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ABSTRACT The lack of effective first-line antibiotic treatments against Neisseria gon-
orrhoeae, and the worldwide dissemination of resistant strains, are the main drivers
of a worsening global health crisis. b-lactam antibiotics have been the backbone of
therapeutic armamentarium against gonococci. However, we are lacking critical insights
to design rationally optimized therapies. In the present work, we generated the first PBP-
binding data set on 18 currently available and clinically relevant b-lactams and 4 b-lacta-
mase inhibitors in two N. gonorrhoeae ATCC type collection strains, 19424 and 49226
(PBP2 type XXII and A39T change in mtrR). PBP binding (IC50) was determined via the
Bocillin FL binding assay in isolated membrane preparations. Three clusters of differential
PBP IC50s were identified and were mostly consistent across both strains, but with quanti-
tative differences. Carbapenems were coselective for PBP2 and PBP3 (0.01 to 0.03 mg/L).
Third- and fourth-generation cephalosporins cefixime, cefotaxime, ceftazidime, cefepime,
and ceftriaxone showed the lowest IC50 values for PBP2 (0.01 mg/L), whereas cefoxitin,
ceftaroline, and ceftolozane required higher concentrations (0.04 to .2 mg/L). Aztreonam
was selective for PBP2 in both strains (0.03 to 0.07 mg/L); amdinocillin bound this PBP at
higher concentrations (1.33 to 2.94 mg/L). Penicillins specifically targeted PBP2 in strain
ATCC 19424 (0.02 to 0.19 mg/L) and showed limited inhibition in strain ATCC 49226 (0.01
to .2 mg/L). Preferential PBP2 binding was observed by b-lactam-based b-lactamase
inhibitors sulbactam and tazobactam (1.07 to 6.02 mg/L); meanwhile, diazabicyclooc-
tane inhibitors relebactam and avibactam were selective for PBP3 (1.27 to 5.40 mg/L).
This data set will set the bar for future studies that will help the rational use and transla-
tional development of antibiotics against multidrug-resistant (MDR) N. gonorrhoeae.

IMPORTANCE The manuscript represents the first N. gonorrhoeae PBP-binding data set
for 22 chemically different drugs in two type strains with different genetic background.
We have identified three clusters of drugs according to their PBP binding IC50s and
highlighted the binding differences across the two strains studied. With the currently
available genomic information and the PBP-binding data, we have been able to correlate
the target attainment differences and the mutations that affect the drug uptake with the
MIC changes. The results of the current work will allow us to develop molecular tools of
great practical use for the study and the design of new rationally designed therapies ca-
pable of combating the growing MDR gonococci threat.

KEYWORDS penicillin-binding proteins (PBP), N. gonorrhoeae, gonococcus, b-lactams,
b-lactam resistance

Sexually transmitted infections (STIs) are a major public health problem worldwide
affecting quality of life and causing serious morbidity and mortality. Gonorrhea, one of

the oldest recorded human diseases, is an STI caused by Neisseria gonorrhoeae (gonococcus),
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a facultative anaerobic, immobile, and nonencapsulated Gram-negative diplococcus. The
obligate human pathogen N. gonorrhoeae is a significant global public health problem of
growing magnitude with more than 106 million new cases being diagnosed every year
worldwide (1). Without an effective vaccine, the lack of effective treatment for controlling
gonorrhea has caused N. gonorrhoeae to be classified as an urgent public health threat
globally. In fact, the Centers for Disease Control (CDC) classified N. gonorrhoeae as a “super-
bug,” and the World Health Organization (WHO) classified it as a “Priority 2” microorganism,
announcing a near future in which gonorrhea would become untreatable (2 to 4).

Due to single dose therapy, successful horizontal gene transfer, genome plasticity,
and rare resistance-derived fitness cost, N. gonorrhoeae has developed and retained resist-
ance to every major antibiotic class, matching every historical milestone in antibiotic dis-
covery. Worldwide emergence of gonococcal strains exhibiting multidrug resistance (MDR)
and extensive drug resistance (XDR) is of great concern (5 to 8). In fact, as of 2012 cefixime
is no longer recommended, and in many settings worldwide (with the current azithromycin
resistance rates), ceftriaxone (single high dose) is the last remaining option for empirical
first-line antimicrobial therapy (9 to 12).

