
The Journal of Systems & Software 195 (2023) 111541

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Featuremodels to boost the vulnerabilitymanagement process✩

Ángel Jesús Varela-Vaca ∗, Diana Borrego, María Teresa Gómez-López, Rafael M. Gasca,
A. German Márquez
Data-Centric Computing Research Hub (IDEA), Universidad de Sevilla, Av. Reina Mercedes, Seville, 41012, Spain

a r t i c l e i n f o

Article history:
Received 18 February 2022
Received in revised form26 September 2022
Accepted 7 October 2022
Available online 18 October 2022

Dataset link: https://zenodo.org/record/707
2369

Keywords:
Cybersecurity
Feature model
Vulnerability
Exploits
Reasoning
Vulnerable management process

a b s t r a c t

Vulnerability management is a critical and very challenging process that allows organisations to
design a procedure to identify potential vulnerabilities, assess the level of risk, and define remediation
mechanisms to address threats. Thus, the large number of configuration options in systems makes it
extremely difficult to identify which configurations are affected by vulnerabilities and even assess how
systems may be affected. There are several repositories to store information on systems, software vul-
nerabilities, and exploits. However, they are largely scattered, offer different formats and information,
and their use has limitations, complicating vulnerability management automation. For this reason,
we introduce a discussion concerning modelling in vulnerability management and the proposal of
feature models as a means to collect the variability of software and system configurations to facilitate
the vulnerability management process. This paper presents AMADEUS-Exploit, a feature model-
based solution that provides query and reasoning mechanisms that make it easier for vulnerability
management experts. The power of AMADEUS-Exploit is shown and evaluated in three different ways:
first, the solution is compared with other vulnerability management tools; second, the solution is faced
with another in a complex scenario with 4,000 vulnerabilities and 700 exploits; and finally, our solution
was used in a real project demonstrating the usability of reasoning operations to determine potential
vulnerabilities.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Vulnerability management (Foreman, 2009) is a critical pro-
cess that allows organisations to identify potential vulnerabilities,
assess the level of risk, and define remediation mechanisms to ad-
dress threats. However, current cyberattack chains (attack chains)
used by attackers to penetrate systems are becoming increasingly
sophisticated (Yadav and Rao, 2015). Therefore, attackers use a
wide variety of attack vectors to exploit system vulnerabilities.
According to the definition of the European Union Agency for
Cybersecurity (ENISA),1 ‘‘an attack vector is a means by which
a threat agent can abuse weaknesses or vulnerabilities in assets
to achieve a specific outcome’’. For example, a misconfigura-
tion (Perez et al., 2017) of a software component can be used
as an entry point (attack vector) for an attacker. Due to the
wide variety of existing configuration options for software and

✩ Editor: Prof. Raffaela Mirandola.
∗ Corresponding author.

E-mail addresses: ajvarela@us.es (Á.J. Varela-Vaca), dianabn@us.es
(D. Borrego), maytegomez@us.es (M.T. Gómez-López), gasca@us.es (R.M. Gasca),
amtrujillo@us.es (A.G. Márquez).
1 ENISA Threat Landscape https://www.enisa.europa.eu/news/enisa-news/

enisa-report-the-2017-cyber-threat-landscape.

hardware systems and the increasing number of vulnerabilities,
vulnerability management becomes a very difficult process (Mor-
rison et al., 2018), from identification to assessment (Dass and
Namin, 2020; Murthy and Shilpa, 2018). Therefore, designing
appropriate mechanisms to drive the vulnerability management
process is crucial to minimise the exposure of end-users and
organisations to external threats.

The first stage of a vulnerability management process is to
inventory software and systems, and then identify vulnerabilities
and exploits that may affect them (Engebretson, 2013). To do
so, the elements involved and their characteristics (i.e. service
names, ports, software versions, etc.) must be identified, and
which known vulnerabilities and exploits may affect them. Cur-
rently, there are vulnerability catalogues/repositories, such as the
National Vulnerability Database (hereinafter NVD) (Anon., 2020a).
These catalogues provide information related to vulnerabilities,
associating these vulnerabilities with the products they affect
(software, hardware, operating systems, etc.). This information
is crucial to determine whether a vulnerability can be used as
an attack vector and should or should not be taken into ac-
count for assessment. However, vulnerability repositories may
have poor quality (Kuehn et al., 2021), limitations that hinder
their use (Zhang et al., 2015) -such as a limited number of

https://doi.org/10.1016/j.jss.2022.111541
0164-1212/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jss.2022.111541
https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2022.111541&domain=pdf
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
https://zenodo.org/record/7072369
mailto:ajvarela@us.es
mailto:dianabn@us.es
mailto:maytegomez@us.es
mailto:gasca@us.es
mailto:amtrujillo@us.es
https://www.enisa.europa.eu/news/enisa-news/enisa-report-the-2017-cyber-threat-landscape
https://www.enisa.europa.eu/news/enisa-news/enisa-report-the-2017-cyber-threat-landscape
https://doi.org/10.1016/j.jss.2022.111541

Á.J. Varela-Vaca, D. Borrego, M.T. Gómez-López et al. The Journal of Systems & Software 195 (2023) 111541

searches or hidden information retrieved-, or even their vul-
nerability information may be unlinked from exploits. In fact,
automatic detection of system features and vulnerabilities re-
mains an open problem (Gawron et al., 2015; Tommy et al., 2017).
Current vulnerability management tools (e.g. OpenVAS) are very
limited in the kind of operational capabilities they offer (they
only prioritise by vulnerability impact) to carry out fine-grained
vulnerability management. For instance, identifying a specific
attack vector related to a combination of software version, plat-
form, and operating system may be inferred from a vulnerability.
These drawbacks make it even more difficult to assess vulnerabil-
ities to obtain adequate vulnerability coverage (Dass and Namin,
2020). Therefore, it is essential to provide models that collect
information from vulnerability and exploit databases and of-
fer automatic analysis mechanisms to support the definition of
accurate vulnerability identification and assessment.

The definition of models that enable automation and stan-
dardisation for the retrieval, identification, and assessment of
vulnerabilities is one of the main challenges in the vulnera-
bility management process (Wang and Guo, 2009a; Palmaers,
2021). Most academic approaches focus on the definition of se-
mantic models (Wang and Guo, 2009a,b; Syed, 2020; Jia et al.,
2018). Ontologies and knowledge graphs are used to link se-
mantically related concepts that are generally unrelated. For in-
stance, the CVO ontology (Syed, 2020) related to the concepts
of NIST, CERT/CSS, and CVSS (Common Vulnerability Score Sys-
tem) (Anon., 2020b). Afterward, the ontology is used to infer
certain information from different data sources. This ontology
was used to identify tweets that mentioned any vulnerability.
Vulnerabilities and exploits may affect different parts of a sys-
tem at different levels of granularity, e.g., operating systems,
platforms, applications, components, versions, etc. This creates a
controversy over the variability, i.e., which combination of those
parts represents a vulnerability for the target system or infers
whether any variety of those parts may affect the target system.
Due to the high variability in both systems, vulnerabilities, and
exploits, the interest in applying configuration models to analyse
vulnerability emerged (Kenner et al., 2020).

In previous work, we presented AMADEUS (Varela-Vaca et al.,
2020) as a solution that uses feature models (hereinafter FMs)
as formal models to gather the variability of known affected ele-
ments (software, hardware, operating systems, etc.) represented
in vulnerabilities. The main advantage of using FMs is that they
can help us in two ways: firstly, by bringing together all the
elements represented in a unified model; and, secondly, the use
of FMs opens up the possibility of using automatic analysis mech-
anisms to support the definition of appropriate security tests.
However, we did not address some limitations: (1) AMADEUS
only supports one vulnerability repository, lacking the integration
of vulnerability and exploit repositories; (2) AMADEUS generates
FMs but without taking exploits into account; (3) cross-tree con-
straints are generated in a separate file of the FMs file, and this
limited the use of the reasoner; (4) the reasoning capabilities are
not fully explored.

In this paper, our aim is to extend the previous work (Varela-
Vaca et al., 2020) by improving AMADEUS empowered by the
following items:

1. In the previous work, AMADEUS only integrated one vul-
nerability repository. In this paper, we propose to integrate
more vulnerability repositories and also integrate exploit
repositories.

2. In the previous work, AMADEUS only considered vulner-
ability information. In the new approach, we redefine FM
generation algorithms to take vulnerabilities and exploits
information into account.

3. In the previous work, AMADEUS was defined on top of
the old-fashion FAMA Framework. In the new approach,
the core of AMADEUS Exploit has been completely re-
implemented to support a new FM engine to facilitate
reasoning capabilities.

4. In the previous work, AMADEUS provided only a few op-
erations and was very limited. In the new approach, we
propose new FM reasoning capabilities with new operators
to facilitate vulnerability analysis.

5. AMADEUS-Exploit has positioned itself against a wide
range of vulnerability management tools to demonstrate
the extent of the functionalities available on the market
and the feasibility of the solution when applied in real
contexts.

6. In the previous work, AMADEUS was tested with a bunch
of vulnerabilities. In the new approach, AMADEUS-Exploit
is evaluated in three different ways: (1) it is compared with
other vulnerability management tools concerning certain
capabilities for the identification and reasoning of vulnera-
bilities and exploits; (2) it is applied in a synthetic scenario
consisting of several applications and services affected by
4000 vulnerabilities and 674 exploits to demonstrate the
ability to generate a large number of models; and (3) a
real scenario in a security project is used, in which we
apply our approach to recognise services, vulnerabilities,
and exploits, and to apply reasoning operations to define
a concrete list for prioritising vulnerability assessment.

In summary, we present AMADEUS-Exploit2 as a new solu-
tion to cover the limitations of AMADEUS and other commercial
tools, increasing the functionalities. AMADEUS-Exploit allows the
automatic generation of FMs from different vulnerability and
exploit repositories, enabling an improved vulnerability manage-
ment process boosted by automatic analysis mechanisms, making
it easier for vulnerability management experts to identify poten-
tially vulnerable software and system configurations or to pri-
oritise vulnerabilities to be assessed. Thus, AMADEUS-Exploit is
conceived to assist/support experts in the process of discovering,
identifying, and assessing vulnerabilities. Therefore, AMADEUS-
Exploit provides queries and reasoning operations to support
and assist this crucial task. The current vulnerability and exploit
databases enable for specific search capabilities. However, this
search capability is limited to specific terms and information, and
more sophisticated operations that address both are not available.
Our approach tries to provide these types of operations.

The rest of the paper is organised as follows. Section 2 presents
the basics on feature modelling, vulnerabilities, and exploits to
better understand the proposal. Section 3 introduces the proposal,
describing the integrated modules to achieve the objectives set
out in the methodology. Section 4 details the formalisation of
FMs. Section 5 illustrates how FMs can be used to reason and
achieve better results in security testing. Section 6 compares our
solutions with other commercial tools, and assesses the feasibility
of our approach on real scenarios. Section 7 summarises previous
proposals in the area. Section 8 analyses the threats to the validity
of this study; and finally, conclusions are drawn and future work
is outlined in Section 9.

2. Foundations

This section introduces some terms related to cybersecurity
vulnerabilities, exploits, and feature modelling to facilitate the
understanding of the proposal.

2 https://doi.org/10.5281/zenodo.7072369

2

https://doi.org/10.5281/zenodo.7072369

Á.J. Varela-Vaca, D. Borrego, M.T. Gómez-López et al. The Journal of Systems & Software 195 (2023) 111541

Fig. 1. Example of vulnerabilities in different databases.

2.1. Vulnerability repositories

Several catalogues and repositories collect vulnerabilities that
characterise different systems. They also provide information on
how attack vectors and vulnerabilities interact. Among all these
repositories, some stand out, such as NVD (Anon., 2020a), the
US-CERT3 vulnerability notes database, VulDB4 or IBM X-FORCE.5
This paper focusses on NVD and VulDB databases due to their
wide use, continuous data update, and reliability. Furthermore,
they have web tools that provide vulnerability search mecha-
nisms, as illustrated in Fig. 1(a). This picture shows the indexed
results related to the query about vulnerabilities of Apache Nifi
1.10. The query yielded three records, CVE-2020-9486,6 CVE-
2020-1933, and CVE-2020-1928.

Due to the wide range of target systems and configurations,
they can easily be affected by vulnerabilities. An example of the
extremely high number of vulnerabilities is the 160,732 vulner-
abilities registered in NVD7 (13,761 new vulnerabilities added

3 Vulnerability notes database: https://www.kb.cert.org/vuls/.
4 The Community-Driven Vulnerability Database: https://vuldb.com/
5 Internet security systems x-force security threats: https://exchange.xforce.

ibmcloud.com/.
6 Acronym for Common Vulnerabilities, and Exposures (CVE).
7 Data obtained from CVE Details: https://www.cvedetails.com/.

in 2021), affecting 1824 vendors and 5999 products. However,
the use of these repositories (e.g., NVD and VulDB) may have
usage limitations, such as VulDB enabling 50 results of vulnerabil-
ities per search. For example, the free version of VulDB provides
limited information on vulnerabilities. For the CVE-2020-9485
obtained in the previous example (cf., Fig. 1(a)), we obtained the
information shown in Fig. 1(b). However, NVD provides compre-
hensive information about vulnerabilities, including JSON-based
feeds that can be consumed for offline use of the database.

2.2. Known affected configurations (CPE)

Using the terminology in NVD, the Known Affected Config-
urations can be described through a set of Common Platform
Enumerations (CPE) (Parmelee et al., 2011) {cpe1, cpe2, . . ., cpen}.

Definition 1 (CPE). A CPE cpei represents a configuration of a
system by a list of pairs ⟨a, v⟩ attribute-value that describe the
products and scenarios in which vulnerabilities may occur.

In turn, these CPEs are represented by a set of Known Affected
Software Configurations (hereinafter Configurations). To formalise
the possible configurations, the CPE standard (Parmelee et al.,
2011) created by the MITRE Corporation is used. It identifies
the features of the contexts in which vulnerabilities could be

3

https://www.kb.cert.org/vuls/
https://vuldb.com/
https://exchange.xforce.ibmcloud.com/
https://exchange.xforce.ibmcloud.com/
https://www.cvedetails.com/

Á.J. Varela-Vaca, D. Borrego, M.T. Gómez-López et al. The Journal of Systems & Software 195 (2023) 111541

exploited, providing key information in the definition, enforce-
ment, and verification of IT policies, such as vulnerabilities or
configurations.

For a cpei8 to be valid, each attribute (ai) must appear only
once, from the following options:

• part describes the scope of applicability: hardware (h), soft-
ware (a), or operating system (o).
• vendor describes the organisation that distributes the prod-

uct, e.g., apache.
• product identifies the product affected, e.g., nifi.
• version is a vendor-specific alphanumeric string that charac-

terises the release version of the product, e.g., 1.0.1.
• update is a specific alphanumeric string that characterises

the update version of the product affected, e.g., update 256.
• edition captures edition-related terms applied by the vendor

to the product.
• language defines the language supported by the product,

e.g., ES.
• sw_edition describes how the product is tailored to a partic-

ular market.
• target_sw defines the software environment in which the

product operates, e.g., Windows.
• target_hw characterises the architecture, e.g., x86.
• other describes any other information.

