
On Data Engineering

and Knowledge Graphs

F F F

A Context-Aware Proposal for Web-
Scale Knowledge Graph Completion

Agustín Borrego Díaz

University of Seville, Spain

Doctoral Dissertation

Supervised by Dr. Inma Hernández and Dr. David Ruiz

May, 2023

First published in May 2023 by
The DEAL Research Group
E.T.S. Ingeniería Informática
Av. de la Reina Mercedes s/n
41012 Seville, Spain

Copyright © MMXXIII Agustín Borrego Díaz
https://deal.us.es/team/aborrego/

borrego@us.es

This work is licensed under a Creative Commons BY-NC-ND 4.0 International License.
In the interest of furthering science, education and research, you are free to share,
copy, and redistribute these materials in any medium or format, and use them for
non-commercial purposes, giving appropriate credit as required. Although the results
presented in this document have been carefully tested, the publishers and holders of
the copyright do not make any warranties and accept no liabilities about them.

Support: The author’s doctoral studies have been supported by the Spanish FPU
scholarship program (FPU18/00363). The work and results presented in this
dissertation have been supported by the Spanish and Andalusian R&D programs
(grants TIN2016-75394-R, PID2019-105471RB-I00, P18-RT-1060, US-1380565).

https://deal.us.es/team/aborrego/
mailto:borrego@us.es
http://creativecommons.org/licenses/by-nc-nd/4.0

“El hogar no está en ningún lugar, sino en la gente. Si
vuelves a casa después de que todo el mundo se haya
ido, sólo verás lo que ya no existe.”

— La suerte del bufón, Robin Hobb

A Matilde, Javier y Caleb,
Manolo y Loli,

y Ren.

Contents

Acknowledgments . ix

Agradecimientos . xi

Abstract . xiii

Resumen . xv

I Preface

1 Introduction . 3
1.1 Research context . 4
1.2 Research rationale . 5

1.2.1 Hypothesis . 5
1.2.2 Thesis . 5

1.3 Summary of contributions . 6
1.4 Collaborations . 7
1.5 Structure of this dissertation . 7

2 Motivation . 9
2.1 Introduction . 10
2.2 Problems . 10
2.3 Analysis of current solutions . 12
2.4 Discussion . 14
2.5 Our proposal . 15
2.6 Summary . 16

II Background Information

3 Knowledge Graphs . 21
3.1 Introduction . 22
3.2 Current Knowledge Graphs . 23
3.3 Applications . 26

i

3.4 Open challenges . 28
3.4.1 Integration . 28
3.4.2 Correction . 29
3.4.3 Completion . 30

3.5 Summary . 31

4 Latent triple representations . 33
4.1 Introduction . 34
4.2 Tensor factorization models . 34
4.3 Translational models . 37
4.4 Neural network-based models . 40
4.5 Summary . 41

5 Path-based approaches . 43
5.1 Introduction . 44
5.2 Using relational paths . 44
5.3 Using entity neighborhoods . 45
5.4 Hybrid approaches . 47
5.5 Summary . 50

6 Rule-based approaches . 51
6.1 Introduction . 52
6.2 Rule mining methods . 53
6.3 Candidate filtering . 55
6.4 Hybrid approaches . 56
6.5 Summary . 59

III Our Proposal

7 Conceptual framework . 63
7.1 Introduction . 64
7.2 Triple . 64
7.3 Knowledge Graph . 65
7.4 Topology-based concepts . 66

7.4.1 Paths between entities . 66
7.4.2 Distance between entities . 66
7.4.3 Reachability . 67

7.5 Neighborhood subgraphs . 68
7.6 Candidates . 68

7.6.1 Candidate triples . 68
7.6.2 Fitness function . 69

7.7 Candidate filtering . 70
7.7.1 Criterion . 70
7.7.2 Rule . 70

7.8 Graph-based features . 70
7.8.1 Feature . 71
7.8.2 Feature group . 71

7.9 Summary . 71

8 CHAI: Our candidate filtering proposal 73
8.1 Introduction . 74
8.2 Our proposal . 74

8.2.1 Proposed criteria and rules . 75
8.2.2 Algorithm . 77

8.3 Software Architecture . 79
8.3.1 Design and performance considerations 81

8.4 Evaluation . 81
8.4.1 Setup and experimental data . 81
8.4.2 Evaluation parameters . 82
8.4.3 Results and discussion . 83

8.5 Limitations . 87
8.6 Summary . 87

9 CAFE: Our triple classification proposal 89
9.1 Introduction . 90
9.2 Our proposal . 90

9.2.1 Neighborhood-aware features . 91
9.2.2 Workflow . 94

9.3 Software Architecture . 96
9.3.1 Design and performance considerations 99

9.4 Evaluation . 100
9.4.1 Experimental data . 100
9.4.2 Experimental setup . 100
9.4.3 Results and discussion . 102

9.5 Limitations . 106
9.6 Summary . 107

10 SciCheck: Completing scientific Knowledge Graphs 109
10.1 Introduction . 110
10.2 Our proposal . 110

10.2.1 Extended feature set . 111
10.3 Evaluation . 113

10.3.1 Baselines . 113
10.3.2 Evaluation data . 114
10.3.3 Results and discussion . 115

10.4 Practical application: AI-KG . 120
10.5 Summary . 122

IV Final Remarks

11 Conclusions . 127

Bibliography . 129

List of Figures

3.1 The entity Magnus Carlsen in DBpedia . 23
3.2 A Wikipedia infobox . 24
3.3 An excerpt of WikiData . 25
3.4 Question answering using the Google Knowledge Graph 27
3.5 Knowledge Graph completion workflow 31

4.1 Representing a KG as a third order tensor 35
4.2 A third order tensor, sliced up in the RESCAL model 35
4.3 An ensemble of tensors, as proposed by the REST model 37
4.4 Visual representation of the TransE model in a 2D space 38
4.5 Visual representation of the TransH model in a 2D space 38
4.6 Visual representation of the TransR model in a 2D space 39

5.1 A visual representation of entity neighborhoods 46
5.2 Overview of the PATH-RNN method . 48
5.3 Overview of the Single-Model method . 48
5.4 Overview of the GMatching method . 49

6.1 Extracting and applying rules on a Knowledge Graph 52
6.2 A cycle of 5 relations in a sample Knowledge Graph 54
6.3 Overview of the r-KGE model . 56
6.4 Overview of the KALE model . 57
6.5 Overview of the RUGE model . 57
6.6 Overview of the IterE model . 58

7.1 Sample KG describing works, actors, writers and characters 64
7.2 Two neighborhood subgraphs for the KG shown in Figure 7.1 69

8.1 Architecture of CHAI . 79
8.2 Workflow of CHAI . 80
8.3 Evolution of the coverage (left) and reduction rate (right) values 84
8.4 Reduction rate (x) and coverage (y) for different fitness functions 85

9.1 In-depth view of the CAFE workflow . 94
9.2 Architecture of CAFE . 97
9.3 Workflow of CAFE . 97
9.4 F1 comparison between CAFE and other proposals 102
9.4 F1 comparison between CAFE and other proposals (cont.) 103
9.5 F1 scores in the WN11-AR-10 KG . 103

v

10.1 A small KG with research information about the Semantic Web 111
10.2 ROC curves of the different methods on AIKG-1M 118

List of Tables

2.1 Comparison of current proposals for KG completion 13

8.1 An example rule being built for the relation plays 79
8.2 Overview of the KGs used for evaluating CHAI 82
8.3 Max. coverage and reduction rate values (avg and 95% conf.) 86

9.1 Overview of the KGs used for evaluating CAFE 101
9.2 Detailed CAFE results . 104
9.2 Detailed CAFE results (cont.) . 105

10.1 Overview of the KGs used for evaluating SciCheck 114
10.2 Precision values for SciCheck in AIKG-1M 116
10.3 Recall values for SciCheck in AIKG-1M 116
10.4 Precision and recall values for AIKG-500 118
10.5 Micro-average precision and recall on four general KGs 119
10.6 SciCheck runtimes in seconds for all KGs (avg ± std) 119
10.7 Runtime comparison on AIKG-1M . 120

vii

Acknowledgments

“There is nothing which I can esteem more highly than
being and appearing grateful. For this one virtue is
not only the greatest, but is also the parent of all the
other virtues.”

— Marcus Tullius Cicero

E
ven though this is the first section of this dissertation, it was the last one to
be written. Perhaps because it may be the most important one. I would like
to begin by thanking my advisors, David and Inma, for having given me the

opportunity to join their group many years ago, and for their insightful guidance and
advice throughout all this process. More importantly, I want to thank them for leading
by their example of academical and personal honesty and integrity, and for the
genuine care with which they treat everyone under their supervision. In particular, I
want to thank David for the trust he has placed in me and my capabilities in a
multitude of occasions; and Inma, for her constant availability and support, even
when she barely had the time for it (and for her many excellent restaurant
recommendations!). I feel very lucky for having had the opportunity and the pleasure
to work with both of them.

I would also like to thank my colleagues, teammates, and friends from Geozoco:
Miguel and Fernando (and more recently, also Paula and Pepe) for the many good
times and adventures that we have had together. They were the ones that made going
to work not feel like going to work at all. Although we part ways for now, I leave with
the certainty that those who are already pursuing their PhD, and those who should
choose to do so in the future, are in very good hands. Regardless of the path they
choose, I am convinced they will succeed in it.

Furthermore, I want to extend my thanks to Dr. Francesco Osborne for facilitating
the research stays that were carried out throughout the course of my PhD, as well as

ix

Acknowledgments

to the rest of his colleagues: Dr. Danilo Dessì, Dr. Diego Reforgiato Recupero, and Dr.
Davide Buscaldi, for consistently finding the time to keep furthering our collaboration
even to this day, for sharing their expertise in scientific Knowledge Graphs and many
other fields with us, and for all the work that we have done together.

I want to also acknowledge and thank the public education and scholarships
system that, even with its many flaws and imperfections, has allowed me, and many
others like me, to receive a high-quality education virtually free of charge, and to
achieve my highest potential when I perhaps could not have afforded it. Likewise, I
would like to thank the many teachers that I have had throughout the years, both in
and out of university, without whom I could not have reached this point. During my
PhD scholarship, I have had the privilege of teaching in the same university halls
where I was a student not too long before. I firmly believe that the best teachers are
those who know there is always something new they can learn, and thus I would also
like to thank the students that I have had during these years, from whom I have
learned a lot. I can only hope that I was the teacher they deserved.

These final lines are dedicated to the most important people in my life, those who
make me feel at home no matter where I am. To my grandparents Loli and Manolo,
who did everything they could, and sometimes even more, to make sure we always
had whatever we needed. To my parents Javier and Matilde, and my brother Caleb, for
their absolute, unconditional, and unwavering love, support and understanding. And
to my partner Ren, for an infinity of reasons that could not, and need not, be listed on
these pages.

x

Agradecimientos

“No hay nada que pueda tener en más alta estima que
ser y mostrarse agradecido. Porque esta virtud no sólo
es la más grande, sino que también es la madre de
todas las demás virtudes.”

— Marco Tulio Cicerón

A
pesar de que ésta es una de las secciones que encabeza el presente trabajo,
fue la última en ser escrita. Tal vez porque, en cierto modo, es la más
importante de todas. Me gustaría comenzar estas líneas dando las gracias a

mis directores de tesis, David e Inma, por haberme brindado la oportunidad de
unirme a su grupo de investigación hace ya algunos años, y por su guía y apoyo
constante durante todo este proceso. Sobre todo, me gustaría reconocer públicamente
su ejemplo de integridad académica y personal, y el cariño sincero con el que tratan a
cualquiera bajo su supervisión. Particularmente, quiero agradecer a David la
confianza que ha puesto en mí y en mis capacidades en una gran multitud de
ocasiones, que espero haber correspondido; y a Inma, su apoyo y disponibilidad
constantes, incluso en momentos en los que a duras penas tenía el tiempo para ello (y
por sus muchas y excelentes recomendaciones de restaurantes para nuestras comidas
de grupo). Ha sido un auténtico placer y un privilegio trabajar con ellos.

Me gustaría también agradecer a mis colegas —en todas sus acepciones— de
Geozoco, Miguel y Fernando (y también a Paula y Pepe, que se han unido más
recientemente) por todos los momentos y risas que hemos compartido juntos. Quizá
su compañía ha hecho que trabaje algo menos de lo que debería, pero es el precio a
pagar por tener tan buenos compañeros. Aunque tomemos caminos separados, estoy
convencido de que encontrarán el éxito (y, más importante, la felicidad) en cualquier
rumbo que decidan tomar. Tengo también la tranquilidad de saber que los que
decidan iniciar su doctorado, y los que ya lo han hecho, no podrían estar en mejores
manos.

xi

Agradecimientos

Quiero también agradecer al Dr. Francesco Osborne por gestionar y facilitar las
estancias de investigación que he realizado a lo largo de mis estudios de doctorado, y
al resto de sus compañeros: Dr. Danilo Dessì, Dr. Diego Reforgiato Recupero, y Dr.
Davide Buscaldi, por su colaboración continuada que aún se extiende al día de hoy,
por compartir su gran dominio de los grafos de conocimiento científicos y muchos
otros temas con nosotros, y por todo el gran trabajo que hemos hecho juntos.

Debo también agradecer al sistema público de educación y becas que, con sus
muchos fallos e imperfecciones, me ha permitido tanto a mí como a muchos de mis
compañeros acceder a una educación de alta calidad y alcanzar nuestro máximo
potencial sin prácticamente coste, con independencia de nuestras posibilidades
económicas. Me gustaría también agradecer a los muchos profesores que he tenido,
tanto en la universidad como fuera de ella, ya que sin ellos nunca habría podido llegar
hasta aquí. En el transcurso de mi beca de doctorado, he tenido el privilegio de
enseñar en las mismas aulas donde yo mismo fui un estudiante no muchos años atrás.
Creo firmemente que los mejores profesores son los que saben que siempre tienen
algo nuevo que aprender de todo el mundo, por lo que quiero también agradecer a los
estudiantes que han pasado por mis clases en estos años, de los que he aprendido
mucho. Espero haber sido el profesor que se merecen.

Estas últimas líneas que escribo están reservadas, como no podría ser de otro
modo, para las personas más importantes en mi vida: las que me hacen sentir en casa
independientemente de dónde esté. A mis abuelos Manolo y Loli, que siempre hicieron
lo imposible y más para que tuviéramos todo lo que necesitábamos. A mis padres
Javier y Matilde, y mi hermano Caleb, por su amor y apoyo constante, inacabable e
incondicional. Y a Ren, por una infinidad de motivos que no podrían, y no necesitan,
ser enumerados aquí.

xii

Abstract

“Brevity is the soul of wit.”

— Hamlet, William Shakespeare

N
owadays, Knowledge Graphs are a widely used means to store structured
information for a variety of different domains and applications. However,
due to the fact that they are usually constructed using automated information

extraction techniques, they are often incomplete, either because these techniques failed
to extract the relevant information, or because it was not present altogether in the
original sources.

The problem that we address in this dissertation is how to find this missing
knowledge and complete Knowledge Graphs in an automatic manner. In the literature,
there are already many proposals to perform this task. However, they have important
drawbacks, namely: they rely on embedded representations, which are
computationally expensive to generate and demand frequent regenerations, they
require human intervention or human-provided data, they rely on external sources of
information, they cannot produce new knowledge on their own, or they do not scale
properly to very large Knowledge Graphs.

In this dissertation, we present a new automated proposal for completing
Knowledge Graphs that does not suffer from any of the previous drawbacks. Our
contribution is threefold: CHAI, a technique for automatically generating tractable sets
of candidate triples; CAFE, a high-accuracy triple classification proposal; and
SciCheck, a technique specifically tailored for completing scientific Knowledge Graphs.
Our theoretical and practical validation suggests that our proposal is very efficient and
effective in practice, and that it is able to successfully complete Knowledge Graphs of
varying natures.

xiii

Abstract

xiv

Resumen

“Lo bueno, si breve, dos veces bueno.”