Particularly, gonococci resistance determinants that affect current first-line treatments
include (i) plasmid-mediated high-level resistance to penicillins determined by plasmids
harboring TEM-1-type b-lactamases (13, 14); (ii) chromosomally mediated penicillin and
extended spectrum cephalosporins (ESCs) resistance due to mutations affecting penicil-
lin-binding proteins (PBPs) targets, frequently in the penA gene encoding PBP2, the main
gonococcal lethal target for b-lactam antimicrobials (from single point mutations near
the active site to mosaic penA genes that contain up to 60 to 70 amino acid changes) (5, 8,
11, 14 to 16); (iii) overexpression of the MtrCDE efflux pump conferring diminished sensitivity
to hydrophobic antimicrobials, such as macrolides, b-lactams, ciprofloxacin, and tetracycline
(17); (iv) mutations in outer membrane protein (OMP) PorB1b (penB determinant) associated
with a decreased susceptibility to penicillin, cephalosporins, and tetracyclines (18, 19); and
(v) reduced affinity for the 50S ribosomal macrolide target (23S rRNA SNPs) together
with mtrR mutations, which constitute the macrolides’ main resistance determinants (5, 17,
20 to 22).

As a result of multiple resistance mechanisms coexisting in successful lineages, antimicro-
bial resistance rates and gonococcal treatment failures have increased worldwide (5, 7, 11,
23 to 27). Thus, nonoptimized dual-antimicrobial regimens might not be effective long-term
solutions. Furthermore, the preclinical pipeline remains virtually empty of agents targeted to
clinical development for N. gonorrhoeae treatment (10, 28 to 31).

During the last 80 years, b-lactams have recurrently been the cornerstone of our thera-
peutic arsenal against N. gonorrhoeae infections. However, the shortage of new antimicrobial
compounds and the lack of mechanistic support of empirical combinations to treat resistant
gonococcal isolates could be devastating for STIs’ antibiotic stewardship (9 to 11, 32 to 34).

The genome of N. gonorrhoeae encodes 5 PBPs. The two low molecular mass class C
PBPs, PBP3 (dacB) and 4 (pbpG) (which catalyze carboxypeptidase and endopeptidase
activity), are nonessential for cell viability but do play a role in cell morphology mainte-
nance (35, 36). A third low molecular mass PBP with carboxypeptidase activity, dacC
(not identified in labeled penicillin binding assays), has been also described. However, its
binding ability and role in the intrinsic b-lactam resistance are still unknown (36, 37). The
two high molecular mass transpeptidases, PBP1 (Class A) and PBP2 (Class B) are both essen-
tial. Gonococcal PBP1 (ponA) is the homolog of Escherichia coli PBP1a (mrcA), responsible for
transglycosylation and transpeptidation, and participates in cell growth and elongation,
while PBP2 (penA) is the homolog of E.coli PBP3 (ftsI), an essential peptidoglycan transpepti-
dase that catalyzes the cross-linking of peptidoglycan-adjacent strand functions during cell
wall synthesis and division (38). PBP2, the primary clinical target, is inhibited at 10-fold lower
concentrations than PBP1 in b-lactam-susceptible strains (5, 15, 16). PBP3 (dacB) is homolo-
gous to E. coli PBP4 (dacB), while PBP4 (pbpG) is most similar to E. coli PBP7 (pbpG) (35, 39).

Although the gonococcal PBP inhibitory concentrations of cephalosporins have been thor-
oughly characterized for the primary target PBP2 (33), we are not aware of any published
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PBP-binding IC50s data set in N. gonorrhoeae, and PBP binding profiles are known for
roughly a few b-lactams (38, 40, 41). Therefore, the scientific basis to enhance b-lactam-based
therapy to inactivate PBPs more efficiently is missing for this important pathogen (42).

