XII Latin-American Algorithms, Graphs and Optimization Symposium (LAGOS 2023) Lower bounds and exact values of the 2-color off-diagonal generalized weak Schur numbers $W S\left(2 ; k_{1}, k_{2}\right)$

(Brief Announcement)

T. Ahmed ${ }^{\text {a }}$, L. Boza ${ }^{\text {b }}$, M. P. Revuelta ${ }^{\text {b,* }}$, M. I. Sanz ${ }^{\text {b }}$
${ }^{\text {a }}$ tanbir@gmail.com
${ }^{b}$ Departamento de Matemática Aplicada I, Universidad de Sevilla, Spain

Abstract

In this study, we focus on the concept of the 2-color off-diagonal generalized weak Schur numbers, denoted as $W S\left(2 ; k_{1}, k_{2}\right)$. These numbers are defined for integers $k_{i} \geqslant 2$, where $i=1,2$, as the smallest integer M, such that any 2 -coloring of the integer interval $[1, M]$ must contain a 2 -colored solution to the equation $E_{k_{j}}: x_{1}+x_{2}+\ldots+x_{k_{j}}=x_{k_{j}+1}$ for $j=1,2$, with the condition that $x_{i} \neq x_{j}$ when $i \neq j$. Our objective is to determine lower bounds for these 2-color off-diagonal generalized weak Schur numbers and demonstrate that in several cases, these lower bounds match the exact values.

© 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the XII Latin-American Algorithms, Graphs and Optimization Symposium

Keywords: Schur numbers; Weak Schur numbers; sum-free sets; weak sum-free-sets; off-diagonal weak Schur numbers. 2010 MSC: 05C55; 05D10; 05-04; 05A17.

1. Introduction

The 2-color off-diagonal generalized weak Schur numbers, denoted as $W S\left(2 ; k_{1}, k_{2}\right)$. These numbers are defined for integers $k_{i} \geqslant 2$, where $i=1,2$, as the smallest integer M, such that any 2 -coloring of the integer interval $[1, M]$ must contain a 2 -colored solution to the equation $E_{k_{j}}: x_{1}+x_{2}+\ldots+x_{k_{j}}=x_{k_{j}+1}$ for $j=1,2$, with the condition that $x_{i} \neq x_{j}$ when $i \neq j$. For background and generalizations, see Schur [13], Rado [11], and Robertson and Schaal [12]. For various results, see Baumert and Golomb ([4], [8]), Heule [9], and Fredricksen and Sweet [7], Beutelspacher and Brestovansky [5], Znám [14], Ahmed and Schaal [3], and Boza et al. [6]). We explore the values and bounds of $W S\left(2 ; k_{1}, k_{2}\right)$. It is known (see Ahmed et al. [2]) that $W S(2 ; 2,2)=9, W S(2 ; 2,3)=16$, and for all $k \geqslant 4$, $W S(2 ; 2, k)=\left\{\begin{array}{l}3 k^{2} / 2-k / 2+1, \text { if } k \equiv 0,3 \quad(\bmod 4) ; \\ 3 k^{2} / 2-k / 2+2, \text { if } k \equiv 1,2 \quad(\bmod 4) .\end{array}\right.$

[^0]In this short paper, we prove several lower bounds and compute several exact values of $W S\left(2 ; k_{1}, k_{2}\right)$ for $k_{2} \geqslant k_{1} \geqslant$ 3 , as presented in the following sections.

2. Main Results

We establish lower bounds of $W S\left(2 ; k_{1}, k_{2}\right)$ for $k_{2} \geqslant k_{1} \geqslant 3$. We have also computed nineteen exact values of $W S\left(2 ; k_{1}, k_{2}\right)$ using SAT solvers (see Heule [10]; also see Ahmed [1] for an introduction to distributed SAT solving) to prove upper bounds.