— Baltasar Gracián

H
oy en día, los grafos de conocimiento son una herramienta ampliamente
usada para almacenar y representar información estructurada para una
gran variedad de dominios y aplicaciones prácticas. Sin embargo, debido

a que generalmente son construidos usando técnicas de extracción automática de
información, éstos suelen estar incompletos. Esto se debe a que las citadas técnicas
pueden no extraer satisfactoriamente la información deseada, o a que la fuente original
no contenía suficiente información.

El problema tratado en esta tesis doctoral es cómo encontrar este conocimiento
que falta y completar un grafo de conocimiento de manera automática. En la
bibliografía existen numerosas propuestas para lograr este objetivo, pero tienen
importantes inconvenientes, concretamente: necesitan utilizar embeddings, que son
computacionalmente costosos de obtener y requieren ser regenerados frecuentemente,
necesitan intervención humana o datos generados manualmente, tienen una
dependencia fuerte con fuentes externas de información, no tienen ningún modo para
generar nuevo conocimiento por ellas mismas, o no son aplicables a grafos de
conocimiento muy grandes.

En esta tesis presentamos una nueva propuesta automatizada para completar
grafos de conocimiento que no sufre de los problemas anteriores. Nuestra contribución
tiene tres elementos principales: CHAI, una técnica para generar automáticamente
conjuntos manejables de tripletas candidatas; CAFE, una propuesta de clasificación
de tripletas de alta precisión; y SciCheck, una técnica especialmente diseñada para
completar grafos de conocimiento científicos. Nuestra validación, tanto teórica como
basada en una aplicación práctica, sugiere que nuestra propuesta es muy eficiente y
efectiva en casos de uso reales, y que es capaz de completar satisfactoriamente grafos
de conocimiento de todo tipo.

xv

Resumen

xvi

Part I
Preface

Chapter 1

Introduction

“Ludwig Boltzman, who spent much of his life studying
statistical mechanics, died in 1906, by his own hand.
Paul Ehrenfest, carrying on the work, died similarly
in 1933. Now it is our turn to study statistical
mechanics.”

— States of matter, David L. Goodstein

I
n this dissertation, we report on our work to devise a proposal
to complete large Knowledge Graphs. This chapter introduces the reader
to the necessary research context behind it, and it is structured as follows: in

Section 1.1, we first introduce the context of our dissertation; in Section 1.2, we present
the hypothesis that has motivated it, as well as our thesis; in Section 1.3, we
summarize the contributions that we make in this dissertation; in Section 1.4, we detail
the collaborations with other researchers that we have conducted during the
development of our work; finally, in Section 1.5, we describe the structure of the rest of
the dissertation.

3

Chapter 1. Introduction

1.1 Research context

Today, more information is being generated, stored and published than ever before.
Among the many means for storing information, Knowledge Graphs (KGs) have risen
to popularity due to their ability to hold large amounts of structured knowledge,
either about a specific domain or across a range of domains. In a KG, information is
represented as triples, which are links between two entities through a certain relation.
These links are what confers KGs their graph-like structure, and make them a very
appealing option to hold complex, interconnected information in an efficient yet
expressive way.

Knowledge Graphs can be constructed in a variety of ways, although the most
popular ones generally work by automatically extracting information from
non-structured [40, 91] or semi-structured [50, 79] sources, processing them to add
semantic meaning or disambiguate the meaning of some concepts [9, 96], and then
making them available online through a web interface, an API, or both [21], although
private and commercial use is also common [40, 132].

Those automated means of construction allow KGs to contain very large amounts
of information, however, they introduce a number of issues. First, two Knowledge
Graphs that are constructed separately are generally not mutually compatible, either
because they represent the same concepts in different ways [114], or just because
they have a different language or modality [53, 66]. Second, the information they are
built upon may be incorrectly interpreted or simply factually wrong [107], leading to
incorrect facts being present in a KG. Finally, fully automated KG construction methods
are prone to missing information present in the original source [16]. Additionally, no
single source of information, or combination of them, explicitly contains all pieces
of information about a single domain. For these reasons, Knowledge Graphs are
fundamentally incomplete. The process of finding facts missing from a KG and using
them to complete it is a task known as Knowledge Graph completion, and it is the
focus of this dissertation.

In the literature, KG completion has been approached in a number of different
ways, however, most existing proposals can be classified in one of three ways [128].
Some authors propose using logical rules to find missing facts, which analyze the
existing information patterns in a Knowledge Graph to deduce rules that can then be
used to generate further knowledge [43, 44, 69, 77, 90, 115, 121, 154, 156, 167]. Other
authors have proposed using a variety of embedded knowledge representations, which
provide a more compact way to represent the information in a KG and can be leveraged
to generate more knowledge [17, 39, 46, 67, 82, 98, 140, 145, 155, 166]. A third line
of techniques focuses on using information that can be found in the paths that exist
between entities in a KG, and in the contexts of the entities themselves [12, 47, 48, 57,
70, 78, 80, 93, 144, 151]. In our proposal, we extend this third line of work.

4

1.2. Research rationale

Regardless of how they are classified, most existing KG completion proposals
have a very limited ability to actually generate new knowledge: they either rely on a
set of candidate facts being provided to them for evaluation, or require a pre-made
combination of one entity and one relation to be specified [128]. For this reason,
although they may yield satisfactory metrics in a theoretical evaluation, they are of
little practical use. A separate challenge in KG completion is to efficiently materialize
a set of candidate triples of a reasonable size, that aims to minimize the amount of
clearly incorrect triples it contains while retaining as many correct ones as possible. A
much smaller body of work can be found in this regard [103, 130, 169], even though it
is a key step for completing a Knowledge Graph.

1.2 Research rationale

In this section, we present the hypothesis that has motivated our research work in the
context of Knowledge Graph completion, and state our thesis, which we prove in the
rest of the dissertation.

1.2.1 Hypothesis

Nowadays, there is an increasing interest of individuals, organizations and companies
in using Knowledge Graphs to represent information about a certain domain and to
exploit said KGs to provide services. In the present day, practical applications such as
question answering [132], product recommendations [104, 170], data retrieval [157] and
meta-research [5, 37] already rely on Knowledge Graphs. However, these applications
need the data present in KGs to be as complete as possible, which makes it necessary
to expand them after their creation.

According to the previous argumentation, we conclude that our hypothesis is the
following:

Knowledge Graphs provide value to individuals and companies alike by supporting
applications that are widely used today, and their usefulness is likely to keep
growing. Due to their incompleteness, there is a need to refine them and find the
information that they are missing in order to expand them.

1.2.2 Thesis

There already exist a number of techniques that can be applied to perform Knowledge
Graph completion, e.g., [12, 17, 39, 43, 44, 46, 47, 48, 57, 67, 69, 70, 77, 78, 80, 82, 90, 93,
98, 115, 121, 140, 144, 145, 151, 154, 155, 156, 166, 167]. Unfortunately, they do not fulfill
a number of requirements for their application to large Knowledge Graphs. Those that
rely on extracting and applying rules suffer from a particularly poor scalability, which
has been acknowledged in the literature [44]. A large number of proposals use latent

5

Chapter 1. Introduction

representations such as tensors, or entity or relation embeddings. While they can be
effective, they are hindered by the fact that these representations must be obtained
beforehand, which is a very computationally intensive task, and they must be updated
entirely when a new entity or relation is introduced to the graph, which is a frequent
event. Furthermore, many other proposals for KG completion need to access external
or manually-provided information, making them not fully automatic or self-contained.

In light of the previous reasoning, we conclude that our thesis is as follows:

In the context of Knowledge Graph completion, it is possible to overcome the
problems of existing proposals and develop a new one to automatically complete the
missing information in a large KG, in a way that does not rely on external
information or alternative representations, but that still achieves a high
effectiveness.

1.3 Summary of contributions

To prove our thesis, we have devised a number of proposals that address different
aspects of the problem of Knowledge Graph completion, namely:

• CHAI, a technique that is able to quickly filter out a large amount of candidate
triples, leaving only the most promising ones. To do this, CHAI generates a
number of rules that determine which triples have a higher chance of
representing correct facts and deserve further evaluation, and which ones are
most likely wrong and should be discarded immediately. Each of these rules is
generated in an iterative manner, evaluating which continuation for it is the most
promising. After a rule has been expanded, it is assessed again to determine
whether it needs to be expanded further or not.

Regarding this contribution, the article that describes it [19] was accepted and
presented at K-CAP 2019.

• CAFE, a technique that is able to learn what constitutes a correct and a wrong
fact, and thus can select only the correct triples provided by CHAI, which can
then be added to a KG, completing it. CAFE relies upon a set of
neighborhood-aware features that are able to accurately characterize the
neighborhoods of a pair of entities. It then uses these features to transform all
triples it is provided into feature vectors, and trains a set of neural classification
models to learn to distinguish between correct and incorrect knowledge.

Regarding this contribution, the article that describes it [20] was published in the
EAAI journal.

6

1.4. Collaborations

• SciCheck, a proposal that is specifically designed to complete scientific
Knowledge Graphs. Due to the particularities of these KGs, regular KG
completion proposals do not provide satisfactory results. SciCheck overcomes
these issues by considering the semantic similarities of the research concepts in a
KG and by leveraging the rich ontologies that such KGs usually have.

Regarding this contribution, the article that describes it [22] was published in the
IEEE Access journal.

1.4 Collaborations

Two research visits were carried out, from September 3 to December 4, 2021; and from
September 1 to December 1, 2022; to the research group of Dr. Francesco Osborne
at the Knowledge Media Institute (KMI), which is a research institution within The
Open University (United Kingdom). Dr. Osborne and his colleagues are experts in
the creation, refinement, and exploitation of Knowledge Graphs [5, 34, 35, 36, 37, 109,
122, 123, 124]. During these stays, we applied our proposal to some of the scientific
Knowledge Graphs they had created in order to complete them and find missing
research knowledge, resulting in an improved version of our technique specifically
tailored for scientific Knowledge Graphs, as well as in a more complete version of
one of their scientific KGs. Additionally, we carried out some work to apply KG
completion techniques to detect possible future research hypotheses, based on the
scientific knowledge available today.

1.5 Structure of this dissertation

This dissertation is structured as follows:

Part I: Preface. It encompasses this introduction and Chapter 2, in which we provide
the motivation for our research work and we conclude that the existing
proposals for automatically completing Knowledge Graphs have a number of
drawbacks.

Part II: Background Information. It provides information about Knowledge Graphs
and the different proposals to complete them that can be found in the literature.
In Chapter 3, we introduce the concept of Knowledge Graph, their main
characteristics and the current open challenges regarding them. In Chapter 4, we
present different proposals to complete KGs that rely on latent triple
representations. In Chapter 5, we provide an overview of the KG completion
proposals that use information found in paths between entities and, in Chapter 6,
we summarize the existing proposals to perform this task using logical rules.

7

Chapter 1. Introduction

Part III: Our Proposal. It reports on the main contribution of this dissertation. In
Chapter 7, we define a common framework of definitions and concepts. In
Chapter 8, we present our proposal for automated candidate triple filtering,
which is able to quickly discard a large number of incorrect triples. In Chapter 9,
we describe our proposal for triple classification, which can assess the
correctness of a triple with a high efficacy. Finally, in Chapter 10, we present our
technique for completing scientific Knowledge Graphs, along with a practical
use case.

Part IV: Final Remarks. It contains Chapter 11, which concludes this dissertation and
presents some possible future research directions.

8

Chapter 2

Motivation

“The worthwhile problems are the ones you can really
solve or help solve, the ones you can really contribute
something to. No problem is too small or too trivial if
we can really do something about it.”

— Richard Feynman

D
espite Knowledge Graph completion being a very active research topic, the
current proposals for carrying it out still have some drawbacks that hinder
their applicability in practice, and which should be solved. Our goal in this

chapter is to present the problems that arise in practice when completing Knowledge
Graphs, and to motivate the need for a new proposal. This chapter is organized as
follows: Section 2.1 introduces it and provides the necessary background knowledge,
Section 2.2 presents the problems of KG completion in detail, Section 2.3 analyzes the
current approaches and their main problems, Section 2.4 explains how none of the
existing proposals solves all practical problems at a time, Section 2.5 introduces our
contributions and compares them with the existing proposals in the literature; finally,
Section 2.6 summarizes the chapter.

9

Chapter 2. Motivation

2.1 Introduction

Nowadays, there is an increasing interest of individuals, organizations and companies
in Knowledge Graphs, in order to organize, store and publish their data. This,
in turn, can support many practical applications in a variety of domains, such as
commerce [104, 170], education [3, 27], research [34, 37, 153], or healthcare [51, 157, 171],
to cite a few.

Ideally, these Knowledge Graphs should be as complete as possible, to make sure
that they include all pieces of knowledge that may be relevant to the organization that
manages it or the users they support. However, due to the way in which they are
constructed, it is well-known that this is not the case [62, 107, 109, 128]. Those that
are automatically built from external knowledge sources rely on the completeness of
the original source and the capabilities of automated information extractors, which
are far from perfect [16, 91]. Additionally, KGs that are built manually, either by their
creators or by a crowdsourced process, tend to be much smaller in size [89]. Due to
these reasons, there exists a large number of incomplete KGs under active use today,
and a need to complete them [75, 101, 110, 131, 132].

In the literature, there are different proposals to address the problem of completing
Knowledge Graphs, e.g., [12, 39, 43, 46, 47, 57, 69, 70, 77, 80, 82, 90, 93, 121, 140,
144, 145, 151, 154, 156, 166, 167]. Unfortunately, these proposals have a number of
drawbacks that hinder their applicability in practice. Consequently, it is still necessary
to research on the field of Knowledge Graph completion, which is our purpose in this
dissertation.

2.2 Problems

Completing Knowledge Graphs is not a trivial task and, if not performed correctly, it
may reduce the quality of the knowledge contained in them. In this section, we present
the problems that must be addressed by proposals that perform this task in order to
be useful in practice. These problems are as follows:

(P1) To rely on embedded representations of entities and/or relations: Many of the
current proposals rely on generating, or being provided with, embedded
representations of the entities and/or relations in a Knowledge Graph. These
embedded representations are more compact versions of the elements they
represent, usually as a vector that encodes the position of an entity or relation in
an N-dimensional space. Embedded representations can be useful because they
can capture meaningful semantic similarities between different elements,
however, their use hinders the practical application of a proposal. Those
proposals that require that embedded representations be provided to them are
no longer stand-alone, they instead have a strong dependence with the tools that

10

2.2. Problems

generates the embeddings and the quality of them. Even those that generate
them themselves suffer from another issue: the need to completely remake them
—incurring in a very high computational cost— whenever a new entity or
relation is added to the KG, which is an event that tends to happen
frequently [40, 91].

(P2) To depend on external sources of information: An external source of
information can be a structured or semi-structured repository of information, an
information retrieval or query system, another Knowledge Graph or, in general
any means for automatically accessing information besides the Knowledge
Graph that is to be completed. Depending on these external sources introduces a
single point of failure in the KG completion process that is not admissible in
many practical and commercial applications. Furthermore, depending on the
nature of the information source, its contents or means of access may change
without any previous warning, rendering the KG completion proposal ineffective
or, at least, requiring extensive maintenance.

(P3) To need user-provided data or supervision: Knowledge Graphs can store large
amounts of information; some of the most well-known KGs used nowadays
contain millions of triples, and some of them can reach even higher orders of
magnitude [132]. For this reason, it is not reasonable to rely on any sort of
human-provided information in order to complete them. The required volume of
human input for a standard Knowledge Graph would be unattainable for just a
few human experts, and using a crowdsourcing process would greatly decrease
the quality of the information that is fed to the KG completion process.

(P4) To not have any means to automatically generate new knowledge: Many of
the existing KG completion proposals in the literature are able to determine
whether a triple is correct or not, which is undoubtedly an important step, but
they do not have any mechanisms to autonomously generate new knowledge.
Instead, they rely on a set of possible facts being passed on to them for
evaluation, but they do not specify how this set of facts should be created. Other
proposals have a limited way to do this, by suggesting which entities are more
likely to appear in a triple along with another given entity and relation.
Although it is an improvement, it is still not practical to assess all possible pairs
of entities and relations in a KG.

11

Chapter 2. Motivation

(P5) To not be applicable to large Knowledge Graphs: As mentioned previously,
most Knowledge Graphs contain large volumes of information. Even if a
proposal relies entirely on information present in the graph, some of them use
approaches that are known not to be scalable enough to be applied to some of
the most popular Knowledge Graphs available nowadays.

