
Citation: Garcia-Vargas, I.;

Senhadji-Navarro, R. A New

Approach for Implementing Finite

State Machines with Input

Multiplexing. Electronics 2023, 12,

3763. https://doi.org/10.3390/

electronics12183763

Academic Editors: Dariusz Kania,

Alexander Barkalov, Remigiusz

Wiśniewski and Larysa Titarenko

Received: 28 July 2023

Revised: 1 September 2023

Accepted: 4 September 2023

Published: 6 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A New Approach for Implementing Finite State Machines with
Input Multiplexing
Ignacio Garcia-Vargas *,† and Raouf Senhadji-Navarro †

Department of Computer Architecture and Technology, University of Seville, 41012 Seville, Spain; raouf@us.es
* Correspondence: iggv@us.es
† These authors contributed equally to this work.

Abstract: The model called Finite State Machine with Input Multiplexing (FSMIM) was proposed as a
mechanism for implementing Finite State Machines (FSMs) using ROM memory. This paper presents
a novel approach for achieving more efficient FSMIM implementations in Field Programmable Gate
Array (FPGA) devices. The aim of the proposed approach is to obtain further reductions in the use of
Embedded Memory Blocks (EMBs). Unlike previous works, the proposed approach reduces the depth
of the ROM by grouping states before simplifying the input selectors of the FSMIM. For this purpose,
a new strategy for grouping states is proposed, and its optimality is proven. In addition, a new variant
of the Minimum Maximal k-Partial Matching (MMKPM) problem and its corresponding Integer
Linear Programming (ILP) formulation are proposed for simplifying input selectors. The proposed
approach requires a significantly smaller number of EMBs than the approaches proposed previously.

Keywords: Finite State Machine; Finite State Machine with input multiplexing; FPGA; Embedded
Memory Block; ROM; Integer Linear Programming; Minimum Maximal k-Partial-Matching

1. Introduction

Researchers have devoted significant attention to the optimization of Finite State Machine
(FSM) implementations regarding area, speed, or power consumption over decades [1–8].
Current Field Programmable Gate Array (FPGA) devices include Embedded Memory
Blocks (EMBs), which allow, among other elements, the implementation of ROM memory.
Therefore, the output and transition functions of an FSM can be mapped into EMBs.
The advantages of these implementations, called ROM-based FSM implementations, are
the following: (1) if FSMs are mapped into non-used EMBs, the saved Lookup Tables
(LUTs) can be used for implementing other components of the system [9]; (2) when the
implementation of the function using LUTs requires a considerable number of logic levels,
the speed can be increased by mapping the function on EMBs [10,11]; and (3) the EMBs
used to implement the FSM can be disabled during the idle states, achieving a substantial
reduction in power consumption [12].

However, when FSMs are mapped directly into ROM memory (we will refer to these
implementations as conventional ROM-based FSM implementations), the size of the memory
increases exponentially with the size of the ROM address, which is composed of the state
encoding bits and the FSM inputs. Consequently, small FSMs may require more memory
than that available in the FPGA device. Developing techniques that reduce memory usage
without considerably increasing LUT usage is already a challenge.

In the literature, various techniques have been proposed to reduce the number of
required EMBs [4,9–11,13]. These techniques enable a more efficient utilization of the FPGA
resources, striking an appropriate balance between EMB and LUT usage. Most of these
techniques employ functional decomposition [4,9,13] or structural decomposition [11,14].
In this scope, the model called FSM with Input Multiplexing (FSMIM) was proposed to
reduce the number of ROM words required to map the FSM transitions [10]. Depending

Electronics 2023, 12, 3763. https://doi.org/10.3390/electronics12183763 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12183763
https://doi.org/10.3390/electronics12183763
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-8420-8770
https://orcid.org/0000-0002-2838-9367
https://doi.org/10.3390/electronics12183763
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12183763?type=check_update&version=1

Electronics 2023, 12, 3763 2 of 17

on whether the focus is on reducing EMBs or LUTs, two distinct architectures have been
proposed: FSMIM with transition-based input selection (FSMIM-T) and FSMIM with state-
based input selection (FSMIM-S) [10]. Both types of implementation use a combinational
circuit, called Input Selector Bank (ISB), to select a different subset of the FSM inputs for each
state, allowing for reducing the ROM memory. The optimization process proposed in [15]
consists of two stages. In the first one, called Input Selector Simplification (ISS), the ISB is
simplified with the aim of saving LUTs (which can also allow it to increase its speed). The
optimization process employed in the ISS stage is modeled as a variant of the Minimum
Maximal k-Partial-Matching (MMKPM) problem [16] and solved using an Integer Linear
Programming (ILP) formulation [15] or a greedy algorithm [16]. In the second stage, known
as State Grouping (SG), the memory depth is further reduced beyond the capabilities of the
ISB alone. Other researchers have recently used the FSMIM model in their work [17,18].

To summarize, the key contributions of this paper are as follows:

• A new approach to generate FSMIMs from conventional FSMs is proposed with the
aim of obtaining further reductions in EMB usage.

• Unlike previous approaches [10,15], the SG stage is applied before the ISS stage.
• A new strategy for the SG stage that obtains optimal solutions in terms of grouping

states is proposed.
• The ILP formulation proposed in [15] for the ISS stage is extended in order to maintain

coherence with the results obtained by the SG stage.
• We present a thorough experimental study comparing the new approach with the one

proposed in [15].

The remaining sections of the paper are structured as follows: Backgrounds on
ROM-based implementations and, particularly, FSMIM implementations are presented in
Section 2. In Section 3, a new approach for generating FSMIMs from conventional FSMs is
proposed. In Section 4, the experimental results are presented and analyzed. Finally, the
main conclusions are highlighted in Section 5.

2. Background
2.1. Conventional ROM-Based Implementation

The conventional architecture for implementing FSMs into ROM memory is shown in
Figure 1a, where p, m, and n are the number of state encoding bits, the number of inputs,
and the number of outputs, respectively. By supposing that Ns is the number of states, the
number of encoding bits is calculated as p = dlog2 Nse. Although there exists a specific
architecture for Moore machines, in this work, we have considered a general architecture
that allows to implementation of both Mealy and Moore machines [11]. Moreover, since
current FPGAs include synchronous EMBs, FSM outputs are synchronized by the clock.
Each word of the ROM block, which is implemented using EMBs, contains the next state
and the FSM outputs of an FSM transition. Therefore, the ROM width is equal to n + p
bits.The FSM inputs and the present state encoding bits form the ROM address. Thus,
the maximum ROM depth is equal to 2m+p words, i.e., the maximum ROM size increases
exponentially with m and p. If all the states are encoded with codes in the interval [0, Ns),
then the ROM depth is equal to 2mNs ≤ 2m+p words.

The exponential increase in the ROM depth not only has an impact on area but also on
speed. The memory access time is degraded as the number of EMBs required to implement
the ROM increases. The reasons for this behavior are the following: (1) the routing overhead
and (2) the delay imposed by the LUTs used to connect the outputs of the EMBs whenever
the ROM depth is greater than the maximum depth of the EMBs.

