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ABSTRACT
BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) comorbid with sleep disturbances can produce
profound disruption in daily life and negatively impact quality of life of both the child and the family. However, the
temporal relationship between ADHD and sleep impairment is unclear, as are underlying common brain mechanisms.
METHODS: This study used data from the Quebec Longitudinal Study of Child Development (n = 1601, 52% female)
and the Adolescent Brain Cognitive Development Study (n = 3515, 48% female). Longitudinal relationships between
symptoms were examined using cross-lagged panel models. Gray matter volume neural correlates were identified
using linear regression. The transcriptomic signature of the identified brain-ADHD-sleep relationship was
characterized by gene enrichment analysis. Confounding factors, such as stimulant drugs for ADHD and
socioeconomic status, were controlled for.
RESULTS: ADHD symptoms contributed to sleep disturbances at one or more subsequent time points in both co-
horts. Lower gray matter volumes in the middle frontal gyrus and inferior frontal gyrus, amygdala, striatum, and insula
were associated with both ADHD symptoms and sleep disturbances. ADHD symptoms significantly mediated the link
between these structural brain abnormalities and sleep dysregulation, and genes were differentially expressed in the
implicated brain regions, including those involved in neurotransmission and circadian entrainment.
CONCLUSIONS: This study indicates that ADHD symptoms and sleep disturbances have common neural correlates,
including structural changes of the ventral attention system and frontostriatal circuitry. Leveraging data from large
datasets, these results offer new mechanistic insights into this clinically important relationship between ADHD and
sleep impairment, with potential implications for neurobiological models and future therapeutic directions.
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Attention-deficit/hyperactivity disorder (ADHD) is the most
prevalent neurodevelopmental disorder in children and persists
into adulthood in 50% to 66% of cases (1–3). Sleep distur-
bances, composed of two main classifications (i.e., dyssomnia
and parasomnia) (4), are extremely common, occurring in 25%
to 55% of children with ADHD (5), and are associated with poor
outcomes (6–8). Left untreated, such symptoms lead to unto-
ward functional consequences in young people, including
worse academic outcomes (9–11). Both ADHD symptoms and
sleep problems can produce profound disruption in daily life
and impact negatively quality of life of both the child and the
family (12–14). ADHD symptoms such as hyperactivity can
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lead to longer sleep onset latency, more night awakening, and
lower sleep quality (15), but disrupted sleep can also impair
daytime attention, overlapping with the core symptoms of
ADHD (16). Thus, these two conditions could mutually exac-
erbate each other (17). This complex relationship is of partic-
ular concern during childhood and adolescence when brain
structures and associated functions are undergoing significant
developmental changes (18–20). Both conditions have sepa-
rately been linked to aberrant brain development (21–25).
Therefore, greater knowledge of the temporal and neurobio-
logical relationships between these two conditions is of
considerable clinical and public health importance (26).
iological Psychiatry. This is an open access article under the
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At the behavioral level, studies have reported associations
between ADHD symptoms and sleep disturbance (27–30),
although most of this research has been cross-sectional.
Furthermore, these studies often did not control for stimulant
medication or examine brain substrates. At the neuroanatom-
ical level, a wide range of brain abnormalities have been
associated with ADHD (31), including structural abnormalities
in both subcortical and cortical regions (32,33). In studies not
considering ADHD symptoms, neuroanatomical correlates of
sleep disturbances in patients with insomnia have also been
identified in overlapping corticostriatal circuitry (34–37). These
findings often varied across studies, owing to both the het-
erogeneous nature of these conditions and methodological
inconsistencies (e.g., age group recruited, symptom mea-
surements used) (38,39). Nevertheless, one hypothesis is that
delayed development of the cognitive control system (fron-
tostriatal circuit) coupled with lower daytime arousal, impli-
cating the salience/ventral attention pathway, contributes to
these problems (40–44). While it has been hypothesized that
common structural abnormalities of the frontostriatal and
salience/ventral attention networks contribute to both condi-
tions, this hypothesis has yet to be tested (45).

At the molecular level, ADHD has been associated with
neurotransmitter systems, especially dopamine (46–48) and
norepinephrine (49–51), which also play an important role in
sleep regulation (52–54). For example, the locus coeruleus
noradrenergic system, with widely projecting noradrenergic
axons from brainstem to the central nervous system (e.g.,
hippocampus and neocortex), has been implicated in both
attention and arousal (55). Dysregulation of this system has
been hypothesized to be involved in not only sleep distur-
bances, but also the pathophysiology of ADHD (56). Therefore,
investigating the interplay between sleep disturbances and
ADHD symptoms may be particularly informative to shed new
light on this hypothesis.

