the fits in Fig. (2.11).

σt σ̃NC
· √σt δ(σ̃NC

· √σt)
0.5 1.471 0.003

1 1.471 0.003

2 1.471 0.003

5 1.471 0.003

10 1.471 0.003

20 1.471 0.003

50 1.475 0.007

Table 2.2: Values of σ̃σt ·NC estimated with the fits in Fig. (2.12).

NC σ̃σt ·NC δ(σ̃σt ·NC)

1 1.478 0.001

3 1.455 0.001

5 1.469 0.001

8 1.474 0.001

11 1.55 0.01

2.2.3 Optimization of the rodeo circuit

In a real quantum computation, selecting appropriate parameters and design fea-
tures is crucial to achieve efficient calculations and obtain the desired resolution.
In this section, we estimate the minimum requirements necessary to ensure the de-
sired results, specifically focusing on energy resolution and the minimum probability
associated with each peak.
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Energy interval, baseline probability and peak description

The first parameter we have to fix is the energy interval we want to examine. Our
goal is to search the eigenvalues of a Hamiltonian matrix, eigenenergies. Knowing
the matrix elements of the Hamiltonian matrix, we can employ the Gershgorin circle
theorem [12]. This theorem gives us an energy interval for the eigenvalues:

λi ≤ aii +Ri,

λi ≥ aii −Ri,
(2.35)

with the assumption the Hamiltonian is real. Here, λi are the eigenvalues,

Ri =
∑
j ̸=i

|aij|, (2.36)

and aij are the elements of the Hamiltonian matrix, where the sub-index i, j run
through all the rows and columns. Therefore, we take the minimum, min(aii −Ri),
and maximum, max(aii + Ri), values to choose the interval energy to ensure that
the energy range is sufficiently wide to capture all eigenvalues.

The other parameters we have to optimize are the number of cycles, NC , the
standard deviation of the Gaussian distribution of random times, σt, the number of
energies E, NE, where we evaluate the probability, and the number of times we do
the NC cycles for the same energy and we average over them, Nav.

First, we can use NC to fix the baseline probability we want to achieve, consid-
ering that it only depends on this parameter. The baseline has to be sufficiently
low to distinguish the peaks, so it has to be smaller than the maximum probability
(c2i ) of the peaks we want to evaluate, but not much more to avoid using much com-
puting time. Fixed NC , we can fix the number of energies, NE, required to ensure
sufficient peak width. It is crucial to have enough data points within each peak to
accurately distinguish and characterize them. We can take as a parameter the num-
ber of minimum points required in the peak area, Np. Considering the expression,
Eq. (2.34), assuming a Gaussian peak width of 4σ, where σ is the standard deviation
of the Gaussian distribution, we can establish the following condition, being ∆E the
interval energy between two energies,

Np∆E ≥ 4 · 1.48√
NC σt

. (2.37)

We can rewrite the expression in terms of the total number of energy values, NE,
and the total interval energy, max(aii +Ri)−min(aii −Ri), being

∆E =
max(aii +Ri)−min(aii −Ri)

NE + 1
. (2.38)

With Eqs. (2.37) and (2.38) we can rewrite the minimum energies, NE necessary in
the total interval energy:

NE =
(max(aii +Ri)−min(aii −Ri)) ·NP ·

√
NC · σt

4 · 1.48
+ 1. (2.39)

Indeed, as indicated in Eq. (2.39), the number of minimum energies required in-
creases with the number of rodeo cycles and the standard deviation of the random
times. This is because, as NC and σt increase, the width of the peaks in the prob-
ability distribution decreases, resulting in a higher density of energy points needed
to adequately sample each peak.
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Figure 2.13: Rodeo probability for NC = 4 cycles for different values of energy
(in A.U.) taking the state |ψI⟩ =

√
0.6|Eobj1⟩ +

√
0.4|Eobj2⟩ for the Hamiltonian

of Eq. (2.11). Using random times with Gaussian distribution centered in µ = 0
and different standard deviations obtained from Eq. (2.41) so that the minimum
energy difference between two resolvable peaks is: δEmin = 4, 2, 1, and 0.5 times
the magnitude |Eobj1 −Eobj2|, that corresponds to σt = 11.18, 4.47, 2.24, 1.12. The
probability has been averaged 20 times, Nav = 20 for each energy taken in the rodeo
cycle.