In the present work, we aimed to characterize the PBP binding profiles for 18 currently
available and clinically relevant b-lactams and four b-lactamase inhibitors in two N. gonor-
rhoeae type collection strains, ATCC 19424 and ATCC 49226. Our PBP binding data set for
a comprehensive set of chemically diverse b-lactam antibiotics and b-lactamase inhibitors
will help us rank order the drugs according to their PBP selectivity and rationally design new
compounds and combinations. Our results warrant future research to rationally optimize
b-lactam-based combination antibiotic therapy against resistant isolates.

RESULTS

Membrane fractions from N. gonorrhoeae ATCC 19424 and ATCC 49226 were labeled
with Bocillin FL for 30 min. We were able to identify PBP1, 2, and 3, which had the same
apparent molecular mass in both strains (Fig. 1A). In accordance with previous works using
radiolabeled penicillin, we were not able to detect dacC with our experimental approach
(40). Stefanova et al. showed (not as evident as PBP1 to 3) iodopenicillin (125I) binding to
PBP4 (pbpG), though it was not visible in our assay (35). Two autofluorescence bands (no
binding to b-lactams) and one potential proteolytic artifact without apparent antibiotic
binding properties were observed with no interference with our analysis (Fig. 1B) (48). None
of the ATCC strains expresses a b-lactamase; however, they possess different allelic variants
for the genes intimately related with b-lactam resistance: PBPs, porin PorB, and efflux pump
regulator mrtR (Table 1). Both strains possess the porB1a porin allele, which has been corre-
lated with lower MICs.

FIG 1 Penicillin-binding protein profiles of N. gonorrhoeae strains ATCC 19424 and ATCC 49226. PBPs
were labeled with Bocillin FL, separated by SDS-PAGE, and quantified via the ImageQuantTL program.
aApparent molecular mass relative to Precision Plus Protein Dual Color Standards (range 10 to 250
kDa) (Bio-Rad Laboratories, Hercules, CA). (a) Comparison of the PBP profiles of the two studied
N. gonorrhoeae strains. (b) Membrane preparation loaded with and without Bocillin FL labelling. #Two
autofluorescence bands were present in both strains with and without Bocillin FL labelling (not bound by
any of the drugs tested); they were excluded from any further analysis. *The band below PBP3 is a
potential proteolytic band and was excluded from further analysis.

TABLE 1 Amino acid changes and allelic variants of N. gonorrhoeae ATCC 19424 and ATCC 49226

Straina

Mutationsb

ST
(NG-MAST)

PBP1
(ponA)

PBP2 (penA)
PBP3
(dacB)

PorB1a
(penB) mtrRAllelic changes Type (mosaic)

ATCC 19424 266 WT H541N XV (no) T252S, H278Q, S285A, I364M A121G WT
ATCC 49226 1572 A375T, F666S R345_D346insD, F504L, A505V, A516G,

H541N, P552V, K555Q, I556V, I566V,
T573_A574insN, A574V

XXII (no) T252S, H278Q, S285A, I364M G120D, A121G A39T

aThe sequences and complete genomes for the N. gonorrhoeae ATCC strains 19424 and 49226 were obtained from the ATCC (American Type Culture Collection) genome
portal.

bThe wild-type PBP profiles from N. gonorrhoeaewere obtained from the following: PBP1 from strain FA19 (GenBank accession number U72876), PBP2 from strain LM306
(GenBank accession number M32091), PBP3 from strain FA1090 (GenBank accession number AF071224), andmtrR from strain FA19 (GenBank accession number
CP012026.1). Alignments were performed using the blastp suite (protein-protein BLAST).
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We generated the binding profiles and inhibition concentrations (IC50s) of 18 different
b-lactams and four b-lactamase inhibitors in triplicate for two wild-type reference N. gonor-
rhoeae strains, ATCC 19424 (Fig. 2; Fig. S1 in the supplemental material) and ATCC 49226
(Fig. 3; Fig. S2).