Electronics 2023, 12, 3763 3 of 17

GROUP

ENCODER

out

ROM

in

m

n p

out

m

n r

m'

INPUT

SELECTOR

BANK

in in

ROM

out

INPUT

SELECTOR

BANK

n

m'

(a)

p'

m

p'

p

ROM

(b) (c)

Figure 1. ROM-based FSM architectures: (a) conventional, (b) FSMIM-T, and (c) FSMIM-S.

2.2. Finite State Machine with Input Multiplexing

The FSMIM technique reduces the depth of the memory of conventional ROM-based
FSM implementations by decreasing both the number of FSM inputs that address the
ROM (m) and the number of states (Ns). The consequent reduction in the number of
required EMBs is achieved at the expense of using LUTs. In FSMIM architectures (see
Figure 1b,c), the ROM is addressed using, for each state, only the subset of FSM inputs that
have an influence on its behavior (which are called effective inputs). In both architectures,
the combinational circuit ISB selects the effective inputs of the present state. The ISB has
m inputs (the FSM inputs) and m′ outputs (the selected inputs); then, the ROM depth
can be reduced if m′ < m. Obviously, the value of m′ is determined by the state with the
greatest number of effective inputs. Given a state with e < m′ effective inputs, the m′ − e
inputs that are not effective can be considered as don’t care signals (which are referred to
as Don’t Selected Inputs (DCSIs)). In FSMIM architectures, the DCSIs can be exploited to
form groups of states that can share the same state code. Therefore, in the ROM address,
the code of the present state can be replaced by the code of the group to which it belongs.
As a consequence, the ROM depth is reduced to 2m′Ng words, where Ng < Ns represents
the number of groups. This allows a reduction in the ROM depth even in FSMs in which
there exist states that respond to all FSM inputs (i.e., in which m′ = m).

By supposing that the groups can be codified with p′ = dlog2 Nge bits, the ROM
address requires m′ + p′ bits; therefore, the ROM depth is reduced with respect to conven-
tional ROM-based implementations by Ns2m − Ng2m′ words, which not only reduces the
memory requirement but also the memory access time of the ROM (despite the fact that
speed is not considered as a goal of the FSMIM technique).

There exist two different architectures for implementing FSMIMs, namely, FSMIM-T
(see Figure 1b) and FSMIM-S (see Figure 1c). In both architectures, the selection of the
effective inputs is performed by the called input selectors. In the FSMIM-T architecture
(see Figure 1b), the ISB is composed of multiplexers, so its implementation can greatly
benefit from the embedded multiplexers available in many FPGA devices [19,20]. For
each transition, the ROM stores the bits that control the multiplexers (called selection bits),
the FSM outputs, and, instead of the next state, the encoding bits of the next group. By
supposing that the number of selection bits is r, the ROM width is (r + p′ + n) bits, which
is greater than the width of the conventional ROM-based implementations.

In the FSMIM-S architecture (see Figure 1c), each ROM word contains the same
information as in the conventional ROM-based implementations (i.e., contains the next
state encoding bits and FSM outputs). Therefore, unlike FSMIM-T, FSMIM-S can reduce
the depth of the ROM without increasing its width. However, the number of LUTs required
by the corresponding implementation increases due to the following reasons. First, the
multiplexers of FSMIM-T use the minimum number of selection bits. However, the ISB of

Electronics 2023, 12, 3763 4 of 17

FSMIM-S uses the present-state encoding bits as selection bits, increasing the complexity of
the corresponding logic functions. Second, as the ROM of FSMIM-S stores the next state
instead of the next group, the architecture requires an extra combinational component
(called Group Encoder) to generate the present group from the present state, which has p
inputs and p′ outputs.

In conclusion, we can say the FSMIM-T architecture should be used when the LUT
usage and speed are critical, whereas FSMIM-S should be used when the number of
available EMBs is limited [10].

2.3. Generation of FSMIMs from FSMs

An approach to generate FSMIMs from FSMs was presented in [15] with the objective
of enabling efficient FSMIM implementations in terms of LUT and EMB usage. The Input
Selection Matrix (ISM) [10], which can be considered an abstraction of the ISB, is used to
describe the optimization problems arising in the generation of FSMIMs. In the ISM, rows
and columns represent states and input selectors, respectively. The effective inputs of each
state are represented by a different row, and each column represents the set of FSM inputs
that can be selected by an input selector. More formally, let S = {s1, s2, . . . , sq} be the set of
states, X = {x1, x2, . . . , xm} the set of FSM inputs, and k the maximum number of effective
inputs. Then, an ISM is defined as a matrix, A = (ai,j) ∈ Mq×k, where ai,j ∈ X ∪ {0, 1,−}
is the input selected by the input selector, j, for the state, si. The selected input can be a
constant value in addition to an FSM input or a don’t care. To indicate the correspondence
between ISM rows and states, the ISM can include a supplementary column that specifies
the state name associated with each row. Different ISMs, which determine different FSMIM
implementations, can be obtained from the same FSM. For example, see the two ISMs
shown in Figure 2a.

A =

x3 x4 x1 s1
− x6 x3 s2
x2 x5 − s3
− x1 − s4
− x4 − s5
x1 − − s6
x5 − − s7

AISS =

x1 x4 x3 s1
x6 − x3 s2
x2 x5 − s3
x1 − − s4
− x4 − s5
x1 − − s6
− x5 − s7

(a) (b)

ASG
1 =

x1 x4 x3 s1
x6 − x3 s2
x2 x5 − s3
x1 − − s4
0 x4 − g57
x1 − − s6
1 x5 − g57

ASG

2 =

x1 x4 x3 s1
x6 0 x3 g24
x2 x5 − s3
x1 1 − g24
0 x4 − g57
x1 − − s6
1 x5 − g57

ASG

3 =

x1 x4 x3 g1 ={s1}
x6 0 x3 g24
x2 x5 0 g357
x1 1 − g24
0 x4 1 g357
x1 − − g6 ={s6}
1 x5 1 g357

(c)

Figure 2. Example of FSMIM generation: (a) Input Selector Simplification, (b) second input selector
for the FSMIM-T architecture (R1

2 and R0
2 are the selection bits), and (c) State Grouping.

The approach presented in [15] is divided into two stages: the first one is the ISS stage,
which is intended to simplify the ISB, and the second one is the SG stage, which groups the
states to reduce the ROM depth. Given an FSM, the two stages process the corresponding
ISM in sequence: the ISS stage permutes the elements of ISM rows; then, the SG stage
assigns constant values. The ISM produced by the SG stage determines the implementation
of the generated FSMIM.

2.3.1. ISS Stage

The primary objective of the ISS stage is the reduction in LUT count by simplifying
the ISB. Moreover, the critical path often includes the ISB, especially in FSMIM-T imple-

Electronics 2023, 12, 3763 5 of 17

mentations; therefore, reducing the complexity of the ISB can also improve the speed of the
corresponding implementations.

As the selectors with fewer inputs need generally fewer LUTs, the ISB complexity
can be estimated as the total number of inputs of the selectors. This measure, which is
called selection cost, is calculated as the sum of the number of distinct values in each column
of the ISM. Since the complexity of the ISB in FSMIM-T is determined exclusively by the
number of inputs of their selectors (i.e., their multiplexers), it correlates directly with the
selection cost. However, in FSMIM-S, this correlation is weaker because the complexity of
the involved logic functions depends on other factors in addition to input count (e.g., the
states encoding).