Energy resolution of rodeo algorithm

To determine the value of the parameter σt in the rodeo algorithm, we need to
consider the minimum difference (δEmin) between two eigenvalues that we want to
distinguish. Considering that two peaks resolvable when we can see 4σ of their
width without overlap with another peak, the minimum value of σt, considering the
estimation Eq. (2.34), is

σt =
4 · 1.48√
NC δEmin

. (2.40)

The minimum value of σt value increases when aiming for a higher resolution, as
narrower peaks are required to achieve better distinguishability. Considering this
σt, the minimum points necessary by the rodeo algorithm corresponds to:

NE =
(max(aii +Ri)−min(aii −Ri)) ·NP

δEmin

+ 1. (2.41)

So it depends mainly on the resolution required between the eigenenergies and the
number of energies we consider adequate to be able to detect a peak due to an
eigenenergy.

In Fig. (2.13), we present the rodeo probability for the reference state |ψI⟩ =√
0.6|Eobj1⟩ +

√
0.4|Eobj2⟩ using different values of σt. We choose these values of σt

based on the minimum energy resolution required, δEmin, which we set to 4, 2, 1,
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and 0.5 times the magnitude of |Eobj1 − Eobj2|, as determined by Eq. (2.40). The
Figure demonstrates how the two peaks are resolved for different standard deviations
in the random times. We observe three scenarios: when δEmin is greater than the
energy difference between the two eigenvalues |Eobj1 − Eobj2|, When is equal and
when it is lower. For δEmin = 4|Eobj1−Eobj2| the two peaks cannot be distinguished
and are seen as a single peak. When δEmin = 2|Eobj1 − Eobj2|, the two peaks are
partially resolved, but they still overlap significantly. When δEmin = |Eobj1 −Eobj2|
the two peaks are practically resolved as we can distinguish them. Finally, when
δEmin = 0.5|Eobj1−Eobj2|, the two peaks are well-separated and completely resolved.

In Fig. (2.13), it is evident that the height of the peak in the rodeo probability
distribution depends on the value of σt. When the two peaks are not resolvable and
σt is relatively small, we observe a single peak that corresponds to the superposition
of two eigenenergies. As σt decreases, the peak becomes broader and taller, ap-
proaching the combined height of the individual peaks representing each eigenvalue.
Moreover, the center of the peak tends to align more closely with the eigenvalue
that has a higher probability of c2i .

Overall, the results obtained from the analysis align with our expectations based
on the estimated expression, Eq. (2.40). The minimum deviation in σt enables
the resolution of two eigenvalues with a minimum energy difference of δEmin. This
demonstrates the effectiveness of the rodeo algorithm in distinguishing closely spaced
eigenenergies and supports its potential for solving quantum systems with high
precision.

Uncertainty in rodeo algorithm

In section 2.2.1, we have optimized the different parameters by considering the rodeo
probability as the analytical average over the times with a Gaussian distribution
centered at µ = 0, Eq. (2.21). Next, we will study how the noise caused by the
random times is affected by considering Eq. (2.22). We study the uncertainty in
terms of the different parameters of interest by means of the number of rodeo cycles,
NC and the number of times we average, Nav, since as we have seen in chapter 2
these are the two parameters that decrease the noise caused by the random numbers.
We focus on estimating the uncertainty in the parameters Eobj and c2i since these
are the values we aim to determine using the rodeo algorithm. We also estimate the
uncertainty in the baseline, as it can help us optimize the value of NC . To assess
the impact of noise, we will consider 10 energy values within each peak (NP = 10).

For simplicity, we take as reference state the eigenvector |Eobj1⟩ to deal with only
one peak. We fit the following expression

(PNC
)ρ→G(0,σt)

= c2
1

2NC

[
1 + exp

(
−σ

2
t

2
(Eobj − E)2

)]NC

, (2.42)

as we want to fit the parameters c2i and Eobj with the objective to know the accuracy
with which we can obtain them with the rodeo algorithm. We take as the error the
standard deviation, the square root of the variance of the fit itself. As the value
of the standard deviation for the random times following a Gaussian distribution
centered at µ = 0, we choose σt = 1, which let us see the peak properly.