Theorem 2.1. $W S(2 ; 3,3)=24, W S(2 ; 4,4)=52$, and for positive integers k and p with $k \geqslant 3$ and $p \geqslant 0$, we have

$$
W S(2 ; k, k+p) \geqslant \begin{cases}k^{3} / 2+2 k^{2}-5 k / 2+1, & \text { if } p=0 \text { and } k \geqslant 5 ; \\ k^{3} / 2+5 k^{2} / 2+k, & \text { if } p=1 \text { and } 3 \leqslant k \leqslant 6 ; \\ k^{3} / 2+3 k^{2}-5 k / 2+2, & \text { if } p=2 \text { and } k \geqslant 7 ; k \leqslant 7 ; \\ k^{3} / 2+7 k^{2} / 2+k+1, & \text { if } p=2 \text { and } k \geqslant 8 ; \\ k^{3} / 2+4 k^{2}-5 k / 2+4, & \text { if } p \geqslant 3 .\end{cases}
$$

Theorem 2.2. We have the following nineteen exact values:
$W S(2 ; 3,3)=24, W S(2 ; 3,4)=39, W S(2 ; 3,5)=49, W S(2 ; 3,6)=66, W S(2 ; 3,7)=87, W S(2 ; 3,8)=111$, $W S(2 ; 3,9)=138, W S(2 ; 3,10)=168, W S(2 ; 4,4)=52, W S(2 ; 4,5)=76, W S(2 ; 4,6)=93, W S(2 ; 4,7)=118$, $W S(2 ; 4,8)=150, W S(2 ; 5,5)=101, W S(2 ; 5,6)=130, W S(2 ; 5,7)=156, W S(2 ; 6,6)=166, W S(2 ; 6,7)=204$, and $W S(2 ; 7,7)=253$.

3. Proof of lower bounds

Lemma 3.1. For $k_{2} \geqslant k_{1} \geqslant 3$, we have $W S\left(2 ; k_{1}, k_{2}\right) \geqslant k_{1}\left(\frac{k_{1}+1+\left(k_{2}+1\right) k_{2}}{2}-1\right)$.
Proof. Let $k_{1}\left(\frac{k_{1}+1+\left(k_{2}+1\right) k_{2}}{2}-1\right)=\ell$. Consider the coloring $\delta:[1, \ell-1] \rightarrow[0,1]$ defined as

$$
\delta(x)=\left\{\begin{array}{l}
1, \text { if } 1 \leqslant x \leqslant k_{2}\left(k_{2}+1\right) / 2-1=m \text { (say) } \\
0, \text { if } m+1 \leqslant x \leqslant k_{1} m+k_{1}\left(k_{1}+1\right) / 2-1=\ell-1 .
\end{array}\right.
$$

Suppose there exists a solution $a_{1}+a_{2}+\cdots+a_{k_{2}}=a_{k_{2}+1}$ with $a_{1}<a_{2}<\cdots<a_{k_{2}}$ to the equation $E_{k_{2}}$ monochromatic in color 1 . Now, $b_{k_{2}+1} \geqslant \sum_{i=1}^{k_{2}} i=k_{2}\left(k_{2}+1\right) / 2=m+1$, but $\delta(x)=0$ for $m+1 \leqslant x \leqslant \ell-1$, which results a contradiction. Again, suppose there exists a solution $a_{1}+a_{2}+\cdots+a_{k_{1}}=a_{k_{1}+1} \leqslant \ell-1$ with $a_{1}<a_{2}<\cdots<a_{k_{1}}$ to the equation $E_{k_{1}}$ monochromatic in color 0 . Now, $a_{k_{1}} \geqslant \sum_{i=1}^{k_{1}}(m+i)=k_{1} m+k_{1}\left(k_{1}+1\right) / 2=\ell$, which is a contradiction. Hence, $W S\left(2 ; k_{1}, k_{2}\right) \geqslant \ell$.

Corollary 3.2. For $k \geqslant 2, p \geqslant 0$, we have $W S(2 ; k, k+p) \geqslant k^{3} / 2+k^{2}(p+1)+k\left(p^{2}+p-1\right) / 2$.
Remark 3.3. This lower bound coincides with the exact values of $W S(2 ; 3,6), W S(2 ; 3,7), W S(2 ; 3,8), W S(2 ; 3,9)$, $W S(2 ; 3,10)$, $W S(2 ; 4,7)$, and $W S(2 ; 4,8)$.