The value field (vi) associated with each attribute (ai) is usually
a UTF-8 string. However, there are two logical values that can also
be assigned to indicate, respectively, that there are no restrictions
applicable to that attribute (value ANY) or that there is no valid
value (value NA, Not Applicable). Thus, a CPE can be represented
as follows:

cpex = {⟨part, v1⟩, ⟨vendor, v2⟩, ⟨product, v3⟩ . . . , ⟨other, vn⟩} (1)

The identifier cpex is used to quickly identify and differentiate
CPEs from each other. This paper uses Formatted String Binding
(FSB), which consists of a list of attributes delimited by colons9
as follows:

cpe : 2.3 : part : vendor : product : version : update : edition :

language : sw_edition : target_sw : target_hw : other (2)

FSB adds prefixes and binds the attributes in a fixed order and
separated by the colon character. Note that all eleven attribute
values must appear in the FSB, such as:

cpe : 2.3 : o : linux : linux_kernel : 2.6.0 : ∗ : ∗ : ∗ : ∗ : ∗ : ∗ : ∗
(3)

The previous example for the CPE 2.3 can be represented as:

{⟨part, o⟩, ⟨vendor, linux⟩, ⟨product, linux_kernel⟩,
⟨version, 2.6.0⟩, ⟨update, ANY ⟩, ⟨edition, ANY ⟩, ⟨language, ANY ⟩,
⟨sw_edition, ANY ⟩, ⟨target_sw, ANY ⟩, ⟨target_hw, ANY ⟩,

⟨other, ANY ⟩} (4)

The values of the attributes describe a configuration with
vulnerability in an operating system (part = o), released by Linux
(vendor), named Linux Kernel (product) at version 2.6.0 (version).
The remaining attributes take the wildcard value (∗) in FSB, which
is the logical value ANY. As can be seen, the first pair (cpe:2.3) is
ignored, as it only points out the CPE format.

8 Considering CPE 2.3 specification (Parmelee et al., 2011).
9 The first pair indicates the standard of the CPE version used.

2.3. Vulnerabilities

A vulnerability is defined by ISO/IEC 27005:2008 as ‘‘a weak-
ness of an asset or group of assets that can be exploited by one
or more threats, where an asset is anything that has value to
the organisation, its business operations, and their continuity,
including information resources that support the organisation’s
mission’’. With the idea of automating vulnerability scanning, the
cybersecurity community has made several efforts to standard-
ise the way vulnerabilities are represented. To this end, NVD,
Vulners, VulDB, and other repositories use the de facto standard
to represent vulnerabilities, Common Vulnerabilities, and Expo-
sures (CVE) (Anon., 2020c). CVE can be defined as a reference
method for structural publication of known vulnerabilities for
easy management and sharing.

Definition 2 (CVE). A CVE is a tuple ⟨CVE_id, description, impact ,
CPEs⟩ of information about a vulnerability, where:

1. CVE_id is the mandatory identifier of each vulnerability.
2. description is the summary to describe the vulnerability

textually.
3. impact of the vulnerability, following the CVSS standard

(Anon., 2020b) to assess the severity of the vulnerability.
CVSS in its different versions (up to current 3.1) proposes a
formula that returns a value between 0 and 10 to represent
the lowest and highest severity.

4. CPEs is a set {cpe1, cpe2, . . ., cpen}.

Table 1 shows an example of two CVEs related to Apache NiFi
1.10 from a query obtained for NVD, as shown in Fig. 1(a). These
represent two different vulnerabilities that affect Apache Nifi in
versions 1.0.0 and 1.10, as shown in the CPE column.

As in the case of NVD, CVEs representing vulnerabilities are
made up of a set of vulnerable contexts, the so-called Configura-
tions. A Configuration is, in turn, composed of a list of vulnerable
CPEs {cpe1, cpe2, cpe3, . . . , cpen}. Also, optionally, to specify con-
crete runtime environments in which the vulnerability can be
reproduced, a set of Running Configurations (RC) can be included
as a set of extra CPEs {cpen+1, cpen+2, cpen+3, . . . , cpen+m}. An RC is
a ‘‘special’’ type of CPE, since each combination of CPEs is consid-
ered with respect to each RC separately. Therefore, RC establishes
certain environmental conditions under CPE in which RC can
perform. Table 2 shows an example of RC (cpe58) which indicates
Mozilla Firefox as the running environment for which configu-
rations (cpe1, cpe2, cpe3, . . .) can be exploited. In the presence
of RCs, combinations of CPEs must be considered with respect
to each RC separately. Table 2 shows a piece of an example
of configurations for the vulnerability CVE-2020-1933 associated
with Cross-Site Scripting in Apache NiFi for versions 1.0.0 to
1.10.0. In this example, there is only one RC, so cpe1 can occur
with cpe58; cpe2 can occur with cpe58; . . . and so on until all
combinations are covered. In summary, Apache Nifi version 1.0.0
beta-rc1 and the others in the table under the environment of
Mozilla Firefox (in any version) are affected by the Cross-Site
Scripting vulnerability CVE-2020-1933.

2.4. Security exploits

In general, a security exploit is a fragment of software used to
attack a software or hardware system by leveraging a vulnerabil-
ity. Exploits are designed to cause damage to systems in order to
change their behaviour and derive some benefit for the attacker.
Examples are pieces of software that attempt to produce arbitrary
code executions, a denial of service, or a privilege granted. There
is no standard way to represent exploits, but typically they can
be described in the following information.

4

Á.J. Varela-Vaca, D. Borrego, M.T. Gómez-López et al. The Journal of Systems & Software 195 (2023) 111541

Table 1
NVD results for ‘‘Apache NiFi 1.10’’ query.
Vuln. ID Summary CVSS Severity CPEs

CVE-2020–1933 A XSS vulnerability V3.0: 6.1 {cpe:2.3:a:apache:nifi:1.0.0:...,
was found in ... V2.0: 4.3 ...}

CVE-2020–1928 An information disclosure V3.0: 5.3 {cpe:2.3:a:apache:nifi:1.10.0:...
vulnerability was ... V2.0: 5.0 ...}

Table 2
List of CPEs for the vulnerability CVE-2020–1933 from NVD.
Configuration 1

List of CPEs

cpe1 : cpe:2.3:a:apache:nifi:1.0.0:beta-rc1:*:*:*:*:*:*
cpe2 : cpe:2.3:a:apache:nifi:1.0.0:rc1:*:*:*:*:*:*
cpe3 : cpe:2.3:a:apache:nifi:1.0.0:–:*:*:*:*:*:*
... (+54 results)

Running Configurations

cpe58 : cpe:2.3:a:mozilla:firefox:–:*:*:*:*:*:*:*

• Exp_Id is the identifier of the exploit.
• List of CVEs with which the vulnerability is associated (if

applicable).
• date of publication of the exploit.
• type of exploit, e.g., webapp, shellcode, remote, papers.
• platf is the platform affected by the exploit, e.g., Hardware,

PHP, Linux, Windows.
• The author of the exploit published.
• app: Vulnerable app that provides a link to the download-

able version of the platform.
• sc: The source code or instructions which constitute the

exploit itself.

There are repositories of exploits, such as Exploit-DB (Anon.,
2021) by Offensive Security Community, which provide a signif-
icant number of exploits associated with vulnerabilities. Specif-
ically, this repository provides 42,802 exploits.10 Following the
example in Fig. 1(a), there are no exploits published for Apache
Nifi. An illustrative example is the exploit 27,227 shown in Fig. 2.
This exploit is related to the vulnerability CVE-2006-0733 for the
WordPress Core 2.0 component concerning HTML Injection.

2.5. Modelling vulnerabilities and exploits: Feature modelling and
automatic analysis

We start with a consideration of the approaches for vulnera-
bility and exploit modelling in the context of cybersecurity and
vulnerability management.

As mentioned in the introduction, the use of models to rep-
resent vulnerabilities is a challenge for the vulnerability man-
agement process (Palmaers, 2021; Wang and Guo, 2009a). Threat
modelling (Xiong and Lagerström, 2019) is widespread in cyber-
security as a discipline for assessing and identifying potential
vulnerabilities. However, threat modelling currently has several
challenges to face (Xiong and Lagerström, 2019): (1) automate
security analysis and modelling, and (2) integrate with threat
and vulnerability databases. Several academic approaches define
semantic models (i.e., ontologies and knowledge graphs) (Wang
and Guo, 2009a,b; Syed, 2020; Jia et al., 2018) to homogenise and
interrelate concepts of vulnerabilities and others. However, vul-
nerability and exploit information are often addressed separately.
The high range of information and variability of vulnerabilities

10 Data obtained from Exploit-DB: https://www.exploit-db.com/exploit-
database-statistics.

and exploits (e.g., devices, operating systems, platforms, appli-
cations, components, versions, configurations, source code, etc.)
makes it difficult to find a model that enables reasoning and
represents relations, variability, and commonalities. For example,
any variety of software versions of a component may affect the
targeting system due to certain vulnerabilities, and this may be
inferred. Due to that, interest has arisen in applying configuration
models to analyse vulnerabilities (Kenner et al., 2020).

FMs are a widely used technique to represent software prod-
uct lines (SPLs) (Clements and Northrop, 2002) in tree-like
structures. Although there are other representations (e.g. OVM
Roos Frantz et al., 2009), FMs have become the de facto standard
for representing common and variable characteristics in an SPL.
In general, an FM is a model that defines features and their
relationships. FMs can be defined in many ways (i.e., textual,
formal, graphical, etc.) albeit the most widely used is the one
proposed by Czarnecki (Benavides et al., 2010), exemplified in
Fig. 3.

Around FMs a field related to the Automatic Analysis of Fea-
ture Models (AAFM) (Benavides et al., 2010) has emerged. AAFM
aims to extract information from the models by using some logic
or reasoning mechanisms, e.g., determining product configura-
tions or tests.

Regarding the tools, there are many of them that allow FMs
to be defined and provide some automatic analysis mechanisms.
Some examples of tools are: FAMILIAR (Acher et al., 2013), Fea-
tureIDE (Thüm et al., 2014), Gears,11 FaMa (Benavides et al.,
2013), FaMaPy (Galindo and Benavides, 2020), SPLOT (Mendonca
et al., 2009), pure::variants,12 VariaMos (Mazo et al., 2015) or
Glencoe (Schmitt et al., 2018). The new approach presented
in this paper is powered by the FaMaPy framework. FaMaPy
is a Python-based AAFM framework that enables multi-solver
and multi-metamodel support for the integration of AAFM tools
into the Python ecosystem. FaMaPy supports multiple solvers
(e.g., Glucose or Minisat) and multiple variability models, such
as the FaMa format Benavides et al. (2013). FaMaPy defines an
FM-metamodel that allows and provides transformations from
different formats to the FaMaPy metamodel. In terms of reason-
ing capabilities, FaMaPy provides more than ten operations for
cardinality-based feature models, e.g., valid model, valid product,
error detection, error diagnosis, etc.

To perform an efficient vulnerability management process, it is
crucial to choose the appropriate vulnerabilities (i.e, ‘‘vulnerabil-
ity coverage’’) and the elements of the systems and software that
need to be checked (Dass and Namin, 2020). As mentioned above,
vulnerability and exploit repositories offer search engines to ex-
tract information about them. However, these searches are some-
times limited, as the information is only available for a fee, and
it is not always possible to secure complete information (Kuehn
et al., 2021; Zhang et al., 2015). Moreover, the amount of ex-
tracted information can be unmanageable, which is a crucial
problem since this information is essential to identify which
elements (parts, vendors, versions, OS, etc.) of our systems and
software need to be checked in security testing. Therefore, we

11 Gears: www.biglever.com.
12 pure-systems: www.pure-systems.com.

5

https://www.exploit-db.com/exploit-database-statistics
https://www.exploit-db.com/exploit-database-statistics
http://www.biglever.com
http://www.pure-systems.com

Á.J. Varela-Vaca, D. Borrego, M.T. Gómez-López et al. The Journal of Systems & Software 195 (2023) 111541

Fig. 2. Example of exploit associated to a CVE.

Fig. 3. Example of FM for Apache security configuration (Varela-Vaca et al., 2019).

propose to search and extract information from multiple vul-
nerability and exploit repositories and provide a unified model
that helps to define appropriate security tests. Indeed, FMs are
an interesting approach to represent the variability of elements
within CVEs, CPEs and exploits. The main advantage of using FMs
is that they can help us in two ways: first, by bringing together all
the elements represented in a unified model; and, secondly, the
use of FMs opens up the possibility of using automatic analysis
mechanisms to support the definition of appropriate security
tests.

3. AMADEUS-exploit

An in-depth analysis of potential security vulnerabilities can
facilitate a proper vulnerability management process based on
possible attack vectors and their exploits (Dass and Namin, 2020;
Oyler and Saiedian, 2016; Skopik et al., 2014).

As mentioned above, AMADEUS was presented in a previous
work (Varela-Vaca et al., 2020) as a methodology for automati-
cally creating FMs by integrating information from the vulnera-
bility repository and reasoning to determine attack vectors with
certain features. However, certain aspects were left pending, such

as the subsequent extraction of exploits to assess vulnerabil-
ities, the incorporation of new vulnerability repositories, and
the improvement of reasoning about the models. These tasks,
among others, are crucial to complete the task of the vulnerability
management process, i.e., to enable the discovery and analysis of
configurations with vulnerabilities and exploits available for test-
ing within the software and hardware resources of an ecosystem.
The new proposed framework, AMADEUS-Exploit follows the pro-
cess shown in Fig. 4, which describes the workflow, where the
white boxes represent the different tasks that are performed, such
as to ‘Analyse infrastructure’. Attached to the tasks by dashed
arrows, it can be found a description of the data generated or
consumed by each task, e.g., the list of terms generated by ‘Pro-
vide Terms’. Bold arrows show in which order the gateways and
tasks are reached and performed. For instance, there is an OR-
gateway (X-diamond symbol) to choose the path to execute and
AND-gateways (+ -diamond symbol) to allow parallel execution
of tasks. Certain tasks are grouped into stages labelled as grey
boxes for ease of understanding, e.g., ‘Discover target elements’
involves ‘Analyse the infrastructure’ and ‘Provide terms’. These
stages are explained in the following subsections.