In Fig.(2.14) shows the uncertainty obtained for c2i from the given in Eq.(2.42).
Since the values of δc2i consistently align with the expected value of 1 within their
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Figure 2.14: Uncertainty of the estimated parameter c2, as a function of the number
of averages used in the rodeo probability, Nav, for different values of NC represented
with different colors. We use the reference state, |ψI⟩ = |Eobj1⟩ and the number of
energies values has been taken so that there are 10 energies values, NP = 10 within
the peak.

associated errors, we exclude them from further analysis. The double logarithmic
plot in Fig.(2.14) shows an approximately linear relationship, allowing us to estimate
the logarithms of δc2i and the number of averages as a straight line for each value of
NC cycles. We fit the error of c2 for each considered NC to the expression

δc2 = a1 ·Nav
b1 , (2.43)

where a1 and b1 are constants. Considering the stochastic nature of random numbers,
we perform this calculation ten times, using different random times for each iteration,
and average the values of a1 and b1 as presented in Table (2.3). In each case, we
choose the decimal places according to the error of each value.

We consider a unified expression that takes into account the results for each of

Table 2.3: Average values for δc2i , found by fitting to the results obtained with the
rodeo algorithm to the expression in Eq. (2.43) ten differents times for different
number of cycles NC .

NC ã1 b̃1

2 0.16 -0.52

4 0.08 -0.54

6 0.043 -0.51

8 0.024 -0.53
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Figure 2.15: Same as Fig. (2.14) but for the uncertainty eigenenergy δEobj case.

the considered rodeo cycles. As for the exponent of the number of averages b̃1 in the
rodeo cycle, we see in Table (2.3) that remains approximately constant with NC .

Therefore, we take the mean value of b̃1. For the proportional value, ã1, we observe
a linear relationship on the double logarithmic scale with respect to the number of
cycles, NC . To capture this dependence, we fit the parameters to the expression

a1 = a2 ·N b2
C , (2.44)

yielding a result of a best fit

a1 = 0.40 ·N−1.2
C . (2.45)

Based on these observations, we approximate the uncertainty of c2i as follows:

δc2 ≃ 0.40NC
−1.2Nav

−0.53. (2.46)

We do the same analysis for the case of the eigenenergy uncertainty, δEobj, from
the peak we have considered since we see that the behavior of the error in the
eigenenergy is very similar to that of c2. Fig. (2.15) shows the uncertainty for Eobj

from a fit of the results of the rodeo algorithm to the expression in Eq. (2.42). In
turn, We fit the uncertainty to the expression

δEobj = a3 ·Nav
b3 , (2.47)

and we obtain the average values in Table 2.4, averaging also ten times as c2.
Given the similarity observed in the behavior of c2i , we follow the same procedure

of unifying the expressions for each value of NC . After analyzing the results, we
arrive at the following unified expression:

δEobj ≃ 0.49NC
−1.3Nav

−0.52. (2.48)
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Figure 2.16: Same as Fig. (2.14) but for the uncertainty of the baseline probability
δbl.

For the calculation of the uncertainty of the baseline probability, we consider the
average of 40 values of the rodeo probability for energy values that are sufficiently
far from the peak. By averaging multiple values, we can reduce the impact of
fluctuations and obtain a more reliable estimation of the baseline probability.

We do the same analysis for the case of the baseline uncertainty, δbl, as in the
two previous cases. In Fig. (2.15) we plot the uncertainty values obtained for bl and
fit them using Eq.(2.42). We fit the uncertainty, for each NC , to the expression

δbl = a4 ·Nav
b4 , (2.49)

representing the average values in Table 2.5.
Given the similarity observed in the behavior of the two previous cases, we follow

the same procedure of unifying the expressions for each value of NC . We fit this
time the average values ã4 considering their behavior, for the different NC to the

Table 2.4: Average values for δEobj, found by fitting to the results obtained with
the rodeo algorithm to the expression in Eq. (2.47) ten differents times for different
number of cycles NC .

NC ã3 b̃3

2 0.20 -0.52

4 0.08 -0.53

6 0.036 -0.51

8 0.024 -0.53
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Table 2.5: Average values for δbl, found by fitting to the results obtained with the
rodeo algorithm to the expression in Eq. (2.49) ten differents times for different
number of cycles NC .