The lower bound in Corollary 3.2 can be improved using a different coloring as follows:
Lemma 3.4. For integers $k \geqslant 2$ and $p \geqslant 0$,
$W S(2 ; k, k+p) \geqslant\left(-2 k+3 k^{2}+k^{3}+\left(-1+3 k+k^{2}\right) p+p^{2}+\left(-k+k^{2}+(-2+2 k) p\right) z+(2-2 k) z^{2}\right) / 2$
where $z=\lceil(\alpha+\sqrt{\beta}) /(4(k-1))\rceil-1$ with
$\alpha=2(k-1) p-\left(k^{2}+3 k-2\right)$ and $\beta=4\left(k^{2}-1\right) p^{2}+4\left(k^{2}+2 k-3\right) p+\left(k^{4}+22 k^{3}-11 k^{2}-12 k+4\right)$.
Proof. Let

$$
\begin{aligned}
& \ell=\left(-2 k+3 k^{2}+k^{3}+\left(-1+3 k+k^{2}\right) p+p^{2}+\left(-k+k^{2}+(-2+2 k) p\right) z+(2-2 k) z^{2}\right) / 2 \\
& u=\left(-2-k+2 k^{2}+k^{3}+\left(-1+3 k+k^{2}\right) p+p^{2}+\left(2-3 k+k^{2}+(-2+2 k) p\right) z+(2-2 k) z^{2}\right) / 2
\end{aligned}
$$

Consider the coloring $\delta:[1, \ell-1] \rightarrow[0,1]$ defined as

$$
\delta(x)=\left\{\begin{array}{l}
1, \text { if } 1 \leqslant x \leqslant z \\
0, \text { if } z+1 \leqslant x \leqslant k^{2} / 2+(2 z+1) k / 2-1=m \text { (say) } \\
1, \text { if } m+1=k^{2} / 2+(2 z+1) k / 2 \leqslant x \leqslant u ; \\
0, \text { if } u+1 \leqslant x \leqslant \ell-1 ;
\end{array}\right.
$$

We will prove that there is no solutions to the equation $E_{k}: x_{1}+x_{2}+\ldots+x_{k}=x_{k+1}$, monochromatic in color 0 and there is no solutions to the equation $E_{k+p}: x_{1}+x_{2}+\ldots+x_{k+p}=x_{k+p+1}$, monochromatic in color 1 .

Suppose there is a solution $a_{1}+a_{2}+\cdots+a_{k}=a_{k+1}$ with $a_{1}<a_{2}<\cdots<a_{k}$ to E_{k} monochromatic in color 0 . Then, $a_{k+1}=\sum_{i=1}^{k} a_{i} \geqslant \sum_{i=1}^{k} z+i=\left(2 k z+k^{2}+k\right) / 2=m+1$, then $\sum_{i=1}^{k} a_{i} \notin[z+1, m]$. Now we verify that $\sum_{i=1}^{k} a_{i}$ also does not belong to the interval $[u+1, \ell-1]$. We consider two cases:

If $a_{k} \leqslant m$, then $\sum_{i=1}^{k} a_{i} \leqslant \sum_{i=0}^{k-1}(m-i)=\left(-k+k^{3}+2 k^{2} z\right) / 2<u+1$.
If $a_{k} \geqslant u+1$, then $\sum_{i=1}^{k} a_{i} \geqslant\left(\sum_{i=1}^{k-1} z+i\right)+(u+1)>\ell-1$.
In each of the above cases, we reach a contradiction.
Suppose there is a solution $a_{1}+a_{2}+\cdots+a_{k+p}=a_{k+p+1}$ with $a_{1}<a_{2}<\cdots<a_{k+p}$ to E_{k+p} monochromatic in color 1. Then $a_{k+p+1}=\sum_{i=1}^{k+p} a_{i} \geqslant \sum_{i=1}^{z} i+\sum_{i=0}^{k+p-z-1}(m+1)+i=u+1$, which is a contradiction since a_{k+p+1} is colored in color 0 .