Given an FSMIM, permuting the elements within each row of the corresponding ISM
defines an equivalent FSMIM, the transitions of which are allocated in different ROM words.
This operation over an ISM is called a permutation. The ISS stage finds the permutation of
the ISM that minimizes the selection cost (i.e., the sum of the input count of each selector of
the ISB). In the example of Figure 2a, AISS is a permutation of A in which the input count
of the ISB is reduced in the following way: from 4 to 3 for the first selector, from 4 to 2 for
the second one, and from 2 to 1 for the last one (see columns 1, 2, and 3, respectively).

In [15], the ISS stage is modeled as a problem called MMKPM with minimum selection
cost, number of selection bits, and DCSI dispersion (MMKPM-SSD), which is a variant of the
MMKPM problem [16]. MMKPM-SSD is described in terms of a bipartite graph obtained
from an ISM without constant values (the constant values are added by the SG stage, which
is applied after the ISS stage). Given an ISM A = (ai,j) ∈ Mq×k, where ai,j ∈ X ∪ {−},
a bipartite graph, G = (R ∪ X, E), is defined in which the rows of A are represented
by R = {1, . . . , q} and the FSM inputs by X. Each edge of E ⊆ R × X maps a row of
A to its effective inputs. A set of edges in G without common rows is referred to as a
partial-matching, and a collection of k partial-matchings P = {P1, . . . , Pk} is referred to as
k-partial-matching. A k-partial-matching is maximal if it defines a partition of E. Each partial-
matching of a maximal k-partial-matching represents a different column of A because it
selects one input from each row (or none if it is a DCSI). Therefore, any permutation of
A can be represented by a maximal k-partial-matching, where Pi determines the inputs
of column i. A low dispersion of DCSIs in the ISM columns (i.e., a high concentration of
DCSIs in few columns) benefits the SG stage, which is applied after the ISS stage. The
DCSI dispersion, in addition to the selection cost and the number of selection bits, can be
calculated from a maximal k-partial-matching [15].

The objective of the MMKPM-SSD problem is to find a maximal k-partial-matching
with minimum selection cost, minimum number of selection bits, and minimum DCSI
dispersion (in that order of priority). An ILP formulation to solve the MMKPM-SSD
problem was also proposed in [15].

2.3.2. SG Stage

Given an ISM, A = (ai,j) ∈ Mq×k, and a state, s ∈ S, the domain of s, denoted by
δ(s) ⊆ Bk, is defined as the set of values that the selected inputs of s can take. Obviously, if
no constant values are selected for a state, then its domain is equal to Bk. For example, in
the ISM AISS of Figure 2, δ(s4) = B3. However, the assignment of constant values to the
DCISs of a state reduces the cardinality of its domain. For example, if both DCSIs of s4 are
assigned to 0, then δ(s4) = {(0, 0, 0), (1, 0, 0)}. The cardinality of the domain of a state, s,
satisfies that

2ws ≤ |δ(s)| ≤ 2k (1)

where ws is the number of effective inputs of the state, s.
The ROM address is formed by the present-state encoding bits and k input signals.

Hence, each state code is associated with 2k ROM words. However, the set of ROM
addresses in which the state transitions are allocated is determined by the state encoding
bits and their domain. Therefore, if the domains of a group of states are disjoint, then
the states in the group can be encoded with the same code and share the 2k addresses

Electronics 2023, 12, 3763 6 of 17

associated with such code, which allows for reducing the depth of the ROM (hereinafter,
these groups of states will simply be called groups).

The SG stage reduces the depth of the ROM by grouping states. For each group, the
SG stage finds an assignment of constant values that ensures the domains of its states are
disjoint. For example, in Figure 2, the group, g24, in ASG

2 can be used to identify the states,
s2 and s4 (see AISS

2), because their domains differ in the value of the second column. We will
say that s2 and s4 are merged into the group g24 = {s2, s4}. With this assignment of constant
values, whenever the present state is g24, the transitions of s2 or s4 can be addressed by
selecting in the second input selector the values 0 or 1, respectively. Therefore, in the
corresponding state transitions, the next state, s2, must be substituted by g24 with input
selection (x6, 0, x3), whereas s3 must be substituted by g24 with (x1, 1,−). For example,
Figure 2b shows the multiplexer that implements the second input selector for FSMIM-T.

The assignment of constant values may have a negative effect on the speed and area of
FSMIM Implementations. In FSMIM-T, the number of selection bits grows, which increases
the number of LUTS (due to the increase in the complexity of the multiplexers) and the
number of EMBs (due to the increase in the width of the ROM). In FSMIM-S, the number
of EMBs is not affected because the ROM width does not depend on the selection cost;
however, the number of LUTs does increase due to the increased complexity of the logic
functions that implement the ISB, which have fewer don’t care outputs. Consequently, the
SG stage must stop forming groups when the number of EMBs can no longer be reduced.

The algorithm presented in [15] for the SG stage is called a EMB-granularity-based
SG algorithm (hereinafter, simply, SG algorithm (SGA)). It starts from an ISM without
constant values, in which each state forms a separate group; therefore, the initial number
of groups is equal to the number of states. The ISM columns are processed iteratively. At
each step of the algorithm, two groups are merged by assigning constant values to the
DCSIs of the processed column; then, the number of required EMBs is estimated from the
resulting ISM. If the number of EMBs decreases, the ISM is selected as a candidate solution.
The processing of the column continues until no more groups can be merged; then, the
algorithm proceeds with the next column. After processing all columns, the final candidate
solution is considered the best solution. That is, among all the solutions found with the
smallest number of EMBs, the best one is the solution with the largest number of groups,
as it has the least negative impact on speed and area.

An example of the application of SGA is shown in Figure 2 (where ASG
l represents

the result of processing column l by applying SGA to AISS). First, s5 and s7 are merged
into g57 = {s5, s7} by setting the DCSIs of the first column (see ASG

1). Then, the algorithm
processes the second column and merges s2 and s4 into g24 = {s2, s4} (see ASG

2). Finally,
during the processing of the third column, s3 and g57 are merged into g357 = {s3, s5, s7} by
fixing the DCSI of s3 to 0 and all DCSIs of g57 to 1 (see ASG

3). This is possible because all
rows of g57 and s3 have a DCSI in the third column. In contrast, although g24 has a DCSI
in the third column, it also has an effective input; therefore, it cannot be merged with s6.
The final set of groups is G = {g1, g24, g357, g6} = {{s1}, {s2, s4}, {s3, s5, s7}, {s6}}; then,
the number of groups is reduced from 7 to 4.

Note that the set of groups obtained by SGA is always a partition of S.

3. Proposed Approach to Generate FSMIMs from FSMs

By applying the ISS stage before the SG stage, the approach proposed in [15] for
generating FSMIM implementations gives priority to the simplification of the input selectors
over state grouping. As a consequence, in general, the ROM depth (and, thus, the number
of used EMBs) cannot be reduced as much as possible. With the aim of further reducing
the number of EMBs, this paper presents a new approach that prioritizes state grouping,
which requires, among other things, applying SG before ISS.

Depending on the FSMIM architecture, the new approach consists of two or three
stages. In FSMIM-S, the approach applies an initial SG stage followed by an ISS stage.
However, FSMIM-T requires that an additional SG stage be applied after ISS.