NC ã4 b̃4

2 0.28 -0.52

4 0.11 -0.52

6 0.036 -0.55

8 0.008 -0.54

expression
a4 = a5 exp (b5 ·NC). (2.50)

After analyzing the results, we approximate the uncertainty of bl as follows:

δbl ≃ exp (−0.6 ·NC). (2.51)

Overall, we observe that, in all cases, the uncertainty decreases more rapidly with
the number of cycles, NC , than with the number of averages, Nav. This suggests
that increasing the number of cycles has a more significant impact on reducing the
uncertainty compared to increasing the number of averages.



Chapter 3

Rodeo algorithm for 6Li

In this chapter, we implement the estimations and expressions developed in the pre-
vious chapter, this time considering a realistic Hamiltonian. First, we outline the
expressions that guide our parameter selection for the rodeo circuit. Subsequently,
we apply these expressions in various cases, comparing the results obtained from the
rodeo algorithm with the exact solutions for the Hamiltonian by direct diagonaliza-
tion. This allows us to assess the effectiveness of the rodeo algorithm in solving the
specific problem at hand.

3.1 Choice of rodeo algorithm parameters

In our realistic case, we consider the 6Li nucleus using the Cohen-Kurath interaction
in the p shell [13]. We show the diagram of the p shell of the harmonic oscillator
in Fig. (3.1). This Hamiltonian corresponds to a 10 × 10 matrix. Following the
analysis in chapter 2, we calculate the minimum values of the rodeo algorithm pa-
rameters to find the eigenvalues of the Hamiltonian for a given resolution. To find
the eigenenergies employing the rodeo algorithm, we first calculate the upper and
lower bound where the eigenenergies are to be found, using the Gershgorin circle
theorem, Eqs. (2.35), that they correspond to Eobj min ≃ −10.5 MeV, Eobj max ≃ 14.4
MeV.

Next, we need to determine the minimum number of rodeo cycles, NC , required
to detect peaks associated with an energy measurement of the reference state with
probability c2i larger than a minimum one, Pmin. To ensure this, Pmin must be
above the baseline probability, including its uncertainty due to use of random times.
Additionally, we consider the uncertainty estimated for c2. Thus, the following

Figure 3.1: Harmonic oscillator diagram of the p shell from [14]. In the context of
the shell model in nuclear physics, the notation nlj refers to the quantum numbers
used to label the single-particle states or orbitals. In the p-shell, which consists of
orbitals with l=1, the possible quantum numbers for the single-particle states can
be denoted as p1/2 and p3/2

33
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Figure 3.2: Minimum value for c2i , Pmin, that we can obtain from the expression
Eq. (3.1) evaluated by different values of NC . We have considered Nav = 1.

condition must be satisfied:

bl + δbl + δc2 ≃ 1

2NC
+ exp (−0.6NC)Nav

−0.53 + 0.40NC
−1.2Nav

−0.53 ≤ Pmin, (3.1)

where we have used the expressions in Eqs. (2.27), (2.51) and (2.46). We can repre-
sent the expression Eq. (3.1) in Fig. (3.2), where we fix the number of averages used
in the rodeo cycle, Nav = 1. By doing so, we can observe the minimum probabilities,
Pmin, for a given reference state |ψI⟩, that we are able to find based on the number
of cycles used in the rodeo algorithm.

In addition, we take into account the estimation in the uncertainty of the peak
energies, based on the resolution, δEmin, that we want to have. We consider the
maximum uncertainty as σ, referred to as the estimated width of the peak. Therefore
we take δEmin = 4σ for the minimum value needed to resolve two peaks that are
closer to each other. Therefore, the number of minimum cycles must also fulfill:

δEobj ≃ 0.49NC
−1.3Nav

−0.52MeV ≤ δEmin

4
MeV, (3.2)

where we have used the expression in Eq. (2.48).
We consider that the minimum number of cycles must be at least 3, NCmin = 3,

since for the calculation of the minimum number of points and σt, we have estimated
the peak width using Eq. (2.34), where we have seen that the general behavior is
not fulfilled for small NC , fitting closely to one calculated from NC = 3.