To our knowledge, no study to date using large-scale
datasets has identified common brain abnormalities in both
ADHD and sleep disturbance. Therefore, the objectives of the
present study were 1) to uncover the temporal relationship
between ADHD symptoms and sleep disturbances, 2) to
identify the common neuroanatomical association shared be-
tween both symptom types, 3) to quantify the extent to which
the identified neuroanatomical association was mediated
through ADHD, and 4) to examine the gene expressions of
which biological processes or functional pathways are asso-
ciated with the mediation effect. To achieve these goals, we
used 3 datasets: a longitudinal cohort of child development
(n = 1601), a neuroimaging cohort with a longitudinal design
(n = 3515), and an “all genes, all structures” gene expression
survey in human brains (3702 samples with .62,000 gene
probes per profile). We hypothesized that ADHD symptoms
would contribute to subsequent sleep disturbances, that
reduced gray matter volume (GMV) of frontostriatal and
salience/ventral attention pathways would be common to both
conditions, and that brain gene expression regulating the
neurochemical systems above (dopamine, norepinephrine)
would be related to mediating effects between brain structure
and symptoms. Specifically, we postulated mechanistically
that changes in brain structure and gene expression would
460 Biological Psychiatry September 15, 2020; 88:459–469 www.sobp
contribute to ADHD, which in turn would contribute to sleep
disturbance.

METHODS AND MATERIALS

Participants and Behavioral Measures

We used data from the Quebec Longitudinal Study of Child
Development (QLSCD) (57) as the discovery dataset for lon-
gitudinal analysis. Participants with at least one observation of
ADHD symptoms or sleep disturbances at ages 7, 8, 10, 12,
and 13 years were included in the present study (n = 1601).
ADHD symptoms (total score, hyperactivity-impulsivity score,
and inattention score) were measured using the teacher-rated
Social Behavior Questionnaire (58). Sleep disturbances were
assessed by 7 questions, which were answered by the mother
(i.e., daytime sleepiness, sleep talking, sleep walking, night
terror, nightmare, bruxism, and enuresis). The protocol of
QLSCD was approved by the Quebec Institute of Statistics
(Quebec City, Quebec, Canada) and the St-Justine Hospital
Research Center (Montreal, Quebec, Canada) ethics commit-
tees. Written informed consent was obtained from all the
participating families at each assessment. This cohort focused
on behavioral measures and not brain imaging (Method S1 in
Supplement 1).

The Adolescent Brain Cognitive Development (ABCD) Study
is tracking the brain development and health of more than
10,000 children 9 to 11 years of age from 21 centers
throughout the United States (https://abcdstudy.org). These
centers obtained full written informed consent of parents and
assent of all children, and research procedures and ethical
guidelines were followed in accordance with the institutional
review boards. We used data from 3515 subjects for whom
both complete behavioral and magnetic resonance imaging
(MRI) data were available at baseline; 3076 of these subjects
had 1-year follow-up data available (Method S2 in Supplement
1). ADHD symptoms were measured using the parent-reported
DSM-Oriented Attention Problem Scale of the Child Behavior
Checklist (59). Sleep disturbances rated using the parent Sleep
Disturbance Scale for Children (60) were further summarized
into 2 dimensions: dyssomnias (disorders of initiating and
maintaining sleep, sleep breathing disorders, and disorders of
excessive somnolence) and parasomnias (disorders of arousal,
sleep-wake transition disorders, and sleep hyperhidrosis) (61).