Electronics 2023, 12, 3763 7 of 17

3.1. Proposed SG Stage

The number of groups obtained by SGA depends on the positions of DCSIs in the
ISM. However, the minimum number of groups only depends on the number of effective
inputs of each state. Given an ISM, A = (ai,j) ∈ Mq×k, the set of groups, G = {g1, . . . , gt},
obtained by SGA verifies that ⌈

∑s∈S 2ws

2k

⌉
≤ |G| (2)

where ws is the number of effective inputs of s.

Proof. Let us define the domain of a group, g ⊆ S, as ∆(g) = ∪s∈gδ(s) ⊆ Bk. By
construction, the domains of any pair of states of a group, g ∈ G, are disjoint. Then,
|∆(g)| = | ∪s∈g δ(s)| = ∑s∈g |δ(s)|. Therefore, using (1), we have that

∑
s∈g

2ws ≤ |∆(g)| ≤ 2k (3)

Since G is a partition of S and (3) is satisfied, then⌈
∑s∈S 2ws

2k

⌉
=

⌈
∑t

i=1 ∑s∈gi
2ws

2k

⌉
≤
⌈

∑t
i=1 |∆(gi)|

2k

⌉
≤ t = |G|

In the approach presented in [15], the SG stage starts from the ISM generated by
the previous ISS stage. In general, the placement of the DCSIs in the ISM is not optimal
due to the permutations performed by the ISS stage; therefore, the SG stage cannot reach
the minimum number of groups. For example, in Figure 2c, the final number of groups
obtained by the SG algorithm is 4 (see ASG

3); however, the minimum number of groups is⌈
23+22+22+21+21+21+21

23

⌉
= 3.

Unlike previous work, the proposed method starts with an SG stage, which permutes
the elements of each ISM row to find an optimal distribution of the DCSIs. This permutation,
called initial SG permutation, moves the DCSIs to the last columns of each row. More formally,
given an ISM, A = (ai,j) ∈ Mq×k, the initial SG permutation arranges the elements of each
row of A in such a way that all ai,j, ai,l ∈ A satisfy that j < l if ai,j is not a DCSI and ai,l is a
DCSI. It can be proven that SGA reaches the minimum number of groups when it is applied
to the resultant ISM of the initial SG permutation. Figure 3 shows the application of the
proposed initial SG stage to the FSMIM of Figure 2, where Aπ is obtained by applying the
initial SG permutation to A.

Aπ =

x3 x4 x1 g1
x6 x3 − g2
x2 x5 − g3
x1 − − g4
x4 − − g5
x1 − − g6
x5 − − g7

where gi = {si}

Aπ
1 = Aπ Aπ

2 =

x3 x4 x1 g1
x6 x3 − g2
x2 x5 − g3
x1 0 − g45
x4 1 − g45
x1 0 − g67
x5 1 − g67

Aπ

3 =

x3 x4 x1 g1
x6 x3 0 g23
x2 x5 1 g23
x1 0 0 g4567
x4 1 0 g4567
x1 0 1 g4567
x5 1 1 g4567

Figure 3. Initial SG stage applied to the FSMIM example of Figure 2.

Electronics 2023, 12, 3763 8 of 17

Lemma 1. Let Aπ = (ai,j) ∈ Mq×k be the ISM obtained by the initial SG permutation;
Gπ

0 = {{s1}, . . . {sq}} be the initial set of groups; and Gπ
l be the set of groups obtained by SGA

after the l-th column of Aπ is processed. For all 1 ≤ l ≤ k, it holds that

|Gπ
l | =

⌈
cl + |Gπ

l−1|
2

⌉
(4)

where cl is the number of effective inputs in column l.

Proof. Let Aπ
l−1 = (ai,j) ∈ Mq×k be the ISM obtained after the column l − 1 is processed.

Gπ
l is obtained by assigning constant values to the l-th column of Aπ

l−1 and by merging the
groups of Gπ

l−1. For example, in Figure 3, Gπ
3 (see the last column of Aπ

3) is obtained by
assigning constant values to column 3 of Aπ

2 .
Let us suppose that ai,l is an effective input (i.e., it is not a DCSI). Then, due to the

initial SG permutation, ai,r is also an effective input for all r < l. This implies that the group,
g ∈ Gπ

l−1, related to row i could not be merged with other groups during the processing
of previous columns. Thus, it contains exclusively one state (si). In addition, it cannot be
merged with other groups during the processing of column l. We will refer to these groups
as isolated groups of Gπ

l−1. For example, in Figure 3, the unique isolated group of Gπ
2 is g1

because it has the unique effective input in the third column of Aπ
2 ; the remaining groups

are non-isolated.
The number of isolated groups of Gπ

l−1 is equal to the number of effective inputs in
column l (i.e., equal to cl). Then, the number of non-isolated groups is |Gπ

l−1| − cl . As the
non-isolated groups have a DCSI in column l of each one of their rows, they can be merged
by pairs during the processing of column l. Therefore, the final number of groups of Gπ

l is

|Gπ
l | = cl +

⌈
|Gπ

l−1| − cl

2

⌉
=

⌈
cl + |Gπ

l−1|
2

⌉

Proposition 1. SGA reaches the minimum number of groups determined by (2) when it is applied
to Aπ .

Proof. Rewriting (2) in terms of ISM rows instead of states and taking into account that
the final number of groups is that obtained after processing the last column (i.e., the k-th
column), it must be proven that

|Gπ
k | =

⌈
∑

q
i=1 2wi

2k

⌉
(5)

where wi is the number of effective inputs of state si.
Let w(r)

i be the number of effective inputs in the first r columns of row i of Aπ . Due to

the initial SG permutation, for all r > 1, w(r)
i is equal to either w(r−1)

i (if ai,r is a DCSI) or

w(r−1)
i + 1 (if ai,r is an effective input). Therefore, the number of effective inputs in column

r, with r > 1, can be calculated as cr = ∑
q
i=1

(
w(r)

i − w(r−1)
i

)
.

As wi = w(k)
i , the proposition is proven if

|Gπ
r | =

∑
q
i=1 2w(r)

i

2r

 (6)

is satisfied for all r = 1, . . . , k, which will be proven by induction.

Electronics 2023, 12, 3763 9 of 17

For r = 1, as c1 is the number of effective inputs in column 1, we have c1 rows with

w(1)
i = 1 and q− c1 rows with w(1)

i = 0. Then, ∑
q
i=1 2w(1)

i = 21c1 + (q− c1)20 = c1 + q =
c1 + |Gπ

0 |. Therefore, ∑
q
i=1 2w(1)

i

2

 =

⌈
c1 + |Gπ

0 |
2

⌉
which is equal to |Gπ

1 | using (4).
For the inductive step, let us suppose that (6) is true for |Gπ

r |. Using (4),

|Gπ
r+1| =

⌈
cr+1 + |Gπ

r |
2

⌉

= d cr+1 + d∑
q
i=1 2w(r)

i

2r e
2

e
= dd 2rcr+1+∑

q
i=1 2w(r)

i

2r e
2

e
= d2rcr+1 + ∑

q
i=1 2w(r)

i

2r+1 e
= d2r ∑

q
i=1

(
w(r+1)

i − w(r)
i

)
+ ∑

q
i=1 2w(r)

i

2r+1 e
= d∑

q
i=1

(
2r
(

w(r+1)
i − w(r)

i

)
+ 2w(r)

i

)
2r+1

e
Using the initial SG permutation, we have two possibilities for each row, i. If ai,r+1 is a

DCSI, then w(r+1)
i = w(r)

i . Thus, 2r
(

w(r+1)
i − w(r)

i

)
+ 2w(r)

i = 2w(r)
i = 2w(r+1)

i . If ai,r+1 is

an effective input, then w(r)
i = r and w(r+1)

i = r + 1. Hence, 2r
(

w(r+1)
i − w(r)

i

)
+ 2w(r)

i =

2r + 2r = 2r+1 = 2w(r+1)
i . In both cases, it holds that 2r

(
w(r+1)

i − w(r)
i

)
+ 2w(r)

i = 2w(r+1)
i ;

therefore,

|Gπ
r+1| =

∑
q
i=1 2w(r+1)

i

2r+1

Thus, the proposition is proven.