We estimate the σt, used for random Gaussian times centered in µ = 0, from
the expression in Eq. (2.40) using the resolution we want to achieve, δEmin. As for
the number of energy values, we use Eq. (2.39) estimation. We consider NP = 10
since after testing with different examples, we have seen that below this value, and
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considering the uncertainty of the energy values, the energy values of the peak do
not fit so well to the expected expression, Eq. (2.21). Thus, following Eq. (??) the
total number of energy values where we evaluate the rodeo probability corresponds
to the following expression

NE =
10(Eobj max − Eobj min)

δEmin

+ 1. (3.3)

To determine which points correspond to a peak in the rodeo probability distri-
bution, we consider a criterion where at least 7 consecutive points must be above
the baseline probability. This criterion is chosen to account for the effects of uncer-
tainty caused by random times. While 10 consecutive points would correspond to
the expected width of a Gaussian peak, we allow for a slightly lower number of con-
secutive points to be above the baseline to accommodate possible uncertainties in
the estimation process due to the uncertainty caused by considering random times.

Once a peak is found, we fit it to the analytical expression corresponding to the
average of the random times with a Gaussian distribution, Eq. (2.21). To fit each of
the peaks separately in the range of peak energies considering that it is far enough
away from the other peaks, we approximate the expression to

(PNC
)G(0,σt)

≃ ci
2 1

2NC

[
1 + exp

(
−σ

2
t

2
(Eobj i − E)2

)]NC

+
(
1− c2i

) 1

2NC
, (3.4)

where we have taken into account that the other peaks, which are far enough far away
from a given one, contribute a value of c2j ̸=i multiplied by the baseline probability,
Eq. (2.27), and that

∑
i c

2
i = 1.

First, we calculate the probabilities simulating the rodeo algorithm, and then we
fit them to Eq. (3.4). Thus, we obtain the values of c2i and Eobj along with their
corresponding errors from the fit. To account for the uncertainty in the eigenenergies,
we include the width of the peak, σ, in the error estimation. We estimate the width
by fitting the peak to a Gaussian function, as described in Eq. (2.30).

To ensure that we are not assigning as peaks, and therefore to the system’s
eigenenergies, energies that do not correspond to any eigenvalue, we keep only those
that satisfy c2i ≥ Pmin. In this way, we avoid assigning peaks to possible energy
values that meet the requirements that we have considered, due to randomness.

As we have seen in Fig. (2.13), two peaks can be well resolved when taking as the
minimum resolution δEmin = |Eobj1−Eobj2| where 1 and 2 refer to two peaks nearby,
we see how they are practically resolved. However, it may be that all probabilities
are above the baseline, and then the peak can be considered as a single peak. To
avoid this, for each detected peak, in addition to fitting the points to the expression
in Eq. (3.4) which corresponds to a single peak, we fit it to the following expression,
which considers the sum of two peaks

(PNC
)G(0,σt)

≃ c1
2 1

2NC

[
1 + exp

(
−σ

2
t

2
(Eobj 1 − E)2

)]NC

+

c2
2 1

2NC

[
1 + exp

(
−σ

2
t

2
(Eobj 1 − E)2

)]NC

+
(
1− c21 − c22

) 1

2NC
.

(3.5)

To determine whether we are dealing with two separate peaks instead of a single
peak, we compare the errors obtained from fitting Eq. (3.5) with the errors obtained
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Table 3.1: Values of the eigenenergies and their respective probabilities obtained by
direct diagonalization for the |ψI⟩ state considered in Eq. (3.7) in order from lowest
to highest energy.

Eobj i (MeV) c2i
-5.557 0.0004
-3.418 0.020
-3.049 0.069
-0.492 0.029
-0.325 0.100
0.478 0.00006
3.815 0.450
4.763 0.100
4.892 0.200
8.453 0.031

from fitting the points to the expression in Eq. (3.4). If the errors in the c2i value
for a single peak of the two-peak fit are smaller than the error of c2i obtained from
the single peak fit, this indicates the presence of two distinct peaks. In addition, we
impose that for each of the peaks, c2i , considering Eq.(3.5) must be larger than the
minimum, Pmin. In the case of considering the sum of two peaks, we approximate
the width, σ for each, σ1 and σ2 as

(PNC
)G(σt,0)

≃ c21

(
1− 1

2NC

)
exp

(
−(Eobj 1 − E)2

2σ2
1

)
+c22

(
1− 1

2NC

)
exp

(
−(Eobj 2 − E)2

2σ2
2

)
+

1

2NC
.