Structural MRI Data

In the ABCD Study, 3-dimensional T1-weighted images were
collected using 3T scanners at 21 data collecting sites. The
detailed MRI acquisition protocol is described elsewhere (62).
We obtained minimally preprocessed MRI data using the
ABCD Pipeline (https://abcdstudy.org/scientists-protocol.
html), and voxel-based morphometry analysis was conduct-
ed using a Computational Anatomy Toolbox (CAT12) (http://
dbm.neuro.uni-jena.de/cat) and SPM12 (http://www.fil.ion.ucl.
ac.uk/spm). Briefly, images were segmented into gray matter
(GM), white matter, and cerebrospinal fluid based on tissue
probability maps for ages 9 to 11 produced by the TOM8
Toolbox (https://irc.cchmc.org/software/tom.php). Next, im-
ages were normalized to the Montreal Neurological Institute
space using the DARTEL toolbox and Geodesic Shooting
.org/journal
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approach. The registered GM images were multiplied with the
Jacobian determinants derived from the spatial normalization
and then smoothed with an 8-mm full width at half maximum
Gaussian kernel with the resulting voxel size 1.5 mm3. Finally,
we calculated the mean image of all these smoothed GM im-
ages and focused our subsequent analyses within a mask of
GM by retaining only those voxels with more than 10% GM
tissue.

Transcriptomic Data

We used the transcriptomic data from 6 neurotypical adult
brains in the Allen Human Brain Atlas (AHBA) (https://human.
brain-map.org) (63). Because right hemisphere data were
available for only 2 of the 6 donors in AHBA, we used samples
in the left hemisphere only. We followed the preprocessing
pipeline recommended by Arnatkevic I�ut _e et al. (64), including
probe-to-gene re-annotation, intensity-based data filtering,
probe selection by mean, separating tissue samples into
subcortical and cortical regions based on the Harvard-Oxford
atlas (65), and within-donor normalization, finally resulting in
15,408 unique genes (Method S3 in Supplement 1).

Statistical Analysis

Cross-Lagged Panel Analysis. In QLSCD, the longitudi-
nal associations between ADHD total score and sleep distur-
bance were examined using a random-intercepts cross-lagged
panel model (RI-CLPM) (66). Compared with the traditional
CLPM, RI-CLPM requires at least 3 data waves and more
closely approximates causal inference by separating the
within-person process from stable between-person differences
through the inclusion of random intercepts (67). We followed
the two analytical steps in Madigan et al. (68). First, the stan-
dard RI-CLPM was estimated; then we examined the contri-
bution of covariates (i.e., sex, socioeconomic status, and
ADHD medication at age 7) to the between-person factors. We
also performed RI-CLPMs between sleep and ADHD symptom
dimensions (i.e., hyperactivity-impulsivity and inattention). We
conducted a false discovery rate (FDR) correction for the 16
between-wave associations examined (i.e., 8 autoregressive
and 8 cross-lagged paths).

To provide more supporting evidence using an independent
cohort, we conducted traditional CLPMs for ADHD symptoms
and each of the 3 sleep disturbance scores (i.e., total score,
dyssomnia, and parasomnia) in the ABCD Study. We
controlled for several stable variables (i.e., sex, race, and site)
and time-variant parameters (i.e., ADHD medication, house-
hold income, educational level of parents, body mass index,
and puberty) in these models. Accounting for the family relat-
edness (i.e., the records of single, sibling, twin, and triplet
provided in a questionnaire as well as the kinship recon-
structed from the genetic data) (Method S4 in Supplement 1;
the code is available at the following link: https://github.com/
qluo2018/FamilyPermutationABCD), the statistical signifi-
cance, denoted by pperm, was established by conducting 5000
times multilevel block permutations (69). We compared the
strength between the sleep/ADHD path and the ADHD/
sleep path by the Wald test. To test whether the findings were
robust across data collection sites, we conducted a meta-
analysis of the significant cross-lagged coefficient identified
Biological Psychi
above (Method S5 in Supplement 1). The model parameters
were estimated by the full information maximum likelihood
method (70), and the model fit was interpreted using common
thresholds of good fit (71).

Whole-Brain and Voxelwise Analysis (ABCD
Cohort). A linear regression model was conducted to
investigate the relationship between GMVs and ADHD symp-
toms at baseline, using age, sex, handedness, race, puberty,
body mass index, site, household income, parental education,
head motion, and total intracranial volume as covariates of no
interest. We conducted a multilevel block permutation-based
cluster-level correction (5000 times) for multiple comparisons
in the neuroimaging analysis (Method S4 in Supplement 1)
(69,72,73). At voxel level, we used a 2-sided test with a sig-
nificance level of a = .001, whereas at cluster level, we used a
permutation-based familywise error correction with a = .05.
Similarly, we examined the GMV correlates with the total sleep
disturbance score (familywise error correction p , .05) and
tested such correlations for 2 dimensions (i.e., dyssomnia and
parasomnia, familywise error correction p , .025). Significant
overlapping GMVs of ADHD and sleep were defined on the
basis of a cluster having more than 217 voxels falling into the
90% confidence interval (CI) of the smoothing kernel voxels
(74).