By applying the initial SG stage to the ISM A of Figure 2, the set of groups obtained
is Gπ

3 = {g1, g23, g4567} = {{s1}, {s2, s3}, {s4, s5, s6, s7}} (see the last column of Aπ
3 in

Figure 3); therefore, SGA reaches the minimum number of groups, which is 3, using (2).
The optimization process for the FSMIM-S architecture is composed of two stages: the

initial SG stage followed by the new ISS stage. As explained above, the initial SG stage first
applies the initial SG permutation and then SGA, which takes into account the number
of EMBs required by each candidate solution (see Section 2.3.2). Unlike the old ISS stage,
which does not manage ISMs with constant values, the new one takes into account the
existence of the previously created groups. Thus, only permutations that do not affect such
groups are allowed.

However, in FSMIM-T, the ROM width is overestimated during the initial SG stage
due to the fact that the selection cost is not minimized until the subsequent ISS stage. As
a consequence, SGA cannot carry out an accurate estimation of the number of EMBs. To
solve this problem, the optimization process uses three stages: (1) the initial SG stage, in
which SGA is applied with the EMB estimation disabled (thus, the algorithm obtains the

Electronics 2023, 12, 3763 10 of 17

minimum number of groups but not the best solution); (2) the new ISS stage; and (3) the
final SG stage in which SGA is applied, with the EMB estimation enabled, to the resultant
ISM but without any constant assigned (i.e., without any group created). The number of
groups is the minimum after the two first stages. Therefore, even though the constant
values of the ISM are removed in the third stage, and a minimal solution exists for the
distribution of the resultant DCSIs. As a consequence, there is a high probability that SGA
will once again obtain an optimal solution, even if such a DCSI distribution does not match
the initial SG permutation. The reduction in the ROM width is performed during the ISS
stage, allowing SGA to incorporate the EMB estimation in the third stage.

3.2. Proposed ISS Stage

Like in the previous approach [15], the ISS simplification can be carried out by both an
ILP formulation and a greedy algorithm. In this section, both approaches are described.

3.2.1. ILP Formulation for ISS Stage

To find solutions when the ISS stage is applied after the SG stage, this paper proposes
a variant of the MMKPM-SSD called MMKPM with the minimum number of selection bits
and minimum selection cost with links (MMKPM-SSL). In order to maintain the relationship
between the constants established in the previous SG stage, the concept of link is introduced:
a link guarantees that a set of DCSIs that have been assigned to merge two groups will
always belong to the same column of the ISM regardless of the permutations conducted.
The constants involved will be called linked constants. For example, the constants assigned
to a2,3 and a3,3 in Aπ

3 (see Figure 2) are linked because they allow the formation of a group
(g23). Therefore, any permutation that locates them in different columns is not allowed.
Like the MMPKM-SSD problem, the MMKPM-SSL problem minimizes the selection cost
and the number of selection bits; however, the minimization of the DCSI dispersion is not
an objective in the new optimization problem due to the fact that its purpose was to favor
the subsequent state grouping (note that, in the new approach, the SG stage is performed
first, resulting in an optimal solution).

Unlike the MMKPM-SSD problem, the MMKPM-SSL problem prioritizes the mini-
mization of the number of selection bits over the selection cost. The reason is explained
as follows. The goal of MMPKM-SSL is to reduce the number of EMBs. In FSMIM-T, the
number of selection bits has a direct influence on the ROM width. However, in FSMIM-S,
the number of EMBs does not depend on the input selection; therefore, it is not clear which
of the two objectives must have more priority. For homogeneity, we have used the same
criterion in both architectures.

Let X = {x1, . . . , xm} ∪ {0, 1} be the set of FSMIM inputs, which also includes the
constant values 0 and 1 added by the SG stage. After the initial SG procedure, each row of
the ISM can contain multiple instances of the same constant value, which will correspond
to the same edge of the bipartite graph; therefore, a multigraph (instead of the simple graph
used in the MMKPM-SSD problem) is required to represent the relation between rows
and inputs.

Let G = (R ∪ X, E, γ) be a bipartite multigraph, where R and X are the vertex sets,
E is the edge set, and γ : E → R× X is the function that maps edges to pairs of vertices.
An edge, e ∈ E, is incident to the vertices, r ∈ R and x ∈ X iff γ(e) = (r, x). Given an
ISM, A = (ai,j) ∈ Mq×k, where ai,j ∈ X ∪ {−}, let us define the bipartite multigraph,
G = (R ∪ X, E, γ), with E = {(i, j) : ai,j ∈ X} and γ((i, j)) = (i, ai,j). That is, for each
element ai,j of A, such that ai,j ≡ x ∈ X (which implies that it is not a DCSI), an edge,
e = (i, j) ∈ E, incident to row i ∈ R and to input x ∈ X is created (i.e., γ(e) = (i, x)). In
the resultant multigraph, any pair of edges incident to a pair of linked constants are called
linked edges. All definitions and properties related to the generic MMKPM problem [16] and
its variant MMKPM-SSD [15] can be applied to the multigraph G.

Electronics 2023, 12, 3763 11 of 17

Given A and G, the objective of the MMKPM-SSL problem is to find a maximal
k-partial-matching P = {P1, . . . , Pk} in G such that the tuple(

k

∑
i=1
dlog2 |X(Pi)|e,

k

∑
i=1
|X(Pi)|

)
(7)

is minimum in lexicographical order, where X(Pi) is the set of inputs incident to any edge
of Pi, the expression ∑k

i=1|X(Pi)| is equal to the selection cost, and ∑k
i=1dlog2|X(Pi)|e is

equal to the number of selection bits.
The MMKPM-SSL problem can be solved by using the ILP formulation described

below, which is an extension of the formulation for the MMKPM-SSD proposed in [15].
Let the variables yx,i, ze,i ∈ {0, 1} be defined as

yx,i =

{
1 if x ∈ X(Pi)

0 otherwise
∀x ∈ X, i = 1, . . . , k, (8)

ze,i =

{
1 if e ∈ Pi

0 otherwise
∀e ∈ E, i = 1, . . . , k, (9)

and let dj,i ∈ {0, 1} be defined as the bit of weight 2j corresponding to the binary repre-
sentation of the value 2dlog2|X(Pi)|e − 1, which is a sequence of dlog2|X(Pi)|econsecutive
1 s.

