

Available online at www.sciencedirect.com

Procec **Computer Science**

Procedia Computer Science 223 (2023) 403-405

www.elsevier.com/locate/procedia

XII Latin-American Algorithms, Graphs and Optimization Symposium (LAGOS 2023)

Lower bounds and exact values of the 2-color off-diagonal generalized weak Schur numbers $WS(2; k_1, k_2)$

(Brief Announcement)

T. Ahmed^a, L. Boza^b, M. P. Revuelta^{b,*}, M. I. Sanz^b

^atanbir@gmail.com ^bDepartamento de Matemática Aplicada I, Universidad de Sevilla, Spain

Abstract

In this study, we focus on the concept of the 2-color off-diagonal generalized weak Schur numbers, denoted as $WS(2; k_1, k_2)$. These numbers are defined for integers $k_i \ge 2$, where i = 1, 2, as the smallest integer M, such that any 2-coloring of the integer interval [1, M] must contain a 2-colored solution to the equation E_{k_j} : $x_1 + x_2 + \ldots + x_{k_j} = x_{k_j+1}$ for j = 1, 2, with the condition that $x_i \neq x_j$ when $i \neq j$. Our objective is to determine lower bounds for these 2-color off-diagonal generalized weak Schur numbers and demonstrate that in several cases, these lower bounds match the exact values.

© 2023 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the scientific committee of the XII Latin-American Algorithms, Graphs and Optimization Symposium

Keywords: Schur numbers; Weak Schur numbers; sum-free sets; weak sum-free-sets; off-diagonal weak Schur numbers. 2010 MSC: 05C55; 05D10; 05-04; 05A17.

1. Introduction

The 2-color off-diagonal generalized weak Schur numbers, denoted as $WS(2; k_1, k_2)$. These numbers are defined for integers $k_i \ge 2$, where i = 1, 2, as the smallest integer M, such that any 2-coloring of the integer interval [1, M]must contain a 2-colored solution to the equation E_{k_j} : $x_1 + x_2 + \ldots + x_{k_j} = x_{k_j+1}$ for j = 1, 2, with the condition that $x_i \neq x_j$ when $i \neq j$. For background and generalizations, see Schur [13], Rado [11], and Robertson and Schaal [12]. For various results, see Baumert and Golomb ([4], [8]), Heule [9], and Fredricksen and Sweet [7], Beutelspacher and Brestovansky [5], Znám [14], Ahmed and Schaal [3], and Boza et al. [6]). We explore the values and bounds of $WS(2; k_1, k_2)$. It is known (see Ahmed et al. [2]) that WS(2; 2, 2) = 9, WS(2; 2, 3) = 16, and for all $k \ge 4$, $WS(2;2,k) = \begin{cases} 3k^2/2 - k/2 + 1, \text{ if } k \equiv 0,3 \pmod{4}; \\ 3k^2/2 - k/2 + 2, \text{ if } k \equiv 1,2 \pmod{4}. \end{cases}$

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the scientific committee of the XII Latin-American Algorithms, Graphs and Optimization Symposium 10.1016/j.procs.2023.08.261

Corresponding author. Tel.: +34-686238094.

E-mail address: pastora@us.es

^{1877-0509 © 2023} The Authors. Published by Elsevier B.V.

In this short paper, we prove several lower bounds and compute several exact values of $WS(2; k_1, k_2)$ for $k_2 \ge k_1 \ge 3$, as presented in the following sections.

2. Main Results

We establish lower bounds of $WS(2; k_1, k_2)$ for $k_2 \ge k_1 \ge 3$. We have also computed nineteen exact values of $WS(2; k_1, k_2)$ using SAT solvers (see Heule [10]; also see Ahmed [1] for an introduction to distributed SAT solving) to prove upper bounds.