2.3 Analysis of current solutions

There already exist a number of proposals for completing Knowledge Graphs in the
literature. In Table 2.1, we summarize them and the problems they suffer from, and in
the following, we discuss them in more detail:

Bordes et al. [17] devised a proposal that learns embedded representations of the
entities in a Knowledge Graph, in order to place them in an N-dimensional space
while transforming semantical similarities into physical closeness in said space. In this
proposal, the correctness of a triple can be checked by evaluating the relative positions
of its two entities in the embedded space.

Galárraga et al. [43] proposed a rule extractor that is able to capture common
patterns in a Knowledge Graph using Inductive Logic Programming (ILP), and express
them using first-order rules. Once these rules have been mined, they can be applied to
materialize new knowledge in the KG.

Gardner and Mitchell [47] introduced a technique that defines a series of features
to characterize the path between two entities, and then analyzes a large number of said
paths to learn to identify a possible direct connection between the entities. However,
it requires the manual introduction of an “Alias” relation, which indicates that two
entities in a KG refer to the same concept in the real world.

Guo et al. [55] presented a proposal that combines the use of entity embeddings
and logical rules. It provides a shared framework in which rules and embeddings
can directly interact with each other. This is done by representing the triples in a KG
mathematically, and defining a series of operators. The semantic information present
in the entity embeddings helps expand the predictive capabilities of the rules that this
proposal produces.

Jiang et al. [69] proposed another approach that uses ILP to find and exploit rules
in a Knowledge Graph, more particularly, by analyzing the intervals of validity of
the facts contained within it and reasoning when other related facts will start or stop
being valid. This requires the introduction of temporal annotations in the KG which,
generally, must be manually provided.

12

2.3. Analysis of current solutions

Proposal P1 P2 P3 P4 P5

Bordes et al. [17] X X X X X

Galárraga et al. [43] X X X X X

Gardner and Mitchell [47] X X X X X

Guo et al. [55] X X X X X

Jiang et al. [69] X X X X X

Kazemi and Poole [72] X X X X X

Lao et al. [78] X X X X X

Lin et al. [82] X X X X X

Nickel et al. [98] X X X X X

Shi and Weninger [130] X X X X X

Trouillon et al. [145] X X X X X

Wang et al. [155] X X X X X

P1 = To rely on embedded representations of entities and/or relations; P2 = To depend
on external sources of information; P3 = To need user-provided data or supervision;
P4 = To not have any means to automatically generate new knowledge; P5 = To not be
applicable to large Knowledge Graphs.
A X means that the proposal is free from a problem, while X means that it is present.

Table 2.1: Comparison of current proposals for KG completion

Kazemi and Poole [72] also leverage entity and relation embeddings, and propose
adding an extra inverse relation for every one that is already present in a KG. This
allows their proposal to reach a higher degree of expressivity, while its simple
embedding model allows it to be applied to large KGs.

Lao et al. [78] presented a technique that uses random walks to traverse the space
in the KG between the two entities of a triple. By analyzing examples of correct
and incorrect triples, their proposal is able to learn whether two entities should be
connected according to the possible paths that can be traced between them.

Lin et al. [82] proposed a different use of embedding spaces, by defining two
groups of them, one exclusively for entities and one for every different relation present

13

Chapter 2. Motivation

in a KG. Their model is able to express triples as transformations between relation
spaces through the use of projection matrices. The increased number of embedding
spaces makes it more computationally complex, but also more effective.

Nickel et al. [98] suggested using tensors to represent a Knowledge Graph, and then
factorizing those tensors to obtain more compact representations of the knowledge in
them. Their approach works by using a third-order binary tensor that holds information
about which entities are connected in the graph and through which relation, and then
performing a series of mathematical operations that result in another tensor, with
confidence levels for any possible fact that could be introduced in the KG, given its
current entities and relations. However, the size of the tensor scales quadratically with
respect to the number of entities, making it a poor choice for large KGs.

Shi and Weninger [130] introduced a proposal that uses not only the embeddings
of an entity, but also of its textual description, to look for additional levels of semantic
similarity. Additionally, their proposal does not rely on generating negative examples,
like most other existing state-of-the-art proposals do. However, it relies on external
sources of information to retrieve the descriptions of the entities.

Trouillon et al. [145] proposed a technique that factorizes the tensor representation
of a KG, but instead of binary values, it uses complex numbers. This can be seen as
generating two separate tensors: one which contains the real parts of the values, and
another one that contains the imaginary parts. The usage of complex numbers allows
it to simplify some of its internal calculations, making it slightly more efficient.

Wang et al. [155] proposed using translation on hyperplanes to change the
embedded representation of an entity, depending on which relation is being used to
link it with another entity. However, these translations, just like the overall embedding
space, must be re-learned whenever a change in the KG occurs.

2.4 Discussion

The previous proposals have problems that hinder their applicability in practice.
Regarding the use of embeddings (P1), most of the existing KG completion techniques
in the literature rely on them to some extent [17, 55, 72, 82, 98, 130, 145, 155]. This is
problematic because, as discussed, most KGs are in constant expansion, and adding
any entity or relation to the KG must trigger a re-computation of said embeddings,
which is not feasible in practice.

Jiang et al. [69] and Shi and Weninger [130] propose techniques that depend on
outside information (P2), making them vulnerable to changes in the sources of external
information. Furthermore, the proposals made by Gardner and Mitchell [47] and Guo
et al. [55] are not fully automated, and require manual intervention by the users (P3).

14

2.5. Our proposal

Regarding the automated generation of new knowledge (P4), there are few
techniques that are able to do it independently. The approaches proposed by
Galárraga et al. [43] and Jiang et al. [69] provide a straight-forward way to achieve this,
since they generate first-order logical rules that can be used to materialize new
knowledge in the KG. The tensor factorization approaches introduced by Nickel et al.
[98] and Trouillon et al. [145] also enable this by traversing the resulting tensor, which
contains confidence scores for all possible facts, and adding those whose score exceeds
a certain threshold (although this may be time-consuming given the size of the
tensors). Finally, Shi and Weninger [130] use a simplified way of generating candidate
triples, by generating and examining those in which the left-hand entity and relation
already appear together somewhere else in the KG.

Most existing proposals can be applied to large Knowledge Graphs (P5), although
there are some exceptions. The proposals made by Galárraga et al. [43] and Jiang
et al. [69] rely upon rule mining through ILP, which is known to scale poorly to large
collections of facts [128]. Additionally, tensor factorization techniques, such as those
proposed by Nickel et al. [98] and Trouillon et al. [145], need to generate tensors that
contain R · E2 elements, where R is the number of distinct relations in a KG and E is
the amount of different entities. This size can quickly become unmanageable when the
KG contains more than a few thousand entities.

2.5 Our proposal

In this dissertation, we present a proposal for Knowledge Graph completion that does
not suffer from the previously discussed problems. Our proposal consists of three
different elements, each of which solves different problems regarding KG completion:

To determine the correctness of a triple, we introduce CAFE, our triple classification
technique. It relies solely on path and entity neighborhood information present in
the graph, which, contrary to embeddings, does not require any pre-computation
or significant re-generation when the graph changes (P1). It is also able to operate
taking only a Knowledge Graph as input, without any additional dependencies on
external sources of information (P2). CAFE works by transforming the triples in a
KG into a set of labeled feature vectors, using a novel set of context-aware features,
and then learning to differentiate between correct and incorrect triples in a completely
automated manner, without any user intervention (P3).

We also present CHAI, our proposal for automatically generating candidate triples.
CHAI is able to materialize sets of possible facts of a reasonable size, that include most
of the information that is missing in a KG. These facts can be passed on to a triple
classification technique such as CAFE, thus solving the problem of generating new
knowledge (P4).

15

Chapter 2. Motivation

Finally, to prove the applicability of our proposal, we introduce SciCheck, an
extension of CAFE specifically tailored to scientific Knowledge Graphs. We show that
SciCheck can be applied to AI-KG, a large scientific KG with over 14 million triples,
yielding very satisfactory results and taking considerably less time than other existing
approaches in the literature (P5).

2.6 Summary

In this chapter, we have motivated the reason for this dissertation. We have analyzed
the problems of completing Knowledge Graphs and the current proposals in the
literature to carry out this task, and we have concluded that none of these proposals
solves all of the presented problems at a time.

16

2.6. Summary

17

Chapter 2. Motivation

18

Part II
Background
Information

Chapter 3

Knowledge Graphs

“Knowledge is hot water on wool. It shrinks time and
space.”

— House of Leaves, Mark Z. Danielewski

K
nowledge Graphs (KGs) are collections of facts that are represented in a
graph-like structure, with entities and connections between them. This
chapter provides an introduction to KGs, and it is structured as follows:

Section 3.1 introduces the reader to their history and main characteristics. Section 3.2
provides an overview of the most prominent KGs in use nowadays. Section 3.3 presents
some of the many practical applications of Knowledge Graphs. Section 3.4 reflects
on the main current challenges regarding KGs. At last, Section 3.5 summarizes and
concludes this chapter.

21

Chapter 3. Knowledge Graphs

3.1 Introduction

Representing and storing structured domain-specific knowledge has been an active
research topic since at least 1970, when the first relational databases were
introduced [29]. Given their indisputable success, many alternative means of
representing knowledge in an structured manner have been proposed over the years.
One of such proposals was using what was coined as a Knowledge Base (KB) [60], a
collection of facts that are stored as direct relations between concepts. Contrary to
relational databases, which need to go through a normalization process that
introduces a number of indirections to represent a piece of knowledge, KBs were
considered more straightforward to operate and reason about [119]. A number of
Knowledge Bases were thus created and maintained throughout the subsequent years
by multiple organizations and research entities, which were both
general-purpose [14, 25, 79, 87, 111, 148] and domain-specific [26, 71, 141, 158, 159].

The information inside a Knowledge Base was stored in the form of entities,
which represented real-world or domain-specific concepts, and relations that link these
entities together. This is known as a triple: a combination of two entities by means of
a relation, which usually contains a verb. For example, a KB can represent the fact
that Magnus Carlsen is a chess player using the triple (Magnus Carlsen, plays, Chess).
Such triples were generally encoded in a KB using the RDF/XML format [31], or an
extension of it called RDFS, which allows for a higher degree of expressivity. However,
since RDF/XML is mainly intended for machine use, later KBs also used other formats,
like N3, Turtle, or RDF/JSON, which are more human-readable.

However, the introduction of the Google Knowledge Graph in 2012 [132] was a
pivotal point for both the industrial use and academic research of Knowledge Bases.
Rather than a simple collection of relations between names of entities, they started
to be seen as a rich, interconnected structure of elements (“things, not strings”) with
an enormous potential for practical and commercial applications. Many other large
companies of the likes of Amazon, Facebook, Microsoft and eBay soon followed
suit [75, 101, 110, 131], and the term Knowledge Graph (KG) rose to the popularity it
still enjoys nowadays, replacing the denomination “Knowledge Base”.

In the following sections, we present the most popular Knowledge Graphs that are
under active use today and the ways in which they are constructed. We then discuss
the many practical applications that can, and have been, derived from the usage of
KGs in commercial and academical contexts. However, despite their many benefits,
Knowledge Graphs still present several challenges that must be addressed to improve
their functionality and usefulness. Therefore, we also provide an overview of the main
open challenges that need to be addressed to refine and improve Knowledge Graphs.

22

3.2. Current Knowledge Graphs

3.2 Current Knowledge Graphs

Nowadays, there are a number of popular Knowledge Graphs under active use, either
commercial or academical. Some of the most prominent ones are as follows:

• DBpedia [79]: Initially, the DBpedia project aimed to obtain a graph-like structure
from semi-structured information sources, mainly, from the infoboxes present in
Wikipedia articles (see Figure 3.2). Once this was achieved, DBpedia was further
enhanced by adding links to external KGs and general open resources. DBpedia
is both a multi-domain and multi-language KG, with a rich and publicly available
ontology that enhances the contents in it. It also supports live synchronization
with dynamic Wikipedia articles, to ensure that its knowledge is consistently
up-to-date.

Figure 3.1: The entity Magnus Carlsen in DBpedia

• YAGO [111]: A Knowledge Graph that shares a number of similarities with
DBpedia. Just like it, YAGO is also a KG that extracts semi-structured information
from Wikipedia to create, as its authors put it, a “light-weight and extensible ontology
with high quality and coverage” [137]. A number of refinements are applied to the
knowledge stored in YAGO, such as canonicalization, which removes possibly
duplicate elements from the graph; or type checking, which prevents invalid
combinations of entities from being formed.

• FreeBase [14]: A large-scale, multi-domain KG that aimed to collect human
knowledge in order to facilitate its integration, usage and standardization. Unlike
the previously discussed KGs, which use Wikipedia as their main sources of
information, FreeBase was a collaborative project that relied on human editors
and curators to add knowledge to it. It was also one of the first multimodal

23

Chapter 3. Knowledge Graphs

KGs, since it allowed users to include text, images and media files. FreeBase
was acquired by Google in 2010 and, upon the release of the Google Knowledge
Graph, it was discontinued and put in a read-only mode. However, it is still a
popular Knowledge Graph in the academic domain, since many different research
works use it to benchmark their proposals.

Figure 3.2: A Wikipedia infobox

• WikiData [148]: After KGs such as DBpedia and YAGO successfully leveraged the
information in Wikipedia’s infoboxes, the Wikimedia Foundation soon realized
that the information contained in them could be very useful. However, the data in
these boxes needed to be manually added, edited and updated by human editors,
and constantly kept up-to-date in as many languages as the original articles were
available in. To alleviate this issue, they introduced WikiData as a centralized and
crowdsourced source of information, to supply Wikipedia articles and a number
of other applications with data. Contrary to most other KGs, and following
the philosophy of Wikipedia, all data entered into WikiData is not immediately
considered a fact, but rather a claim that must be supported by references to
outside sources. Both entities and relations in WikiData are denoted with codes,
which makes it language-agnostic, but can reduce its human interpretability if
they are not mapped to their human-readable names. Figure 3.3 shows a small
excerpt of WikiData, centered around the entity Artist.

24

3.2. Current Knowledge Graphs

Figure 3.3: An excerpt of WikiData

• NELL [91]: The Never-Ending Language Learning project, or NELL for short,
is a fully-automated system that scans the entire web, reads the contents of
a webpage, and attempts to extract information from plain text written by
humans. The information it extracts is then structured in the form of a triple and
inserted in a KG. This Knowledge Graph is thus, by its very definition, under
constant expansion. The NELL project allows users to rate an extracted fact
positively or negatively, depending on whether or not the fact makes sense and
is correct, and this allows the extractor to learn over time which facts are being
successfully extracted, consistently improving its capabilities. NELL can also
assign a confidence score to the facts it extracts, although only ~6% of its ~50
million facts have a high confidence score.

• MAKG [133]: A prime example of a domain-specific KG, the Microsoft Academic
Knowledge Graph is a very large collection of over 8 billion triples with meta-
information about research, such as academic publications, authors, institutions,
and domains of study, among others. The information in it is obtained directly

25

Chapter 3. Knowledge Graphs

from two main sources: academic publishers, such as ACM and IEEE, and
websites indexed by the Bing search engine, from which the information must be
extracted from a plain-text format. In total, more than 83 million papers and 20
million authors are present in this academic Knowledge Graph.

3.3 Applications

It has been established that Knowledge Graphs are a powerful tool to organize and
connect information in a semantically meaningful way, making it easier for machines
and services to understand and interpret complex data. The use of Knowledge Graphs
has expanded rapidly across a wide range of fields, including healthcare, education,
e-commerce, and many others [109]. By providing a structured representation of data,
Knowledge Graphs enable more accurate and efficient decision-making processes,
support natural language processing, and enhance the ability of machines to
understand the context and relationships between different entities.

In this way, Knowledge Graphs have proven to be an invaluable resource for a
variety of practical applications that we take for granted nowadays, which require
complex data management and analysis. Some of the most popular practical
applications of Knowledge Graphs are as follows:

• Question answering: Many search engines and personal assistants that are
ubiquitous today, such as Siri, Alexa, Cortana, and Google Assistant, combine
natural language processing (NLP) techniques, which helps them understand a
query posed by a user, with Knowledge Graphs, which are used to navigate
between entities and find the correct answer. Although most of the KGs that are
used for this purpose are not made public for commercial reasons, they often
contain a high amount of relations between both real-world and fictional entities
and people. An example of this in practice is shown in Figure 3.4.