By supposing that

D = dlog2 min{|R|, |X|}e (10)

and

Q = k min{|R|, |X|} (11)

the following ILP formulation allows us to solve the following MMKPM-SSL problem:

min. Q
k

∑
i=1

D

∑
j=1

dj,i +
k

∑
i=1

∑
x∈X

yx,i (12)

subject to

∑
e∈E(r)

ze,i ≤ 1 ∀r ∈ R, i = 1, . . . , k, (13)

k

∑
i=1

ze,i ≤ 1 ∀e ∈ E, (14)

k

∑
i=1

∑
e∈E(x)

ze,i = dG(r) ∀r ∈ R, (15)

ze,i ≤ yx,i ∀e ∈ E, γ(e) = (r, x), i = 1, . . . , k (16)

yx,i ≤∑
e∈E(x)

ze,i ∀x ∈ X, i = 1, . . . , k, (17)

2jdj,i ≤∑
x∈X

yx,i − 1 j = 0, . . . , D− 1, i = 1, . . . , k, (18)

∑
x∈X

yx,i − 1 ≤
D−1

∑
j=0

2jdj,i i = 1, . . . , k, (19)

dj,i ≥ dj+1,i j = 0, . . . , D− 2, i = 1, . . . , k. (20)

ze,i = ze′ ,i ∀e, e′ ∈ E | e and e′ are linked, i = 1, . . . , k. (21)

Electronics 2023, 12, 3763 12 of 17

where dG(s) is the degree of the vertex, s, and E(s) represents the set of edges in E that are
incident to the vertex, s.

The constraint (13) guarantees that Pi is a partial matching, that is, that each Pi has, at
most, one edge incident to each row. The constraint (14) guarantees the k-partial-matchings
are disjoint, that is, that one edge cannot belong to different partial matchings. In addition,
all edges belong to a partial matching by constraint (15); thus, the feasible solutions are
maximal k-partial-matchings. The coherence of ze,i and yx,i is guaranteed by (16) and (17).
On the one hand, the constraint (16) ensures that an edge, e ≡ (r, x), belongs to Pi (i.e.,
ze,i = 1), only if the input x ∈ X(Pi) (i.e., yx,i = 1). On the other hand, (17) ensures that an
input x belongs to X(Pi) only if there exists at least one edge e ≡ (r, x) ∈ Pi.

The constraints (18), (19) and (20) are related to the calculation of the number of
selection bits. The constraint (18) ensures that dj,i = 0 for all j, such that 2j ≥ |X(Pi)| − 1.
The constraint (19) guarantees that the variable, dj,i, corresponding to the more significant
digit of the binary representation of |X(Pi)| − 1 has a value of 1. Moreover, all digits less
significant than it will also be equal to 1 due to the constraint (20).

The constant, Q, is an upper bound of the selection cost, which is used in (12) to
lexicographically sort the solutions. Finally, (21) ensures that any pair of linked edges
belong to the same partial matching (i.e., that any pair of linked constants is located at the
same ISM column).

The difference between the MMKPM-SSD and the MMKPM-SSL problems can be
summarized as follows:

• The MMKPM-SSL problem does not have the minimization of the DCSI dispersion as
an objective.

• The MMKPM-SSL problem prioritizes the minimization of the number of selection
bits over the selection cost.

• The MMKPM-SSL problem includes constraint (21).
• In the MMKPM-SSL problem, constraint (15) is the result of rewriting the correspond-

ing constraint in terms of a multigraph.

3.2.2. Greedy Algorithm for the ISS Stage

A greedy algorithm to solve the MMKPM problem was proposed in [16], which
implements the following intuitive strategy to find good solutions. Given a bipartite graph,
G = (R ∪ X, E), the algorithm constructs a k-partial-matching, P = {P1, P2, . . . , Pk}, by
selecting, at each step, the largest set of edges incident to the same vertex, x ∈ X, that can be
added to some partial matching, Pi, and then adding it to Pi. The process terminates when
the obtained k-partial-matching is maximal, that is, when all edges have been processed.

This greedy algorithm was used as an alternative to the ILP formulation in the experi-
mental results of [15] to solve the MMKPM-SSD problem. However, the algorithm cannot
be directly used to solve instances of the new MMKPM-SSL problem because such a greedy
strategy does not guarantee that linked edges remain in the same partial matching.

To avoid this issue, we propose a slight modification of the algorithm that involves
initializing each partial matching, Pj ∈ P, with the edges corresponding to the fixed DC-
SIs in the column, j, of the ISM. This initialization ensures that the algorithm does not
subsequently assign linked edges to different partial matchings (i.e., it does not sepa-
rate linked constants in different columns). More formally, given a bipartite multigraph,
G = (R ∪ X, E, γ), instead of initializing P with empty sets, the new algorithm initializes
each partial matching as Pj = {e ≡ (i, j) ∈ E : γ(e) = (i, 0) ∨ γ(e) = (i, 1)} for all Pj ∈ P.

4. Experimental Results

In this section, the proposed approach (which will be referred to as SG-ISS) is compared
with that proposed in [15] (which will be referred to as ISS-SG). For each approach, both
the ILP and the greedy strategies are used in the ISS stage, giving rise to the following
techniques: SG-ISS-ILP, SG-ISS-Greedy, ISS-ILP-SG, and ISS-Greedy-SG.

Electronics 2023, 12, 3763 13 of 17

The experimental study was carried out using a set of 72 large-sized FSMs, which
were also used in [15] (Table 1 shows the statistical measures of the different parameters of
these FSMs). The target device was an Intel Max 10 FPGA with 50K logic elements and a
speed grade of 6, which includes 182 EMBs of 9 Kbits. The synthesis and implementation
of the designs were conducted using Quartus Prime software (ver. 18.0). As the results
were obtained after placement and routing, they include routing overhead. The speed
(maximum clock frequency) and area results (EMB and LUT usage) were obtained using
speed and area optimization, respectively. The efficiency of the FSMIM techniques can
be measured by calculating the number of saved LUTs with respect to a conventional
LUT-based approach for each used EMB (we will refer to this measure as SPLE (saved LUTs
per EMB)). The ILP formulation is solved using Gurobi [21] with a maximum execution
time of 60 min.

Table 1. Parameters of the FSMs used in the experiments.

Mean Std Min Q1 Q2 Q3 Max

of states 185.1 143.2 35.0 67.5 142.5 253.0 497.0

of inputs 12.5 1.7 10.0 11.0 12.5 14.0 15.0

of outputs 4.6 1.4 2.0 4.0 4.0 6.0 7.0

of transitions 2739.5 3604.5 198.0 622.5 1391.5 3424.5 22,950.0

Maximum number 8.0 0.8 7.0 7.0 8.0 9.0 9.0of effective inputs

Table 2 shows the EMB reduction, the LUT reduction, the SLPE increment, and the
speed increment obtained by SG-ISS with respect to ISS-SG (obviously, each strategy is
compared with its corresponding one, i.e., SG-ISS-ILP with ISS-ILP-SG as well as SG-ISS-
Greedy with ISS-Greedy-SG). Therefore, the results shown in the table corresponding to
the techniques that use the ILP strategy cannot be compared with those obtained using the
greedy strategy because they were calculated using a different reference. In addition to
the usual statistical measures, the table shows the Hit Rate (HR) and the Miss Rate (MR),
which represent the percentage of cases in which SG-ISS obtains better and worse results
than ISS-SG, respectively.