(3.6)

3.2 Calculation of the energy spectrum of 6Li

Let us consider a reference state |ψI⟩ such that, in the basis of the Hamiltonian, it
reads

|ψI⟩ = [
√
0.1,

√
0.1,

√
0.1,−

√
0.1,

√
0.1,

√
0.1,

√
0.1,

√
0.1,−

√
0.1,

√
0.1, ]. (3.7)

To calculate the rodeo probability for each of the energies to be considered, we use
Eq.( 2.9). Even though they can be calculated by direct diagonalization, in principle
we do not know the eigenvalues in advance and our goal si to find them. An exact
diagonalization gives us the eigenvalues along with their squared probabilities for
the |ψI⟩ state considered in Eq. (3.7). The results are listed in Table 3.1.

First, we look for the eigenenergies that ensure that their maximum probabilities
are greater than or equal to 0.2, c2 ≥ 0.2, and that the minimum distance to resolve
two eigenvalues is 0.5 MeV, δEmin = 0.5MeV . Considering that we do not want
to average, Nav = 1, we see that the minimum value of rodeo cycles we need for
Eq. (3.1) and (3.2) to be satisfied is NC = 5. The minimum σt to obtain the 0.5
MeV resolution corresponds to 5.4 while the minimum number of energies where we
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Figure 3.3: Rodeo probability for NC = 5 evaluated for different energy values
taking the reference state |ψI⟩ given by Eq. (3.7) for 6Li. The figure shows results
using random times with Gaussian distribution centered in µ = 0 and standard
deviation σt = 5.4, without averaging the total rodeo probability for each energy
and evaluating the probabilities in 498 energies. In the bottom panel, we also show
the fits for the peaks found by our rodeo algorithm for a resolution δEmin = 0.5
MeV and Pmin = 0.2 with the algorithm developed.

evaluate the rodeo probability, corresponds to NE = 498 in the whole interval from
Eobj min to Eobj max, obtained from Eq. (3.3).

In Fig. (3.3), we present the probabilities obtained for each energy value using
the rodeo algorithm, along with the corresponding fits for the detected peaks. As
shown in the figure, our algorithm successfully detect two peaks. With our approach
we do not always get the two peaks after running the rodeo algorithm, however, we
do get both of them most of the times.

In Fig.(3.4), we compare the eigenenergies obtained for each peak using the fit in
Eq.(3.4) with the exact diagonalization results provided in Table 3.1. Each eigenen-
ergy is displayed with a different color, with solid lines representing eigenenergies
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Figure 3.4: Eigenenergies obtained from the rodeo algorithm developed compared
to the exact values, represented by lines of different colors, for the fits shown in
Fig. (3.3). The solid lines correspond to the eigenenergies we expect to find with
the rodeo algorithm given the imposed requirements, for a resolution δEmin = 0.5
MeV and Pmin = 0.2.

satisfying c2 ≥ 0.2, and dashed lines representing eigenenergies with lower probabil-
ities. We observe that the two detected peaks, shown in solid circles agree well with
the exact energies.

Prior to associating each peak with its corresponding eigenvalue, we consider the
value of the eigenenergy obtained from the rodeo algorithm, along with its error.
If the difference between the eigenenergy obtained from the fit and the analytical
value falls within the error range, we conclude that the peak corresponds to the
associated eigenvalue.Figs (3.5) shows the value of c2i found for each peak by fitting
the results of the rodeo algorithm to Eq. (3.4) fitting compared to the exact result
for the |ψI⟩ state.

Considering the conditions imposed for Pmin and the |ψI⟩ state, we expect to
observe a peak at an energy of Eobj = 3.815 MeV with a probability squared c2 =
0.450, and another peak at Eobj = 4.892 MeV with c2 = 0.200. However, it is
important to note that there is an additional peak at Eobj = 4.763 MeV with c2 = 0.1
(see Table 3.1). Due to the minimum resolution criterion of δEmin = 0.5 MeV, the
second peak overlaps with this additional peak, resulting in a higher observed c2

value.
To determine the precise association between the second peak and the corre-

sponding eigenvalues, we compare the obtained c2 value with those of each eigen-
value individually (represented by dashed lines) as well as their sum (represented by
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Figure 3.5: Values of c2i for each peak obtained from our rodeo algorithm with the
fits shown in Fig. (3.3), shown in solid errorbars, compared to the exact values.
When a peak found by the rodeo algorithm coincides with multiple exact calculated
eigenenergies, we represent the individual c2i values with a dashed line and the sum
of these values with a solid line.