• Product recommendations: Many authors [54, 104, 150, 170] have analyzed and
proposed using Knowledge Graphs to issue product or media recommendations
to users. By storing the relevant elements in a KG, such as the products that are
on sale and the relations between them, and the users that bought or rated a
product positively, one can apply a number of techniques to find a product that
will be appealing to a new user in the system. The same concept can be applied
for books or movies, a prime example of this is the movie information site IMDb,
whose information has been used by Amazon to build a movie recommendation
engine [113].

26

3.3. Applications

Figure 3.4: Question answering using the Google Knowledge Graph

• Advanced information retrieval: Traditionally, information retrieval systems
work by building and maintaining an index of a collection of documents and,
when a user submits a query to the system, returns the documents that match
the query more closely. However, this purely text-based approach falls short
when it comes to semantical problems, for example, disambiguating an entity in
the query, or interpreting it correctly. For this reason, some authors have
proposed using Knowledge Graphs to enhance this process: for example, during
the recent COVID-19 outbreak, Wise et al. [157] introduced a COVID-19 KG that
aggregated the most recently published scientific works regarding this disease.
This KG could be queried to quickly retrieve relevant research efforts, facilitating
a worldwide collaboration to quell the pandemic.

• Education: Multiple KG-centered proposals have been made in recent years to
aid in several aspects of education. For example, Chen et al. [27] presented
KnowEdu, a tool made for the purpose of building Knowledge Graphs out of
educational materials. It is able to extract the main concepts of a subject or
course, and then builds relations between them according to the activities and
evaluation activities that the students will have to carry out in the future. Aliyu
et al. [3] proposed building a KG containing the teachers, courses and scientific
literature for a university, and using it to recommend relevant courses and books
to students.

• Research: Besides the previously discussed MAKG, a number of other
Knowledge Graphs of research and academic entities have been built to help
researchers explore possible lines of investigation and find possible relevant
related materials. AceKG, introduced by Wang et al. [153], is a similar KG,
containing more than 3 billion triples with information about authors, papers,
venues, and so on. The Artificial Intelligence KG [34], and its extension, the

27

Chapter 3. Knowledge Graphs

Computer Science KG [37], also contain a large volume of information pertaining
research concepts, materials, tasks, and other similar entities in these fields.
Furthermore, Angioni et al. [5] introduced the Academia/Industry KG, to help
researchers identify trends in the constant exchanges between these two realms.

• Healthcare: It is undoubtable that having an efficient and effective healthcare
system is a cornerstone of a functional modern society. To help manage the ever-
growing amount of medical data and records that healthcare professionals have
to deal with, some proposals to integrate KGs in this field have been made. Zhang
et al. [171] presented HKGB, a KG builder aimed towards healthcare professionals
that leverages their expertise to construct medical Knowledge Graphs. Gong
et al. [51] proposed constructing KGs with information about medicines, diseases
and patients, in order to use it to suggest medicines to patients with particular
incompatibilities or intolerances.

3.4 Open challenges

Despite the fact that Knowledge Graphs are already a well-established concept in
research and industry, a number of challenges about their use and refinement still
remain [62, 107, 109]. In the following subsections, we delve into some of the most
prominent ones in more detail.

3.4.1 Integration

It is common that more than one Knowledge Graph contain information about the
same real-world concept or entity. While each individual KG may include different
additional information complementing it, it would be desirable that said information
be integrated together, so as to have a single source of truth that contains a more
comprehensive set of facts. The process of joining two or more Knowledge Graphs
together is known as KG integration or fusion.

The most challenging step of this process is determining which entities in different
KGs refer to the same one in the real world, a task known as entity alignment [114].
Although this has been a very active research topic, some future directions can still
be further explored. For example, it is still not clear how this can be done reliably
when the KGs to be integrated have different languages, which could be useful for
multilingual recommendation systems or question answering [66]. An attempt in this
regard has been made by Xu et al. [164] using neural networks, however, the alignment
accuracy they obtain is still not high enough to perform this process reliably.

Moreover, most KG fusion approaches assume that the Knowledge Graphs to be
fused together are of the same modality. This falls short in the presence of multi-modal

28

3.4. Open challenges

KGs, for example, the previously discussed FreeBase. Joining together two or more
KGs which entities can be represented in different formats is still an open challenge,
although some authors have made recent proposals. Guo et al. [53] have presented
HMEA, a multi-modal entity alignment technique by using hyperbolic spaces. Cheng
et al. [28] proposed MultiJAF, a framework for multi-modal entity alignment. Despite
this, the wide array of possible modalities that could be represented through a KG
make multi-modal alignment a very challenging and still unsolved task.

Furthermore, a related problem is entity disambiguation. This problem presents
itself during the process of building the KG, and consists in determining the specific
meaning of an entity written in natural text in the presence of ambiguity. For example,
contextual information is required to determine whether “Armstrong” refers to the
astronaut, the jazz musician, or the cyclist. If this is not solved correctly, even a
successful entity alignment can be poisoned by the fact that the entities that were
aligned were not disambiguated properly upon their creation, and thus do not actually
refer to the same concepts.

3.4.2 Correction

The previous analysis of the most popular Knowledge Graphs shows that automatic
construction is the most common way to build a KG, due to the sheer amount of
facts that they are intended to contain. It is therefore inevitable that these automated
methods introduce a certain degree of incorrect information in the KG, either because
it was not correctly interpreted, or because the original source of information was
wrong.

Refining a KG after its creation by detecting wrong facts is known as Knowledge
Graph correction. The most common way to perform this task is to do fact
validation [107], which assigns a confidence score in the interval [0, 1] to every triple in
the KG. Then, the triples that do not meet a minimum confidence threshold are
purged from the graph.

There exist a number of research works in the literature that propose different
ways to do fact validation. Pasternack and Roth [105] propose converting the facts in
a KG into natural language sentences, and then using more general methods for fact
checking. The same authors [106] also propose an alternative method, which groups
up similar facts in a KG that provide support for each other, and then joins these
groups to create more general justifications for the possible correctness of a fact. Gerber
et al. [49] have proposed using classifiers, which can learn which facts are wrong by
using a number of features. Of course, this requires that a manually-annotated set
of correct and wrong triples is provided, which can be an arduous task. Another
classification-based approach is proposed by Syed et al. [139], in this case, based on
textual evidence.

29

Chapter 3. Knowledge Graphs

A more refined —and challenging— approach to KG correction is to not only detect
which facts are wrong, but to amend them if possible so that they represent correct
knowledge. This is known as fact repairing. Due to the increased difficulty of the task,
a smaller body of work can be found in the literature. Töpper et al. [142] proposed
leveraging the ontology of a Knowledge Graph to detect and fix inconsistencies in
triples where the domain or range restrictions of the relation are violated, however,
their proposal requires a human to step in and select the correct version of it out of the
suggestions provided by the system. Bonatti et al. [15] proposed a fully-automated
method for fixing triples, but it requires provenance and trust annotations to be present
in the KG, which are relatively rare.

3.4.3 Completion

As previously discussed, most KGs are commonly built by extracting non-structured
or semi-structured information from web sources, though some KGs can be manually
curated by domain experts. When information extraction systems are applied to extract
knowledge from online sources, that information is then semantized [7, 96] and stored
in a KG as triples in the KG. Regardless of the specific process by which a KG is
constructed, the resulting graph usually lacks a certain amount of information, either
because said information was not originally present in the information source, or
because it was unsuccessfully extracted or semantized [16].

Because of this inherent incompleteness, KGs operate under the Open World
Assumption, i.e., a piece of information that is not present in a KG is not considered to
be incorrect, but rather just unknown [43]. Therefore, it is mandatory to refine KGs
after their creation in order to expand the knowledge they contain [107].

Deriving additional knowledge from an existing KG with the goal to augment it is
a task known as Knowledge Graph completion [107, 128]. In KG completion, the goal
is to identify triples that are missing from the KG and have a chance of being correct
that is as high as possible. To achieve this goal, a series of steps are usually carried out,
which are visually depicted in Figure 3.5.

First, the Knowledge Graph must be pre-processed in order to add negative triples,
in the case they are not present, and split them between a training and a testing
set [6]. Then, a KG completion model is trained and evaluated using the sets of
triples generated in the previous step. In parallel, a set of plausible candidate triples
is materialized. If the KG completion model yields a satisfactory efficacy after its
evaluation, it is applied on the candidate triples, to identify which ones are correct and
which ones should be discarded [19, 20, 128]. Finally, the triples considered correct are
added back to the Knowledge Graph, enriching it.

In opposition to the previous two challenges, which focus on information that
is already present in the graph, KG completion, by definition, focuses on finding

30

3.5. Summary

Training &

Testing

Splits

Training &

Testing

Splits

Filtered

candidates

KG Splitting

& Negatives

Generation

Model

learning and

evaluation

Candidate

Generation &

Filtering

Models

Candidates

evaluation

(_, _, _)✔

(_, _, _)✖

(_, _, _)✖

(_, _, _)✔

...

Missing

facts

KG

Pre-processing

Model learning

Candidate processing

Facts

identification

Figure 3.5: Knowledge Graph completion workflow

knowledge that is not yet present. For this reason, it is particularly hard, and a number
of authors have made different proposals to tackle it. Since the focus of this dissertation
is on Knowledge Graph completion, the following chapters provide a more in-depth
analysis of the existing proposals in the scientific literature to complete Knowledge
Graphs.

3.5 Summary

This chapter has introduced the reader to Knowledge Graphs. It has provided a brief
summary of their history and main characteristics, as well as a summary of the most
prominent KGs that can be found today. Furthermore, it has presented the reader with
an ample repertoire of practical applications of Knowledge Graphs, many of which we
use in our daily lives. Finally, it has introduced some of the challenges regarding KGs
that still remain open to this day, namely: Knowledge Graph integration, correction,
and completion.

31

Chapter 3. Knowledge Graphs

32

Chapter 4

Latent triple representations

“All problems in computer science can be solved by
another level of indirection, except for the problem of
too many layers of indirection.”

— David Wheeler

A
latent representation of a triple is one that exposes previously hidden

knowledge, such as semantic similarity to some other triple. Obtaining such
a representation is a popular way to perform Knowledge Graph completion,

and it can be achieved in a number of ways. In this chapter we introduce the most
prominent KG completion methods in the scientific literature that rely on latent
representations. This chapter is structured in the following manner: Section 4.1
provides an introduction to the matter, Section 4.2 presents the methods that perform
tensor factorization, Section 4.3 introduces the models that are centered around
embedded translations, Section 4.4 discusses the number of ways in which neural
networks can be used in this regard; finally, Section 4.5 provides a summary of the
contents of the chapter.

33

Chapter 4. Latent triple representations

4.1 Introduction

A popular approach to Knowledge Graph completion consists on changing the
representation medium of entities and relations entirely: instead of elements with a
semantic meaning in a graph structure, they are represented in a numerical way. This
then allows for the application of numerical methods to find missing entities, or
missing connection between the existing entities. This is known as a latent
representation.

One such way is by using tensors, a mathematical structure that can hold data
in any number of dimensions. Consequently, through a series of transformations,
the original tensor representing the Knowledge Graph is turned into another that
materializes some knowledge that was not previously readily available.

Another popular latent representation is by creating an N-dimensional space and
determining a position in it for every entity in a KG. An entity can then be referred
to as the N-dimensional vector that represents its position. Such a space is known as
an embedded space, and the position vectors are known as entity embeddings. In the
embedded space, the plausibility of any given relation can be checked by performing
a series of translations in it and evaluating the result, or by finding more complex
relations between the entity embeddings thanks to the use of neural networks.

4.2 Tensor factorization models

Tensors are a generalization of scalar numbers, vectors, matrices, and so on. Broadly,
a tensor of order N represents an N-dimensional collection of elements, where N
indices are necessary to address the position of an element. Any given Knowledge
Graph can be represented using a third-order tensor of size |E| × |E| × |R|, namely
X = {0, 1}|E|×|E|×|R|, where E is the set of entities in the KG, and R is the set of possible
relations in it. Using this representation, every element of the tensor is a binary number
{0, 1} denoting whether or not a given relation exists between a pair of entities. This
concept is visually represented in Figure 4.1.

Once this representation is achieved, the goal of tensor factorization models is
to compute a complementary tensor Y = [0, 1]|E|×|E|×|R| representing the correctness
confidence of all possible combinations of entities and relations. Note that the elements
in X are binary, while those in Y can take any real values between 0 and 1. Finally, to
complete the KG, the facts with the highest confidences in Y that are not still present
in the Knowledge Graph are added into it.

One of the first models in this line of work is RESCAL, which was proposed by
Nickel et al. [98]. RESCAL represents the data in a Knowledge Graph using a tensor
with the same structure as that shown in Figure 4.1. Then, it creates 2-dimensional

34

4.2. Tensor factorization models

i

j

k

|E|

|E|

|R|

Figure 4.1: Representing a KG as a third order tensor

slices of this tensor, one per each relation, which are illustrated in Figure 4.2. Each
slice, Xr, is factorized as Xr = ABr AT, where A is a matrix that contains the latent
representations of the entities, and B is another matrix that represents the interactions
of said entities for the relation r. Then, to predict the existence of a relation in them,
the confidence scores are looked up in the computed latent representations.

E
1 . . .

E
n

E

1

.

.

.

 E

n

Figure 4.2: A third order tensor, sliced up in the RESCAL model

Jenatton et al. [67] proposed the LFM model, an extension of RESCAL that scales
better to Knowledge Graphs with a higher number of relations. Similarly to the model
it builds upon, LFM represents the tensor as a series of Xr slices, but introduces a
more complex factorization based on a bilinear structure that is able to capture one-,
two-, and three-way interactions between the components of a triple. Additionally, the
matrix that represents the interactions between the latent representations of the entities
is further decomposed into smaller elements, which reduces the number of parameters
required for its computation and thus increases the efficiency of the model.

A combination of the previously discussed two approaches is proposed by García-
Durán et al. [46], who introduced the Tatec model. Tatec has features of both RESCAL
and LFM, learning two different embedded representations of the same Knowledge

35

Chapter 4. Latent triple representations

Graph and combining their confidences together as score(s, r, t) = s1(s, r, t) + s2(s, r, t),
where (s, r, t) can be any triple, and s1, s2 are the score functions of a bilinear and
trilinear tensor factorization model, respectively. Naturally, the scores emitted by both
models must be normalized before they can be combined. The authors also suggest
and benchmark a series of possible alternative ways to combine the scores of the two
constituent models within Tatec.

Liu et al. [83] proposed the ANALOGY model, which is also an extension of
RESCAL. ANALOGY derives its name from its focus on modelling and analyzing the
analogical properties that are captured in the embedded representations of the entities.
ANALOGY imposes further restrictions upon the relationship matrices of RESCAL, Br,
by demanding that they be normal (BrBT

r = BT
r Br) and commutative (BrBr′ = Br′Br).

This enables them to efficiently be block-diagonalized into a set of smaller matrices,
which the authors show that enables them to be used in mathematical formulations of
a lower complexity. Additionally, the factorization process of ANALOGY is guided by
a fully-differentiable goal, which increases its computational scalability.

A similar effort was carried out by Yang et al. [166], who introduced the DistMult
model. The authors of DistMult propose replacing the dense Br matrix of the RESCAL
model with a diagonal matrix, which greatly reduces its number of parameters and
allows for a much speedier execution.

Tay et al. [140] introduced the REST factorization model, which is especially
tailored for large Knowledge Graphs. REST relies upon random walks to sample small
subgraphs within the KG, and represents these subgraphs using tensors. The subgraphs
are further split up using a relation sparsification technique, yielding even smaller
tensors. The tensors representing different parts of the KG are combined together to
produce an ensemble model that can be representative of the entire Knowledge Graph.
This ensemble architecture is visually depicted in Figure 4.3. REST has provided
satisfactory results in practice, and its ability to work on-demand make it a convenient
choice for Knowledge Graphs that are in continuous expansion.