Table 2. Percentage improvement in the proposed SG-ISS approach with respect to ISS-SG.

Arch. ISS Strat. Mean Std. Dev. Min Q1 Q2 Q3 Max HR MR

EMB red. FSMIM-S Greedy 31 23 0 7 33 50 77 81 0
(%) ILP 28 23 0 4 33 50 77 78 0

FSMIM-T Greedy 24 24 −20 0 32 43 69 72 22
ILP 24 26 −30 0 33 46 73 71 17

LUT red. FSMIM-S Greedy −8 36 −153 −17 −1 9 64 47 53
(%) ILP −18 48 −268 −27 −11 2 65 26 74

FSMIM-T Greedy −204 195 −820 −300 −136 −80 52 6 94
ILP −138 164 −670 −215 −78 −33 63 7 93

SLPE inc. FSMIM-S Greedy 55 53 −2 8 46 88 215 90 10
(%) ILP 46 44 −6 1 40 84 183 78 22

FSMIM-T Greedy 37 46 −18 −3 33 69 171 67 33
ILP 42 53 −24 −0 32 81 264 71 29

Speed inc. FSMIM-S Greedy 9 20 −29 −2 7 20 80 65 35
(%) ILP 5 16 −25 −4 1 15 48 56 44

FSMIM-T Greedy −7 7 −24 −11 −7 −3 9 13 87
ILP −5 7 −25 −8 −5 −0 13 23 77

Electronics 2023, 12, 3763 14 of 17

We must highlight that some cases (two for the ILP strategy and three for the greedy
one) were excluded because the implementation obtained by ISS-SG did not fit in the
device. Nevertheless, the FSMs were successfully implemented by means of the proposed
SG-ISS approach.

The proposed approach achieves noteworthy reductions in EMB usage. The obtained
average reduction is 24% in the FSMIM-T architecture and close to 30% in the FSMIM-S one.
The approach is slightly less effective in the FSMIM-T architecture because the initial SG
stage reduces the depth of the ROM at the expense of harming the subsequent minimization
of the selection cost. This fact only affects the ROM of FSMIM-T, diminishing the overall
reduction, as it requires storing the selection bits. Independently of the ISS strategy and the
architecture, the hit rate is at least 71%. In FSMIM-S, the proposed approach never uses
more EMBs than the old technique (in FSMIM-T, the miss rate does not exceed 22%).

The negative average LUT reduction indicates that, as would be expected, the number
of used LUTs increases. The worst results are obtained by FSMIM-T due to the direct
correlation between the complexity of the ISB (which is based on multiplexers) and the
selection cost. However, despite the high increment ratios, it must be taken into account
that the number of used LUTs is low in this architecture (the average number of LUTs
per FSM is about 30). In the case of FSMIM-S, the lower average increment in used LUT
confirms that the impact of the selection cost on the complexity of the ISB is lower. Despite
the increase in LUT usage in both architectures, the SLPE increment keeps high values,
indicating that the new approach is more effective as a means of saving LUTs by using
EMBs than the ISS-SG approach (this is particularly true for the FSMIM-S architecture).

Regarding speed, the increase in LUTs required by FSMIM-T causes, as is expected, a
degradation in the maximum clock frequency, although this is not significant (less than 7%).
In FSMIM-S, the use of the ILP strategy increases the speed in 56% of the cases, obtaining
an average increment of 5% (the results are even better for the greedy strategy). These
good results are explained by the lower dependency between the selection cost and the
ISB complexity in this architecture, along with the fact that the reduction in the number of
EMBs can improve the speed. In contrast, in the case of FSMIM-T, the positive effect of the
EMB reduction on speed does not allow for offsetting the speed degradation due to the
increase in the number of LUTs.

It is important to highlight that the proposed SG-ISS approach is not intended to
replace but rather to provide an alternative to the ISS-SG approach. The four techniques,
along with the two FSMIM architectures, constitute eight design alternatives that can be
chosen in accordance with the design requirements. In order to study the efficiency of these
design alternatives, for each FSM, we have calculated the EMB reduction, LUT reduction,
and speed increment in each design alternative with respect to the worst-case scenario
(i.e., the alternative that obtains the worst result for the FSM and the studied measure).
The obtained average values (in percentages) are shown in Figures 4–6. On the one hand,
it is clear that the SG-ISS approach and the FSMIM-S architecture should be used when
reducing memory usage is a priority and the speed is not critical. On the other hand,
the ISS-SG approach and the FSMIM-T architecture should be used when saving LUTs is
the primary objective. The faster and solver-free greedy approach provides a favorable
trade-off between result quality and computation time. This is an adequate option when the
design requirements are not very demanding; otherwise, the ILP strategy should be used.

Electronics 2023, 12, 3763 15 of 17

0 10 20 30 40 50 60 70
EMB reduction with respect to the worst case (%)

SG-ISS-ILP

SG-ISS-Greedy

ISS-ILP-SG

ISS-Greedy-SG

SG-ISS-ILP

SG-ISS-Greedy

ISS-ILP-SG

ISS-Greedy-SG FSMIM-T
FSMIM-S

Figure 4. EMB reduction with respect to the worst case for each of the techniques.

0 20 40 60 80 100
LUT reduction respect to the worst case (%)

SG-ISS-ILP

SG-ISS-Greedy

ISS-ILP-SG

ISS-Greedy-SG

SG-ISS-ILP

SG-ISS-Greedy

ISS-ILP-SG

ISS-Greedy-SG

FSMIM-T
FSMIM-S

Figure 5. LUT reduction with respect to the worst case for each of the techniques.

0 10 20 30 40 50 60
Speed increment with respect to the worst case (%)

SG-ISS-ILP

SG-ISS-Greedy

ISS-ILP-SG

ISS-Greedy-SG

SG-ISS-ILP

SG-ISS-Greedy

ISS-ILP-SG

ISS-Greedy-SG

FSMIM-T
FSMIM-S

Figure 6. Speed increment with respect to the worst case for each of the techniques.

Electronics 2023, 12, 3763 16 of 17

5. Conclusions

A new approach for generating FSMIMs from conventional FSMs, called SG-ISS, was
proposed with the aim of obtaining further reductions in the number of required EMBs.
Unlike previous approaches [10,15], the SG stage is applied before the ISS stage. For this, a
new strategy for the SG stage that obtains optimal solutions in terms of grouping states was
proposed. In addition, the ILP formulation proposed in [15] for the ISS stage was extended
in order to maintain coherence with the results obtained in the SG stage. A comparison
study between the new approach and that proposed in [15] was presented.

The results show that the SG-ISS significantly reduces the number of EMBs without a
considerable increase in the number of LUTs. Thus, the proposed SG-ISS approach can be
an alternative to that proposed in [15] (called the ISS-SG approach) when saving EMBs is
critical. We can, therefore, conclude that SG-ISS and ISS-SG can be considered complemen-
tary approaches, which, along with the two ISS strategies (ILP and Greedy) and the two
FSMIM architectures (FSMIM-T and FSMIM-S), provide eight different design alternatives.
These alternatives were evaluated by analyzing the average EMB reduction, LUT reduction,
and speed increment in each design alternative with respect to the worst case. From this
study, we can conclude that the SG-ISS approach and the FSMIM-S architecture should be
used when reducing memory usage is a priority and the speed is not critical. On the other
hand, the ISS-SG approach and the FSMIM-T architecture should be used when saving
LUTs is the primary objective.