a solid line). Since the obtained eigenenergy for the second peak, along with its er-
ror, matches two exact calculated eigenenergies, we expect the c2 value to fall within
the range defined by the highest c2 value of the two eigenstates and the sum of their
c2 values. Fig. (3.5) shows that, in this case, the estimated c2 value aligns with the
sum of the individual eigenstates, supporting the conclusion that the second peak
corresponds to the combined contribution of the two eigenvalues.

Doing the same analysis with the same conditions imposed, Pmin = 0.2 and
δEmin = 0.5 MeV, but averaging 10 times the rodeo probabilities for each energy,
Nav = 10, according to Eq. (3.2) the minimum number of rodeo cycles corresponds
to NC = 4 instead of NC = 5. Thus, for the standard deviation of the Gaussian
random numbers centered on µ = 0, the minimum value corresponds to σt = 6. We
obtain, for this case, very similar results than using Nav=1.

As a second case of the rodeo algorithm for 6Li, let us consider another case with
more restrictive conditions, both for the minimum c2i probability of the peaks and for
the minimum resolution in the energies. With the intention of detecting more peaks
with the rodeo algorithm, we consider this time Pmin = 0.1 and δEmin = 0.1 MeV.
We perform the same analysis as with the less restrictive conditions, Pmin = 0.2 and
δEmin = 0.5 MeV, without averaging the rodeo probability for each energy, Nav.
From Eq. (3.1) and (3.2) we obtain that the minimum number of cycles corresponds
toNC = 10. The minimum standard deviation of the Gaussian distribution to obtain
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Figure 3.6: Same as Fig. (3.3) but demanding in our algorithm a resolution δEmin =
0.1 MeV and Pmin = 0.1.

the δEmin = 0.1 MeV resolution corresponds to σt = 19.0, while the minimum energy
values where we need to evaluate the rodeo probability corresponds to NE = 2485,
obtained from Eqs. (3.2). In Fig. (3.6), we present the probabilities obtained for each
energy using the rodeo algorithm, along with the corresponding fits for the detected
peaks. As shown in the figure, the algorithm successfully detect four peaks. As in
the previous case, when dealing with random times, we do not always get the four
peaks after running the rodeo algorithm, however, we do get it most of the time.

In Fig. (3.7) we compare the values of the eigenenergies obtained for each peak,
employing the expression in Eq. (3.4) or (3.5), with the exact eigenvalues given in
Table 3.1. We observe that the four peaks found have their energies very close to
the expected energies, shown with solid lines. In Fig. (3.5) we show the value of c2i
found for each peak by Eq. (3.4) or (3.5) fitting compared to the exact results for
the |ψI⟩ state. We see how the values found agree, taking into account the error fit,
with the exact results.

Doing Pmin = 0.1 and δEmin = 0.1MeV , but averaging 10 times the rodeo
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Figure 3.7: Same as Fig. (3.4) for the resolution δEmin = 0.5 MeV and Pmin = 0.2
with fits shown in Fig. (3.6).

probabilities for each energy, Nav = 10, according to Eq. (3.1) and (3.2) that the
minimum number of rodeo cycles corresponds to NC = 5 instead of NC = 10. Thus,
for the standard deviation of the Gaussian random numbers centered on µ = 0, the
minimum value corresponds to σt = 26.8. We obtain, for this case, very similar
results from using Nav = 1.

In order to perform an exhaustive study finding all the peaks and therefore all
the eigenenergies together with their probabilities, we would need to consider a
Pmin = 0.00006, since it is the smallest value of c2 as given in Table 3.1, as well
as a minimum resolution of δEmin = 0.129 MeV. For large values of the number of
cycles, NC , Eq. (3.1) simplifies to:

0.40NC
−1.2Nav

−0.53 ≤ Pmin, (3.8)

while Eq. (3.2) remains valid. Eq (3.8) has been simplified because the other terms
in the expression of Eq. (3.1), decrease much more rapidly. In this manner, to find all
the peaks corresponding to eigenenergies, if we do not average and take Nav = 1, we
would need a minimum of NC = 1628 rodeo cycles. This high value for the number
of rodeo cycles is a great computational effort for the classical algorithm we have
developed given our computational capacity. With the developed algorithm and our
computational capacity, we can find a peak with a minimum value for the probability
of Pmin = 0.0001, although it corresponds to a considerable computational effort.