Trouillon et al. [145] proposed the ComplEx model, which is the first one to use
complex instead of real values in the tensors. This can also be seen as splitting
an embedded representation of the entities into two: one which contains the real
values of the numbers, and one that contains the imaginary parts. This increases
the expressiveness of the model, and makes it better suited to handle symmetric and
antisymmetric relations, which are traditionally more challenging for the previously
discussed models, due to the fact that they greatly increase the number of parameters
they must deal with [98, 134]. Perhaps counterintuitively, the use of complex numbers
simplifies its score function, since it only uses the Hermitian dot product, which is the
equivalent in C of the standard dot product in R.

36

4.3. Translational models

Tensor for the

complete KG

Subgraph

sampling

Relation

sparsification

Figure 4.3: An ensemble of tensors, as proposed by the REST model

Perhaps inspired by the naming of the previous model, Kazemi and Poole [72]
introduced the SimplE model, which aims to be more performant than other
approaches in this category. For each relation r present in a KG, SimplE considers an
additional inverse relation r−1 to it. Both are then represented using the vectors vr and
v−1

r , respectively. Thus, the confidence score for a triple (s, r, t) is computed as the
average of the confidence of (s, r, t) and (s, r−1, t). This configuration allows the
embedded representation of a relation and its inverse to be obtained independently,
resulting in a higher expressivity and a good performance in practice.

4.3 Translational models

A separate group of models represent entities as vectors in an N-dimensional space,
called embeddings, and relations as translations in that space. From this starting
point, their main goal is to define the transformations from entities to vectors and
the translations in such a way that, for every triple (s, r, t) in the KG, applying the
translation defined by r to the entity s should result in a vector as close as possible
to that of t. These models can then be used to provide a confidence value for the
correctness of any triple, by evaluating to what extent this concept holds true.

Bordes et al. [17] started this line of work with the TransE model. TransE defines a
single N-dimensional space to which all entities in a KG are mapped, and in which
every relation turns into a translation vector. Thus, it aims to generate this space
in such a way that, for any given triple (s, r, t), vs + vr ≈ vt, where vs, vt are the
vectors representing the s and t entities respectively, and vr represents the translation

37

Chapter 4. Latent triple representations

carried out by the relation r. The main intuition behind TransE is visually depicted in
Figure 4.4 for a simple 2D space.

Figure 4.4: Visual representation of the TransE model in a 2D space

Wang et al. [155] proposed the TransH model, which improves TransE by
considering that it may desirable for an entity to have a different embedded
representation depending on the particular relation that is being considered. TransH
achieves this by defining a particular hyperplane wr for every relation r, and then
projecting the entities onto these planes as e⊥ = ve − wT

r vewr, where e can be any
entity in the KG. Then, similarly to TransE, it optimizes the embedded space to ensure
that s⊥ + vr ≈ t⊥ for any triple (s, r, t). A similar visual representation is provided in
Figure 4.5.

s
⊥

t
⊥

Figure 4.5: Visual representation of the TransH model in a 2D space

Following up with the previous idea, Lin et al. [82] proposed the TransR model.
It acknowledges that an entity and a relation have a very different semantic meaning
and, for this reason, TransR makes a twofold contribution. On the one hand, it defines
two separate embedded spaces, one for entities and one for relations. On the other
hand, it creates a different entity embedded space for each relation. The transition

38

4.3. Translational models

from the entity space to the relation space is performed through a relational projection
matrix Mr. The translation goal thus becomes vsMr + vr ≈ vtMr. A graphical example
of this is provided in Figure 4.6.

Generic entity

space

Relation-specific

space

M
r

M
r

Figure 4.6: Visual representation of the TransR model in a 2D space

Ji et al. [68] introduced the TransD model, building upon TransH and improving
it by constructing mapping matrices dynamically for every entity. Furthermore, it
replaces the matrix multiplication operations used in the previous models with vector
multiplications, which increases its operational speed. A similar approach is proposed
by Do et al. [39] with TransF, which uses more lightweight matrices to perform the
translation.

Fan et al. [41] devised TransM, addressing the fact that the original TransE
proposal considers all triples to be equally important, and thus they all contribute
equally towards generating the embedded space in such a way that it optimizes the
transformation goal. TransM adds a weight parameter that can be assigned to every
individual triple, which affects its ability to influence the embedded space as a whole
and acts as an attention mechanism.

Xiao et al. [161] presented the TransA model, which uses an adaptive goal metric
during the embedding generation process, overcoming the simple metrics used by
other similar methods, making it more flexible when facing challenging relations.

Perhaps facing the prospect of running out of letters in the English alphabet to
continue with the previous naming scheme, Sun et al. [138] proposed the RotatE
model, which defines an embedded space that uses complex numbers. Contrary to the
previous models, where a translation is defined as a straight movement through the
space, RotatE defines each relation as a rotation on the whole embedded space.

39

Chapter 4. Latent triple representations

4.4 Neural network-based models

In parallel to the development of research centered around Knowledge Graphs, the
fields of neural networks (NNs) and deep neural networks (DNNs) have also seen
significant improvements in the last decade [23, 117, 147].

Consequently, a number of NN and DNN architectures have been applied to the
problem of completing a Knowledge Graph, by virtue of transforming a triple into a
representation that can be consumed by these models, and training them so that they
can learn what constitutes correct knowledge. Contrary to the previously discussed
translation-based models, NN models apply non-linear transformations to the data
they are provided. This can result in an increased ability to deal with more complex
data, however, it also makes their reasoning harder to understand.

One of the first models that were proposed in this regard was NTN, by Socher
et al. [134]. This model relies on a pre-computed set of word embeddings, in which
semantically similar words are expected to be close to each other in the embedded
space. NTN takes all the meaningful words in the name of an entity and averages the
respective word embeddings together, resulting in a single embedding for every entity.
In this manner, the embeddings of the two entities of a triple are provided as input to
a bilinear neural network, which then outputs a confidence score for the entity pair.
However, NTN is dependent on the availability and quality of the aforementioned
word embeddings. Furthermore, these embeddings must be computed again if an
entity with a novel word in its name is introduced in the Knowledge Graph.

A simplified version of NTN is used by Dong et al. [40] in their Multilayer
Perceptron (MLP) proposal. MLP is used in the Google Knowledge Vault, a KG
created by the same authors, to filter out possibly incorrect facts that are automatically
extracted from plain text around the Web. To make it more lightweight in order to be
applied to such a large KG, MLP changes the interaction function used by NTN to a
multi-layer perceptron, which is much faster to train.

A further refinement is proposed by Liu et al. [84], who introduced the Neural
Association Model (NAM). It uses deep neural networks to learn and infer the joint
conditional probabilities between two facts. One of the main strengths of NAM is
its increased explainability, since using conditional probabilities makes it easier to
justify the correctness of a triple using other triples known to be correct as supporting
evidence.

Guan et al. [52] proposed a Shared Embedding-based neural network (SENN) for
the task of KG completion. SENN aims to achieve a higher level of specialization by
using three separate neural sub-structures to predict a missing source entity, relation,
or target entity in a triple. The results of these structures are combined together to
assess the correctness of a whole triple. By virtue of being an ensemble of smaller

40

4.5. Summary

structures, SENN is also more efficient than some of the other pre-dating models.

The interconnected nature of Knowledge Graphs also calls for the application of
convolutional neural networks (CNNs). These networks do not focus on only one
entity at a time; they are also able to derive information from other entities close
to it, having a larger picture of the KG as a whole. In this line, Dettmers et al. [38]
introduced ConvE, a two-dimensional CNN that operates on the entire matrix that
represents entity embeddings. ConvE uses a traditional 2D convolution to augment its
predictive capabilities with respect to more classical NN architectures. It also has a
more reduced number of parameters that must be trained, increasing its efficiency.

An evolution of ConvE is the InteractE model, proposed by Vashishth et al. [146].
InteractE uses a novel circular convolutional structure, which enables it to capture
more meaningful interactions. Nguyen et al. [97] also build upon the main idea of
ConvE to introduce CapsE, a method that works by using a capsule network [120] that
converts the entities of a Knowledge Graph into images, and then performing more
traditional 2D convolutions on said images.

In more recent years, graph convolutional networks, also called simply graph neural
networks (GNNs) have emerged as a way to apply NNs to graph-like structures [24, 73,
160, 173]. It seems thus reasonable that Knowledge Graph completion could benefit
from the application of GNNs [168].

In this regard, Schlichtkrull et al. [125] proposed R-GCN, a type of GNN that
leverages graph neighborhoods in order to complete them. Shang et al. [127] have
proposed SACN, an encoder-decoder method based on this type of NN. For encoding,
SACN uses a composition of multiple weighted GNNs that is able to leverage
information from the structure of a Knowledge Graph and the attributes contained in
its entities. The decoder uses a modified version of the previously mentioned ConvE
model. The addition of GNNs allows it to outperform the original ConvE method.

4.5 Summary

In this chapter, we have presented an overview of the existing methods for Knowledge
Graph completion in the literature that rely on latent triple representations. We
have introduced and described the models that use tensors to model a KG, and then
factorize those tensors to obtain a predictive model. We have also presented the
models that embed entities in a higher-order space and perform translations on them
to find missing knowledge. Finally, we have enumerated the methods that use neural
networks to perform Knowledge Graph completion, and we have presented the neural
network architectures that are commonly used for this task.

41

Chapter 4. Latent triple representations

42

Chapter 5

Path-based approaches

“Caminante, no hay camino, se hace camino al andar.”
(“Traveler, there is no path, you make your path as
you walk.”)

— Antonio Machado

P
aths between entities are ubiquitous in any Knowledge Graph. For every
entity pair, there are most likely a considerable number of distinct paths that
connect them together. By analyzing these paths, many existing proposals

are able to learn which pairs of entities should be linked together, and which ones
have no direct connection whatsoever. Furthermore, paths can be used to navigate
the neighborhood of an entity and extract information from it. In this chapter, we
summarize the existing proposals for Knowledge Graph completion that leverage
path information. It follows this structure: Section 5.1 introduces the reader to the
basic concepts, Section 5.2 presents the proposals that are centered around using only
information derived from paths, Section 5.3 introduces the methods that analyze entity
neighborhoods, Section 5.4 provides an overview on the proposals that combine latent
representations with path-based information and, finally, Section 5.5 concludes this
chapter.

43

Chapter 5. Path-based approaches

5.1 Introduction

A relational path is a sequence of relations that connect two entities together in a
Knowledge Graph. There can be many such paths between any two entities, and they
can vary in length and complexity. Given that these paths can provide an interesting
insight on how related two entities are, many researchers have developed methods to
analyze them to learn what constitutes correct knowledge.

Generally, these methods generate features that characterize the information
contained in each path, and then train classifiers to predict the existence of missing
relations based on these features. Due to the high number of possible paths that can
exist between two entities, such methods usually use techniques like random walks to
restrict the amount of paths that are analyzed, possibly constraining their
effectiveness.

To solve this issue, other methods analyze graph neighborhoods, which refer to the
entities and relationships that are directly connected to a given entity in a Knowledge
Graph. This allows KG completion method to focus on a much more reduced amount
of information that is more likely to accurately characterize an entity.

In this chapter, we present an overview on the methods that rely on these techniques
to complete a Knowledge Graph. We first introduce the methods that rely purely on
relational paths and their characterization. Next, we present the methods that analyze
entity neighborhoods. Finally, we discuss more advanced methods that combine these
approaches with techniques from the previous chapter.

5.2 Using relational paths

A relational path is simply a concatenation of triples that connect an entity to some
other entity through a number of relations. Naturally, any Knowledge Graph has an
abundance of possible paths to, from, or between entities. The idea of analyzing such
paths to learn what constitutes valid knowledge has led to many research works.

One of the first approaches that exploited relational paths in a Knowledge Graph
was the Path Ranking Algorithm (PRA), proposed by Lao et al. [78]. PRA uses random
walks to generate a set of paths between a given pair of entities in a depth-first
manner. The generated paths are then transformed into a series of features that aim to
characterize the information contained in it. These features are ultimately used to train
a binary log-linear classifier, which learns whether a direct relationship should exist
between two entities according to the paths that are already present between them.
However, PRA is not without limitations. The number of possible paths between a pair
of entity can be very high, limiting its scalability. Additionally, the randomly guided
paths that it uses may miss information just by mere chance.

44

5.3. Using entity neighborhoods

Aiming to improve PRA, Gardner and Mitchell [47] introduced the Subgraph
Feature Extraction (SFE) method. In opposition to PRA, SFE uses a breadth-first search
that is not randomly guided, in order to better characterize the portion of the KG
between two entities. SFE also requires the creation of a handmade “Alias” relation,
which relates entities in the same KG that refer to the same element in the real world.
It is able to achieve more expressive results than PRA, making it easier for the human
user to understand what constitutes a good path that may be indicative of the existence
of a direct relation between two entities.

Gardner et al. [48] also proposed an extension of PRA that addresses the issue of
potentially having to consider a very high number of paths. It considers the semantic
similarities between the relations of a Knowledge Graph, and uses them to merge very
similar paths together, greatly reducing the number of paths that need to be analyzed
afterwards. This addition increases the effectivity of PRA in the NELL Knowledge
Graph, although the authors do not provide data for any other KGs.

Nastase and Kotnis [93] proposed the Abstract Path Model (APM), which produces
an abstract graph from a KG, and then focuses on extracting relevant abstract paths
from it. These abstract graphs provide a more general representation of the high-level
relations between entities, and thus the paths that can be traced in it represent more
high-level knowledge. Additionally, this abstract representation is, as a general rule,
considerably smaller than the KG it is derived from and not very computationally
taxing to obtain, which aids in its application to larger graphs.

Guu et al. [57] introduced the Trans-COMP method, which proposes a different
strategy. Rather than analyzing a large number of paths between two entities to try
to characterize the pair, it only uses a single path. Precisely, it aims to select the path
that provides the highest predictive capabilities of the existence of a given relation.
Toutanova et al. [144] further refine this idea with their All-Paths method by providing
an explicit way to represent the intermediate entities that can be found in such a path
and, additionally, enabling the method to consider more paths.

A number of other authors have also researched alternative ways to select and
learn from the best paths in a Knowledge Graph. Jiang et al. [70] proposed the APCM
model, which assigns different weights to the found paths and combines them based
on these weights. Furthermore, the PRCTA model introduced by Lei et al. [80] employs
an attention mechanism [147] to construct and select the paths, which allows it to work
satisfactorily in more sparse KGs.

5.3 Using entity neighborhoods

Considering the possible paths between two entities is undoubtedly helpful, but this
concept can be expanded further. Rather than a single path, we can consider the

45

Chapter 5. Path-based approaches

entirety of the region of a Knowledge Graph around a certain entity, in other words,
its neighborhood. The concept of entity neighborhood is visually shown in Figure 5.1,
which depicts the closest and more extended neighborhoods of an entity shown in the
center.

Figure 5.1: A visual representation of entity neighborhoods

Given a pair of entities, their neighborhoods can be analyzed to determine if a
relation should be present between them. This idea has been put to practice by a
number of authors.

Bansal et al. [12] proposed the A2N method, which aggregates the entities in a
neighborhood together to obtain a more compact representation of said neighborhood.
It uses an attention-based mechanism to focus on the most prominent entities, giving a
trustworthy representation of the entities surrounding another one. Additionally, it
is designed such that the computational cost of the method does not increase greatly
with the size of the neighborhoods.

The use of attention-based mechanisms in this regard has not gone unnoticed by
other authors. Wang et al. [151] have proposed LAN, another approach that aggregates
the contents of an entity neighborhood together, however, the attention-based technique
that they propose uses weights to give more importance to more relevant entities. Kong
et al. [74] also proposes using attention to filter out possibly irrelevant relations in the
graph, allowing the models to focus only on more meaningful information, which is

46

5.4. Hybrid approaches

especially relevant in the case of heterogeneous Knowledge Graphs. Similarly, Nathani
et al. [94] introduced the KBAT method, which is able to capture information from
both the entities and the relations in a KG neighborhood.