Theorem 2.1.
$$WS(2; 3, 3) = 24$$
, $WS(2; 4, 4) = 52$, and for positive integers k and p with $k \ge 3$ and $p \ge 0$, we have
 $WS(2; k, k + p) \ge \begin{cases} k^{3}/2 + 2k^{2} - 5k/2 + 1, & \text{if } p = 0 \text{ and } k \ge 5; \\ k^{3}/2 + 5k^{2}/2 + k, & \text{if } p = 1 \text{ and } 3 \le k \le 6; \\ k^{3}/2 + 3k^{2} - 5k/2 + 2, & \text{if } p = 1 \text{ and } k \ge 7; \\ k^{3}/2 + 7k^{2}/2 + k + 1, & \text{if } p = 2 \text{ and } 3 \le k \le 7; \\ k^{3}/2 + 4k^{2} - 5k/2 + 4, & \text{if } p = 2 \text{ and } k \ge 8; \\ k^{3}/2 + k^{2}(p + 1) + k(p^{2} + p - 1)/2, \text{ if } p \ge 3. \end{cases}$

Theorem 2.2. We have the following nineteen exact values:

WS(2;3,3) = 24, WS(2;3,4) = 39, WS(2;3,5) = 49, WS(2;3,6) = 66, WS(2;3,7) = 87, WS(2;3,8) = 111, WS(2;3,9) = 138, WS(2;3,10) = 168, WS(2;4,4) = 52, WS(2;4,5) = 76, WS(2;4,6) = 93, WS(2;4,7) = 118, WS(2;4,8) = 150, WS(2;5,5) = 101, WS(2;5,6) = 130, WS(2;5,7) = 156, WS(2;6,6) = 166, WS(2;6,7) = 204, and WS(2;7,7) = 253.

3. Proof of lower bounds

Lemma 3.1. For $k_2 \ge k_1 \ge 3$, we have $WS(2; k_1, k_2) \ge k_1 \left(\frac{k_1 + 1 + (k_2 + 1)k_2}{2} - 1 \right)$.

Proof. Let $k_1 \left(\frac{k_1 + 1 + (k_2 + 1)k_2}{2} - 1 \right) = \ell$. Consider the coloring $\delta : [1, \ell - 1] \to [0, 1]$ defined as $\delta(x) = \begin{cases} 1, \text{ if } 1 \le x \le k_2(k_2 + 1)/2 - 1 = m \text{ (say)}; \\ 0, \text{ if } m + 1 \le x \le k_1 m + k_1(k_1 + 1)/2 - 1 = \ell - 1. \\ \text{Suppose there exists a solution } a_1 + a_2 + \dots + a_{k_2} = a_{k_2 + 1} \text{ with } a_1 < a_2 < \dots < a_{k_2} \text{ to the equation } E_{k_2} \text{ monochromatic in color 1. Now, } b_{k_2 + 1} \ge \sum_{i=1}^{k_2} i = k_2(k_2 + 1)/2 = m + 1, \text{ but } \delta(x) = 0 \text{ for } m + 1 \le x \le \ell - 1, \text{ which results a contradiction.} \end{cases}$

in color 1. Now, $b_{k_2+1} \ge \sum_{i=1}^{k_2} i = k_2(k_2+1)/2 = m+1$, but $\delta(x) = 0$ for $m+1 \le x \le \ell-1$, which results a contradiction. Again, suppose there exists a solution $a_1 + a_2 + \cdots + a_{k_1} = a_{k_1+1} \le \ell-1$ with $a_1 < a_2 < \cdots < a_{k_1}$ to the equation E_{k_1} monochromatic in color 0. Now, $a_{k_1} \ge \sum_{i=1}^{k_1} (m+i) = k_1 m + k_1(k_1+1)/2 = \ell$, which is a contradiction. Hence, $WS(2; k_1, k_2) \ge \ell$.

Corollary 3.2. For $k \ge 2$, $p \ge 0$, we have $WS(2; k, k + p) \ge k^3/2 + k^2(p+1) + k(p^2 + p - 1)/2$.

Remark 3.3. *This lower bound coincides with the exact values of WS*(2; 3, 6), *WS*(2; 3, 7), *WS*(2; 3, 8), *WS*(2; 3, 9), *WS*(2; 3, 10), *WS*(2; 4, 7), *and WS*(2; 4, 8).