A drug was considered selective for a PBP if the IC50 was at least 4-fold lower than
that of the next most inhibited PBP (Table S1) (49). If any additional PBP binding was
below the 4-fold threshold, the compound was then considered coselective (50, 51).
The MIC/min IC50 parameter (Table S1) represents the ratio of the MIC to the minimum
IC50 value. Higher ratios indicate lower antibacterial potency and may correlate with
a lower therapeutic efficacy. Drugs with minimum IC50 values for PBP3 displayed the higher
MIC values.

In both strains, all carbapenems but imipenem were coselective for PBP2 and PBP3
(i.e., Bocillin FL signal reduction occurred at very low carbapenem concentrations) with over-
all very low IC50s (Table 2; Table S2) (52). The carbapenems IC50 for PBP3 were the lowest
among all the drugs tested (0.01 to 0.03 mg/L). Ertapenem was the carbapenem with
the lowest IC50. The MICs for the carbapenems ranged from 0.004 mg/L to 0.032 mg/L

FIG 2 Binding patterns of b-lactams in N. gonorrhoeae PBPs from strain ATCC 19424. DOR, doripenem;
ETP, ertapenem; IPM, imipenem; MEM, meropenem; FEP, cefepime; CFM, cefixime; CTX, cefotaxime; FOX,
cefoxitin; CPT, ceftaroline; CAZ, ceftazidime; TOL, ceftolozane; CRO, ceftriaxone; ATM, aztreonam; MEC,
amdinocillin (amdinocillin); CAR, carbenicillin; PenG, penicillin G; PIP, piperacillin; TIC, ticarcillin; AVI, avibactam;
REL, relebactam; SUL, sulbactam; TZ, tazobactam. The membrane preparations were incubated with the
indicated b-lactams for 30 min before Bocillin FL labeling. Labeled PBPs were separated by SDS-PAGE and
detected using a fluorimager. The range of concentrations tested was 0.015 to 2 mg/L. *MEC and BLIs
studied ranged from 2 to 256 mg/L.
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in the two ATCC strains, with the exception of imipenem. Imipenem showed the
highest MIC (0.032 to 0.064 mg/L) and IC50 (PBP2 = 0.07 to 0.17 mg/L) values for all the
targets.

Excluding imipenem, carbapenem MICs were 1.25- to 7.5-fold lower than the IC50s for
PBP2 (Table S1), suggesting that inactivation of PBP2 at very low carbapenem concentra-
tions causes considerable bacterial inhibition. Compared with ceftriaxone (same PBP2 IC50 =
0.01), a higher extent of PBP1 and PBP3 inactivation did not greatly enhance the effectivity
of these compounds.

Third- and fourth-generation cephalosporins cefixime, cefotaxime, ceftazidime, cefepime,
and ceftriaxone had the lowest IC50 values for PBP2 (0.01 to 0.02 mg/L) (Table 2), which
were consistent between the two strains; however, a 2- to 4-fold MIC increase was observed
for ATCC 49226. Second- and new-generation cephalosporins (cefoxitin, ceftaroline, and cef-
tolozane) were able to bind PBP2 at higher concentrations (IC50 = 0.21 to .2 mg/L).
Cefoxitin inactivated the nonlethal target PBP3 with very low values in both strains
(0.01 mg/L). Accordingly, the observed MIC values were 25- to 50-fold higher (0.25 and
0.5 mg/L) than the IC50s for this PBP (Table S1).

FIG 3 Binding patterns of b-lactams for N. gonorrhoeae PBPs from strain ATCC 49226. The membrane
preparations were incubated with the indicated b-lactams for 30 min before Bocillin FL labeling. The
range of concentrations tested was 0.015 to 2 mg/L. Please see Fig. 2 for abbreviations. *MEC and
BLIs studied ranged from 2 to 256 mg/L.
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Aztreonam was selective for PBP2 in both strains (0.03 to 0.07 mg/L), but MIC values
were 0.032 (ATCC 19424) and 0.125 mg/L (ATCC 49226). Amdinocillin, on the other hand,
showed limited PBP2 inhibition (IC50 = 1.33 and 5.88 mg/L) and ranked the higher MIC values
(1 and 8 mg/L) among b-lactam compounds.