6

Á.J. Varela-Vaca, D. Borrego, M.T. Gómez-López et al. The Journal of Systems & Software 195 (2023) 111541

Fig. 4. AMADEUS-Exploit framework overview. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

AMADEUS-Exploit can be placed between the preparation,
discovery, and scanning phases in the vulnerability management
process (Palmaers, 2021; Foreman, 2019). These phases aim to
analyse and gather information about potential targets, and to
identify particular aspects of those targets, e.g., exposed services,
open ports, operating system names, vulnerabilities, etc.

To understand the framework, the tasks that make up the
AMADEUS-Exploit process are marked in the workflow of Fig. 4
as manual (hand symbol), and automatic (engine symbol). Manual
tasks require unavoidable human intervention.

As mentioned, the workflow consists of three stages: (1) dis-
covering the target elements to be analysed; (2) the automatic

7

Á.J. Varela-Vaca, D. Borrego, M.T. Gómez-López et al. The Journal of Systems & Software 195 (2023) 111541

extraction of information from both vulnerabilities and exploits
(Vulnerability and Exploit identification); (3) vulnerability and
exploits assessment in which feature models are generated for
each vulnerability and reasoning on FMs as the application of
reasoning techniques on the obtained FMs. Each part is described
in detail below.

3.1. Discover target elements

Depending on the system configurations (software, hardware,
network, and others), specific vulnerabilities and exploits can be
identified, or specific assessment techniques can be applied (Shah
and Mehtre, 2015; Backes et al., 2017).

Therefore, the first step is to define the scope of the analysis
by discovering the elements involved in the analysis. This scope
enables the establishment of the boundaries and goals of the
analysis. There are several solutions to collect and retrieve the
configuration used in organisations, including active and passive
analysis tools. In our proposal, the systems or devices involved
can be derived from the infrastructure analysis or provided by
experts through a set of terms (cf., Analyse Infrastructure and
Provide Terms).

As for infrastructure analysis (cf. Analyse Infrastructure), sys-
tems can be audited using active tools, such as Lynis13 and Nmap
(Network Mapper).14 Nmap is a well-known tool widely used
to audit the security of firewalls, networks, measure network
traffic, or detect vulnerabilities. Due to its popularity in the se-
curity community, Nmap is integrated in the AMADEUS-Exploit
implementation, although others could be adapted as well.

However, the user can include a list of terms (cf. Provide
Terms) to analyse the vulnerabilities of a system. For this reason,
AMADEUS-Exploit works in two modes of operation, custom
and automatic. The custom mode allows users to provide a list
of terms and keywords for a set of target systems, e.g., the
terms OpenSSH and version 7.7. The automatic mode invokes
an analysis tool (Nmap in our case) on a set of target systems.
AMADEUS-Exploit addresses the information retrieved from this
tool as a list of terms and keywords, where the tuples are
returned as ⟨service, version⟩, for example: ⟨OpenSSH, 7.7⟩,
⟨ApacheHTTPServer,−⟩, ⟨OpenVPN, 2.3.17⟩.

3.2. Vulnerabilities and exploits identification

From the information extracted in the previous step (report or
list of terms), possible configurations with vulnerabilities can be
analysed. Therefore, terms related to running services, versions,
active ports, etc, are used to search for vulnerabilities (CVE) and
exploits. These searches can be performed on repositories, where
the information can be extracted using a scrapper (cf. Scrapping
NVD, VulDB, and Exploit-DB). AMADEUS-Exploit integrates three
main data sources: NVD (Anon., 2020a), VulDB (Anon., 2020d)
and Exploit-DB (Anon., 2021). The integration is possible thanks
to the implementation of a Web scraper module that allows the
automatic search and extraction of information in these reposito-
ries. The scrapper analyses structures similar to Figs. 1(a) and 1(b)
and collects data, keeping only specific and relevant information,
such as the CVE ID, description, CPEs. As shown in Fig. 4, the
scrapping activities can be run in parallel as different repositories
are accessed. Similarly, since vulnerability and exploit extraction
are independent tasks, they can also be executed in parallel.

After gathering the vulnerabilities represented by the CVE
and exploits, it is time to analyse the possible features of the

13 Lynis: https://cisofy.com/lynis/.
14 NMAP: https://nmap.org/.

scenarios in which these vulnerabilities can be exploited. There-
fore, AMADEUS-Exploit extracts different sets of CPEs (cf. Extract
Vulnerable Configurations), represented, for each vulnerability
(CVE). For example, the CVE-2020-1933 vulnerability describes
the malicious scripts that can be injected into Apache NiFi 1.10.
However, several questions arise, such as on which specific soft-
ware configuration this vulnerability applies, whether it can be
related to software, hardware, application or an operating system,
or whether this vulnerability exists for each version or release. For
instance, the CVE-2020-1933 contains 57 CPEs describing 57 dif-
ferent versions of Apache NiFi running in Mozilla Firefox affected
by this vulnerability.

Similarly, information about exploits (cf. Extract exploits) is
extracted from ExploitDB (Anon., 2021). In this way, the CVE IDs
are used as necessary information to search for direct exploits
related to those vulnerabilities. We retain all valuable features
(i.e., Exploit ID, platform, etcetera) of each exploit obtained for
use in subsequent feature model generation. Bear in mind that
some vulnerabilities may have one or more exploits, but others
do not. Therefore, (i) vulnerabilities ‘with exploits’ can be directly
related to possible exploits to be used in a future security test,
and (ii) vulnerabilities ‘without exploits’ should be known as they
may be potential security issues or challenging vulnerabilities to
be tested.

For example, the aforementioned vulnerability CVE-2020-
1933 has no exploit, whereas the vulnerability CVE-2009-3555
(associated with Apache HTTP servers and OpenSSL) has two
exploits. Therefore, we have two exploits that can be tested
against all the CPE covered by the CVEs.

3.3. Assess vulnerabilities and exploits

Using these concepts as a basis, the AMADEUS-Exploit frame-
work attempts to obtain valid FMs (cf. Generate Feature Models)
of the discovered target systems. All these generated FMs con-
stitute a catalogue (Varela-Vaca et al., 2019). The contribution in
this paper proposes a set of algorithms that create FMs adapted
to the vulnerability context, giving rise to a catalogue of scenarios
that collects the attack scenarios that may occur depending on the
vulnerabilities. This catalogue can be used in many scenarios by
reasoning over the models (cf., Reasoning on FMs). The reasoning
task in Fig. 4 is represented as an iterative task (cf., green arrow)
since the customer will require to apply multiple operations
depending on the task at hand.

Taking into account that FMs represent a catalogue of vul-
nerabilities, including their configurations and exploits, various
reasoning operations can be developed. Some examples are: the
generation of attack vectors, the extraction of exploits, the ex-
traction of vulnerabilities, the verification of a configuration, or
the determination of the lack of exploits necessary to test a
vulnerability, among others.

Sections 4 and 5 detail how FMs are created and the possible
reasoning mentioned.

4. Generation of feature models

As discussed, the high variability – due to the large number
of potential vulnerabilities, affected configurations, and exploits –
makes the management of potential threats too complicated. The
creation of FMs that gather and structure this information makes
vulnerability analysis easier and more automated. This section
describes how an FM of vulnerabilities and exploits is, and how an
FM catalogue can be created using the vulnerabilities and exploits
sources.

The inference of FMs from vulnerabilities was introduced in
the previous work (Varela-Vaca et al., 2020). In that approach,

8

https://cisofy.com/lynis/
https://nmap.org/

Á.J. Varela-Vaca, D. Borrego, M.T. Gómez-López et al. The Journal of Systems & Software 195 (2023) 111541

we inferred an FM for a CVE, but it was built considering only
a vulnerability database and omitting exploit information. In this
paper, AMADEUS-Exploit extends the previous approach by pur-
suing the construction of an FM catalogue that gathers vulnera-
bilities extracted from various repositories and integrates them
with exploits extracted from others. AMADEUS-Exploit generates
an FM for each CVE (vulnerability), including each CPE of its con-
figurations and the associated exploits for each CVE. Therefore,
each configuration collected in the FM is vulnerable according to
NVD or VulDB vulnerabilities and can be associated with some
exploits extracted from Exploit-DB.

Definition 3 (FM of Vulnerabilities and Exploits). Let CPEs be a
list of known affected configurations and running configuration
environments {cpe1, cpe2, cpe3, . . . , cpen} and EXP be a set of
exploits {exp1, exp2, exp3, . . . , expm}. An FM of vulnerabilities and
exploits is an equivalent representation of all combinations15 of
each CPE and the EXP described in each vulnerability.

FM ≡ CPEs ⋊⋉pred EXP ⇐⇒ products(FM)
= {(cpe1, exp1), (cpe2, exp1), . . .
(cpe1, exp2), (cpe2, exp2), . . . , (cpen, expm)}

(5)

In our approach, the above-mentioned FM generation is car-
ried out in two main phases:

1. Retrieval of an unrestricted FM containing information only
within the CPE and EXP sets.

2. Inclusion of restrictions in the form of cross-tree relations
in that FM, avoiding possible configurations that the FM
could generate without restrictions.

One of the main concerns in the proposed algorithms is cor-
rectness. The valid operation can demonstrate that the generated
model is correct; therefore, it can obtain at least one valid prod-
uct. In addition to model validation, the number of products
can be used as a validation operation. In this sense, the number
of products helps as a correctness metric to measure accuracy
and recall (Lopez-Herrejon et al., 2015). Therefore, if the number
of products differs from the expected combination of CPE, RC,
and EXP, FM is not equivalent (see Definition 3). The correct-
ness of our algorithms has been studied and proven in previous
work (Varela-Vaca and Gasca, 2013). Although new features and
relations are included in FMs (according to EXP), the assumption
regarding the number of products remains valid, since the new
features are included through mandatory relations to the root;
therefore, the number of products should remain unaltered with
regard to the previous one.

4.1. Retrieving unrestricted feature model from CPEs and exploits

The so-called reverse engineering in SPLs (She et al., 2011;
Lopez-Herrejon et al., 2015) provides mechanisms to generate
FMs from a set of configurations. Reverse engineering that can be
applied in this context of cybersecurity is relatively limited, with
just 12 attributes to describe CPEs and running configurations,
and a set of exploits. This is the case, for example, with the
product attribute, which determines vendor and part, not being
possible for the same product to come from two different vendors
or parts. In addition, these three attributes must have a specific
value, as it is impossible to assign them the value ‘ANY ’. These
particularities are the main motivation to propose a specific al-
gorithm to create FMs and to include these restrictions in FM
generation.

15 We have used ⋊⋉pred with the semantic of the left join operator.

Table 3
Running example of CPEs and exploits for a vulnerability.
CVE-ID-1

Configuration 1

List of CPEs

cpe1 : cpe:2.3:a:olearni:civet:1.0.0:*:*:fr:*:*:*
cpe2 : cpe:2.3:a:olearni:civet:1.0.1:*:*:*:*:*:*:*
cpe3 : cpe:2.3:a:olearni:civet:1.0.2:*:*:*:*:*:*:*

Running Configurations

–

Configuration 2

List of CPEs

cpe4 : cpe:2.3:a:oteachy:lynx:*:*:*:es:*:*:*:*
cpe5 : cpe:2.3:a:oteachy:ocelot:*:*:*:*:*:*:*:*

Running Configurations

cpe6 : cpe:2.3:a:origin:iberian:-:*:*:*:*:*:*:*

Exploits

⟨exp1, CVE-ID-1, . . .⟩
⟨exp2, CVE-ID-1, . . .⟩
⟨exp3, CVE-ID-1, . . .⟩

The running example in Table 3 is used to illustrate each part
of the proposed algorithms. It represents a vulnerability CVE-
ID-1 that encompasses two configurations, each with a CPE list
{{cpe1, cpe2, cpe3},{cpe4, cpe5}} and a running configuration list
{cpe6}, empty for Configuration 1. Furthermore, we assume that
this vulnerability can be used with three different exploits {exp1,
exp2, exp3}.

The feature modelling algorithm is based on three steps: (1)
creation of a sub-FM for each vendor and a sub-FM with every
exploit; (2) creation of a sub-FM for each running configuration,
and; (3) integration of these sub-FMs into a single FM tree, one
for each CVE:

1. Creation of a sub-FM for each vendor and a sub-FM with
each exploit. For example, we create an FM for the vendors
olearni (cpe1, cpe2, cpe3) and oteachy (cpe4 and cpe5), and
similarly for the exploits exp1, exp2, and exp3.

2. Creation of a sub-FM for every running configuration.
For example, we create an FM for the vendor in the running
configuration cpe6.

3. Integration of sub-FMs into a single FM, i.e. integration
of these sub-FMs (for vendors and exploits) into a single
FM tree, one for each CVE. The ‘rc’ feature is included
as an optional relation to the whole FM (as the running
configuration may or may not appear).

Fig. 5 illustrates these steps for the running example in Table 3,
connecting the CPE lists with blue lines, running configurations
with green lines, and exploits with red dashed lines. In Fig. 6,
it can be seen how the four sub-FMs are combined to create
the complete FM for the example. The inclusion of cross-tree
constraints in the unrestricted FM is described below. Algorithms
1 and 2 in the Appendix describe the concrete specification for
the inference of FMs.

4.2. Include cross-tree constraints in the FM

Up to this point, the FM obtained encapsulates all attributes
and values of the CPEs of a CVE and the related exploits. As
mentioned above, the set of CPEs does not usually include such
high variability, and the existence of some of its components
is intrinsically related to the occurrence of others. Therefore,
the inference of a set of constraints on an FM is necessary to

9

Á.J. Varela-Vaca, D. Borrego, M.T. Gómez-López et al. The Journal of Systems & Software 195 (2023) 111541

Fig. 5. Process of construction of the FM for the running example.

Fig. 6. Process of construction of the FM for the running example.

overcome this situation and restrict the number of feasible com-
binations by adjusting it. At this stage, AMADEUS-Exploit derives
a set of constraints to adjust the FM variability according to the
restrictions of the CPE attributes and the running configurations.
As mentioned above, Fig. 6 is the adjusted version of the running
example in Table 3. We should clarify that it is unnecessary
to include specific cross-tree constraints between exploits and
CPE features. In general, the exploits can be related to the CVE,
referring to all the CPEs of the CVE.

The cross-tree constraints are derived from an analysis of
the original list of CPEs, a clear descriptor of the possible valid
configurations. Any other combination would result in an unlisted
configuration and is therefore considered spurious. Recall that the
whole point of this algorithm is to build an FM that can produce
the same set of items contained in the original CPE list. Therefore,
we only use two types of cross-tree constraints (Require and XOR-
require Karataş and Oğuztüzün, 2013; Seidl et al., 2016). Require
constraint is used when a feature requires other features with a
non-direct family relation (e.g., f 1 → f 2). On the other hand,
XOR-require constraint establishes a required relation between a
feature and a set of other features, allowing only one to appear
at a time. A f 1 XOR-require {f 2, f 3} constraint is equivalent to:

((f 1→ f 2) ∧ ¬(f 1→ f 3)) ∨ (¬(f 1→ f 2) ∧ (f 1→ f 3)) (6)

The cross-tree derivation consists of the following three parts:

1. Creation of cross-tree constraints between the products
and their associated type.

2. Creation of cross-tree constraints between feature leaves of
the same product (between relevant attribute values of the
same sub-FM).