The lower bound in Corollary 3.2 can be improved using a different coloring as follows:

Lemma 3.4. For integers $k \ge 2$ and $p \ge 0$, $WS(2; k, k + p) \ge (-2k + 3k^2 + k^3 + (-1 + 3k + k^2)p + p^2 + (-k + k^2 + (-2 + 2k)p)z + (2 - 2k)z^2)/2$ where $z = \left[(\alpha + \sqrt{\beta})/(4(k - 1)) \right] - 1$ with $\alpha = 2(k - 1)p - (k^2 + 3k - 2)$ and $\beta = 4(k^2 - 1)p^2 + 4(k^2 + 2k - 3)p + (k^4 + 22k^3 - 11k^2 - 12k + 4).$

Proof. Let

$$\ell = (-2k + 3k^2 + k^3 + (-1 + 3k + k^2)p + p^2 + (-k + k^2 + (-2 + 2k)p)z + (2 - 2k)z^2)/2$$

$$u = (-2 - k + 2k^2 + k^3 + (-1 + 3k + k^2)p + p^2 + (2 - 3k + k^2 + (-2 + 2k)p)z + (2 - 2k)z^2)/2$$

Consider the coloring $\delta : [1, \ell - 1] \rightarrow [0, 1]$ defined as

$$\delta(x) = \begin{cases} 1, \text{ if } 1 \leq x \leq z; \\ 0, \text{ if } z + 1 \leq x \leq k^2/2 + (2z+1)k/2 - 1 = m \text{ (say)}; \\ 1, \text{ if } m + 1 = k^2/2 + (2z+1)k/2 \leq x \leq u; \\ 0, \text{ if } u + 1 \leq x \leq \ell - 1; \end{cases}$$

We will prove that there is no solutions to the equation $E_k : x_1 + x_2 + \ldots + x_k = x_{k+1}$, monochromatic in color 0 and there is no solutions to the equation E_{k+p} : $x_1 + x_2 + \ldots + x_{k+p} = x_{k+p+1}$, monochromatic in color 1.

Suppose there is a solutions to the equation $E_{k+p} : x_1 + x_2 + \dots + x_{k+p} = x_{k+p+1}$, monochromatic in color 1. Suppose there is a solution $a_1 + a_2 + \dots + a_k = a_{k+1}$ with $a_1 < a_2 < \dots < a_k$ to E_k monochromatic in color 0. Then, $a_{k+1} = \sum_{i=1}^k a_i \ge \sum_{i=1}^k z + i = (2kz + k^2 + k)/2 = m + 1$, then $\sum_{i=1}^k a_i \notin [z+1,m]$. Now we verify that $\sum_{i=1}^k a_i$ also does not belong to the interval $[u+1, \ell-1]$. We consider two cases: If $a_k \le m$, then $\sum_{i=1}^k a_i \le \sum_{i=0}^{k-1} (m-i) = (-k + k^3 + 2k^2z)/2 < u + 1$. If $a_k \ge u + 1$, then $\sum_{i=1}^k a_i \ge (\sum_{i=1}^{k-1} z + i) + (u + 1) > \ell - 1$. In such of the above cases, we reach a contradiction

In each of the above cases, we reach a contradiction.

Suppose there is a solution $a_1 + a_2 + \dots + a_{k+p} = a_{k+p+1}$ with $a_1 < a_2 < \dots < a_{k+p}$ to E_{k+p} monochromatic in color 1. Then $a_{k+p+1} = \sum_{i=1}^{k+p} a_i \ge \sum_{i=1}^{z} i + \sum_{i=0}^{k+p-z-1} (m+1) + i = u + 1$, which is a contradiction since a_{k+p+1} is colored in color 0

Corollary 3.5. Let p = 0. If $k \ge 5$ then z = 1 and $WS(2; k, k) \ge k^3/2 + 2k^2 - 5k/2 + 1$.