Zhang et al. [172] further the previous idea by adding a weighted attention system
to both entities and relations, acknowledging that not all knowledge in the KG is equally
useful. Two different attention-based mechanisms are used in their proposal. First, the
relation-level attention provides an intuition for which connections from an entity may
provide more useful information. Then, the reached entities are considered according
to their entity-level attention. This composite, hierarchical attention mechanism allows
it to outperform other attention-based proposals.

Ferré [42] proposes finding missing information by finding similar entities in
commonly occurring graph patterns, through the application of concepts of nearest
neighbors [33]. It does not require any sort of pre-processing of the Knowledge Graph,
making it very efficient. Furthermore, its reliance on graph patterns makes it a more
interpretable method than other similar proposals.

5.4 Hybrid approaches

The previous chapter introduced the main ideas behind how embeddings and neural
networks can be applied to Knowledge Graph completion. Some authors have
proposed a series of approaches that combine path-based information with these
techniques, in order to guide the path finding process towards the most significant
path, avoiding having to explore a very large number of them.

An example of this is the PATH-RNN technique, which was proposed by
Neelakantan et al. [95]. In addition to using path-based information, PATH-RNN uses
the embedded representations of the relations in a path to further characterize it. It
uses a recursive neural network (RNN) to combine these embeddings together,
resulting in a single embedding that contains information about the entire path. For
this reason, it can operate using paths of any length. Additionally, due to the fact that
it operates on the embedded representations of the relations, which in turn capture
semantic meanings, it can in theory predict relations that were not present in the KG
at the time of training the model. Figure 5.2 graphically illustrates this idea.

Das et al. [30] improve the previously discussed PATH-RNN method with their
Single-Model proposal. They point out that taking the embeddings of the entities
in a path into account can provide useful information. To represent a path, they
recursively combine the embeddings of both the entities and relations in it using RNNs.
Furthermore, they propose using a number of different functions to select the best path:
Top-K, Average and LogSumExp. They experimentally conclude that the LogSumExp
function performs better when completing a Knowledge Graph. Figure 5.3 displays a

47

Chapter 5. Path-based approaches

Magnus Carlsen Tønsberg Norway Norwegian
bornIn cityIn hasLanguage

RNN

RNN

~

speaksLanguage

Figure 5.2: Overview of the PATH-RNN method

visual overview of Single-Model. In this Figure, entity embeddings are represented
in blue, and relation embeddings in orange. The path that is being considered is the
same as in Figure 5.2.

RNN

Magnus

Carlsen
bornIn

RNN

Tønsberg cityIn

RNN

Norway hasLanguage

RNN

Norwegian (null)

Figure 5.3: Overview of the Single-Model method

Xiong et al. [163] proposed GMatching, a technique that specializes in extracting
information from KG neighborhoods using relatively infrequent relations, which are
traditionally considered more challenging due to the reduced amount of information
about them present in the graph. GMatching is comprised of two main components:
a neighbor encoder, which creates an embedded representation for an entity in a

48

5.4. Hybrid approaches

neighborhood; and a matching checker, which computes the similarity of two entity
embeddings created by the first component. A visual representation of this proposal
is provided in Figure 5.4. The meaning of the colors is the same as in the previous
Figure.

Magnus Carlsen TønsbergbornIn

Norway

nationality

Chess

plays

(a) An example KG

Tønsbergnationality Norway bornIn plays Chess

(b) Encoding of the neighborhood of the entity Magnus Carlsen

Figure 5.4: Overview of the GMatching method

Shen et al. [129] proposed Implicit ReasoNets (IRNs), a neural network architecture
that is able to reason about paths of different lengths in a KG. It is an encoder-decoder
model that is governed by a central controller, which allows the whole process to be
carried out with no human intervention. Also, it introduces the usage of a shared
memory that implicitly stores relevant information about the graph, allowing it to be
more efficient and have a smaller memory footprint.

Additionally, a number of improvements have been made to the baseline
translational models to help them leverage path information in several ways. For

49

Chapter 5. Path-based approaches

instance, Lin et al. [82] have proposed PTransE, an extension of TransE that uses path
information in its confidence function. Its goal is to give a higher confidence score to
those entities that are well-connected together by means of paths that are semantically
similar to the relation in the triple that is being evaluated.

García-Durán et al. [45] proposed RTransE, which represents paths as a series of
translations in the embedded space defined by the TransE model. For efficiency reasons,
RTransE is limited to using only paths that contain two relations. Likewise, Xiong
et al. [162] introduced PTransD, an enhancement of TransD that performs subsequent
translations to model paths. However, PTransD uses two embeddings to represent
each entity, to perform operations in parallel.

5.5 Summary

The contents of this chapter have provided an overview of the methods to perform
Knowledge Graph completion that use relational paths. We have first listed the most
prominent scientific proposals that extract paths from a KG and characterize them using
features, to learn which paths can be predictive of correct knowledge. Afterwards, we
have centered on the proposals that use entity neighborhood information in a number
of ways. Finally, we have introduced the approaches that merge together path-based
information with latent entity representations, entity and relation embeddings, and
neural networks.

50

Chapter 6

Rule-based approaches

“Logic, like whiskey, loses its beneficial effect when
taken in too large quantities.”

— Edward J. M. D. Plunkett, Lord Dunsany

L
ogical rules are commonly used to perform Knowledge Graph completion.
The proposals that employ these kinds of rules usually mine them first using
the triples present in the graph, to generalize specific knowledge stored in it.

Then, the extracted rules are used to materialize knowledge in the form of new triples,
which can be added back to the KG. In this chapter, we provide an overview of the
various ways in which this has been carried out by previous works. It is organized as
follows: Section 6.1 lays out the foundational concepts, Section 6.2 presents the existing
methods for mining logical rules from a Knowledge Graph, Section 6.3 introduces the
proposals that aim to reduce a set of possible candidate triple using rules, Section 6.4
enumerates the approaches that combine rules with other popular ways to complete
KGs, and Section 6.5 concludes the chapter.

51

Chapter 6. Rule-based approaches

6.1 Introduction

Knowledge Graphs are essentially large and incomplete collections of facts about a
certain domain. One possible way to complete them is to observe which facts occur
frequently together, and then express this relationship as a rule for those combinations
that are observed very often. For example, if a person was born, studied and died in a
city, it is very likely that they hold the nationality of the country in which that city is
located. More formally, this can be expressed through the following logical rule, where
p is a person, c is a city, and C is a country:

bornIn(p, c) ∧ studiedIn(p, c) ∧ diedIn(p, c) ∧ cityIn(c, C)→ hasNationality(p, C)

These rules are called first-order rules, and they represent explicit knowledge, easy
for humans to understand and reason about, in opposition to most latent representation
models. They are composed of two elements: the body of the rule (left-hand part)
represents the logical condition that must be met, and the head (right-hand part) is the
knowledge that is considered to be true if the condition is also true.

To complete a Knowledge Graph, one can first extract such rules from it, by
observing common appearances of these kind of patterns. Then, the rules can be
applied to materialize the head of a rule whenever its body exists, generating new
explicit knowledge [136]. This process is visually depicted in Figure 6.1.

KG
Rule mining

method

Rule

application

Materialized

facts

Rules

Figure 6.1: Extracting and applying rules on a Knowledge Graph

In this chapter, we present the existing methods in the literature for obtaining and
applying first-order rules to complete a Knowledge Graph. First, we introduce the
methods that focus solely on rule extraction. Then, we present some applications of
first-order rules to the task of candidate filtering. Finally, we discuss some proposals
that combine rules with other ideas presented in previous chapters.

52

6.2. Rule mining methods

6.2 Rule mining methods

There are a number of approaches to mine first-order rules in Knowledge Graphs.
One of them is using Inductive Logic Programming (ILP) [92], a classical statistical
relational learning method that can be used to extract such rules from a collection of
facts.

In this regard, Jiang et al. [69] have proposed using ILP to perform Knowledge
Graph completion on KGs that have a strong time constraint component. Such a KG
may contain information on whether a person is the president of a country, whose
correctness depends on the time period in which it is interpreted. In this proposal, the
most common time periods for an assortment of different facts are inferred through
ILP, and then used to assess the correctness of future facts. However, it relies on all
facts having time annotations, which may not be commonplace.

Galárraga et al. [43] proposed the AMIE+ method, which generates similar rules
using ILP. AMIE+ addresses the fact that, due to the Open World Assumption (OWA),
a fact that is not present in a KG should not be considered false, but instead simply
unknown. The OWA thus makes it very challenging to generate truly false examples
to assess the overall validity of a rule. The authors use a bespoke confidence measure
for their rules, known as the partial completeness assumption confidence. AMIE+
improves the efficiency of its predecessor method AMIE [44] and can be applied to
larger Knowledge Graphs.

Wang and Li [154] refine this idea with their RDF2Rules method. Contrary to
AMIE+, which is limited to only being able to mine one rule at a time, RDF2Rules
speeds up the process by parallelizing rule extraction. It achieves this by detecting and
extracting frequent relation cycles of a certain length in a KG, which are essentially
loops that contain a given amount of relations. An example of such a loop can be
found in Figure 6.2. Note that the directionality of the edges in a KG is relevant for the
existence of a cycle. Once the most common cycles have been obtained, a number of
rules can be extracted from them. This is done by iteratively selecting one relation as
the head of the rule and the rest as the body, advancing on the loop, and repeating
this process until the entire loop has been traversed.

The Never-Ending Language Learning (NELL) system that was proposed by
Mitchell et al. [91] also learns knowledge rules from the data that it is constantly
provided. These rules are manually screened to ensure a high level of quality, so as to
not introduce incorrect facts into a Knowledge Graph. It then applies these rules to
generate knowledge that was previously missing.

Markov Logic Networks (MLNs) [115] have also been used for the task of
completing a Knowledge Graph. MLNs combine the previously discussed rules with
probabilistic models, which allows them to derive generalized knowledge from a

53

Chapter 6. Rule-based approaches

Figure 6.2: A cycle of 5 relations in a sample Knowledge Graph

smaller corpus of facts and to better handle complex and noisy information [167].

The use of MLNs for Knowledge Graph completion has been analyzed by Kuzelka
and Davis [77]. The authors conclude that MLNs can provide a satisfactory
performance on this task, assuming that the triples that are missing from the graph are
independent from one another and have a roughly equal probability of being true,
which is not always the case [19].

Yang et al. [167] presented Neural Logic Programming (NeuralLP), an approach
that combines first-order rule mining with sparse matrix multiplication. In this
approach, the authors propose using an attention mechanism to further refine the
confidence value that is assigned to each individual triple. The main rule mining
mechanism in NeuralLP is governed by a central neural controller. Additionally, it is
able to learn rules of variable length with more ease than its predecessors.

Furthermore, Sadeghian et al. [121] introduced DRUM, which extends NeuralLP
by analyzing the structure and confidence values of the rules that are being inferred,
and then approximating these elements for other rules using tensors. It, however, is
only limited to positive examples due to the OWA and is not able to infer negative
rules.

Rocktäschel and Riedel [116] proposed NTP, a similar method to NeuralLP, which
infers rules by using transitive relations between facts. Their approach requires that
such relations be represented as a vector or a tensor, in order to leverage the semantic
similarities that are commonly exploited in embedded spaces. It nonetheless suffers
from a lesser scalability than the original NeuralLP method, due to the computational
complexity that is required to carry out the process of rule inference.

To address the aforementioned scalability issues, Minervini et al. [90] presented
an improved NTP2.0 method. This new version is able to focus only on the most
promising rules during the mining process, by using a pooling method that is able to
monitor the creation of multiple rules at once.

54

6.3. Candidate filtering

6.3 Candidate filtering

Some authors have proposed rule-based techniques for filtering candidate triples,
instead of generating new knowledge. The process of generating and applying these
rules is fundamentally different: due to the very large number of possible candidate
triples, the rules must not be computationally expensive to apply. Additionally, it is
not as important for them to be fully correct, since an incorrect fact will be evaluated
in more detail further down the KG completion process. It is, however, desirable that
the candidate filtering rules exclude as few correct candidates as possible, in order not
to hinder the quality of the final set of generated triples.

Wei et al. [156] proposed the INS method, which uses the previously discussed
TransE embedding model to filter out possibly incorrect knowledge. More specifically,
they employ TransE to analyze the semantic similarity between the two entities in a
triple, and discard the triple if the similarity does not exceed a certain threshold. This
results in sets of candidate triples that are smaller than the original ones.

Shi and Weninger [130] also argued that it is generally not practical to apply any
model to the whole set of possible candidate triples, and that it must be narrowed
down in some way. In their work, they use a set of simple rules to determine that any
given triple (s, r, t) is a valid candidate if another triple with the structure (_, r, t) is
already present in the Knowledge Graph.

Zhang et al. [169] proposed IterE, an approach that prunes knowledge using graph
traversing and random selection. It generates a set of plausible rules and monitors their
performance as they are being built, removing those that are found not satisfactory
and leaving only a smaller set of rules that can be generated quickly.

Some of the previously discussed works can also be used for filtering candidate
triples. The authors of NTP2.0 [90] proved that a k-nearest neighbor search can provide
satisfactory results to filter out wrong knowledge when inferring rules, which can be
performed efficiently.

Other proposals incorporate parameters that can be fine-tuned to rapidly rule out
rules that are not satisfactory. Omran et al. [103] proposed RLvLR, which allows the
user to set values for the minimum required confidence for a rule. A similar approach
is followed by the already discussed DRUM [121] method.

Additionally, the AMIE+ method [43] can also be used for this purpose. It includes
a number of strategies that can be used to prune a set of candidate triples, by producing
simpler rules with a high support. Additionally, AMIE+ can perform confidence
approximations, which allows it to speed up the rule inference process, making it more
appealing for its application to candidate filtering.

55

Chapter 6. Rule-based approaches

6.4 Hybrid approaches

Even though rule-based approaches excel in their explainability, they often have
trouble scaling up to very large Knowledge Graphs [128]. To overcome this issue, many
authors have proposed methods that combine more traditional rule mining with other
approaches discussed in previous chapters, to try to guide the rule mining process
towards more promising rules.

One of the first such proposals was made by Wang et al. [152], who introduced the
r-KGE method. It combines the tensor-based model RESCAL, the embedding-based
model TransE, and logical rules. These rules are then used to prune the embedded
space using integer linear programming [126], which sees a significant reduction of
its size. However, it is not properly equipped to handle N-to-N relations, and its
reasoning process can still be quite computationally expensive. The overall model
proposed by r-KGE is shown in Figure 6.3.

KG

Rule mining

Missing

knowledge

Rules

Embedding

generation

Objective

Constraints

Integer Linear

Programming

Embeddings

Figure 6.3: Overview of the r-KGE model

The previously discussed INS method [156] also incorporates TransE to quickly
compute the degree of similarity between entities, and limits the rule reasoning process
by taking only the top N most similar entities into consideration. Additionally, this
similarity score can provide an approximation of the quality of a rule before it is
completely built.

Guo et al. [55] introduced KALE, another model that combines logical rules and
entity embeddings. KALE aims to provide a common ground in which rules and
embeddings can directly interact, by representing triples as atomic formulae and
rules as combination of these formulae. The semantic similarity information that
is intrinsically present in the entity embeddings aids in expanding the predictive
capabilities of the rules and their generality. A visual overview of the KALE architecture

56

6.4. Hybrid approaches

is provided in Figure 6.4. In this Figure, entity embeddings are represented in blue,
relation embeddings in orange, and scalar confidence values in green.

(Agustín, bornIn, Sevilla) (Agustín, livesIn, Sevilla)→

Figure 6.4: Overview of the KALE model

The same authors [56] also presented RUGE, a KG completion technique that
combines the same elements in an iterative fashion. Rather than relying on pre-
computed entity embeddings, RUGE generates its own embedded space with the
aid of logical rules. Additionally, RUGE is able to operate on Knowledge Graphs
that has both labeled and unlabeled triples. A series of logical rules are applied on
the unlabeled triples to label them. Then, the labeled triples are used to rectify and
improve the embedded space so that it better captures the relations between the entities.
The improved embedded space provides feedback on the labels, and the rules can be
updated accordingly. A diagram depicting this process can be found in Figure 6.5.