3. Creation of cross-tree constraints between feature leaves
of products and running configurations (between relevant
attribute values and a sub-FM root of a running configura-
tion).

A detailed specification of cross-tree derivation is defined in
the Algorithm 3 in the Appendix section. Following the example
in Table 3 and the FM generated in Fig. 5, several cross-tree
constraints are found by applying the Algorithm 3. According to
each of the three parts of the algorithm, the constraints found are
as follows:

1. Cross-tree among features of the same vendor: relation
among the civet product attributes, the constraints re-
quired between the features ‘1.0.0’ and ‘fr ’ to enforce the
achievement of cpe1, plus the two required relations be-
tween ‘1.0.1’ and ‘1.0.2’, and ‘ANY ’ features to enforce cpe2
and cpe3;

2. Cross-tree among products and types: the civet , ocelot , lynx
products require the same type, thus, application;

3. Cross-tree among feature leaves and running configura-
tions: the required relation between ‘ocelot ’ and ‘rc1’ fea-
tures to enforce the occurrence of running configuration
features for cpe4, and the required relation between ‘es’
feature and the ‘rc1’ to enforce cpe5.

These cross-tree constraints are included to complete the FM,
as shown in Fig. 6.

10

Á.J. Varela-Vaca, D. Borrego, M.T. Gómez-López et al. The Journal of Systems & Software 195 (2023) 111541

5. Reasoning on feature models

AMADEUS-Exploit finds FMs as a way of representing vul-
nerabilities and exploit information discarding the generic and
conventional representations, such as lists or repository tables.
An additional advantage derived from the use of FMs is the
ability to store both vulnerabilities and their exploits as a cat-
alogue (Varela-Vaca et al., 2019). AMADEUS-Exploit has been
enhanced by the definition of an FM catalogue, which, in a way,
could be considered as an interactive entity supporting a wide
range of queries and reasoning operations. These operations are
part of the classically automated analysis of FMs (Benavides et al.,
2010), i.e. determine if a product is valid, obtain all products,
validate the model, detect and explain errors, etc.

Please note that AMADEUS-Exploit is conceived to assist/
support experts in the vulnerability management process. That
is, to discover, identify, and assess vulnerabilities. Therefore, the
queries and reasoning operations provided by AMADEUS-Exploit
should be orientated to assist in this crucial task. Current vulner-
ability and exploit databases enable specific search capabilities,
such as searching for vulnerabilities for CVE or CPE identifiers.
However, this search capacity is limited to particular terms and
information, and vulnerabilities and exploits are unlinked. No
more sophisticated operations related to both information are
available. Our approach tries to provide these types of operations.
For instance, it is impossible to perform a complex search that
describes a partial configuration of a CPE that can be affected by
exploits. For a given exploit, discover whether partial elements
that define CPEs are involved or obtain all possible CPEs that
are affected by exploits and vulnerabilities. Some of the possible
reasoning operations applied to any FMs are explained in the
following subsections.

5.1. Reasoning about attack vectors

As mentioned above, attack vectors are a means by which a
threat actor can abuse the weaknesses or vulnerabilities of assets
to achieve a specific result. Therefore, attack vectors are necessary
to assess a vulnerability. From the FM perspective, attack vectors
represent the selection of features in the FM related to products,
vendors, OS, version, running configurations, exploits, etc. that
describe a known affected configuration by a vulnerability. One of
our goals is to support security testing to assess a set of vulnera-
bilities that adequately covers the identified vulnerabilities. Using
the reasoning capabilities provided by AMADEUS-Exploit, which
was integrated with FaMaPy (Galindo and Benavides, 2020), we
can apply certain operations tailored to the problem at hand. In
particular, by obtaining the set of all products of the FMs (i.e., all
attack vectors) or by applying a filter (i.e., completing an attack
vector), we can generate useful information to obtain the attack
vectors. From a security testing point of view, if the expert knows
which specific vulnerability configuration to test, we could simply
query the FM by fetching the products or applying a filter to
it. In practise, the generation of all attack vectors from an FM
can help to know the configuration space that we have to check
to test all possibilities of a vulnerability. Therefore, it helps to
know the configuration space that represents the vulnerability
and to decide how to assess it. For example, FM is built for
the vulnerability CVE-2018-15473, which affects OpenSSH 7.7. In
practise, the security expert has entered into AMADEUS-Exploit
the terms OpenSSH 7.7 and returned the FM for CVE-2018-15473
vulnerability. If we were to explore the entire configuration space
to test this vulnerability, we have found 5008 different attack
vectors (depending on the products) representing 256 CPEs and
3 exploits. An example of an attack vector obtained from the
FM analysed is as follows: {CVE-2018-15473, type: {application},

source: {nvd}, exploits {exploit_45939}, dropbear_ssh_project,
dropbear_ssh, dropbear_ssh_version, dropbear_ssh_version_0_35,
dropbear_ssh_version, dropbear_ssh_version_0_35_update, drop-
bear_ssh_version, dropbear_ssh_version_0_35_update_test3}. In
particular, AMADEUS-Exploit helps experts by pointing out a
specific product Dropbear SSH in version (0.35) and updating
(update_test3) that can be exploited for the exploit 45,939.

5.2. Reasoning about exploits

As stated above, vulnerability repositories, e.g., NVD or VulDB,
do not link the CVE to exploits stored in other repositories
(e.g. Exploit-DB). AMADEUS-Exploit allows us to obtain CVEs
directly by identifying a set of exploits without using an FMs
reasoner. In this way, AMADEUS-Exploit provides experts with
a pointer to the exploit(s) to be used for each vulnerability (CVE).
From a vulnerability management point of view, this operation
gives the expert a hint on which vulnerabilities have direct
resources to test them. Experts can use this information to define
the assessment of vulnerabilities with exploits, including priori-
tisation, or to check some attack vectors against certain exploits.
Therefore, if we identify the exploits for some environments, we
could point out the configuration vulnerability. For example, ex-
ploit 7000 affects PHP platforms due to insecure cookie handling.
The exploit provides a snippet of code to check the cookie settings
in the admin panel. The exploit points out the vulnerabilities
CVE-2008-6232 and CVE-2008-6231 that are related to the Pre
Shopping Mall web application. However, we can extract more
information that affects exploits, in particular by applying filters
to the FM. For example, thanks to the FM of CVE-2008-6231, we
found that 7000 exploits affect the product pre_classified_listings
of the vendor Pre Shopping Mall. This information is not provided
by the exploit but is contained in the CPEs within the CVE. This
extraction of information from exploits requires the use of the
reasoner, in particular, through filtering.

Similarly, for a set of vulnerabilities and exploits, AMADEUS-
Exploit can determine the lack of exploits to be analysed. This
operation does not require a specific reasoning operation, and
because of it, vulnerabilities that cannot be directly exploited
are identified. This is useful from a security point of view, as
possible attack vectors can be generated from CVEs that we do
not know how to assess. Therefore, experts must decide how to
assess it, bearing in mind that there are attack vectors raised by
CVEs that have no resources to use. For instance, the vulnerability
CVE-2019-16905 affecting OpenSSH in different versions due to
an integer overflow does not have an exploit. This lack of ex-
ploits does not prevent the problem; the problem is identified by
AMADEUS-Exploit and must be managed and evaluated in case of
having any of the affected versions.

5.3. Reasoning about vulnerabilities and exploits

For a given set of exploits, vulnerabilities related to them
can be extracted. This operation is the opposite of the one in
Section 5.2, but with similar goals. For example, if we try to
find exploits manually via Exploit-DB in terms of the software
OpenSSH 7.7, 28 possible exploits arise. Using AMADEUS-Exploit,
we can first detect possible vulnerabilities in the software, i.e.,
CVE-2018-15473 and CVE-2019-16905. Since AMADEUS-ExploitS
keeps the CVE-related exploits indexed, we can directly retrieve
that, for the vulnerability CVE-2018-15473, three different ex-
ploits can be used (i.e., exploit 45939, exploit 45233, exploit
45210), but there are no exploits available for CVE-2019-16905.
Experts can use this operation in the definition of the assessment
to quickly identify vulnerabilities related to a set of exploits to
prioritise the test to be performed. AMADEUS-Exploit can pro-
vide this information without the need to perform reasoning
operations.

11

Á.J. Varela-Vaca, D. Borrego, M.T. Gómez-López et al. The Journal of Systems & Software 195 (2023) 111541

5.4. Reasoning about configurations

Given details about a specific configuration, i.e., a partial se-
lection of features in the FM such as product, version, operating
system, etc., AMADEUS-Exploit can determine whether a specific
attack vector affects it by diagnosing the configuration against
the FM (detecting errors). This operation takes a configuration
and checks whether it is correct or not (valid configuration) and
checks its validity on the selected model. In addition, you can
point out which products would be a valid configuration (ex-
plaining the errors). For example, let us assume the configuration
{debian, debian_linux_version, debian_linux_version_8_0}, for the
vulnerability CVE-2018-15473, is validated with 16 different valid
attack vectors. Both obtaining and checking the FM configurations
require the use of the FaMaPy reasoner.

The types of operations mentioned above are ground-breaking
proposals in the combination of cybersecurity and software prod-
uct lines. Moreover, they are only a few examples of the potential
use of FMs in cybersecurity, leaving the inclusion of many more
functionalities for further work.

6. Evaluation

To conduct the evaluation, we propose the following research
questions:

• RQ1. Can we analyse the ecosystem of tools and compare
them in terms of the use of multiple repositories, scanning,
and reasoning capabilities?
• RQ2. Can we automatically infer FMs in an acceptable run-

time under different scenarios and conditions? Can we com-
pare our vulnerability identification capabilities with other
tools?
• RQ3. Can reasoning help us in the vulnerability management

process in real scenarios?

For guiding the answers to the research questions, we propose
to evaluate AMADEUS-Exploit in three different ways: (RQ1.) by
analysing vulnerability management tools and their capabilities
to position AMADEUS-Exploit; (RQ2.) by evaluating AMADEUS-
Exploit in a synthetic scenario and comparing it with other tools,
and; (RQ3.) by evaluating AMADEUS-Exploit in a real case by
applying reasoning operators to guide the vulnerability manage-
ment process, from discovery to choice of a set of vulnerabilities
to evaluate.

6.1. Analysis of vulnerability management tools

Taking advantage of the importance of vulnerability manage-
ment, several tools are available. AMADEUS-Exploit has appeared
as a solution for providing more functionalities, as analysed in
this section.

We have chosen a set of representative tools, both commercial
and open source, to carry out a qualitative comparison. We intend
to analyse the scanning and reasoning characteristics of these
tools in comparison with AMADEUS-Exploit. For this purpose, we
have evaluated the following characteristics:

• Open Source: the tool is open to the community and can be
used free or under a licence.
• Type of scanning: the tool allows automatic, manual, or

both scanning mechanisms to discover targets.
• Terms: the tool allows us to introduce terms for the scan-

ning manual option. These terms could be, e.g., identifiers of
CVEs or parts of CPEs, or only identifiers for the targets to
be analysed.
• Databases: the tool uses vulnerability databases, exploits

databases, or both.

• Reasoning: the tool can perform any operation or reasoning
analysis based on the results of vulnerabilities and exploits.

There are other general but interesting characteristics that
may help in vulnerability management task, such as:

• Reporting: The solution provides any kind of dashboard to
summarise the information on targets, vulnerabilities, and
exploits.
• Prioritisation (Prio.): The solution enables the prioritisation

of vulnerabilities and exploits.
• Type of Service: The solution is based on standalone service

(S), cloud service (C), or both (B) services.

The results obtained for each tool, including AMADEUS-
Exploit, can be seen in Table 4. We can see that the tools most
similar to ours are Vuls and Vulscan, with the difference that Vuls
and Vulscan do not accept search terms. In fact, no tool allows us
to establish the scope of the analysis by establishing the target
based on a list of terms. In general, these tools need to point out
network targets (IP or domain name) to establish the scope of
the analysis. All the tools provide mechanisms for automatically
discovering targets, but some tools enable manually defining the
target (cf., column Manual) that avoids the discovery. It is impor-
tant to highlight that the vulnerability and exploits scanning is
limited to the services that can be consumed by the exposed ports
(e.g., HTTP server exposed in 80 port), but other components like
software add-ons, plug-ins, even stand-alone apps, etc. are out of
the context of scanning. For example, a web browser application
such as Firefox cannot be scanned with tools such as OpenVAS,
Vulscan, etc.

Regarding databases, all tools integrate some vulnerability
databases, but just a few tools integrate exploit databases. Fur-
thermore, these tools are very limited to retrieving information
on vulnerabilities and exploits; for example, they only provide
a ranking of vulnerabilities by impact (sorting operations) and
do not provide capabilities such as inference of known affected
software components provided for vulnerabilities to refine vul-
nerability assessment and management. In fact, we highlight
that the only tool that uses modelling techniques is AMADEUS-
Exploit. The use of modelling enables the application of reasoning
operations to the results.

6.2. Comparison in vulnerability and exploit identification

In the first evaluation experiment, we propose a synthetic
threat scenario that represents real applications and services
used in the day-to-day life of organisations. The purpose of this
scenario is to include the most representative applications and
services that allow web browsing, external connectivity (through
ssh tunnels and VPN), and service exposure (application server
and content managers). For this purpose, we have used the fol-
lowing applications and services for this scenario: (1) Mozilla
Firefox (any version) as one of the most used Internet browsers;
(2) Adobe Flash 32 bits as a plugin for those browsers, which is
affected by multiple vulnerabilities; (3) OpenSSH 7.7 or higher as
a typical solution to enable external connections; (4) Apache HTTP
server (any version) as a web application server with an OpenSSL
as SSL/TLS provider to support secure connections; (5) Nginx 1.7
as an alternative Web server for web applications; (6) OpenVPN
2.3 as a client/server that enables secure external connections;
(7) WordPress (any version and plugin) as the most widely used
content management system on the Internet for the development
of web applications. To make the scenario more interesting, we
have included some extensions or plugins such as Adobe Flash for
a web browser or OpenSSL on the web server, and some versions
for applications and services but not for all.

12

Á.J. Varela-Vaca, D. Borrego, M.T. Gómez-López et al. The Journal of Systems & Software 195 (2023) 111541

Table 4
Comparison for vulnerability management tools .

Tool Open source Type of scanning Terms Databases Reasoning Reporting Prio. Type of servicea
Automatic Manual Vulnerabilities Exploits

InsightVM (Nexpose) × × × × × B
Qualys Cloud Platform × × × × C
Qualys VM × × × × C
Acunetix by Invicti × × × × C
Nessus × × × × × S
Tenable.io × × × × C
AlienVault USM × × × × C
OpenVAS × × × × × × B
OpenSCAP × × × × S
Vulscan × × × × × × × S
Vuls × × × × × × × S
AMADEUS-Exploit × × × × × × × × S

aS: Standalone, C: Cloud, B: Cloud and Standalone.