Mediation Analysis. As the directional association be-
tween ADHD symptoms and sleep disturbances was deter-
mined by the CLPM, we assessed the mediation effect of
ADHD on the association between sleep and the overlapping
clusters identified above. The analyses were performed using
the mediation toolbox developed by Wager et al. (75) (https://
github.com/canlab/MediationToolbox) with 10,000 bootstraps.

Furthermore, we conducted a whole-brain and voxelwise
exploratory analysis of this mediation effect with 3000 boot-
straps at each voxel and FDR correction among all voxels. We
additionally required a significant GMV-sleep association (p ,

.005, 2-sided, uncorrected). The unthresholded bootstrap-
based t map of the mediation effect was further used in the
following analyses.
Transcriptomic Analysis. We used partial least square
(PLS) regression to relate the mediation effect to the gene
expression data in AHBA (76–79). The response variable was
an n3 1 matrix, which was calculated by the average t value of
a spherical region of interest (ROI) (r = 4 mm) centered by the
Montreal Neurological Institute coordinates of each gene
expression sampling site (80). The predictor variable was an n
(number of tissue samples) 3 15,408 (number of genes) matrix.
AHBA provided 182 tissue samples in left subcortical regions
and 784 tissue samples in left cortical regions. Using a per-
mutation test (5000 times), we selected the PLS components
that explained more variance of the mediation effect than could
be accounted for by chance (76,79). The first PLS component
was the linear combination of the weighted gene expression
scores, maximizing the covariance between the expression
profile and the mediation profile in the brain. A z score was
calculated for each weight in a PLS component as the ratio
between each weight estimation and standard error given by
atry September 15, 2020; 88:459–469 www.sobp.org/journal 461
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Table 1. Characteristics of the Study Population in the Quebec Longitudinal Study of Child Development (QLSCD)

Wave 1 Wave 2 Wave 3 Wave 4 Wave 5

Mean (6 SD) n Mean (6 SD) n Mean (6 SD) n Mean (6 SD) n Mean (6 SD) n

Sex, Male, n (%) 772 (48.2%) 1601

Age, Years 7.15 (6 0.25) 1468 8.15 (6 0.26) 1421 10.15 (6 0.26) 1295 12.14 (6 0.25) 1353 13.14 (6 0.26) 1252

ADHD Medication, n (%) 56 (3.8%) 1468

SES 20.01 (6 1.00) 1467

ADHD Total Score 2.64 (6 2.56) 1303 2.55 (6 2.43) 1267 2.31 (6 2.37) 986 2.13 (6 2.21) 1004 2.52 (6 2.56) 992

H-I Score 2.05 (6 2.52) 1302 1.90 (6 2.40) 1266 1.62 (6 2.33) 986 1.39 (6 2.09) 999 1.48 (6 2.39) 937

IN Score 3.79 (6 3.39) 1303 3.77 (6 3.32) 1281 3.63 (6 3.27) 987 3.57 (6 3.32) 1004 3.76 (6 3.25) 1023

Sleep Disturbance 0.23 (6 0.25) 1601 0.26 (6 0.25) 1601 0.32 (6 0.24) 1062 0.29 (6 0.22) 1188 0.28 (0.22) 832

Descriptive statistics are reported as mean (6 SD) unless noted otherwise.
ADHD, attention-deficit/hyperactivity disorder; H-I, hyperactivity-impulsivity; IN, inattention; SES, socioeconomic status.
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5000 bootstraps. Therefore, the genes could be ranked by their
normalized contributions to the PLS component. We adapted
the codes for PLS provided by others (76,79). Leave-one-out
cross-validation (i.e., repeating the analysis by leaving 1
donor out at a time) was used to test the influence of individual
donors on the results, and PLS analyses using 6-mm regions
of interest or a refined brain atlas (78,81) were also performed
and compared to ensure that the findings were not dependent
on a particular definition of region of interest size.