Penicillins were selective for PBP2 in strain ATCC 19424 (0.01 to 0.19 mg/L), and with the
sole exception of piperacillin, they caused little to no inactivation in strain ATCC 49226 (0.26
to .2 mg/L). While the PBP IC50s were consistent for both strains, the piperacillin MIC was
substantially higher for strain ATCC 49226 (0.125 versus 0.001 mg/L, respectively).

Diazabicyclooctane (DBO) non-b-lactam b-lactamase inhibitors (avibactam and rel-
ebactam) were the only drugs showing PBP3 selective binding, while b-lactam-derived
b-lactamase inhibitors (sulbactam and tazobactam) were selective for PBP2 (Table 2).
The MICs of the DBO b-lactamase inhibitors (BLIs) were 55- to 400-fold higher than their
IC50s for PBP3. Conversely, the MIC values for the b-lactam BLIs were 1.5- to 8-fold lower
than their PBP2 IC50 values. Such remarkable difference was likely caused by the difference
in target selectivity (PBP2 versus PBP3) between the b-lactamase inhibitors (Table S1).

The principal-component analysis of the log-transformed PBP IC50s showed that the first
two eigenvectors explained 89.9% of the total variance of the two strains for the 22 com-
pounds (not shown). Agglomerative hierarchical clustering (AHC) identified the same three
clusters with distinct PBP occupancy patterns in both strains (Fig. 4). The first cluster con-
tained b-lactams that predominantly targeted PBP3 (0.01 to 0.11 mg/L), while also binding
PBP2 at low concentrations in both strains (0.01 to 0.26 mg/L) (carbapenems, cefoxitin,
ceftriaxone, penicillin G, and piperacillin). The second cluster comprised compounds that
exclusively inactivated PBP2 (third-generation cephalosporins [but ceftriaxone] and aztreo-
nam). Ceftolozane differed in the two analyses, belonging to cluster 3 in the ATCC 49226
strain. The third cluster included compounds that had PBP2, PBP3, or both as their primary
targets but only at substantially higher concentrations (new-generation cephalosporins,
imipenem, BLIs, carbenicillin, ticarcillin, and amdinocillin).

DISCUSSION

With few preclinical candidates targeting MDR gonococci in the drug development
pipeline and vaccine development being an unlikely solution in the short term due to high

FIG 4 Agglomerative hierarchical clustering for logarithmic IC50 data of the tested 22 drugs with penicillin-binding proteins in isolated membranes of
N. gonorrhoeae strains (a) ATCC 19424 and (b) ATCC 49226 using the XLSTAT program. C1 to C3 represent clusters 1 to 3. Please see Fig. 2 for abbreviations.
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antigenic variability in clinical isolates, public health control of gonorrhea relies totally on
appropriate antimicrobial treatment (2, 4, 10, 31).

The current emergence of resistance to first-line empirical gonococcal therapy
(including ESCs) calls for the design and optimization of effective combination thera-
pies (17, 27, 32, 33). The optimal first-line therapy should be widely available, highly
effective (if possible as a single dose), lack toxicity, and with a microbiologic cure rate
of .95% of patients (3). To gain insights into the molecular basis for optimizing drug
combinations that maximize treatment efficacy and suppress resistance emergence,
we characterized the occupancy patterns for 18 currently available and clinically rele-
vant b-lactams and four b-lactamase inhibitors in N. gonorrhoeae.

Although no major differences were observed for the signal intensities of the three
studied PBPs and PBP selectivity across both strains, remarkable differences were
found for the binding IC50s and MIC values. In general, PBP profiles and occupancy pat-
terns in the two studied strains were comparable to previously published data (40).