Table 5
Number of vulnerabilities and exploits per application and service.

Name Vulscan AMADEUS-Exploit

CVE Exploits CVE Exploits Avg. features Avg. constrains

Mozilla Firefox – – 1501 120 261 24
Adobe Flash – – 2 – 130 28
OpenSSH 3 13 2 2 48 15
Apache HTTP server 10 36 4 2 141 24
Nginx 6 3 3 – 119 12
OpenVPN – – 4 – 74 48
Wordpress 11 36 2416 450 63 13

This set of applications and services represents the target ele-
ments to analyse. We have deployed each application and service
in a separate container and scanned them using the Vulscan tool.
When we did not have the exact version specified in the scenario
available, we decided to use the closest version available. The
results in terms of the identified vulnerabilities and exploits are
given in Table 5. We can observe that there are some applications
and services for which Vulscan cannot find vulnerabilities and
exploits, such as in the case of Mozilla Firefox or OpenVPN. This
table shows the total set of vulnerabilities and exploits that the
user must take into account to develop a correct vulnerability
management process. This is just the first step; now, it will be
up to the stakeholders involved in the vulnerability management
process (for example, security testers) to analyse, select and pri-
oritise the set of vulnerabilities and exploits to test from the set
provided.

To compare the capabilities of AMADEUS-Exploit in identifying
vulnerabilities and exploits regarding Vulscan, we can explore
the search by terms. By manually including these applications
and services as terms in AMADEUS-Exploit, it automatically ex-
tracts 3932 different items corresponding to vulnerabilities and
exploits. They correspond to the NVD and Exploit-DB results
from 2002 to 2021. In particular, vulnerabilities and exploits
are distributed as shown in Table 5. Moreover, the chosen CVEs
cover many known affected configurations (CPEs). For example, a
single Mozilla Firefox vulnerability, e.g., CVE-2020-6801, gathers
approximately 450 CPEs. This gives an idea in terms of possible
attack vectors affected by a single vulnerability.

As explained in Section 4, AMADES-Exploit retrieved an FM
for each vulnerability. The FMs inferred for the evaluation and
the source code for the AMADEUS-Exploit implementation are
available,16 free of charge.

To analyse the key characteristics (features and constraints)
of FM, Figs. 7(a) and 7(b) show the number of features and
constraints. Additionally, the average number of features and

16 https://doi.org/10.5281/zenodo.7072369

constraints for each application and service is included in Table 5
as complementary details.

To evaluate the extraction capabilities of AMADEUS-Exploit,
Fig. 8 shows an analysis of the time required to scrap CVEs and
exploits, extract CPEs and exploit information, and generate FMs.
In Fig. 8, the dots represent the time consumed in the creation
of an FM for each CVE, i.e., the Y -axis is the time spent in the
creation, specified in seconds, while on the X-axis each entry
represents a CVE. The testing process developed to obtain the per-
formance time runs each phase several times and calculates the
average time taken for each phase (in seconds). The generation of
FMs requires an appropriate time (sublinear time) in the general
case. However, we can observe that there are certain cases where
the time is longer, since web scrapping is affected by the Internet
response time of vulnerability and exploit repositories, i.e., NVD,
VulDB and Exploit-DB.

As mentioned in Section 4, model validation can be seen
as a partial metric of correctness (Lopez-Herrejon et al., 2015).
That is, a valid FM allows us to create at least one valid attack
vector. Therefore, we have validated all FMs (i.e., valid model)
to demonstrate that they succeed in obtaining at least one valid
product (i.e., a complete selection of features in the FM). In this
sense, the 3932 models have been successfully validated.17 In this
context, an attack vector is the selection of features in the FM
related to products, vendors, OS, version, running configurations,
exploits, etc. that describe a configuration with a vulnerability.
Therefore, this configuration can be considered as an attack vector
to be evaluated in vulnerability assessment.

6.3. Evaluation in a real case

The case study included in this section was part of the Security
Observatory, a project of the University of Seville.18 The project
aims to analyse and test the security of several systems. The

17 FaMaPy valid operation was used.
18 https://sic.us.es/seguridad-tic

13

https://doi.org/10.5281/zenodo.7072369
https://sic.us.es/seguridad-tic

Á.J. Varela-Vaca, D. Borrego, M.T. Gómez-López et al. The Journal of Systems & Software 195 (2023) 111541

Fig. 7. Analysis of features and constraints per CVE.

Fig. 8. Time consumed (seconds) in the whole process (Scrapping, Building FM and Including Cross-tree Constrains).

security commission involved in the project provides us with a
list of target systems. To evaluate AMADEUS-Exploit, we have
chosen one of these real systems accessible through a public
domain name.19 The system behind the domain is a dedicated
server that offers certain university services for the community.
The system needed to be analysed, and information related to
vulnerabilities and exploits was used to find the surface of the
exposure and to define a risk treatment plan or mitigation plan
for the system under analysis. Although the system is known, the
project required a black-box analysis to know of an entry point.
For that reason, the analysis aims to demonstrate how to perform
a vulnerability management process with AMADEUS-Exploit in a
black-box scenario, where the characteristics of the underlying
systems and software are completely unknown. Therefore, the

19 For confidentiality restrictions, the specific domain name cannot be
provided.

purpose is to discover the target elements, identify potential vul-
nerabilities and exploits, and use reasoning capabilities to choose
the appropriate vulnerabilities to cover the entire scenario.

First, we launched AMADEUS-Exploit with automatic capa-
bilities (cf. Section 3.1) to analyse the domain (only by giving
the domain as input). Then, these terms have been extracted
(automatically): f5, BIG-IP, load balancer, http, and proxy. Then,
AMADEUS-Exploit automatically created FMs for those terms in
relation to 167 CVEs and 13 exploits. The full list of CVEs and
exploits can be found in Appendix B. Additionally, we have deter-
mined the number of attack vectors for all FMs (cf., Appendix B)
to evaluate their correctness.

To help the expert in the choice of vulnerabilities, by applying
‘Reasoning about exploits’ operation (cf., Section 5), we can obtain
which vulnerabilities contain at least one exploit and which do
not. This information is not available in the NVD database nor in
the Exploit-DB. Using this operation as a classification criterion,
we can sort the vulnerabilities as shown in Appendix B. Therefore,

14

Á.J. Varela-Vaca, D. Borrego, M.T. Gómez-López et al. The Journal of Systems & Software 195 (2023) 111541

experts can use this information provided by the AMADEUS-
Exploit operation to prioritise these 11 vulnerabilities first instead
of others, as they provide some resources in the form of ex-
ploits. We can see how only 11 out of 167 vulnerabilities have
exploits: {CVE-2012-1493, CVE-2008-0265, CVE-2008-0539, CVE-
2008-7032, CVE-2014-2927, CVE-2014-2928, CVE-2014-8727,
CVE-2012-2997, CVE-2015-4040, CVE-2015-3628, CVE-2018-
5511}. Specially, the first one has 3 exploits to be used.

In the lack of more information on systems and software,
experts may be interested in knowing those vulnerabilities that
affect more known configurations (i.e., represent more attack
vectors). Using the operation ‘Reasoning about attack vectors’ (cf.,
Section 5), we can obtain all attack vectors for each vulnerability
and use that number of vectors as an importance criterion to rank
the vulnerabilities to be assessed. In that case, the top 10 vulner-
abilities are {CVE-2019-6609, CVE-2018-5507, CVE-2017-6153,
CVE-2019-6649, CVE-2018-5535, CVE-2018-5531, CVE-2018-
15311, CVE-2018-5534, CVE-2018-5519, CVE-2018-5520}. Recall
that the specific characteristics of the real system and software
(product, vendor, OS, versions, etc.) are unknown, but we have
identified certain aspects related to them. These vulnerabilities
recovered the largest number of attack vectors and cover a wide
spectrum of configurations, so they may be closer to the system
and software in question.

In a detailed analysis of FMs, we can use information related to
the type, vendors, and products to choose vulnerabilities with the
best attack vectors for our scenario. Applying ‘Reasoning about
attack vectors’ (cf. Section 5) by using certain filters, we have
obtained the type, vendor, and products for each vulnerability
shown in Appendix B. The number of identified vendors is a
maximum of two for each vulnerability. The identified vendors
are: f 5 for 165 CVEs, Jenkins for CVE-2017-6153, CISCO for CVE-
2018-5500, f 5 and Vmware for CVE-2018-5511, f 5 and Redhat for
CVE-2019-6648. For our scenario, we identify ‘f 5’ as a term. This
information can be used by the expert to discard those CVEs that
are not directly related to the ‘f 5’ vendor, hence CVE-2017-6153
and CVE-2018-5500. Analysing the products, we can use a similar
operation to obtain information about the products and use this
as criteria to order the vulnerabilities that affect more products.
In that case, the top 10 vulnerabilities with the most prod-
ucts are {CVE-2016-5022, CVE-2015-8099, CVE-2017-6128, CVE-
2014-2927, CVE-2015-5516, CVE-2015-7394, CVE-2016-2084,
CVE-2015-3628, CVE-2018-5516, CVE-2016-5021}. Likewise, we
can use the terms associated with the products to tune up the
search for potential vulnerabilities for further assessment. As
mentioned above, we identified the term BIG-IP, and the vul-
nerabilities containing this information are CVE-2008-7032 and
CVE-2014-9342. However, we found no results within the CVEs
filtering for the other two terms. Although experts may prioritise
the evaluation for these two vulnerabilities, we cannot discard
the other CVEs because we do not know if the products referring
to CVEs are involved in our scenario.

Finally, we can use the aforementioned criteria to define an
adequate vulnerability assessment. Thus, we propose to analyse
first the CVEs with exploits and associated with the identifier
vendor (f 5) and product (BIG-IP), and then the CVEs that cover
more attack vectors. The result is collected in Table 6. Of course,
we cannot ignore the rest of the vulnerabilities, but those listed
are the ones that best fit the scenario requirements identified
by AMADEUS-Exploit and the different operations used. How-
ever, other reasoning queries can be used to further refine this
proposed list.

The results were reported to the security commission and
rapidly transferred to those administrators responsible for the
system. The actions taken by the security commission were to
prioritise the analysis of the systems according to the vulnerabil-
ities and exploits discovered to determine possible actions to take

(e.g., patches or updates) for the system. Now, the administrators
responsible for the system must analyse the results in Table 6 to
evaluate the vulnerabilities and exploits discovered.

7. Related work

System vulnerability scanning is a well-known problem to
manage system risks (Sterlini et al., 2020; Jimenez et al., 2019).
To reduce risks, vulnerabilities must be collected and analysed
to identify potential attacks and define adequate assessments
(security testing). There are several works on these topics in
the literature. Traditionally, vulnerability location and extraction
focus on the analysis of source code or repositories in differ-
ent directions, e.g., Perl et al. (2015), Jimenez et al. (2018) and
Cho et al. (2011). There are approaches based on static analysis
of the code (Perl et al., 2015), and others based on symbolic
and dynamic analysis (Cho et al., 2011). In terms of repository
analysis, Neuhaus et al. (2007) analyse the Mozilla vulnerability
repository to provide a solution to predict the most prominent
components that may be vulnerable. Jimenez et al. (2018) present
VulData7, a framework for automatically obtaining a dataset of
NVD and Git vulnerabilities for specific systems. VulData7 al-
lows to align vulnerabilities with possible fixes (patches), if any.
From another perspective, Sanguino and Uetz (2017) provide a
tool called IVA that automates the search process for potential
vulnerabilities in software products installed in organisations.
This approach relies on an asset inventory, but our approach is
decoupled from the infrastructure, as AMADEUS-Exploit supports
scanning tools such as Nmap, which allows us to discover assets
and services automatically without the need for an inventory.

Regarding vulnerability assessment, Dass and Namin (2020)
and Murthy and Shilpa (2018) present solutions to obtain a set
of vulnerabilities to be used in security testing. Dass and Namin
(2020) propose a genetic algorithm approach to generate Com-
mon Vulnerability Scoring System (CVSS) vectors to find the best
set of vulnerabilities for adequate security testing. However, the
main drawback is that, after generating the CVSS vector, they
have to search the CVE repository to find the vulnerabilities to
use. On the contrary, Murthy and Shilpa (2018) focus on the
coverage of the security test, applying the concepts of pairwise
testing. Thus, they assume that security testing is defined and
only propose a coverage criterion to determine when the security
testing process should stop by reducing the number of tests to be
performed.

In the literature, formal (Mulwad et al., 2011) and pseudo-
formal (Emeka and Liu, 2018) structures have been used to iden-
tify vulnerabilities. In the contribution by Mulwad et al. (2011),
a term ontology is created to identify future vulnerability terms
to query the NVD. Jia et al. (2018) use ML techniques on a
cybersecurity knowledge base to extract entities and build an
ontology to obtain a cybersecurity knowledge base. Then, the
calculation of formulas and the use of the path-ranking algorithm
allow for the derivation of new rules. The use of the knowledge
base implies keeping this structure updated in case new terminol-
ogy appears and not analysing in-depth the set of vulnerabilities
of a system, providing less customised solutions. However, our
approach focusses on analysing the vulnerability of a system from
its components, configurations, or terms introduced by experts.

Other approaches, such as the contribution by Weeraward-
hana et al. (2014), perform information extraction from vul-
nerability databases, such as NVD (Anon., 2020a), using Natural
Language and ML techniques. This can be further used by appli-
cations, such as vulnerability scanners and security monitoring
tools. In the contribution by Mulwad et al. (2011), a framework is
presented to detect and extract information about vulnerabilities
and attacks from Web text. The use of exploits to analyse poten-
tial vulnerabilities has been an important area of research (Jacobs

15

Á.J. Varela-Vaca, D. Borrego, M.T. Gómez-López et al. The Journal of Systems & Software 195 (2023) 111541

Table 6
List of 20-top vulnerabilities considered for evaluation.
Vulnerability N◦ of attack vectors Exploits (EDBID) Vendors Products Versions

1 CVE-2012–1493 848 {exploit_19099, exploit_19091, exploit_19064} 1 5 14
2 CVE-2008–0265 2 exploit_31024 1 1 1
3 CVE-2008–0539 2 exploit_31065 1 1 1
4 CVE-2008–7032 2 exploit_31133 1 1 1
5 CVE-2014–2927 390 exploit_34465 1 19 2
6 CVE-2014–2928 172 exploit_34927 1 9 1
7 CVE-2014–8727 58 exploit_35222 1 1 14
8 CVE-2012–2997 8 exploit_38233 1 1 18
9 CVE-2015–4040 796 exploit_38448 1 14 1

10 CVE-2015–3628 194 exploit_38764 1 18 9
11 CVE-2014–9342 2 – 1 1 14
12 CVE-2019–6609 26,450 – 1 14 14
13 CVE-2018–5507 1,998 – 1 13 13
14 CVE-2019–6649 1,314 – 1 14 14
15 CVE-2018–5535 1,176 – 1 13 13
16 CVE-2018–5531 1,168 – 1 13 13
17 CVE-2018–15311 924 – 1 13 1
18 CVE-2018–5534 870 – 1 13 13
19 CVE-2018–5519 868 – 1 13 13
20 CVE-2018–5520 868 – 1 13 13

et al., 2020). Previous work has analysed how exploits can be
selected to reduce the risk produced by vulnerabilities (Suciu
et al., 2021; Bozorgi et al., 2010). However, extracting and inte-
grating them into a single model in which both vulnerabilities
and exploits can be combined has been a challenge. Kenner et al.
(2020) pointed out this combination as necessary and it has been
achieved innovatively in our AMADEUS-Exploit contribution.