We used GSEAPreranked (version 6.0.12) (82) with default
settings to identify sets of genes associated with Gene
Ontology terms of biological processes and Kyoto Encyclo-
pedia of Genes and Genomes pathways. The 2 lists of genes
(n = 15,408) for subcortical and cortical regions were ranked by
z score and passed to GSEAPreranked. From the top positively
and negatively correlated genes in each list, we obtained
separate sets of enriched gene sets (S1 and S2, respectively).
To demonstrate the robustness of the findings, we also applied
a more stringent threshold (i.e., top 1% and bottom 1% genes
based on z score) to identify significant enrichments using
DAVID 6.8 (83). Gene sets were considered significantly
enriched with FDR q values , .05.

RESULTS

Demographics

From QLSCD, 1601 participants (829 [52%] female) with
behavioral measurements that were longitudinally collected at
7, 8, 10, 12, and 13 years of age were entered into the current
study (Table 1). From the ABCD Study, 3515 participants (1664
[48%] female, 10 6 0.61 years old) who had both complete
MRI data and behavioral measurements at baseline were used
in the current study, of whom 3076 had complete behavioral
assessments at a 1-year follow-up (11.03 6 0.63 years old)
(Table 2).

ADHD Symptoms Contributed to Sleep Disturbance
in School-Aged Children

To test the directionality, if any, between ADHD symptoms and
sleep disturbances, we conducted a longitudinal analysis using
the QLSCD cohort. We found a between-person and time-
invariant association between ADHD total score and sleep
disturbance (b = .10, 95% CI [0.004, 0.20]). In the within-person
and dynamic component of the model, we found that higher
462 Biological Psychiatry September 15, 2020; 88:459–469 www.sobp
ADHD total score at age 8 years was associated with worse
sleep disturbance at age 10 (noted as ADHD 8y/sleep 10y)
(b = .10, 95% CI [0.02, 0.18], FDR q , .05) (Table S1 in
Supplement 1; Figure 1). Considering the covariates (i.e., sex,
socioeconomic status, and ADHD medication), ADHD
8y/sleep 10y remained significant (b = .11, 95% CI [0.03,
0.19], FDR q = .02) (Figure S1 in Supplement 1). Both additional
analyses using the participants without ADHD medication only
(n = 1095; b = .09, 95% CI [0.004, 0.18]) and using the par-
ticipants who only had data at both ages 8 and 10 years (n =
1263; b = .09, 95% CI [0.01, 0.18]) (Result S1 in Supplement 1)
confirmed the significance of ADHD 8y/sleep 10y. Similar
results held for ADHD subscales (i.e., hyperactivity-impulsivity
symptom and inattention symptom) (Figures S2 and S3 in
Supplement 1).

Using the ABCD cohort, we found more supporting evi-
dence that ADHD symptoms at age 10 were also associated
with sleep disturbances at a 1-year follow-up (sleep total
score: b = .09, 95% CI [0.06, 0.13], pperm , .001) (Figure S4A in
Supplement 1), and the meta-analysis across all data collec-
tion sites showed that this association was also robust (meta-
b = .09, 95% CI [0.04, 0.13]). In contrast, although the path
coefficient of the opposite direction was significant in this large
cohort, its effect size was weaker (p , .005 by Wald test) and
not robust (Figure S5A, B in Supplement 1). Again, both
additional analyses using the participants without ADHD
medication only (n = 2902; b = .04, 95% CI [0.01, 0.08]) and
using the participants who were diagnosed with ADHD at
baseline (n = 281; b = .10, 95% CI [0.01, 0.20]) (Result S2 in
Supplement 1) confirmed the significance of ADHD/sleep.
Similar results held for sleep subscales (i.e., dyssomnia and
parasomnia) (Figures S4 and S5 in Supplement 1).

Shared Neural Correlates Between ADHD
Symptoms and Sleep Disturbances

To test the hypothesis that ADHD symptoms and sleep dis-
turbances share common neural correlates, we conducted a
neuroimaging analysis using the ABCD cohort at baseline. We
found that ADHD symptoms were associated with lower GMV
in 2 brain clusters (Figure 2A; Tables S2 and S3 in Supplement 1;
Figures S6 and S7A in Supplement 1), while only the dyssomnia
subscale was associated with lower GMV in 3 brain clusters
(Figure 2B; Tables S3 and S4 in Supplement 1; Figure S7B in
Supplement 1). Among these clusters, we found 3 overlapping
.org/journal
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Table 2. Characteristics of the Study Population in the Adolescent Brain Cognitive Development (ABCD) Study