With respect to the ISS strategy, the greedy algorithm provides a good trade-off
between result quality and computation time (in addition to no solver being required).
Therefore, it is a good choice when the design requirements are not very demanding. On
the other hand, the ILP formulation could be used when the requirements are not met using
the greedy algorithm. An Electronic Design Automation (EDA) tool incorporating the
proposed design alternatives could select one of them, considering the design requirements
and the effort level specified by the designer.

Author Contributions: Conceptualization, R.S.-N. and I.G.-V.; Methodology, R.S.-N. and I.G.-V.;
Software, R.S.-N. and I.G.-V.; Validation, R.S.-N. and I.G.-V.; Formal analysis, R.S.-N. and I.G.-V.; In-
vestigation, R.S.-N. and I.G.-V.; Writing—original draft, R.S.-N. and I.G.-V.; Writing—review & editing,
R.S.-N. and I.G.-V. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: We would like to thank Gurobi for providing us with a free academic license to
carry out this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Barkalov, A.; Titarenko, L. Logic Synthesis for FSM-Based Control Units; Springer International Publishing: Cham, Switzerland,

2009; Volume 53. [CrossRef]
2. Klimowicz, A.S.; Solov’ev, V.V. Structural Models of Finite-State Machines for Their Implementation on Programmable Logic

Devices and Systems on Chip. J. Comput. Syst. Sci. Int. 2015, 54, 230–242. [CrossRef]
3. Kubica, M.; Kania, D. Technology Mapping of FSM Oriented to LUT-Based FPGA. Appl. Sci. 2020, 10, 3926. [CrossRef]
4. Rawski, M.; Selvaraj, H.; Luba, T. An application of functional decomposition in ROM-based FSM implementation in FPGA

devices. In Proceedings of the Euromicro Symposium on Digital System Design, Belek-Antalya, Turkey, 3–5 September 2003;
pp. 104–110.

5. El-Maleh, A.; Sait, S.; Nawaz Khan, F. Finite state machine state assignment for area and power minimization. In Proceedings of
the 2006 IEEE International Symposium on Circuits and Systems, ISCAS 2006, Kos, Greece, 21–24 May 2006.

6. Janarthanan, A.; Tiwari, A.; Tomko, K. Power-efficient FSM mapping in FPGAs through SEMB dormancy control. In Proceedings
of the 50th Midwest Symposium on Circuits and Systems, MWSCAS 2007, Montreal, QC, Canada, 5–8 August 2007; pp. 502–505.

7. Mengibar, L.; Entrena, L.; Lorenz, M.; Millan, E. Partitioned state encoding for low power in FPGAs. Electron. Lett. 2005,
41, 948–949. [CrossRef]

8. Sklyarov, V. Reconfigurable models of finite state machines and their implementation in FPGAs. J. Syst. Archit. 2002, 47, 1043–1064.
[CrossRef]

http://doi.org/10.1007/978-3-642-04309-3
http://dx.doi.org/10.1134/S1064230715010074
http://dx.doi.org/10.3390/app10113926
http://dx.doi.org/10.1049/el:20052307
http://dx.doi.org/10.1016/S1383-7621(02)00067-X

Electronics 2023, 12, 3763 17 of 17

9. Borowik, G.; Falkowski, B.; Luba, T. Cost-Efficient Synthesis for Sequential Circuits Implemented Using Embedded Memory
Blocks of FPGA’s. In Proceedings of the IEEE Design and Diagnostics of Electronic Circuits and Systems, DDECS’07, Kraków,
Poland, 11–13 April 2007; pp. 1–6.

10. Garcia-Vargas, I.; Senhadji-Navarro, R. Finite State Machines With Input Multiplexing: A Performance Study. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 2015, 34, 867–871. [CrossRef]

11. Barkalov, A.; Titarenko, L.; Kolopienczyk, M.; Mielcarek, K.; Bazydlo, G. Design of EMB-Based Mealy FSMs; Springer International
Publishing: Cham, Switzerland, 2016; pp. 193–237.

12. Tiwari, A.; Tomko, K. Saving power by mapping finite-state machines into embedded memory blocks in FPGAs. In Proceedings of
the Design, Automation and Test in Europe Conference and Exhibition, Paris, France, 16–20 February 2004; Volume 2, pp. 916–921.

13. Selvaraj, H.; Rawski, M.; Luba, T. FSM implementation in embedded memory blocks of programmable logic devices using
functional decomposition. In Proceedings of the International Conference on Information Technology: Coding and Computing,
Las Vegas, NV, USA, 8–10 April 2002; pp. 355–360. [CrossRef]

14. Barkalov, A.; Titarenko, L.; Krzywicki, K. Structural Decomposition in FSM Design: Roots, Evolution, Current State—A Review.
Electronics 2021, 10, 1174. [CrossRef]

15. Garcia-Vargas, I.; Senhadji-Navarro, R. Optimization based on the minimum maximal k-partial-matching problem of finite states
machines with input multiplexing. Des. Autom. Embed. Syst. 2022, 26, 83–103. [CrossRef]

16. Garcia-Vargas, I.; Senhadji-Navarro, R. The minimum maximal k-partial-matching problem. Optim. Lett. 2013, 7, 1959–1968.
[CrossRef]

17. Das, N.; Priya, P.A. FPGA Implementation of an Improved Reconfigurable FSMIM Architecture Using Logarithmic Barrier
Function Based Gradient Descent Approach. Int. J. Reconfigurable Comput. 2019, 2019, 3727254. [CrossRef]

18. Mardani Kamali, H.; Zamiri Azar, K.; Homayoun, H.; Sasan, A. SCRAMBLE: The State, Connectivity and Routing Augmentation
Model for Building Logic Encryption. In Proceedings of the 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
Limassol, Cyprus, 6–8 July 2020; pp. 153–159.

19. Xilinx. 7 Series FPGAs Configurable Logic Block: User Guide; Xilinx: San Jose, CA, USA , 2016.
20. Altera. Advanced Synthesis Cookbook; Altera: San Jose, CA, USA, 2011.
21. Gurobi Optimization. Gurobi Optimizer Reference Manual. 2020. Available online: http://www.gurobi.com (accessed on

1 September 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TCAD.2015.2406859
http://dx.doi.org/10.1109/ITCC.2002.1000415
http://dx.doi.org/10.3390/electronics10101174
http://dx.doi.org/10.1007/s10617-022-09259-z
http://dx.doi.org/10.1007/s11590-012-0531-3
http://dx.doi.org/10.1155/2019/3727254
http://www.gurobi.com

	Introduction
	Background
	Conventional ROM-Based Implementation
	Finite State Machine with Input Multiplexing
	Generation of FSMIMs from FSMs
	ISS Stage
	SG Stage

	Proposed Approach to Generate FSMIMs from FSMs
	Proposed SG Stage
	Proposed ISS Stage
	ILP Formulation for ISS Stage
	Greedy Algorithm for the ISS Stage

	Experimental Results
	Conclusions
	References