Unlabelled

triples

Label

prediction

Embedding

generation

Rules

Embeddings

Labelled

triples

Labels

Figure 6.5: Overview of the RUGE model

57

Chapter 6. Rule-based approaches

Furthermore, another aforementioned method, IterE [169], proposes a similar
approach. IterE generates an initial set of entity embeddings for the Knowledge Graph.
These embeddings are used to generate a set of rules, whose quality is evaluated. The
best-performing rules are then used to generate new triples that are introduced in the
KG, and the process starts anew by generating new embeddings that take into account
the newly generated knowledge. This is shown in a graphical manner in Figure 6.6.

Embedding

generation

Embeddings

Rule

generation

Rules

Rule

application

New

triples

Figure 6.6: Overview of the IterE model

Meilicke et al. [88] proposed AnyBURL, a technique that can generate logic rules in
a bottom-up manner and on-demand. AnyBURL works by deconstructing a Knowledge
Graph into a set of labeled paths. Then, it uses path-based features to determine which
paths contain more useful information to obtain rules from. AnyBURL is more
lightweight than other related rule-based proposals and, due to the fact that it only
considers the most promising paths inside a KG, can be applied to larger graphs.

Niu et al. [100] presented RPJE, a proposal that brings together path-based
information and first-order rules. It first mines logical rules, and then uses those of
length 2 to combine paths in the KG, and rules of length 1 to create a number of
semantic relations.

Finally, Ma et al. [86] introduced ELPKG, a proposal that brings together all
three main approaches that we have covered in the previous chapters. It uses entity
embeddings to represent the relations between entities, and a breadth-first search to
detect the paths between the two entities in a triple. The information gained from both
the embeddings and the paths is combined together, and it then applies soft logic to
obtain the final confidence value for the triple.

58

6.5. Summary

6.5 Summary

This chapter has provided an overview of the current approaches to Knowledge Graph
completion that are based on logical rules. First, we have introduced the proposals that
can be found in the literature that rely solely on obtaining and applying these rules.
Then, we have focused on the methods for filtering candidate triples using first-order
rules. At last, we covered the methods that combine rule mining with path-based
information or latent representations, such as tensors or entity embeddings.

59

Chapter 6. Rule-based approaches

60

Part III
Our Proposal

Chapter 7

Conceptual framework

“Most problems can be solved using algebra, or
violence.”

— Bill Wurtz

B
efore we delve into the details of our proposal, it is important to establish
a common and unambiguous vocabulary. For this reason, we have devised
a conceptual framework that allows us to describe a number of relevant

concepts in detail. The chapter is organized as follows: Section 7.1 introduces it,
Section 7.2 models the concept of a triple, Section 7.3 presents the theoretical model of
a Knowledge Graph, Section 7.4 introduces topology-based elements such as paths,
distances and reachability, Section 7.5 illustrates the concept of neighborhood
subgraphs, Section 7.6 presents the notions of candidate triples and candidate-filtering
fitness, Section 7.7 describes candidate-filtering criteria and rules, and Section 7.8
introduces graph-based features and feature groups; finally, Section 7.9 summarizes
the chapter.

63

Chapter 7. Conceptual framework

7.1 Introduction

Throughout our proposal, we use a number of concepts, both established in this field
and novel. In this chapter, we define their foundations, such as tuples of entities and
relations known as triples, or the fields of a Knowledge Graph, which allow us to
accurately describe further concepts. We also define paths inside a Knowledge Graph,
which are the basis for many of the elements in our proposal. Building upon the notion
of a path, we provide a formal definition of the distance between two entities in a
Knowledge Graph, as well as of the concept of entity reachability.

Furthermore, in this chapter, we define neighborhood subgraphs, which are
portions of a KG that contain the elements most closely related to a given entity. Then,
we introduce candidate triples, which are combinations of entities and relations that
have a high likelihood of representing correct knowledge. To measure the tentative
aptness of a candidate triple, we present the idea of candidate fitness. In order to rule
out those candidate triples with a low fitness, we define candidate filtering criteria and
rules. Finally, we introduce a way to numerically model a triple in a KG through the
use of graph-based feature groups.

The Cuckoo’s Calling

(book)

Robin Ellacott

(character)

Harry Potter and the

Goblet of Fire (movie)

Harry Potter and the

Prisoner of Azkaban (movie)

J. K. Rowling

(writer)

Daniel Radcliffe

(actor)

Harry Potter and the

Goblet of Fire (book)

Hermione Granger

(character)

Emma Watson

(actor)

Harry Potter and the

Prisoner of Azkaban (book)

Harry Potter

(character)

Beauty and the

Beast (movie)

Harry Potter and the

Chamber of Secrets (movie)

appears_in

created

created

created

writer

appears_in

based_onstarred_in

appears_in

has_prequel

has_prequel

starred_in

starred_in based_on

appears_in

starred_in

starred_in

has_sequel

plays

Figure 7.1: Sample KG describing works, actors, writers and characters

To help illustrate some concepts in this chapter, Figure 7.1 presents a KG that
contains information about fictional works, actors, writers and characters.

7.2 Triple

The notion of a triple is pivotal to Knowledge Graphs, since it constitutes an atomical
amount of structured information. A triple is a 3-tuple that contains two entities,
commonly denoted source and target1; connected by means of a relation. This, in turn,

1Other literature sometimes refers to the two entities in a triple as head and tail [17, 34, 37], or subject
and object [10, 99, 145].

64

7.3. Knowledge Graph

represents a fact in a given domain.

Formally, a triple is defined as follows:

Definition 1. Triple: Let E be a set of entities, and let R be a set of relations. We define
a triple as a 3-tuple that represents the existence of a relation r ∈ R between a source entity
s ∈ E and a target entity t ∈ E . We denote triples as (s, r, t).

In the sample KG depicted in Figure 7.1, a sample triple is (Emma Watson, starred_in,
Beauty and the Beast).

7.3 Knowledge Graph

A collection of triples forms a Knowledge Graph, which contains an assorted set of
facts. Although, as discussed, triples have no inherent guarantees about the correctness
of the knowledge they represent, it is in the best interests of both the curators and
users of Knowledge Graphs to ensure that the triples contained in it are as trustworthy
as possible.

A Knowledge Graph can thus be defined as:

Definition 2. Knowledge Graph: Let E be a set of entities, let R be a set of relations, and
let T be a set of triples of the form {(s, r, t) | s, t ∈ E , r ∈ R}. We define a Knowledge Graph
as KG = (E , R, T).

It is important to note that, in addition to a set of triples, KGs also contain the sets
of entities and relations, E and R respectively, that are considered to be included in
the KG and thus allowed to take part in the triples that compose the KG. Although
this may seem limiting, they are routinely expanded as new knowledge is added to a
KG [40].

Figure 7.1 graphically represents a KG with 13 entities, 7 distinct relations and 19
triples, represented as edges that connect pairs of entities.

Note that a triple in a Knowledge Graph states a fact, but it may be one that is not
considered to be true or correct. We thus define a correct triple as follows:

Definition 3. Correct triple: Let KG = (E ,R, T) be a Knowledge Graph, and let (s, r, t) ∈
T be a triple in KG. We consider that the triple is correct if the relation that it establishes
between s and t holds true in the real world or in the domain of application of KG.

For example, the triple (Barack Obama, born_in, Kenya) is formally valid, but it is not
correct. It is also noteworthy that the real-world correctness of a triple may depend
on the time period in which it is interpreted, for example, (Barack Obama, president_of,
United States). A triple, on its own, does not have a mechanism to express a time
constraint or any other restrictions about its correctness.

65

Chapter 7. Conceptual framework

7.4 Topology-based concepts

Since a KG is a specific case of graph, we can leverage some concepts that arise from
using such a structure.

7.4.1 Paths between entities

Given two entities in a Knowledge Graph, a relevant question is whether there exists
a path in the KG that connects them together. To answer this question, we must first
define the concept of path:

Definition 4. Path: Let KG = (E ,R, T) be a Knowledge Graph, and let s, t ∈ E be
two entities in KG. We define a path p between s and t as a sequence of triples of the form
p = 〈 (ei, ri, ei+1) 〉 for i = 1..n, where e1 = s, en+1 = t and (ei, ri, ei+1) ∈ T for i = 1..n.
We denote a path p between s and t using the relations r1 . . . rn as path(s, t, r1, r2, . . . , rn), or
pathn(s, t) for short.

Building upon the previous definition, to further characterize a path, we define the
length of a path as follows:

Definition 5. Path length: Let s and t be two entities in KG with s, t ∈ KG. Let p be a
path between s and t of the form p = 〈 (ei, ri, ei+1) 〉 for i = 1..n. We define the length of a
path as the number of triples it contains, i.e., |p|.

In the KG depicted in Figure 7.1, an possible example of a path of length 2
between the entities J.K. Rowling and The Cuckoo’s Calling would be
〈 (J.K. Rowling, created, Robin Ellacott), (Robin Ellacott, appears_in, The Cuckoo’s Calling) 〉.

It is possible that there exists more than one possible path between a pair of entities.
It is also a possibility that there are no possible paths between two entities. Thus, it can
be useful to know how many distinct paths of a given length there exist connecting
two given entities. For this purpose, we define a set of possible paths as follows:

Definition 6. Possible paths: Let s and t be two entities in KG with s, t ∈ E . We denote
the set of all possible distinct paths of the form path(s, t, r1, r2, . . . , rn) as P(s, t, r1, r2, . . . , rn).

7.4.2 Distance between entities

In light of the previous definitions, it now seems reasonable to devise a measure of how
close two entities are in a given Knowledge Graph. Given that KGs are not weighted
graphs, we can define the distance between two entities as the minimum number of
relations that we have to traverse to go from the first one to the second. Formally, the
distance is defined as follows:

Definition 7. Distance between entities: Let KG = (E ,R, T) be a Knowledge Graph, and
let s, t ∈ E be two entities in KG. We define the distance between s and t as the length of the

66

7.4. Topology-based concepts

shortest path that exists between s and t inKG, i.e., |pathn(s, t)| such that @ pathi(s, t) | i < n.
If no path of any length exists between s and t, then the distance between them is ∞. We denote
the distance between s and t in KG as dist(KG, s, t).

In the KG depicted in Figure 7.1, the distance between the entities Daniel Radcliffe
and Harry Potter is 4, since that is the length of the shortest path that exists between
them.

The careful reader will note that, due to the fact that KGs are directed, distance
is not symmetric, and thus the order of the entities is relevant: the distance between
Harry Potter and Daniel Radcliffe in Figure 7.1 is ∞ because no path exists between them.
The impossibility of such a path can be trivially verified by noting that Daniel Radcliffe
has no inbound edges.

7.4.3 Reachability

Most graph algorithms rely on some notion of whether an entity is reachable from
another one or not, and expand upon this notion to build assessments about the whole
graph, for example, by determining its connected components. Knowledge Graphs are
no exception, but given the semantical differences of the relations in them, it makes
sense to restrict this notion of reachability to be able to answer a more precise question:
“Is an entity reachable from another one through a certain relation?”

To formalize this idea, we define reachability in a KG as follows:

Definition 8. Reachability: Let KG = (E ,R, T) be a Knowledge Graph, let s, t ∈ E be
two entities in KG, let r ∈ R be a relation in KG, and let n ≥ 1 be a natural number. We
define Reach as a predicate that determines whether there exists a path of length n between s
and t in KG such that the relation r appears in the last triple of the path, i.e., Reach(KG, s, t,
r, n)⇐⇒ ∃ pathn(s, t) ∧ ∃ a ∈ E | last(pathn(s, t)) = (a, r, t).

With a reachability predicate, we can proceed to find a subset of entities in a KG
that are reachable from a given entity using a certain relation and distance:

Definition 9. Reachable entities: Let KG = (E ,R, T) be a Knowledge Graph, let s, t ∈ E
be two entities in KG, let r ∈ R be a relation in KG, and let n ≥ 1 be a natural number. We
define the set of entities that can be reached from s through a relation r at distance n as the set
of entities that match the predicate Reach under such circumstances, i.e., {t ∈ E | Reach(KG,
s, t, r, n)}. We denote the previously defined set as Reachable(s, r, n).

In the example KG depicted in Figure 7.1, Reachable(Hermione Granger, writer,
2) = {J.K. Rowling}.

67

Chapter 7. Conceptual framework

7.5 Neighborhood subgraphs

The previous sections have given us the necessary tools to accurately establish the
concept of “neighborhood” in a KG by leveraging its topology. It seems appropriate
to define that an entity e1 should be in the neighborhood of e2 if e1 is reachable from
e2, given the previous definitions2. Since reachability is constrained by distance and a
specific relation, we define the neighborhood subgraph of a given entity as follows:

Definition 10. Neighborhood subgraph: Let KG = (E ,R, T) be a Knowledge Graph, let
e ∈ E be an entity in KG, and let n ≥ 1 be a natural number. We define the neighborhood
subgraph of e of size n as a Knowledge Graph KGn

n = (En
e , R, T n

e) that contains the triples
whose target entities can be reached from e at a distance of at most n through any relation, and
the entity set that can be derived from such triples, where T n

e = {(s′, r′, t′) ∈ T | Reach(KG,
e, t′, r′, i), i = 1..n} and En

e =
⋃{{s, t} ⊆ E | (s, r, t) ∈ T n

e }.

To help illustrate this concept, Figure 7.2 showcases two possible neighborhood
subgraphs for the KG shown in Figure 7.1.

7.6 Candidates

As discussed earlier, triples do not make inherent guarantees about the correctness of
the knowledge they represent. To represent triples with a higher knowledge quality,
this section introduces candidate triples and the notion of fitness in candidate filtering.

7.6.1 Candidate triples

One can form a syntactically correct triple by just combining two random entities with
a random relation. However, chances are that the resulting fact is most likely not
correct. Contrary to such a low-quality triple, a candidate triple, or just “candidate”
for short, is a triple that has been created in such a way that its chance to represent
correct knowledge is significantly higher than by mere randomness:

Definition 11. Candidate: Let KG = (E ,R, T) be a Knowledge Graph, let s, t ∈ E be two
entities and let r ∈ R be a relation in KG. We define a candidate as a triple (s, r, t) that has a
significantly high chance to represent real-world knowledge, even if it does not exist in T .

For example, given the KG shown in Figure 7.1, a candidate triple could be (Daniel
Radcliffe, plays, Harry Potter). Note that this triple does not exist in the KG in its current
state.

2Again, the non-symmetricality of distance may result in e1 being in the neighborhood of e2, but not
vice-versa. Sadly, good neighbors are not always reciprocated.

68

7.6. Candidates

Daniel Radcliffe

(actor)

Harry Potter and the Prisoner

of Azkaban (movie)

Harry Potter and the

Goblet of Fire (movie)

Harry Potter and the Prisoner

of Azkaban (book)

Harry Potter and the

Goblet of Fire (book)

starred_in

starred_in

has_prequel

based_on

based_on

(a) Neighborhood subgraph of size 2 for the entity Daniel
Radcliffe

Harry Potter and the Prisoner

of Azkaban (book)

Harry Potter and the

Goblet of Fire (book)

Hermione Granger

(character)

Harry Potter

(character)

J. K. Rowling

(writer)

Robin Ellacott

(character)

has_prequel

writer

created

created

appears_in

appears_in

created

(b) Neighborhood subgraph of size 3 for the entity Harry Potter

Figure 7.2: Two neighborhood subgraphs for the KG shown in Figure 7.1

7.6.2 Fitness function

Candidate triples can be generated in a wide manner of ways, that we discuss in more
detail in the following chapter. However, it is clear that the number of possible triples,
in terms of combinations of entities and relations, is generally orders of magnitude
greater than the amount of triples present in any given KG. Therefore, it is possible to
generate very large sets of candidate triples that are not yet in a KG.

As a consequence, it is generally desirable to reduce these sets of candidate triples
in a manner that maximizes the preservation of triples with a higher chance to be
correct [19, 128]. To formalize this idea, we introduce the concept of fitness function,
which assesses the quality of a set of candidate triples in terms of its size and how
many correct triples it contains.

Definition 12. Fitness function: Let KG = (E ,R, T) be a Knowledge Graph, let C be a
set of candidates and let C ′ be a set of filtered candidates, with C ′ ⊆ C. We define fitness as
a function f itness(KG, C, C ′)→ R that assigns a score to the filtered set of candidates, with
respect to the original set of candidates and KG.