Carbapenems (except imipenem) were the only compounds that were coselective
for PBP2 and PBP3 in both strains. Expectedly, compared with the first-line drug ceftriaxone,
the increased PBP3 inhibition didn’t enhance bacterial growth inhibition (36, 41). In contrast
to what has been observed in Enterobacterales and P. aeruginosa, imipenem showed the
lowest PBP inhibition and the highest MIC values amid carbapenems (53, 54). Moreover, like
doripenem, it is not likely to retain activity against cephalosporin-resistant N. gonorrhoeae
isolates (55). In contrast, ertapenem and meropenem were 8 times more active and showed
the lowest IC50s for PBP2 and 3 in both strains, mostly unaltered by the PBP2 type XXII and
themtrRmutation from strain ATCC 49226. Ertapenem and meropenem are the most effec-
tive drugs of this class, and potential candidates for possible N. gonorrhoeae alternative treat-
ment for the ESC-resistant isolates. Furthermore, ertapenem could possibly be part of dual
antimicrobial therapy (once a day) if the genetic resistance determinants are properly char-
acterized (10, 14, 29).

As previously reported, third-generation cephalosporins cefixime, cefotaxime, and
ceftazidime (acylation rates comparable to ceftriaxone) showed the greatest PBP2 inhi-
bition in both strains. All of the drugs from this subclass showed a marginal 2-fold MIC
increase except cefixime, which displayed a 4-fold higher MIC for strain ATCC 49226.
Besides its epistatic nature, it seems that cefixime resistance may be more affected by
penA and mtrR mutations compared to ceftriaxone, a possible explanation for the ear-
lier therapeutic failures (16, 33, 42).

Cefoxitin inactivated PBP3 and PBP1 (slow PBP2 acylation rates). Although it could be a
treatment option (plus probenecid) for penicillinase-producing isolates, there is not enough
clinical evidence to support its efficacy against isolates with mutations in PBP2 ormtrR (33).

New-generation cephalosporins required the highest concentrations to inactivate
PBP2 and demonstrated the lowest antibacterial activity in this subclass. Ceftaroline, with
low IC50 values, exhibited reduced antimicrobial efficacy for strain ATCC 49226. The A39T
missense mutation in mtrR and the PBP2 variant (type XXII) present in this strain may con-
tribute to the 16-fold MIC increase (together with epistatic loci affecting antibiotic resistance)
(16). Ceftolozane has better outer membrane permeability and stability toward class
C beta-lactamases, leading to improved efficacy against P. aeruginosa. However, this
feature limits PBP2 acylation capability and thus growth inhibition in N. gonorrhoeae
(MIC = 0.25 mg/L) (33). A time of free drug above MIC (fT.MIC) of 20 to 24 h (longer for pha-
ryngeal gonorrhea) needed for therapeutic efficacy, would rarely be achieved with ESCs
with MICs$0.25 mg/L (42).

Aztreonam selectivity for PBP2 was markedly affected by the presence of the PBP2 type
XXII and mtrR mutations. In a recent small clinical trial, a single 2-g aztreonam dose was an
effective ESC-sparing alternative to treat gonococcal urethritis. However, in isolates with an
MIC above 0.5 mg/L, it only achieved a 50% cure rate and was not a reliable treatment
for pharyngeal infections (56). Amdinocillin, with limited PBP2 inhibition, has demonstrated
poor therapeutic activity for isolates that are nonsusceptible to common first-line
antigonococcal antimicrobials (30).
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Like in previous reports for penicillins, modifications of the penA gene (type XXII)
elicited a significant reduction of PBP2 binding, with the sole exception of piperacillin,
with comparable IC50 values among the two strains. The observed 125-fold higher
piperacillin MIC for strain ATCC 49226 suggested that reduced uptake (porin or altered
efflux) could be the underlying mechanism for the MIC shift (17, 29). The porB1a allele
has been associated with lower resistance levels compared to porB1b; however, the
impact of the double mutation G120D/A121G on b-lactams resistance needs to be fur-
ther explored (57 to 59). Furthermore, the A375T substitution in the ponA gene present
in the strain ATCC 49226 has been identified in N. gonorrhoeae clinical isolates with
high-level resistance to penicillins (37).