Remark 3.6. This lower bound coincides with the exact values of WS (2; 5, 5), WS (2; 6, 6) and WS (2; 7, 7).

Corollary 3.7. $WS(2; k, k+1) \ge \begin{cases} k^3/2 + 3k^2 - 5k/2 + 2, & \text{if } k \ge 7 \text{ (where } z = 2); \\ k^3/2 + 5k^2/2 + k = \ell(say), \text{ if } k \le 6. \end{cases}$ *The* $k \le 6$ *case can be proven using the coloring* $\delta : [1, \ell - 1] \rightarrow [0, 1]$ *as defined below and showing that there is*

no solution to E_{k+1} in color 1 and no solution to E_k in color 0.

 $\delta(x) = \begin{cases} 1, & if \ 1 \leq x \leq k^2/2 + 3k/2 = m \ (say); \\ 0, & if \ m+1 = k^2/2 + 3k/2 + 1 \leq x \leq k^3/2 + 2k^2 + k/2 - 1 = n \ (say); \\ 1, & if \ n+1 = k^3/2 + 2k^2 + k/2 \leq x \leq k^3/2 + 5k^2/2 + k - 1 = \ell - 1. \end{cases}$

Remark 3.8. The lower bounds coincide with exact values of WS(2;3,4), WS(2;4,5), WS(2;5,6) and WS(2;6,7)

Corollary 3.9. $WS(2; k, k+2) \ge \begin{cases} k^3/2 + 7k^2/2 + k + 1, & \text{if } k \le 7 \text{ (where } z = 2); \\ k^3/2 + 4k^2 - 5k/2 + 4, & \text{if } k \ge 8 \text{ (where } z = 3). \end{cases}$

Remark 3.10. The lower bounds coincide with the exact values of WS(2; 3, 5), WS(2; 4, 6) and WS(2; 5, 7).

Proof of Theorem 2.1. The desired lower bound is obtained using Corollaries 3.2, 3.5, 3.7, and 3.9.

References

- [1] T. Ahmed, Two new van der Waerden numbers: w(2; 3, 17) and w(2; 3, 18), Integers, 10 (2010), #A32.
- [2] T. Ahmed, M. G. Eldredge, J. J. Marler, and H. Snevily, Strict Schur numbers, Integers, 13 (2013), #A22.
- [3] T. Ahmed and D. Schaal. On generalized Schur numbers. Exp. Math., 25:2 (2016) 213–218.
- [4] L.D. Baumert. Sum-free sets. J.P.L. Res. Summary, 36-10 (1961) 16-18.
- [5] A. Beutelspacher and W. Brestovansky. Generalized Schur number. Lecture Notes in Math., vol. 969, Springer, New York, 1982, pp. 30-38.
- [6] L.Boza, J.M. Marin, M.P. Revuelta, M.I. Sanz. 3-color Schur number. Discrete Appl. Math., 263 (2019) 59-68.
- [7] H. Fredricksen and M. Sweet. Symmetric sum-free partitions and lower bounds for Schur numbers. Electron. J. Comb., 7 (2000) #R32.
- [8] S. W. Golomb and L. D. Baumert. Backtrack programming. Journal of the ACM 12:4 (1965) 516-524.
- [9] M.J.H. Heule. Schur Number Five. In: The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), 2018.
- [10] M.J.H. Heule, March RW. SAT Competition (2011). http://www.st.ewi.tudelft.nl/sat/.
- [11] R. Rado. Studien zur Kombinatorik. Math. Z., 36 (1933) 424-480.
- [12] A. Robertson, D. Schaal. Off Diagonal Generalized Schur Numbers Adv. Appl. Math. 26:3 (2001) 252-257.
- [13] I. Schur. Uber die Kongruenz $x^m + y^m \equiv z^m \pmod{p}$. Jber. Deutsch. Math.- Verein., 25 (1917) 114–116.
- [14] S. Znám. Generalization of a number-theorical result. Mat-Fyz. Casopis. Sloven Akad Vied, 16:4 (1966) 357-361.