Baseline (n = 3515) Follow-up (n = 3076)

Age, Years 10.00 (6 0.61) 11.03 (6 0.63)

Sex, Male, n (%) 1851 (52.7%) 1610 (52.3%)

Puberty 1.56 (6 0.46) 1.79 (6 0.59)

BMI 18.59 (6 4.00) 19.45 (6 4.52)

Parental Education 17.01 (6 2.47) 17.16 (6 2.33)

Household Income 7.52 (6 2.19) 7.76 (6 2.06)

Race, n (%)

White 2554 (72.7%) 2307 (75%)

Black/African American 327 (9.3%) 244 (7.9%)

Asian 182 (5.2%) 155 (5%)

Other 452 (12.9%) 370 (12%)

Family Relationship, n (%)a

Single 2680 (76.2%) 2346 (76.3%)

Sibling 196 (5.6%) 166 (5.4%)

Twin 630 (17.9%) 558 (18.1%)

Triplet 9 (0.3%) 6 (0.2%)

ADHD Symptoms 2.54 (6 2.91) 2.36 (6 2.86)

ADHD Medication, n (%)

No medication 3204 (91.2%) 2820 (91.7%)

Stimulant only 233 (6.6%) 193 (6.3%)

Nonstimulant only 31 (0.9%) 27 (0.9%)

Stimulant 1 nonstimulant 46 (1.3%) 36 (1.2%)

Sleep Disturbance

Total score 36.24 (6 7.87) 36.41 (6 7.75)

Dyssomnia 22.19 (6 5.49) 22.66 (6 5.67)

Parasomnia 14.05 (6 3.58) 13.75 (6 3.32)

Descriptive statistics are reported as mean (6 SD) unless noted otherwise.
ADHD, attention-deficit/hyperactivity disorder; BMI, body mass index.
aProvided by a questionnaire (“acspsw02”) from ABCD dataset.
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areas, including in the bilateral insula, left caudate, and putamen
(2762 voxels); in the right middle frontal gyrus and inferior frontal
gyrus (2296 voxels); and in the right parahippocampus, hippo-
campus, and amygdala (419 voxels) (Figure 2C; Figure S7C in
Supplement 1).
Mediation Analysis: Identified Neural Correlates
Contributed to Both ADHD Symptoms and
Dyssomnia

Having identified that ADHD contributed to subsequent sleep
problems in the longitudinal datasets, we were then interested
in examining whether ADHD statistically contributed to
anatomical brain changes linked with sleep problems cross-
sectionally. Thus, we conducted a mediation analysis to
quantify the brain/ADHD/sleep relationship. We found that
48.6% (95% CI [31.7%, 75.9%]) of the association between
lower average GMV of the 3 overlapping areas identified
above and higher dyssomnia was mediated by ADHD
symptoms (the mediation effect of each area was between
45.2% and 49.7%) (Figure 3; Figure S8 in Supplement 1).
Controlling for ADHD medication, this mediation effect
remained significant (44.2%, 95% CI [27.3%, 77.2%]; path
a * b: 23.92, 95% CI [25.64, 22.35]). The whole-brain explor-
atory analysis of the mediation effect identified a significant
Biological Psychi
cluster that covered the overlapping areas identified above
(Figure S9 in Supplement 1). We also confirmed that ADHD
symptoms at baseline significantly mediated the association
between the baseline GMV and the follow-up dyssomnia
(Figure S10 in Supplement 1).

Relationship Between the Mediation Effect and
Brain Gene-Expression Profiles

Given that the strength of the brain/ADHD/sleep relation-
ship had a heterogeneous spatial distribution among different
brain areas, we further conducted a transcriptomic analysis to
identify its association with the gene expressions in brain tis-
sues. In the model for the subcortical regions, only the first PLS
component was significant (i.e., explained 30% of the variance
of the mediation effect, p , .001 by permutation) (additional
details and validations in Results S3–S6 in Supplement 1).
After the FDR correction, the S2 gene sets in subcortical re-
gions were enriched in 104 relevant biological processes
(Table S7 in Supplement 2) and 26 relevant Kyoto Encyclo-
pedia of Genes and Genomes pathways (Table S8 in
Supplement 2). Enriched biological processes included chem-
ical synaptic transmission, while enriched Kyoto Encyclopedia
of Genes and Genomes pathways included circadian entrain-
ment and dopaminergic synapse. These findings were also
enriched in the top 1% gene set (Table S6 in Supplement 1).
atry September 15, 2020; 88:459–469 www.sobp.org/journal 463