Since their introduction, continuous b-lactam development has allowed combinations
of two different compounds that are not affected by the same resistance determinants
(12, 60, 61). Several b-lactam-derived BLIs have been developed to treat infections by
b-lactamase-producing organisms (clavulanate, sulbactam, and tazobactam) combined
with b-lactams. Recently, two novel classes of non-b-lactam BLIs have been introduced
to the clinic: the boronate-based (vaborbactam) and the diazabicyclooctanes (DBOs)
(avibactam, relebactam, zidebactam, nacubactam, etc.). These compounds have
shown improved spectrum or b-lactam enhancing activity (PBP2-binding), acting synerg-
istically with the partner b-lactam (62). With the current low penicillinase-producing N. gon-
orrhoeae prevalence, combination therapies could focus on enhancing the partner activity
(additive [PBP2] or complementary [PBP1] PBP-binding) (13).

As previously described in other Gram-negatives, novel BLIs (DBOs) showed neither
an extensive PBP occupancy nor a significant increase or decrease of their primary tar-
get attainment in any of the studied strains (63). The potential therapeutic efficacy of
sulbactam or tazobactam alone was better than that of the DBO-derived BLIs (avibactam
and relebactam), against the two strains. When combined with their clinical partner b-lac-
tam (piperacillin-tazobactam and ceftolozane-tazobactam), b-lactam BLIs displayed a nota-
ble increase of the antibacterial activity against both strains (4- to.16-fold MIC reduction).
DBO-based b-lactamase inhibitor avibactam showed a modest ceftazidime MIC reduction.
Neither of the studied strains expresses a b-lactamase, so the improved efficacy could rely
on additive (PBP2; tazobactam) target binding (34, 62).

Clinically available combinations, piperacillin-tazobactam, ceftolozane-tazobactam,
and to a lesser extent ceftazidime-avibactam, though unsuitable for empirical use (short
half-lives and parenteral route of administration), could be considered for individual patients
with ceftriaxone-resistant gonococcal infection once MICs (or preferably genetic point-of-
care antimicrobial resistance tests) are available (34).

Dissimilar antimicrobial stewardship programs worldwide and the lack of clinical
data and breakpoints to support the use of rationally improved antimicrobial therapies,
challenge the treatment against N. gonorrhoeae (9, 42). Our study presents the first data set
on PBP occupancy in N. gonorrhoeae for 22 clinically relevant b-lactams and BLIs. A limita-
tion of our study is the use of two N. gonorrhoeae strains without a mosaic PBP2 allele and
lack of studies on isogenic strains with knockout or overexpression of efflux, and porins.
However, our comprehensive data set comprised 22 drugs studied at least in triplicate in
two N. gonorrhoeae strains used for clinical control assessment procedures.

Future studies evaluating the target site penetration of b-lactams in reduced outer
membrane permeability isolates and to systematically link PBP occupancy patterns to
bacterial killing (especially in isolates producing mosaic PBP2 alleles) are warranted.
We think that the present work provides relevant data to allow selecting b-lactams and
combinations for future synergy studies with b-lactamase inhibitors and other antibiotic
classes against resistant N. gonorrhoeae isolates.

Without a doubt, a coordinated effort among basic, translational, and clinical research is
needed to develop in vitro and in silico pharmacokinetic/pharmacodynamics (PK/PD) models
that evaluate and predict antibacterial activity and resistance emergence. Future mechanisti-
cally informed clinical trials evaluating rationally designed therapies could help advance the
standard of care toward the much-needed individually tailored treatment.
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MATERIALS ANDMETHODS
In vitro susceptibility testing. The MIC of b-lactams and b-lactamase inhibitors (BLIs) was deter-