This introduces the use of FM to manage the variability of vul-
nerability and configuration of systems in a rational way. There
are previous works in the literature that use FM to represent
system vulnerabilities (ter Beek et al., 2020; Kenner et al., 2020).
In the contribution of ter ter Beek et al. (2020), the authors
use variability techniques to define the attack-defence scenario.
However, Kenner et al. (2020) built synthetic attack scenarios
based on vulnerability analysis. Nevertheless, the most widely
used methodology to obtain these models is still manual. In
contrast to this, this paper provides a novel automated method
capable of outperforming existing human-oriented ones. We use
FMs to define a consistent and homogeneous structure represent-
ing configurations with vulnerabilities, and AMADEUS provides a
solution that covers all phases of the process, from vulnerability
extraction through reasoning to the creation of FMs.

In the SPL area, the extraction of FMs from existing systems
has already been addressed by reverse engineering techniques.
These techniques are applicable in many tasks, but are mainly
used to determine features, feature restrictions, and to generate
complete feature models. There are several techniques applied
to reverse engineering in SPL: search-based techniques (Lopez-
Herrejon et al., 2015); using propositional logic (Czarnecki and
Wasowski, 2007); natural language requirements (Weston et al.,
2009); ad-hoc algorithms (Haslinger et al., 2013; Acher et al.,
2012; Haslinger et al., 2011); and, configuration scripts (She
et al., 2011). Most reverse engineering approaches focus on the
application of different topics of software engineering. However,
they are far from the particular characteristics of cybersecurity
and vulnerability issues, so in this paper we have considered the
extraction of FMs from vulnerabilities.

8. Threats to validity

Even though the experiments presented in this paper provide
pieces of evidence for validation, we discuss the different threats
to validity that affect our approach:

1. Internal validity. Although the evaluation performed on
thousands of CVEs demonstrates that there are no errors,

the use of external databases may contain uncontrolled
errors to us. The analysis done in the evaluation reveals
different properties of FMs, vulnerabilities, known affected
configurations, and exploits. However, there might be char-
acteristics that are not revealed, e.g., the most prominent
vulnerable feature. For instance, we can infer (indirect) re-
lations between features and exploits that are not directly
extracted from the exploit databases. The main benefit of
using FMs is the opportunity to use automatic analysis
techniques over plain information that is scattered through
different and heterogeneous repositories. However, the use
of FMs introduces a disadvantage to experts in learning
the logic under the FMs and automatic analysis. Hence, our
approach tries to fulfil this gap by providing shortcuts.

2. External validity. Although the evaluation covers many CVEs
and realistic scenarios, we cannot generalise the conclu-
sions for any scenario. AMADEUS-Exploit is useful for dif-
ferent security stakeholders to reveal reasoning capabilities
on vulnerability information that currently are not ex-
ploited, but it would be necessary to carry out an external
validation with experts.

3. Conclusion validity. Anyone can replicate the experiments,
since we provide a repository with AMADEUS-Exploit
source code and the models extracted for the evaluation.

9. Concluding remarks & future directions

Vulnerability management is essential to avoid security risks.
However, the large amount of information in the different
databases, the high complexity and variability of system config-
urations, and the need for reasoning to assist the vulnerability
management process make it very difficult to obtain an efficient
solution. Therefore, it is essential to provide models that collect
information from vulnerability and exploit databases, and pro-
vide automatic analysis mechanisms to support the vulnerability
management process.

Previous solutions have faced this challenge, but the
AMADEUS-Exploit framework proposes a holistic solution to
bridge the gap between vulnerability identification and assess-
ment through the application of feature models. It is an ex-
tension of the AMADEUS framework presented in a previous
work (Varela-Vaca et al., 2020) that proposes a methodology
to automatically generate FMs and use them in automatic rea-
soning to support vulnerability management, integrating some
vulnerability and exploit repositories. In addition to this function-
ality, the new AMADEUS-Exploit framework addresses aspects

16

Á.J. Varela-Vaca, D. Borrego, M.T. Gómez-López et al. The Journal of Systems & Software 195 (2023) 111541

Table B.7
List of vulnerabilities, exploits, and known vulnerable configurations.
Vulnerability N◦ of attack

vectors
Exploits (EDB-ID) Type Vendors Products Versions

CVE-2012–1493 848 {exploit_19099
exploit_19091
exploit_19064}

App - OS - Hw 1 5 14

CVE-2008–0265 2 exploit_31024 OS 1 1 1
CVE-2008–0539 2 exploit_31065 OS 1 1 1
CVE-2008–7032 2 exploit_31133 Hw 1 1 1
CVE-2014–2927 390 exploit_34465 App 1 19 2
CVE-2014–2928 172 exploit_34927 App 1 9 1
CVE-2014–8727 58 exploit_35222 App 1 1 14
CVE-2012–2997 8 exploit_38233 App 1 1 18
CVE-2015–4040 796 exploit_38448 App 1 14 1
CVE-2015–3628 194 exploit_38764 App 1 18 9
CVE-2018–5511 114 exploit_46600 App 2 16 13
CVE-1999–1550 2 – OS 1 1 5
CVE-2005–2245 10 – OS 1 1 1
CVE-2008–1503 2 – OS 1 1 19
CVE-2008–6474 2 – OS 1 1 9
CVE-2009–4420 22 – App - Hw 1 3 1
CVE-2012–3000 98 – App - Hw 1 10 16
CVE-2013–0150 22 – App - Hw 1 2 1
CVE-2013–5975 12 – App - Hw 1 1 1
CVE-2013–5976 20 – App - Hw 1 1 1
CVE-2013–6016 172 – App 1 9 1
CVE-2013–6024 42 – App - Hw 1 3 3
CVE-2013–7408 10 – App 1 1 10
CVE-2014–3959 56 – App 1 14 1
CVE-2014–4023 300 – App - Hw 1 14 9
CVE-2014–4024 312 – App 1 13 3
CVE-2014–6031 352 – App 1 14 1
CVE-2014–8730 272 – App 1 14 14
CVE-2014–9326 78 – App 1 9 13
CVE-2014–9342 2 – App 1 1 14
CVE-2015–1050 72 – App 1 1 14
CVE-2015–4637 14 – App 1 4 1
CVE-2015–4638 114 – App 1 10 4
CVE-2015–5058 62 – App 1 12 10
CVE-2015–5516 386 – App 1 18 12
CVE-2015–6546 202 – App 1 13 18
CVE-2015–7394 252 – App 1 18 13
CVE-2015–8021 142 – App 1 13 18
CVE-2015–8022 236 – App 1 14 13
CVE-2015–8098 14 – App 1 1 14
CVE-2015–8099 218 – App 1 21 1
CVE-2015–8240 56 – App 1 10 21
CVE-2016–1497 272 – App 1 14 10
CVE-2016–2084 212 – App 1 18 14
CVE-2016–3686 36 – App 1 2 18
CVE-2016–3687 20 – App 1 2 2
CVE-2016–4545 18 – App 1 9 2
CVE-2016–5020 278 – App 1 14 9
CVE-2016–5021 146 – App 1 16 14
CVE-2016–5022 286 – App 1 22 16
CVE-2016–5023 100 – App 1 13 22
CVE-2016–5024 54 – App 1 10 13
CVE-2016–5700 134 – App 1 8 10
CVE-2016–5736 188 – App 1 15 8
CVE-2016–5745 32 – App 1 1 15
CVE-2016–6249 160 – App 1 11 1
CVE-2016–6876 256 – App 1 14 11
CVE-2016–7467 12 – App 1 1 14
CVE-2016–7468 130 – App 1 10 1

(continued on next page)

such as the subsequent extraction of exploits to enable vulner-
ability assessment, the incorporation of new vulnerability and
exploit repositories, and the improvement of reasoning models.
AMADEUS-Exploit integrates all functionality into a single FM
model, including multiple reasoning operations to facilitate the
task of vulnerability management from identification to choosing
the most relevant vulnerabilities to assess.

The new framework has been evaluated in three different
ways: (1) being compared with other vulnerability management
tools concerning certain capabilities for the identification and

reasoning of vulnerabilities and exploits; (2) in a synthetic case in
which almost 4000 FMs have been extracted from typical applica-
tions and services under high threat; and (3) being applied in real
case scenario obtaining a set of vulnerabilities and analysing their
characteristics to choose the most relevant ones to be considered
for assessment according to the system and software identified.

As future work directions, AMADEUS-Exploit has many po-
tential extensions: it can be extended (1) with decision-making
techniques for attack vector generation; (2) using FMs to de-
tect inconsistencies in vulnerability repositories; (3) integrating

17

Á.J. Varela-Vaca, D. Borrego, M.T. Gómez-López et al. The Journal of Systems & Software 195 (2023) 111541

Table B.7 (continued).
Vulnerability N◦ of attack

vectors
Exploits
(EDB-ID)

Type Vendors Products Versions

CVE-2016–7472 4 – App 1 1 10
CVE-2016–7474 246 – App 1 14 1
CVE-2016–7476 136 – App 1 10 14
CVE-2016–9245 60 – App 1 10 10
CVE-2016–9250 268 – App 1 14 10
CVE-2016–9251 80 – App 1 10 14
CVE-2016–9252 312 – App 1 14 10
CVE-2016–9253 60 – App 1 10 14
CVE-2016–9256 80 – App 1 10 10
CVE-2016–9257 8 – App 1 1 10
CVE-2017–0301 22 – App 1 1 1
CVE-2017–0302 10 – App 1 1 1
CVE-2017–0303 184 – App 1 8 1
CVE-2017–0305 4 – App 1 1 8
CVE-2017–6128 206 – App 1 21 1
CVE-2017–6129 4 – App 1 1 21
CVE-2017–6131 90 – App 1 9 1
CVE-2017–6132 300 – App 1 11 9
CVE-2017–6133 112 – App 1 10 11
CVE-2017–6134 528 – App 1 11 10
CVE-2017–6135 22 – App 1 11 11
CVE-2017–6136 124 – App 1 11 11
CVE-2017–6137 100 – App 1 11 11
CVE-2017–6138 124 – App 1 11 11
CVE-2017–6139 4 – App 1 1 11
CVE-2017–6141 48 – App 1 8 1
CVE-2017–6142 18 – App 1 1 8
CVE-2017–6143 82 – App 1 2 1
CVE-2017–6144 6 – App 1 1 2
CVE-2017–6145 80 – App 1 10 1
CVE-2017–6147 40 – App 1 10 10
CVE-2017–6148 368 – App 1 8 10
CVE-2017–6150 146 – App 1 10 8
CVE-2017–6151 26 – App 1 13 10
CVE-2017–6152 4 – App 1 1 13
CVE-2017–6153 1718 – App 1 1 1
CVE-2017–6154 20 – App 1 1 1
CVE-2017–6155 452 – App 1 11 1
CVE-2017–6156 438 – App 1 13 11
CVE-2017–6157 206 – App 1 8 13
CVE-2017–6158 534 – App 1 13 8
CVE-2017–6159 86 – App 1 8 13
CVE-2017–6160 52 – App 1 2 8
CVE-2017–6161 344 – App 1 11 2
CVE-2017–6162 212 – App 1 8 11
CVE-2017–6163 234 – App 1 8 8
CVE-2017–6164 352 – App 1 13 8
CVE-2017–6165 220 – App 1 11 13
CVE-2017–6167 112 – App 1 10 11
CVE-2017–6169 18 – App 1 1 10
CVE-2018–15311 924 – App 1 13 1
CVE-2018–15312 778 – App 1 13 13
CVE-2018–15313 62 – App 1 1 13
CVE-2018–15314 62 – App 1 1 1
CVE-2018–15315 778 – App 1 13 1
CVE-2018–15316 42 – App 1 2 13
CVE-2018–15332 276 – App 1 2 2
CVE-2018–5500 4 – OS 1 1 2
CVE-2018–5501 416 – App 1 13 1
CVE-2018–5502 278 – App 1 13 13
CVE-2018–5503 40 – App 1 1 13
CVE-2018–5504 436 – App 1 13 1
CVE-2018–5505 20 – App 1 2 13
CVE-2018–5506 556 – App 1 13 2
CVE-2018–5507 1998 – App 1 13 13
CVE-2018–5508 52 – App 1 1 13
CVE-2018–5509 288 – App 1 8 1
CVE-2018–5510 156 – App 1 13 8
CVE-2018–5512 168 – App 1 13 13
CVE-2018–5513 824 – App 1 13 13
CVE-2018–5514 168 – App 1 13 13
CVE-2018–5515 168 – App 1 13 13
CVE-2018–5516 858 – App 1 16 16

(continued on next page)

18

Á.J. Varela-Vaca, D. Borrego, M.T. Gómez-López et al. The Journal of Systems & Software 195 (2023) 111541

Table B.7 (continued).
Vulnerability N◦ of attack

vectors
Exploits
(EDB-ID)

Type Vendors Products Versions

CVE-2018–5517 168 – App 1 13 13
CVE-2018–5518 352 – App 1 13 13
CVE-2018–5519 868 – App 1 13 13
CVE-2018–5520 868 – App 1 13 13
CVE-2018–5521 558 – App 1 13 13
CVE-2018–5522 638 – App 1 13 13
CVE-2018–5523 614 – App 1 14 14
CVE-2018–5524 328 – App 1 11 11
CVE-2018–5525 702 – App 1 13 13
CVE-2018–5526 14 – App 1 1 1
CVE-2018–5529 244 – App 1 2 2
CVE-2018–5530 484 – App 1 9 9
CVE-2018–5531 1168 – App 1 13 13
CVE-2018–5532 760 – App 1 13 13
CVE-2018–5533 638 – App 1 13 13
CVE-2018–5534 870 – App 1 13 13
CVE-2018–5535 1176 – App 1 13 13
CVE-2018–5536 56 – App 1 1 1
CVE-2018–5537 806 – App 1 10 10
CVE-2018–5538 118 – App 1 4 4
CVE-2018–5539 52 – App 1 1 1
CVE-2018–5540 118 – App 1 5 5
CVE-2018–5541 48 – App 1 1 1
CVE-2018–5542 866 – App 1 13 13
CVE-2018–5543 20 – App 1 1 1
CVE-2018–5544 48 – App 1 1 1
CVE-2018–5546 48 – App 1 2 2
CVE-2018–5547 6 – App 1 1 1
CVE-2019–6595 46 – App 1 1 1
CVE-2019–6609 26450 – App 1 14 14
CVE-2019–6648 3 – App 2 1 1
CVE-2019–6649 1314 – App 1 14 14
CVE-2019–6650 106 – App 1 1 1
CVE-2019–6665 104 – App 1 4 4
CVE-2020–5944 2 – App 1 1 1

other analysis tools (e.g., Lynis); (4) integrating other vulnerabil-
ity databases (e.g., CNVD, IBM X-Force, or US-Cert), etc. And last
but not least, the AMADEUS-Exploit process needs to be validated
by external experts to make a strong and practical validation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

https://zenodo.org/record/7072369.