Corollary 3.5. Let $p=0$. If $k \geqslant 5$ then $z=1$ and $W S(2 ; k, k) \geqslant k^{3} / 2+2 k^{2}-5 k / 2+1$.
Remark 3.6. This lower bound coincides with the exact values of $W S(2 ; 5,5), W S(2 ; 6,6)$ and $W S(2 ; 7,7)$.
Corollary 3.7. $W S(2 ; k, k+1) \geqslant \begin{cases}k^{3} / 2+3 k^{2}-5 k / 2+2, & \text { if } k \geqslant 7(\text { where } z=2) ; \\ k^{3} / 2+5 k^{2} / 2+k=\ell(\text { say }), & \text { if } k \leqslant 6 .\end{cases}$
The $k \leqslant 6$ case can be proven using the coloring $\delta:[1, \ell-1] \rightarrow[0,1]$ as defined below and showing that there is no solution to E_{k+1} in color 1 and no solution to E_{k} in color 0 .

$$
\delta(x)=\left\{\begin{array}{l}
1, \text { if } 1 \leqslant x \leqslant k^{2} / 2+3 k / 2=m(\text { say }) \\
0, \text { if } m+1=k^{2} / 2+3 k / 2+1 \leqslant x \leqslant k^{3} / 2+2 k^{2}+k / 2-1=n(\text { say }) \\
1, \text { if } n+1=k^{3} / 2+2 k^{2}+k / 2 \leqslant x \leqslant k^{3} / 2+5 k^{2} / 2+k-1=\ell-1
\end{array}\right.
$$

Remark 3.8. The lower bounds coincide with exact values of $W S(2 ; 3,4), W S(2 ; 4,5), W S(2 ; 5,6)$ and $W S(2 ; 6,7)$
Corollary 3.9. $W S(2 ; k, k+2) \geqslant\left\{\begin{array}{l}k^{3} / 2+7 k^{2} / 2+k+1, \text { if } k \leqslant 7(\text { where } z=2) ; \\ k^{3} / 2+4 k^{2}-5 k / 2+4, \text { if } k \geqslant 8(\text { where } z=3) .\end{array}\right.$
Remark 3.10. The lower bounds coincide with the exact values of $W S(2 ; 3,5), W S(2 ; 4,6)$ and $W S(2 ; 5,7)$.
Proof of Theorem 2.1. The desired lower bound is obtained using Corollaries 3.2, 3.5, 3.7, and 3.9.

References

[1] T. Ahmed, Two new van der Waerden numbers: $w(2 ; 3,17)$ and $w(2 ; 3,18)$, Integers, $10(2010)$, \#A32.
[2] T. Ahmed, M. G. Eldredge, J. J. Marler, and H. Snevily, Strict Schur numbers, Integers, 13 (2013), \#A22.
[3] T. Ahmed and D. Schaal. On generalized Schur numbers. Exp. Math., 25:2 (2016) 213-218.
[4] L.D. Baumert. Sum-free sets. J.P.L. Res. Summary, 36-10 (1961) 16-18.
[5] A. Beutelspacher and W. Brestovansky. Generalized Schur number. Lecture Notes in Math., vol. 969, Springer, New York, 1982 , pp. 30-38.
[6] L.Boza, J.M. Marin, M.P. Revuelta, M.I. Sanz. 3-color Schur number. Discrete Appl. Math., 263 (2019) 59-68.
[7] H. Fredricksen and M. Sweet. Symmetric sum-free partitions and lower bounds for Schur numbers. Electron. J. Comb., 7 (2000) \#R32.
[8] S. W. Golomb and L. D. Baumert. Backtrack programming. Journal of the ACM 12:4 (1965) 516-524.
[9] M.J.H. Heule. Schur Number Five. In: The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), 2018.
[10] M.J.H. Heule, March RW. SAT Competition (2011). http://www.st.ewi.tudelft.nl/sat/.
[11] R. Rado. Studien zur Kombinatorik. Math. Z., 36 (1933) 424-480.
[12] A. Robertson, D. Schaal. Off Diagonal Generalized Schur Numbers Adv. Appl. Math. 26:3 (2001) 252-257.
[13] I. Schur. Uber die Kongruenz $x^{m}+y^{m} \equiv z^{m}(\bmod p)$. Jber. Deutsch. Math.- Verein., 25 (1917) 114-116.
[14] S. Znám. Generalization of a number-theorical result. Mat-Fyz.Casopis. Sloven Akad Vied, 16:4 (1966) 357-361.

[^0]: * Corresponding author. Tel.: +34-686238094.

 E-mail address: pastora@us.es