mined by the standard Clinical and Laboratory Standards Institute (CLSI) broth microdilution method
(43). Imipenem was purchased from Fresenius Kabi (Barcelona, Spain); meropenem from Aurovitas
(Madrid, Spain); ertapenem from Merck Sharp & Dohme (Haarlem, Netherlands); penicillin G from
Laboratorio Reig Jofré SA (Barcelona, Spain); ceftaroline from Pfizer Pharmaceuticals (Ringsend, Ireland);
cefotaxime, ceftriaxone, cefoxitin, and ceftazidime from Laboratorios Normon (Madrid, Spain); cefepime
from Accord Healthcare (Barcelona, Spain); aztreonam from Bristol-Myers Squibb (Madrid, Spain); and
doripenem, cefixime, ceftolozane, amdinocillin, carbenicillin, piperacillin, ticarcillin, avibactam, relebac-
tam, sulbactam, and tazobactam from MedChem Express (Sollentuna, Sweden). Ceftazidime-avibactam
and ceftolozane-tazobactam MICs were determined by MIC test strip from Liofilchem (Rosetto degli
Abruzzi, Italy). MIC values were determined from at least three independent experiments.

PBP-binding assays. To enhance the strength of our PBP-binding (reported as the 50% inhibitory
concentration; IC50) data sets and evaluate strain-to-strain variability, we studied two wild-type reference
N. gonorrhoeae (NG) strains, ATCC 19424 and ATCC 49226, type strain and CLSI-recommended strain for
quality control assessment procedures, respectively. The PBP-binding IC50s were determined in mem-
brane preparations from the reference strains following previously described protocols (40).

N. gonorrhoeae cultures were grown in phosphate-buffered gonococcal medium (GCP) broth supple-
mented with 1/100 volume 4.2% sodium bicarbonate and 1/100 volume Kellogg’s supplement on a 37°C shak-
ing incubator (200 rpm). Approximately 400 mL late-log phase (OD600nm = 1) was collected by centrifugation,
washed, and resuspended in 20 mM KH2PO4 with 140 mM NaCl pH 7.5. Cells were sonicated and centrifuged
at 4,000 � g for 20 min. Bacterial membranes were collected by ultracentrifugation. Binding reactions were
conducted for 22 chemically diverse b-lactams and b-lactamase inhibitors using 20 micrograms of membrane
preparation proteins for 30 min at 37°C (range of concentrations tested = 0.0156 to 2 mg/L). When no measur-
able binding was observed for any of the PBPs, an upper or lower extended concentration range was used
(0.001 to 0.125 or 2 to 256 mg/L when indicated). The initial incubation allows that each of the drugs binds to
each of the PBP target receptors depending on its second-order acylation rate constant (k2/Ks; inhibitory po-
tency of a b-lactam) (44 to 46). After the initial incubation, membrane preparations were labeled with 25 mM
Bocillin FL for 30 min (Bocillin FL is a fluorophore-conjugated penicillin V analog that binds to all PBPs).
Unbound PBP molecules are then available to bind to Bocillin FL. For a given antibiotic concentration, the
weaker the Bocillin FL signal, the greater the binding capacity for each of the PBPs (47). PBPs were separated
on SDS-PAGE (Bio-Rad Laboratories, Hercules, CA), visualized using a Typhoon FLA 9500 biomolecular imager,
and IC50s quantified using ImageQuantTL 8.1 (GE Healthcare Bio-Sciences AB, Björkgatan, 30 751 84 Uppsala).
The amount of a PBP bound by a particular beta-lactam is determined by the remaining PBP molecules avail-
able to react with Bocillin FL, in comparison to those bound by Bocillin FL in the absence of the beta-lactam.
Binding affinities were reported as the b-lactam or BLI concentrations that half-maximally inhibited Bocillin FL
binding (IC50s) and were determined from at least three independent experiments.

Data analysis. Agglomerative hierarchical clustering (AHC) was performed in the XLSTAT software
(v2021.5; Addinsoft). We analyzed the logarithmic PBP-binding data of twenty-two drugs in both N. gon-
orrhoeae strains to identify different clusters of the studied drugs based on their binding data. Agglomerative
hierarchical clustering was used based on the Euclidean distance for calculating the degree of dissimilarity. The
Ward's method was used for agglomeration to generate the dendrogram, and three differentiated clusters
were observed in each strain.
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