Acknowledgements

This work has been funded by the projects COPERNICA
(P20_01224), METAMORFOSIS (US-1381375), and AETHER-US
PID2020-112540RB-C44 funded by MCIN/AEI/10.13039/501100-
011033.

Appendix A. Feature model construction algorithms

For a better understanding of each part of the algorithm, some
concepts are introduced. Let L be a list of n configurations (CPEs)
and LEXP a list of exploits for a given CVE. L could be considered as
a composition of two smaller lists, LVUL = {cpe1, cpe2, . . . , cpej} and
LRC = {cpej+1, cpej+2, . . . , cpen}, containing vulnerable configura-
tions and running configurations (i.e., execution environments),
respectively. In the same way, LEXP is the list of exploits {exp1,
exp2, exp3, . . . , expm}, if any. The content of both lists with respect

Algorithm 1: Build unrestricted FM from a CVE.
Input: CVE-ID, L : {cpe1, cpe2, . . . , cpen},

LEXP : {exp1, exp2, . . . , expm}
Result: fm: Feature Model

1 listOfFMVUL−EXP ← {}; listOfFMRC ← {}; fm← {};
2 LVUL = vul(L); LRC = rc(L);
3 /* Create the root of FM */
4 createRootF (fm, CVE-ID);
5 /* Create FMs for the list of CPEs */
6 listOfFMVUL−EXP ← createSubFMs(LVUL, LEXP);
7 /* Merge the FMs from Exploits and CPEs*/
8 for fmvuli ∈ listOfFMVUL−EXP do
9 merge(fm, CVE-ID, fmvuli);

10 end
11 /* Create a branch for part in the FM */
12 children(fm, ‘type′, getTypes(L));
13 /* Include the Running Configurations in FM*/
14 if |LRC | > 0 then
15 /* Create a node that will contain all RCs */
16 opt(fm, CVE-ID, ‘‘rc ′′);
17 /* Create an FM for each RC */
18 for rci ∈ LRC do
19 /* Retrieve list of sub-models by Algorithm 2 */

listOfFMVUL−EXP ← createSubFMs(getRC(LRC , rci));
20 /* Merge FMs together */
21 for fmrci ∈ listOfFMRC do
22 merge(fm, rci, fmrci);
23 end
24 end
25 end

to the running example in Table 3 would be: LVUL = {cpe1, cpe2,
cpe3, cpe4, cpe5}, LRC= {cpe6}, and LEXP = {exp1, exp2, exp3}.

19

https://zenodo.org/record/7072369

Á.J. Varela-Vaca, D. Borrego, M.T. Gómez-López et al. The Journal of Systems & Software 195 (2023) 111541

Derived from the special characteristics mentioned of the CPE
attributes (product, vendor and part), some functions are defined
below:

• getVendors(L) returns the vendors associated with the list
L of CPEs. For example, getVendors(L) = {‘oteachy’, ‘olearni’,
‘origin’}.
• getProducts(L, vi) returns a list of products for a vendor vi for

a given list L of CPEs. For example, getProducts(L, ‘oteachy’)
= {‘lynx’, ‘ocelot’}.
• getAttributes(L, pi) returns a list of attributes that are rele-

vant for the product pi because they do not have ‘*’ in every
CPE of L. For example, getAttributes(L, ‘civet’) = {‘version’,
‘language’}.
• getValues(L, pi, aj) returns a list of values for the attribute aj

for a product pi in a list L of CPEs. For example, getValues(L,
‘civet’, ‘version’) = {‘1.0.0’, ‘1.0.1’, ‘1.0.2’}.
• getTypes(L) returns the parts associated to the list L of CPEs.

For example, there is only CPEs with ‘a’ (application) part,
hence getTypes(L) = {‘application’}.

Other operators have been defined when developing the algo-
rithms. These operators are grouped into two categories:

1. Operators to get information from a list L of CPEs:

• vul(L) takes a list L of CPEs as input and returns the list
of vulnerable configurations, LVUL. For the example,
vul(L) = {cpe1, cpe2, cpe3, cpe4, cpe5}.
• rc(L) takes a list L of CPEs as input and returns a

map (list of pairs key→ value) indexing the running
environment configurations in LRC . For the example,
rc(L) = [‘rc1’→ {cpe6}].
• getRC(L, rci) returns a list of CPEs associated to the

rci in the running configurations LRC . For the example,
getValues(LRC , ‘rc1’) = {cpe6}.

2. Operators to build FM structures:

• createRootF (FM, n) creates a new feature in the FM
named n and establishes it as root.
• man(FM, f1, f2) creates two new features if they do not

already exist, and a mandatory relationship between
them.
• opt(FM, f1, f2) creates two new features if they do not

already exist, and an optional relation between them.
• xor(FM, f , A) creates a new feature f in FM if it does

not already exist, and an XOR-Alternative relation
between it and the set of alternative features A ⊂ FM .
• children(FM, f , C) creates a new feature f in FM if it

does not already exist, and a relation with a set of
children features C ⊂ FM:

– If |C | = 1, a new mandatory relation is added
between f and c ∈ C; i.e., man(FM, f , c).

– If |C | > 1, a new XOR-Alternative relation is
added between r and ∀c ∈ C; i.e., xor(FM, f , C).

• merge(FM, f , S) creates a new feature f in FM if it does
not already exist, and a relation with set S of FMs. Let
R be the set of roots ∀FMi ∈ S, the operator merge
creates a new relation between f and every rootj ∈ R;
i.e., children(FM, f , R).

A set of operators is introduced to facilitate understanding of
Algorithm 3:

Algorithm 2: Create sub-FMs.
Input: L : {cpe1, cpe2, cpe3, . . . , cpen},

LEXP : {exp1, exp2, . . . , expm}
Result: listOfFM: List of FMs

1 listOfFM ← {};
2 /* Create new FM representing each vendor */
3 for vi ∈ getVendors(L) do
4 fm← {};
5 /* Include all vendors as root feature */
6 createRootF (fm, vi);
7 for pj ∈ getProducts(L, vi) do
8 for ak ∈ getAttributes(L, pj) do
9 /* Create features and relations between them,

representing the values ak that the attributes may
take */

10 children(fm, ak, getValues(L, ak, pj));
11 end
12 /* Create features and relations between the product pk

and their attributes */
13 children(fm, pj, getAttributes(L, pj));
14 end
15 /* Create features and relations representing the vendor vi

and the products */
16 children(fm, vi, getProducts(L, vi));
17 listOfFM ← fm;
18 end
19 /* Create new FM representing the exploits */
20 fmexp ← {};
21 if |LEXP | > 0 then
22 /* Create root feature for exploits */
23 createRootF (fmexp,

′ exploits′);
24 for expi ∈ LEXP do
25 /* Create features and relations between ‘exploits’ and

concrete exploit expi */
26 children(fmexp, ‘exploits′, expi);
27 end
28 end
29 listOfFM ← fmexp;

• getLeaves(FM) takes a feature model FM , and returns the
set of leaves of FM , which are the values of the relevant
attributes. For the example, getLeaves(FM) ={‘1.0.0’, ‘1.0.1’,
‘1.0.2’, ‘fr’, ‘ANY’, ‘es’, ‘NA’}.
• isRC(L, f) takes a list L of CPEs and a value f which rep-

resents a feature, returning true value if f belongs to any
running configuration of L, false otherwise. For the example,
isRC(L, ‘fr ’) = false or isRC(L, ‘NA′) = true.
• getSiblings(L, f) takes a list L of CPEs and a value f which rep-

resents a feature, returning a list of values that are siblings
of it and belong to the same product in L. For the example,
getSiblings(L, ‘1.0.0’) = ‘fr ’ or getSiblings(L, ‘1.0.1’) = ‘ANY ’ or
getSiblings(L, ‘es’) = {}.
• getRelatedRC(L, f) takes a list L of CPEs and a value f which

represents a feature, returning a list of values that represent
the related running configurations in L. For the example,
getRelatedRC(L, ‘1.0.0’) = {} or getSiblings(L, ‘ocelot ’) = ‘rc1’
or getRelatedRC(L, ‘es’) = {‘rc1’}.
• getProducts(L) takes a list L of CPEs, and returns a list of

values that represent the products in L. For the example,
getProducts(L) = {‘ocelot ’, ‘civet ’, ‘lynx’ }.
• getRelatedType(L, p) takes a list L of CPEs, a value f represent-

ing a product feature, and returns a list of values that repre-
sent the related type in L. For the example,
getRelatedType(L, ‘civet ’) = {application} or getRelatedType(L,
‘ocelot ’) = {application}.
• const(FM, f , C) takes a source feature f ∈ FM and a set of

target features C ⊂ FM:

20

Á.J. Varela-Vaca, D. Borrego, M.T. Gómez-López et al. The Journal of Systems & Software 195 (2023) 111541

– If |C | = 1, a new Require constraint relation is added
between f and c ∈ C .

– If |C | > 1, a new XOR-require constraint is added
between f and ∀c ∈ C .

Algorithm 3: Create Cross-tree Constraints for unrestricted
FM.

Input: L : {cpe1, cpe2, cpe3, . . . , cpen}, FM: Feature Model
Result: FM : Feature Model with Constraints

1 /* For each product in L */
2 products← getProducts(L);
3 for pi ∈ products do
4 /* Include a new cross-tree for each relative Type */
5 types← getRelatedType(FM, pi);
6 const(FM, types, pi);
7 end
8 /* Obtain the FM leaves */
9 leaves← getLeaves(FM);

10 /* For each leaf */
11 for leaf ∈ leaves do
12 if ¬isRC(L, leaf) then
13 /* Get other leaves related to the same CPE */
14 listSiblings← getSiblings(L, leaf);
15 /* Include a new cross-tree for each relative leaf */
16 for si ∈ listSiblingsAttr do
17 const(FM, leaf , si);
18 end
19 /* Get RC related to the leaf */
20 listRelatedRC ← getRelatedRC(L, leaf);
21 /* Include a new cross-tree for each relative RC */
22 for rci ∈ listRelatedRC do
23 const(FM, leaf , rci);
24 end
25 end
26 end

Appendix B. Information about vulnerabilities, exploits, and
known vulnerable configurations

See Table B.7.

References

Acher, M., Cleve, A., Perrouin, G., Heymans, P., Vanbeneden, C., Collet, P.,
Lahire, P., 2012. On extracting feature models from product descriptions.
In: VAMOS. pp. 45–54.

Acher, M., Collet, P., Lahire, P., France, R.B., 2013. FAMILIAR: A domain-specific
language for large scale management of feature models. Sci. Comput.
Program. 78 (6), 657–681.

Anon., 2020a. National vulnerability database. Available from NIST. URL https:
//nvd.nist.gov/.

Anon., 2020b. Common vulnerability scoring system SIG. Available from FIRST.
URL https://www.first.org/cvss/.

Anon., 2020c. Common vulnerability exposure. Available from MITRE. URL http:
//cve.mitre.org/.

Anon., 2020d. The community-driven vulnerability database. Available from
VULDB. URL https://vuldb.com/.

Anon., 2021. Exploit database. URL https://www.exploit-db.com/. Offensive
Security.

Backes, M., Hoffmann, J., Künnemann, R., Speicher, P., Steinmetz, M., 2017.
Simulated penetration testing and mitigation analysis. CoRR arXiv:1705.
05088.

ter Beek, M.H., Legay, A., Lafuente, A.L., Vandin, A., 2020. Variability meets
security: Qantitative security modeling and analysis of highly customizable
attack scenarios. VAMOS ’20, Association for Computing Machinery, New
York, NY, USA.

Benavides, D., Segura, S., Ruiz-Cortés, A., 2010. Automated analysis of feature
models 20 years later. Inf. Syst. 35 (6), 615–636.

Benavides, D., Trinidad, P., Cortés, A.R., Segura, S., 2013. Fama. In: Capilla, R.,
Bosch, J., Kang, K.-C. (Eds.), Systems and Software Variability Management.
Springer, Berlin, Heidelberg, pp. 163–171.

Bozorgi, M., Saul, L., Savage, S., Voelker, G.M., 2010. Beyond heuristics: Learn-
ing to classify vulnerabilities and predict exploits. In: Proceedings of the
Sixteenth ACM Conference on Knowledge Discovery and Data Mining.
KDD-2010, pp. 105–113.

Cho, C.Y., Babić, D., Poosankam, P., Chen, K.Z., Wu, E.X., Song, D., 2011. MACE:
Model-inference-assisted concolic exploration for protocol and vulnerability
discovery. In: Proceedings of the 20th USENIX Conference on Security. SEC
’11, USENIX Association, USA, p. 10.

Clements, P., Northrop, L., 2002. Software Product Lines. Addison-Wesley Boston.
Czarnecki, K., Wasowski, A., 2007. Feature diagrams and logics: There and back

again. In: 11th International Software Product Line Conference. SPLC 2007,
IEEE, pp. 23–34.

Dass, S., Namin, A.S., 2020. Vulnerability coverage for adequacy security testing.
In: Proceedings of the 35th Annual ACM Symposium on Applied Computing.
SAC ’20, Association for Computing Machinery, New York, NY, USA, pp.
540–543.

Emeka, B.O., Liu, S., 2018. Assessing and extracting software security vulnera-
bilities in SOFL formal specifications. In: 2018 International Conference on
Electronics, Information, and Communication. ICEIC, pp. 1–4.

Engebretson, P., 2013. The Basics of Hacking and Penetration Testing: Ethical
Hacking and Penetration Testing Made Easy. Elsevier.

Foreman, P., 2009. Vulnerability Management. Auerbach Publications.
Foreman, P., 2019. Vulnerability Management, second ed Auerbach Publications,

Milton.
Galindo, J.A., Benavides, D., 2020. A python framework for the automated

analysis of feature models: A first step to integrate community efforts. SPLC
’20, Association for Computing Machinery, New York, NY, USA, pp. 52–55.