Based on the results obtained presented in Figs (3.4), (3.5) and (3.7), (3.8), we
can conclude that the rodeo algorithm is generally successful in finding the eigenen-
ergies of the 6Li Hamiltonian and the associated probabilities of measuring these
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Figure 3.8: Same as Fig. (3.5) for the fits shown in Fig. (3.6).

eigenvalues for the reference state |ψI⟩. The algorithm provides reliable and accu-
rate results, allowing a great deal of information of the eigenstates of the system.

It is important to note that the success of the rodeo algorithm relies on appro-
priately choosing the parameters, such as the number of cycles NC and the number
of averages Nav. These parameters should be carefully selected based on the specific
system and the desired level of accuracy and resolution.

Overall, the rodeo algorithm offers a valuable approach for identifying and an-
alyzing eigenenergies and probabilities of quantum systems, providing a useful tool
for quantum state analysis.



Chapter 4

Conclusions

The rodeo algorithm, implemented on a quantum computer, allows us to find the
eigenenergies and probabilities for a reference state, the squared projection on each
eigenvector. In order to test the capabilities of this algorithm, we have developed
a classical algorithm that mimics the rodeo circuit and enables us to estimate the
eigenenergies of a Hamiltonian and their corresponding squared probabilities.

In this work, we derived the expressions for the probabilities of finding the ancilla
qubits in the state |1⟩, within the rodeo circuit. These expressions have a time
dependence for each rodeo cycle, NC . To ensure accurate results, we introduced
Gaussian random times centered at µ = 0, as opposed to using constant times,
which can lead to spurious energies. Another study has recently optimized the
rodeo algorithm by using specified times rather than random times [15].

By utilizing the derived expressions, we have estimated various parameters to
characterize the peaks efficiently, optimizing the rodeo circuit. We have also de-
rived expressions for the uncertainty caused by the random times we consider in
the circuit. We have investigated how these parameters depend on the number
of cycles NC and the number of times the probability is averaged, Nav. Finally,
based on the calculated parameters and their uncertainty, we have estimated the
minimum requirements for finding eigenenergies in the rodeo circuit. These require-
ments include achieving a minimum amplitude Pmin and being able to distinguish
eigenenergies with a minimum resolution δEmin.

We have applied the algorithm for a Hamiltonian for the nucleus 6Li using the
Cohen-Kurath interaction in the p shell, where we have considered any state and
different values as requirements to find both the eigenenergies and the amplitudes
and compared them to the real values. We have noticed that, when dealing with
random numbers, sometimes we did not get the expected results, however, we did
the majority of the time we used the algorithm. In this way, to guarantee to find
our eigenenergies together with the amplitudes of any state, we should make the
algorithm go through more than once, to discard the peaks that only appear on
occasion, being peaks that do not correspond to any eigenenergy.

When dealing with quantum states that have small amplitudes, it is generally
necessary to increase the number of rodeo cycles in order to detect the correspond-
ing eigenenergies. However, an alternative approach to consider is using the rodeo
algorithm for quantum states with different components, this is, different reference
state. In such cases, the amplitudes that might be very small in one state could
be relatively larger in other states. By exploiting this property, it may be possible
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to detect all the eigenenergies and probabilities without requiring an excessively
large number of rodeo cycles, thereby reducing the computational effort needed for
the calculations. Another extension is to study more complex nuclei that require
Hamiltonian of higher dimensions of 10× 10.

Absolutely, running the rodeo circuit on a quantum computer is the crucial next
step to validate the algorithm and verify its performance. By executing the algorithm
on a quantum computer, we can directly observe the probabilities to obtain |1⟩ in the
ancilla qubits and extract the eigenenergies and probabilities of the desired states.
Comparing the quantum computation results with the expected values obtained
from the classical simulations will allow us to assess the accuracy and reliability of
the rodeo algorithm in a real quantum computing environment. This validation is
essential to ensure the algorithm’s effectiveness and to gain confidence in its practical
implementation for solving quantum eigenvalue problems.
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