http://www.sobp.org/journal


Figure 1. Cross-lagged analysis between attention-deficit/hyperactivity disorder (ADHD) and sleep disturbance in the Quebec Longitudinal Study of Child
Development. Random-intercepts cross-lagged panel model of ADHD total score and sleep disturbance from ages 7 to 13 years in the Quebec Longitudinal
Study of Child Development (n = 1601). Standardized estimates (95% confidence intervals) are presented. Solid lines represent statistical significance (p, .05),
whereas dashed lines represent nonsignificance (p . .05). Model fit: root mean square error of approximation = 0.04; comparative fit index = 0.98; Tucker-
Lewis index = 0.96; standardized root mean square residual = 0.04. aPathways constrained to 1.00 to isolate between-person factor.
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More enrichment findings of the S1 gene sets and the cortical
regions are listed in Tables S9–S14 in Supplement 2.
DISCUSSION

This study demonstrated that the cross-lagged association of
ADHD at baseline with sleep disturbance at follow-up was
stronger than the cross-lagged association in the opposite
direction. Neuroimaging analysis revealed that smaller vol-
umes, mainly in the cognitive control system and the salience/
ventral attention system, constituted a common neurobiolog-
ical substrate linking both ADHD and sleep disturbance.
Among the subcortical structures, we identified a number of
genes with higher expression levels in those brain areas where
a greater proportion of the brain-sleep association was medi-
ated by ADHD. These genes included those playing key roles
in dopamine signaling and in the circadian cycle. The findings
are in keeping with our hypothesis that changes in brain
structure and gene expression contribute to ADHD, which in
turn leads to sleep disturbance.

To our knowledge, this is the first study using RI-CLPM to
address the longitudinal associations between ADHD with sleep
disturbances. RI-CLPM offers potential advantages over other
statistical approaches, such as providing closer approximation
of causal inference (67). Although cross-sectional associations
between ADHD and sleep disturbances have been reported,
little is known about the longitudinal relationships. Most longi-
tudinal studies examined unidirectional associations only, such
464 Biological Psychiatry September 15, 2020; 88:459–469 www.sobp
as early sleep patterns predicting later ADHD symptoms (84,85)
or childhood ADHD symptoms being associated with adulthood
sleep quality (86). In the QLSCD cohort, we found that the
strength of the ADHD/sleep relationship peaked between 8
and 10 years of age. However, this finding did not necessarily
suggest an age-restricted relationship. For example, the ADHD
symptoms at age 10 might indirectly influence the sleep dis-
turbances at age 12 via elevating the sleep disturbances at age
10 (Figure 1).

We found that ADHD symptoms and dyssomnia were
associated with common reductions of GM in the right frontal
gyrus, bilateral insula, left striatum, right amygdala, and hip-
pocampus. Structural abnormalities of these regions have
previously been reported separately in ADHD (87–89) and
dyssomnia (35,36,90–92). Our findings are in keeping with prior
data, but crucially extend beyond it to identify common un-
derpinnings of these 2 related pathologies by leveraging a
large dataset (93). These neural regions play a cardinal role in
high-level cognitive functions (frontostriatal circuitry) (94) and
in the salience/ventral attention system (95).

Cognitive domains contingent on the frontostriatal circuitry
are often impaired in ADHD (96) and in people with sleep
disturbances (97). The striatum is connected to prefrontal
cortex (98,99) and is particularly implicated in ADHD (100) as
well as being important for sleep-wake regulation (101) and
arousal (35). Disturbances in the maturation of such frontos-
triatal circuitry may contribute to cognitive problems often
found in ADHD, such as difficulties in self-regulation (102),
.org/journal