Gawron, M., Cheng, F., Meinel, C., 2015. Automatic detection of vulnerabilities for
advanced security analytics. In: 2015 17th Asia-Pacific Network Operations
and Management Symposium. APNOMS, pp. 471–474.

Haslinger, E.N., Lopez-Herrejon, R.E., Egyed, A., 2011. Reverse engineering feature
models from programs’ feature sets. In: 2011 18th Working Conference on
Reverse Engineering. IEEE, pp. 308–312.

Haslinger, E.N., Lopez-Herrejon, R.E., Egyed, A., 2013. On extracting feature
models from sets of valid feature combinations. In: FASE. Springer, pp. 53–67.

Jacobs, J., Romanosky, S., Adjerid, I., Baker, W., 2020. Improving vulnerability
remediation through better exploit prediction. J. Cybersecur. 6 (1).

Jia, Y., Qi, Y., Shang, H., Jiang, R., Li, A., 2018. A practical approach to constructing
a knowledge graph for cybersecurity. Engineering 4 (1), 53–60, Cybersecurity.

Jimenez, M., Le Traon, Y., Papadakis, M., 2018. [Engineering Paper] enabling
the continuous analysis of security vulnerabilities with VulData7. In: 2018
IEEE 18th International Working Conference on Source Code Analysis and
Manipulation. SCAM, pp. 56–61.

Jimenez, M., Rwemalika, R., Papadakis, M., Sarro, F., Traon, Y.L., Harman, M., 2019.
The Importance of Accounting for Real-World Labelling When Predicting
Software Vulnerabilities. ACM, pp. 695–705.

Karataş, A.S., Oğuztüzün, H., 2013. From extended feature models to constraint
logic programming. Sci. Comput. Program. 78 (12), 2295–2312, Special
Section on SPLC 2010 and FSEN 2011.

Kenner, A., Dassow, S., Lausberger, C., Krüger, J., Leich, T., 2020. Using variability
modeling to support security evaluations: Virtualizing the right attack
scenarios. In: VaMoS ’20. pp. 10:1–10:9.

Kuehn, P., Bayer, M., Wendelborn, M., Reuter, C., 2021. OVANA: An approach to
analyze and improve the information quality of vulnerability databases. In:
The 16th International Conference on Availability, Reliability and Security.
ARES 2021, Association for Computing Machinery, New York, NY, USA.

Lopez-Herrejon, R.E., Linsbauer, L., Galindo, J.A., Parejo, J.A., Benavides, D.,
Segura, S., Egyed, A., 2015. An assessment of search-based techniques for
reverse engineering feature models. J. Simple Syst. 103, 353–369.

Mazo, R., Muñoz-Fernández, J.C., Rincón, L., Salinesi, C., Tamura, G., 2015.
VariaMos: An extensible tool for engineering (dynamic) product lines. SPLC
’15, Association for Computing Machinery, New York, NY, USA, pp. 374–379.

Mendonca, M., Branco, M., Cowan, D., 2009. S.P.L.O.T.: Software product lines
online tools. OOPSLA ’09, Association for Computing Machinery, New York,
NY, USA, pp. 761–762.

Morrison, P.J., Pandita, R., Xiao, X., Chillarege, R., Williams, L., 2018. Are
vulnerabilities discovered and resolved like other defects? Empir. Softw. Eng.
23 (3), 1383–1421.

Mulwad, V., Li, W., Joshi, A., Finin, T., Viswanathan, K., 2011. Extract-
ing information about security vulnerabilities from web text. In: 2011
IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent
Agent Technology, Vol. 3, pp. 257–260.

Murthy, P.V.R., Shilpa, R.G., 2018. Vulnerability coverage criteria for security
testing of web applications. In: 2018 International Conference on Advances
in Computing, Communications and Informatics. ICACCI, pp.489–494.

Neuhaus, S., Zimmermann, T., Holler, C., Zeller, A., 2007. Predicting vulnerable
software components. In: Proceedings of the 14th ACM Conference on
Computer and Communications Security. CCS ’07, Association for Computing
Machinery, New York, NY, USA, pp. 529–540.

21

http://refhub.elsevier.com/S0164-1212(22)00217-5/sb1
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb1
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb1
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb1
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb1
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb2
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb2
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb2
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb2
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb2
https://nvd.nist.gov/
https://nvd.nist.gov/
https://nvd.nist.gov/
https://www.first.org/cvss/
http://cve.mitre.org/
http://cve.mitre.org/
http://cve.mitre.org/
https://vuldb.com/
https://www.exploit-db.com/
http://arxiv.org/abs/1705.05088
http://arxiv.org/abs/1705.05088
http://arxiv.org/abs/1705.05088
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb9
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb9
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb9
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb9
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb9
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb9
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb9
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb10
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb10
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb10
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb11
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb11
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb11
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb11
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb11
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb13
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb13
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb13
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb13
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb13
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb13
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb13
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb14
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb15
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb15
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb15
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb15
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb15
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb16
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb16
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb16
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb16
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb16
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb16
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb16
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb18
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb18
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb18
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb19
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb20
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb20
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb20
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb21
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb21
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb21
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb21
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb21
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb23
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb23
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb23
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb23
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb23
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb24
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb24
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb24
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb25
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb25
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb25
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb26
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb26
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb26
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb28
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb28
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb28
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb28
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb28
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb29
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb29
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb29
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb29
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb29
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb30
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb30
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb30
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb30
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb30
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb31
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb31
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb31
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb31
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb31
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb31
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb31
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb32
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb32
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb32
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb32
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb32
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb33
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb33
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb33
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb33
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb33
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb34
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb34
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb34
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb34
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb34
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb35
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb35
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb35
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb35
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb35
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb38
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb38
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb38
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb38
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb38
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb38
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb38

Á.J. Varela-Vaca, D. Borrego, M.T. Gómez-López et al. The Journal of Systems & Software 195 (2023) 111541

Oyler, A., Saiedian, H., 2016. Security in automotive telematics: A survey of
threats and risk mitigation strategies to counter the existing and emerging
attack vectors. Secur. Commun. Netw. 9 (17), 4330–4340.

Palmaers, T., 2021. Implementing a Vulnerability Management Process. Tech.
Rep., SANS Institute.

Parmelee, M., Booth, H., Waltermire, D., Scarfone, K., 2011. Common Plat-
form Enumeration: Name Matching Specification Version 2.3. NIST In-
teragency/Internal Report (NISTIR), National Institute of Standards and
Technology, Gaithersburg, MD.

Perez, S.M., Cosentino, V., Cabot, J., 2017. Model-based analysis of java EE web
security misconfigurations. Comput. Lang. Syst. Struct. 49, 36–61.

Perl, H., Dechand, S., Smith, M., Arp, D., Yamaguchi, F., Rieck, K., Fahl, S., Acar, Y.,
2015. VCCFinder: Finding potential vulnerabilities in open-source projects to
assist code audits. CCS ’15, Association for Computing Machinery, New York,
NY, USA, pp. 426–437.

Roos Frantz, F., Benavides Cuevas, D.F., Ruiz Cortés, A., 2009. Feature model to or-
thogonal variability model transformation towards interoperability between
tools. In: Kiss Workshop@ ASE2009, Auckland, New Zealand.

Sanguino, L.A.B., Uetz, R., 2017. Software vulnerability analysis using CPE and
CVE. arXiv:1705.05347.

Schmitt, A., Rock, G., Bettinger, C., 2018. Glencoe – A tool for specification,
visualization and formal analysis of product lines.

Seidl, C., Winkelmann, T., Schaefer, I., 2016. A software product line of feature
modeling notations and cross-tree constraint languages. In: Oberweis, A.,
Reussner, R. (Eds.), Modellierung 2016. Gesellschaft für Informatik e.V., Bonn,
pp. 157–172.

Shah, S., Mehtre, B.M., 2015. An overview of vulnerability assessment and
penetration testing techniques. J. Comput. Virol. Hacking Tech. 11 (1), 27–49.

She, S., Lotufo, R., Berger, T., Waşowski, A., Czarnecki, K., 2011. Reverse
engineering feature models. In: ICSE. pp. 461–470.

Skopik, F., Fiedler, R., Lendl, O., 2014. Cyber attack information sharing.
Datenschutz Datensicherheit 38 (4), 251–256.

Sterlini, P., Massacci, F., Kadenko, N., Fiebig, T., van Eeten, M., 2020. Governance
challenges for European cybersecurity policies: Stakeholder views. IEEE
Secur. Priv. 18 (1), 46–54.

Suciu, O., Nelson, C., Lyu, Z., Bao, T., Dumitras, T., 2021. Expected exploitability:
Predicting the development of functional vulnerability exploits. arXiv:2102.
07869.

Syed, R., 2020. Cybersecurity vulnerability management: A conceptual ontology
and cyber intelligence alert system. Inf. Manage. 57 (6), 103334. http:
//dx.doi.org/10.1016/j.im.2020.103334, URL https://www.sciencedirect.com/
science/article/pii/S0378720620302718.

Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., Leich, T.,
2014. FeatureIDE: An extensible framework for feature-oriented software
development. Sci. Comput. Program. 79, 70–85.

Tommy, R., Sundeep, G., Jose, H., 2017. Automatic detection and correction of
vulnerabilities using machine learning. In: 2017 International Conference
on Current Trends in Computer, Electrical, Electronics and Communication.
CTCEEC, pp. 1062–1065.

Varela-Vaca, Á.J., Gasca, R.M., 2013. Towards the automatic and optimal selection
of risk treatments for business processes using a constraint programming
approach. Inf. Softw. Technol. 55 (11), 1948–1973.

Varela-Vaca, Á.J., Gasca, R.M., Carmona-Fombella, J.A., López, M.T.G., 2020.
AMADEUS: towards the AutoMAteD security testing. In: SPLC ’20. ACM, pp.
11:1–11:12.

Varela-Vaca, A.J., Gasca, R.M., Ceballos, R., Gómez-López, M.T., Torres, P.B.,
2019. CyberSPL: A framework for the verification of cybersecurity policy
compliance of system configurations using software product lines. Appl. Sci.
9 (24).

Wang, J.A., Guo, M., 2009a. OVM: An ontology for vulnerability management.
In: Sheldon, F.T., Peterson, G., Krings, A.W., Abercrombie, R.K., Mili, A. (Eds.),
CSIIRW. ACM, p. 34, URL http://dblp.uni-trier.de/db/conf/csiirw/csiirw2009.
html#WangG09.

Wang, J.A., Guo, M., 2009b. Security data mining in an ontology for vulnerability
management. In: 2009 International Joint Conference on Bioinformatics,
Systems Biology and Intelligent Computing. IEEE, pp. 597–603.

Weerawardhana, S.S., Mukherjee, S., Ray, I., Howe, A.E., 2014. Automated
extraction of vulnerability information for home computer security. In: FPS.

Weston, N., Chitchyan, R., Rashid, A., 2009. A framework for constructing se-
mantically composable feature models from natural language requirements.
In: Proceedings of the 13th International Software Product Line Conference.
pp. 211–220.

Xiong, W., Lagerström, R., 2019. Threat modeling – A systematic literature re-
view. Comput. Secur. 84, 53–69. http://dx.doi.org/10.1016/j.cose.2019.03.010,
URL https://www.sciencedirect.com/science/article/pii/S0167404818307478.

Yadav, T., Rao, A.M., 2015. Technical aspects of cyber kill chain. In: Abawajy, J.H.,
Mukherjea, S., Thampi, S.M., Ruiz-Martínez, A. (Eds.), Security in Computing
and Communications. Springer International Publishing, Cham, pp. 438–452.

Zhang, S., Ou, X., Caragea, D., 2015. Predicting cyber risks through national
vulnerability database. Inf. Secur. J. 24 (4–6), 194–206.

22

http://refhub.elsevier.com/S0164-1212(22)00217-5/sb39
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb39
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb39
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb39
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb39
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb40
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb40
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb40
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb41
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb41
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb41
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb41
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb41
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb41
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb41
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb42
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb42
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb42
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb43
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb43
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb43
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb43
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb43
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb43
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb43
http://arxiv.org/abs/1705.05347
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb46
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb46
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb46
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb47
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb47
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb47
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb47
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb47
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb47
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb47
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb48
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb48
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb48
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb49
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb49
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb49
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb50
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb50
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb50
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb51
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb51
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb51
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb51
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb51
http://arxiv.org/abs/2102.07869
http://arxiv.org/abs/2102.07869
http://arxiv.org/abs/2102.07869
http://dx.doi.org/10.1016/j.im.2020.103334
http://dx.doi.org/10.1016/j.im.2020.103334
http://dx.doi.org/10.1016/j.im.2020.103334
https://www.sciencedirect.com/science/article/pii/S0378720620302718
https://www.sciencedirect.com/science/article/pii/S0378720620302718
https://www.sciencedirect.com/science/article/pii/S0378720620302718
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb54
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb54
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb54
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb54
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb54
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb56
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb56
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb56
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb56
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb56
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb57
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb57
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb57
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb57
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb57
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb58
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb58
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb58
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb58
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb58
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb58
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb58
http://dblp.uni-trier.de/db/conf/csiirw/csiirw2009.html#WangG09
http://dblp.uni-trier.de/db/conf/csiirw/csiirw2009.html#WangG09
http://dblp.uni-trier.de/db/conf/csiirw/csiirw2009.html#WangG09
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb60
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb60
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb60
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb60
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb60
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb61
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb61
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb61
http://dx.doi.org/10.1016/j.cose.2019.03.010
https://www.sciencedirect.com/science/article/pii/S0167404818307478
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb64
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb64
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb64
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb64
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb64
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb65
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb65
http://refhub.elsevier.com/S0164-1212(22)00217-5/sb65

	Feature models to boost the vulnerability management process
	Introduction
	Foundations
	Vulnerability repositories
	Known Affected Configurations (CPE)
	Vulnerabilities
	Security Exploits
	Modelling Vulnerabilities and Exploits: Feature modelling and automatic analysis

	AMADEUS-Exploit
	Discover target elements
	Vulnerabilities and Exploits identification
	Assess vulnerabilities and exploits

	Generation of Feature Models
	Retrieving Unrestricted Feature Model from CPEs and Exploits
	Include cross-tree constraints in the FM

	Reasoning on Feature Models
	Reasoning about attack vectors
	Reasoning about Exploits
	Reasoning about Vulnerabilities and Exploits
	Reasoning about Configurations

	Evaluation
	Analysis of vulnerability management tools
	Comparison in vulnerability and exploit identification
	Evaluation in a real case

	Related Work
	Threats to validity
	Concluding Remarks & Future Directions
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix A. Feature model construction algorithms
	Appendix B. Information about vulnerabilities, exploits, and known vulnerable configurations
	References