http://www.sobp.org/journal


Figure 2. Significant brain clusters associated with attention-deficit/hyperactivity disorder (ADHD) symptoms and dyssomnia in the Adolescent Brain
Cognitive Development Study at baseline. Multiple comparison correction includes voxel-level p, .001 and cluster-level familywise error correction p, .05 for
ADHD and p , .025 for dyssomnia estimated by a multilevel block permutation accounting for family relatedness. The color bar represents t value. Age, sex,
handedness, race, puberty, body mass index, site, household income, parental education, head motion, and total intracranial volume were controlled for in all
analyses. (A) Brain regions significantly associated with ADHD symptoms. (B) Brain regions significantly associated with dyssomnia. (C) Brain regions
significantly associated with ADHD or dyssomnia. Red areas are associated with ADHD, blue areas are associated with dyssomnia, and purple areas are the
overlapping regions. L, left; R, right.
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cognitive control (103), and reward processing (104). Notably,
attention and arousal closely interact with each other (105),
and their interaction has been hypothesized to be mainly
located at the salience/ventral attention pathway. Our findings
Figure 3. Associations of average overlapping gray matter volume (GMV),
attention-deficit/hyperactivity disorder (ADHD) symptoms, and dyssomnia.
Mediation model using the average overlapping GMV as the predictor,
ADHD as the mediator, and dyssomnia as the dependent variable. Age, sex,
handedness, race, puberty, body mass index, site, household income,
parental education, head motion, and total intracranial volume were used as
covariates of no interest. Path a measures the association between the
predictor and the mediator; path b represents the effect of the mediator on
the dependent variable while controlling for the predictor; path c measures
the total relationship between the predictor and the dependent variable; path
c0 measures the direct effect; the mediation effect is the product of path a
and path b (a * b). **p , .01, ***p , .001.

Biological Psychi
are in keeping with disruption of these pathways being asso-
ciated with ADHD and sleep disturbances, particularly with
regard to the right inferior frontal cortex, right temporoparietal
junction, right middle frontal gyrus, and anterior insular cortex
(105–107). Such ADHD-related brain abnormalities have been
posited to reflect delayed development of frontostriatal cir-
cuitry underlying cognitive control (21,108).

Notably, our findings provide novel insights into neurobio-
logical mechanisms contributing to the relationship between
ADHD symptoms and sleep disturbances. Specifically, we
demonstrated that lower GMV in key brain regions was asso-
ciated with ADHD and dyssomnia and that 40% of this
neuroanatomical association was mediated by the impact of
ADHD on sleep. Furthermore, our enrichment analysis of this
mediation effect highlighted several overlapping pathways
(Figure S15 in Supplement 1), including the circadian entrain-
ment pathway and neural signaling pathways (e.g., chemical
synaptic transmission, dopaminergic synapse, glutamatergic
synapse). Particularly, the neuroanatomical associations of
sleep disturbances were mediated to a greater extent by ADHD
symptoms in subcortical regions with higher gene expression
levels of these pathways (Figure S16 in Supplement 1).
Therefore, if a given ADHD treatment targets one of these
pathways, it might reduce the ADHD component in sleep
disturbances (109). However, approximately half of the brain-
sleep association was not mediated by ADHD symptoms,
atry September 15, 2020; 88:459–469 www.sobp.org/journal 465
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suggesting that not all GMV reductions common to ADHD and
dyssomnia stem from ADHD itself. This suggests that addi-
tional sleep management strategies are needed from a treat-
ment perspective, even though treating ADHD itself may lead
to sleep improvements, provided that such treatments do not
have their own deleterious effects (110).

Our study has several limitations. Using 2 large longitudinal
cohorts, we observed a significant temporal relationship be-
tween ADHD symptoms and subsequent sleep disturbances in
school-aged children. This relationship was greatest between
ages 8 and 10 years in QLSCD and between ages 10 and 11
years in the ABCD Study. There are several possible reasons for
this cohort difference, including the following: 1) As these 2
cohorts were collected 10 years apart (i.e., the QLSCD children
were born in 1997–1998, while the ABCD Study children were
born in 2007–2008), the same chronological age may not reflect
the same pubertal stage in these 2 cohorts. 2) Given the sig-
nificant development during adolescence, it is also possible that
a 1-year follow-up after 10 years of age can be different froma 2-
year follow-up after the same age. It is possible that future
longitudinal studies could directly investigate these points.

Conclusions

Analysis of 2 large longitudinal cohorts combined with the
largest neuroimaging cohort of school-aged children to date
revealed a strong ADHD-driven effect on subsequent sleep
disturbance and identified common neuroanatomical corre-
lates of both ADHD symptoms and sleep disturbances. We
found that ADHD substantially mediated common neuroana-
tomical changes linked with both problems, highlighting the
need to develop precision treatment approaches that integrate
multimodal approaches to mitigate both ADHD symptoms and
sleep disturbances.
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