69

Chapter 7. Conceptual framework

Since there are many ways to achieve this, we introduce specific instances of fitness
functions in the context of KG completion in Chapter 8.

7.7 Candidate filtering

As previously discussed, it is generally necessary to reduce the size of a set of candidate
triples, in order to better assess the remaining candidates for their inclusion in a KG.
To achieve this, this section introduces the concept of criterion, and then builds upon it
to present the definition of a candidate-filtering rule.

7.7.1 Criterion

A criterion is an atomic element in candidate filtering. Given a candidate triple in the
context of a particular Knowledge Graph, a criterion assigns a binary False/True label
to the candidate, denoting whether it should be discarded immediately (False), or
tentatively accepted and evaluated more carefully (True):

Definition 13. Criterion: Let KG = (E ,R, T) be a Knowledge Graph and let the triple T =

(s, r, t) be a candidate for KG. We define a criterion as a function cr(KG, T)→ {False, True}
that assigns a binary label to a candidate triple in the context of a KG.

A given criterion defines a certain method to determine if a candidate triple is likely
to be correct or not. For example, a possible criterion would be to accept all candidate
triples in which the distance between its two entities is lower than a threshold.

7.7.2 Rule

In order to express more complex manners of filtering candidate triples, we combine
several criteria into a rule. A candidate-filtering rule also produces a binary output for
a candidate, in this case, by evaluating multiple criteria and combining their results
using conjunctions and disjunctions:

Definition 14. Rule: Let KG = (E ,R, T) be a Knowledge Graph, let the triple T = (s, r, t)
be a candidate for KG, and let cr1, cr2, . . . , crn be a number of criteria. We define a rule as
a function rule(KG, T) → {False, True} resulting of the conjunction and/or disjunction of
several criteria, i.e., cr1 (∧|∨) cr2 (∧|∨) . . . (∧|∨) crn.

7.8 Graph-based features

To numerically characterize a triple, we propose a set of graph-based features that
takes neighborhood subgraphs, reachable entities and paths into account. Due to the
possibly large number of different features that can exist, we also introduce the concept

70

7.9. Summary

of feature groups. Each group can be parameterized to obtain a specific feature, which
we call an instance of the feature group.

7.8.1 Feature

A feature is the simplest way to characterize a triple in the context of the Knowledge
Graph it belongs to, by assigning a real number to it according to some operation:

Definition 15. Feature: Let KG = (E ,R, T) be a Knowledge Graph. We define a feature f
as a function f : T → R that assigns a real number to a triple.

For example, a feature f may convert a triple into the number of entities in the
neighborhood subgraph of size 2 of the source entity, i.e., f : (s, r, t) 7→ |E2

s |.

7.8.2 Feature group

Features can have an infinite number of small variations. In our previous example, we
mentioned that a feature may leverage the neighborhood subgraph of size 2, but one
may conceivably use any subgraph size that is considered appropriate. To be able to
express these variations in a more concise way, we define a feature group as follows:

Definition 16. Feature group: Let KG = (E ,R, T) be a Knowledge Graph. We define a
feature group fn as a function fn : X → (T → R) that receives a set of parameters X and
returns a feature.

For example, a feature group f0 may return a feature that converts a triple into the
number of entities in the neighborhood subgraph of size n of the source entity, i.e.,
f0(n) = f : (s, r, t) 7→ |En

s |, where n is a parameter of the feature group. Thus, f0(2) :
(s, r, t) 7→ |E2

s |, which is the feature shown in the previous example. Consequently,
feature groups allow us to represent a set of very similar features in a more compact
way, where the only distinction between said features is a given set of parameters.

7.9 Summary

In this chapter, we have described the conceptual framework our proposal relies on.
We have defined Knowledge Graphs, triples, paths, distance in a KG and reachability.
Furthermore, we have introduced neighborhood subgraphs, candidate triples and
fitness functions, as well as candidate-filtering criteria and rules. Finally, we have
described graph-based features and their groups.

71

Chapter 7. Conceptual framework

72

Chapter 8

CHAI: Our candidate
filtering proposal

“I say let the world go to hell, but I should always have
my tea.”

— Notes from Underground, Fyodor Dostoyevsky

T
he first step towards completing a Knowledge Graph is narrowing down
an initial set of theoretically potential candidates into a smaller subset that
still retains most of the promising ones. This chapter introduces CHAI, our

proposal for filtering candidate triples, and it is structured as follows: Section 8.1
introduces the chapter, Section 8.2 explains the criteria that CHAI uses, as well as
the algorithm that it follows to create rules from them, Section 8.3 discusses its
software architecture, Section 8.4 presents our experimental validation of CHAI and
the conclusions we draw from it, Section 8.5 delves into the practical limitations of
CHAI, and Section 8.6 concludes the chapter.

73

Chapter 8. CHAI: Our candidate filtering proposal

8.1 Introduction

In this chapter we introduce CHAI [19], our method for generating rules that are able
to filter candidate triples in the context of a KG completion process by combining a
number of criteria in such a way that it optimizes a given fitness function. CHAI works
by producing rules that can be applied on the initial set of candidates and produce a
reduced set that contains only the promising candidate triples. Then, this set can be
passed on to any fact checking technique to check the correctness of each promising
candidate and identify correct triples that complete the KG. The rules produced by
CHAI are based on different criteria that take the internal features of the KG into
account, such as the domains and ranges of every relation in the KG, in addition to the
distances between its entities.

Additionally, we evaluate CHAI on a number of different Knowledge Graphs,
and we show that it is able to achieve a good performance when dealing with all
relationships in every KG under study, demonstrating that it is a generic and effective
method, suitable for web-scale contexts.

Through this chapter, we continue to follow the running example of a Knowledge
Graph that was introduced in Section 7.1.

8.2 Our proposal

When completing a Knowledge Graph, there is a very large number of possible triples
that are not currently in said KG and that may represent correct knowledge. In practice,
this number is generally large enough to prohibit an individual evaluation of every
such triple.

For instance, let us consider a relatively small KG, with 10,000 entities and 20
possible relations. In the absence of further restrictions,1 the theoretical maximum
amount of different triples that could be present in this KG would be the Cartesian
product of all possible pairs of entities and all relations, resulting in 2 · 109 combinations.
This amount is hardly tractable through conventional means, and it only keeps scaling
exponentially as the Knowledge Graph grows in size.

To overcome this issue, we devised CHAI, a technique for candidate filtering at
scale. Given a Knowledge Graph, CHAI examines it and produces a set of candidate
triples big enough to include most plausible knowledge, but small enough to allow
other techniques further down the KG completion workflow to handle it. We achieve
this by defining a reduced set of criteria, in which each criterion is responsible for

1Some Knowledge Graphs, such as CS-KG [37] or DBpedia [79], enforce type restrictions for the
entities in a triple through an ontology. While this means that many Cartesian combinations of entities
and relations are no longer valid, the result is usually still in the same order of magnitude.

74

8.2. Our proposal

filtering out implausible triples according to a heuristic. To achieve greater expressivity
and to be able to represent more complex restrictions, CHAI progressively combines
these criteria into rules of a fixed format, and assesses the quality of the rule after
every step. These rules are produced on a per-relation basis, and thus CHAI is able to
adapt them to the particularities of every relation in a Knowledge Graph.

In the following subsections, we describe these elements in detail, as well as the
algorithm that is used to produce such rules.

8.2.1 Proposed criteria and rules

We propose a set of criteria for filtering candidates for a given Knowledge Graph
(E ,R, T), where every criterion defines a heuristic to quickly reject a triple if it is
considered implausible, doing so with a reduced computational cost.

Each criterion, thus, assigns a binary label to a candidate triple, denoting whether
the candidate is rejected or accepted. A negative label means that, according to the
criterion, the triple should be discarded immediately, while a positive label indicates
that the triple may be interesting and should be allowed to continue further down the
KG completion workflow. Each criterion is devised following a different approach,
and therefore the sets of candidates that are allowed by each of them are relatively
disjoint, although they might overlap to some extent. We further discuss the derived
implications of this fact in Section 8.5.

These criteria, and their associated rationales, are as follow:

Criterion 1. Existing source entity and relation: Let (s, r, t) be a candidate triple.
This criterion accepts the candidate if there exists a triple in T with the same source
entity and relation as the candidate. We denote this criterion as:

existsKG((s, r, t))⇔ ∃ e ∈ E | (s, r, e) ∈ T

This criterion was devised as a response to the observation that many Knowledge
Graphs do not have an ontology that restricts which entity types are allowed to be
combined through a given relation. As a consequence, it is highly likely that a random
combination of a source entity and a relation will be nonsensical: in the running
example shown in Figure 7.1, a random combination of source entity and relation
may result in a real-life person having a movie prequel, or a book writing another
book. It follows that allowing only candidate triples whose source and relation have
already been observed before in correct triples will immediately discard many of such
nonsensical instances.

Criterion 2. Target is in the domain of a relation rel ∈ R: Let (s, r, t) be a
candidate triple. This criterion accepts the candidate if its target entity appears at

75

Chapter 8. CHAI: Our candidate filtering proposal

least once as the source of an existing triple that has rel as its relation. We denote this
criterion as:

domKG,rel((s, r, t))⇔ ∃ e ∈ E | (t, rel, e) ∈ T

Contrary to the previous criterion, which operates solely on a candidate triple, this
one also requires a relation to be specified. Given that most impossible combinations
of source and relation will be rejected by the former criterion, this one focuses on
restricting which entities are allowed to appear on the right side of a candidate triple.
Generally, acceptable target entities will have a certain type or belong to a union of
types. However, type information is not always readily available.

This criterion aims to provide a similar constraint even if the KG lacks type
information, by only accepting candidates whose target entities appear as a source
for a given relation somewhere in the KG. This allows CHAI to leverage the implicit
type restrictions that will be in place by the already existing, correct knowledge: for
example, it may deduce that entities that appear as the source of the relation plays are
actors, even if this knowledge is not explicitly laid out.

Criterion 3. Target is in the range of a relation rel ∈ R: Let (s, r, t) be a candidate
triple. This criterion accepts the candidate if its target entity appears at least once as
the target of an existing triple that has rel as its relation. We denote this criterion as:

ranKG,rel((s, r, t))⇔ ∃ e ∈ E | (e, rel, t) ∈ T

This criterion complements the previous one by only accepting candidates whose
target entity is in the range of an existing relation in the KG. Again, this leverages
implicit type information present in the KG to further remove non-plausible candidates.

Following the example introduced in Figure 7.1, thanks to this criterion, one could
establish that any candidate triple for the relation starred_in should have a target entity
that is also a target of the relation has_prequel, due to the fact that the range of both
relations is generally comprised of movies. Thus, one can immediately discard the
potential candidate (Emma Watson, starred_in, Daniel Radcliffe) because the entity Daniel
Radcliffe never appears as a target for the relation has_prequel.

Entities are within distance i: Let (s, r, t) be a triple in T . This criterion selects all
candidates whose source and target entities have a distance between them that is at
most i:

distKG,i((s, r, t))⇔ dist(KG, s, t) ≤ i

Finally, this criterion covers the assumption that a good candidate triple should be
such that its source and target entities are close each other in the Knowledge Graph,
which has been repeatedly shown correct by related literature [11, 12, 20, 42, 74, 102].

76

8.2. Our proposal

While the previously introduced criteria could be useful on their own, it seems
reasonable that a more complex combination of them could achieve both a higher
expressivity and a more satisfactory candidate filtering performance. To achieve this,
CHAI combines them into candidate filtering rules of the following format, where ci

are criteria other than existsKG :

existsKG ∧ (c1 ∨ c2 ∨ . . . ∨ cn)

By enforcing the existsKG criterion on all candidate triples, we can make sure that
the resulting set of candidates has a lower number of incorrect or noisy candidates, as
all of them have a combination of source entity and relation that already exists in the
original KG while still allowing all possible target entities. In addition, the disjunction
of criteria present in the rule allows for more flexibility: longer rules with more criteria
are less strict, and thus produce more candidates by combining different criteria. The
following subsection illustrates the process of creating such rules.

8.2.2 Algorithm

The algorithm that we propose for generating rules for candidate filtering is shown in
Algorithm 1, and further described in the following. It receives the set of candidates to
be filtered, the original KG in the form of a training and a testing split and a relation
as input, and it outputs the generated rule for the relation.

First, the input set of candidates is narrowed down to only those that include the
relation for which CHAI is being applied. This serves a dual purpose. On the one
hand, since rules are produced and applied on a per-relation basis, this immediately
discards any candidates that contain a different relation, which would not have been
allowed anyway. On the other hand, this allows CHAI to only take into account the
triples in which the desired relation is present, resulting in a more specialized rule.

Subsequently, a rule that contains only the existsKG criterion is generated, and the
set of candidates that results from applying it is obtained, which will be further refined
by adding more criteria to the rule. By definition of existsKG , this will result in a set of
triples whose combination of source and relation are already present somewhere in
the KG, and all possible entities as targets.

Then, a set of criteria is instantiated, which contains the dom and ran criteria for
every possible relation in the KG, as well as the distance criterion for up to a certain
maximum distance. These criteria are the ones that will be used for building the rule,
however, not every criterion in the set has necessarily to be added to the rule.

Following the previous step, a fitness value is computed for each criterion, by
applying a certain fitness function on the set of candidates that are selected by that

77

Chapter 8. CHAI: Our candidate filtering proposal

Algorithm 1: CHAI
Input: KG trn = (E ,R, Ttrn) : Training split of the KG

KG tst = (E ,R, Ttst) : Testing split of the KG
candidates : Set of potential candidates to be filtered
rel : Selected relation in R
fitness : Fitness function
N : Maximum distance value for distance-based criteria
θ : Fitness threshold value

Output: rule : Generated rule

1 function CHAI(KG trn,KG tst, candidates, rel, fitness, N, θ)
2 // Select the candidates in which the relation rel appears
3 rc← {(s, r, t) ∈ candidates | r = rel}
4 // Initialize the rule to initially contain only existsKG trn
5 rule← existsKG trn
6 // Obtain a set of initially filtered candidates by applying
7 // existsKG trn
8 fc← apply existsKG trn to rc

9 // Add all possible criteria to the set of available criteria
10 // using the training split of the KG
11 criteria← ∅
12 forall r ∈ R, i ∈ [1..N] do
13 criteria← criteria ∪ {domKG trn,r, ranKG trn,r, distKG trn,i}
14 // Sort all criteria by the fitness value obtained on the set of
15 // filtered candidates they generate, using the testing split
16 criteria← sort criteria by fitness(KG tst, fc, apply criteria to fc)

17 forall criterion ∈ criteria do
18 // Apply the rule to obtain a set of filtered candidates
19 selected_candidates← apply rule to fc
20 // Compute the fitness value of the previous set
21 // using the testing split
22 if fitness(KG tst, fc, selected_candidates) < θ then
23 // Add current criterion if the threshold is not met
24 rule← add criterion to rule

25 return rule

criterion. The previous set of criteria is then sorted in descending order of the fitness
value that is obtained in this manner.

Finally, these ordered criteria are added in an iterative fashion to the rule under
generation, starting with the one that obtains the highest fitness value. Every time a
criterion is added to the rule, the resulting set of filtered candidates produced by it
is computed, and the fitness value associated with the rule is updated. This process
is repeated until the fitness value exceeds a given threshold or the set of available
criteria is depleted, at which point no more criteria will be added to the rule. Once

78

8.3. Software Architecture

Rule Fitness
value

Meets
threshold?

existsKG ∧ - -
(ranKG,created ∨ 0.80 No

domKG,appears_in ∨ 0.92 No
distKG,2) 0.96 Yes

Table 8.1: An example rule being built for the relation plays

this process ends, the generated rule is returned.

In Table 8.1, we present an example on the process of generating a rule for the
relation plays, with a threshold θ = 0.95. Through the process, different criteria are
iteratively added to the rule, and the fitness value is included for every step. Once the
fitness value meets or exceeds the threshold, the process ends and the rule is returned.
In this case, selecting candidate triples whose target entities represent people would
provide a good result.

Since an integral KG completion process involves every relation in the KG, CHAI
should be applied once for each relation in the KG, in order to produce the complete
set of rules and suitable candidates for KG Completion. This results in a total set
whose size is significantly smaller than that of the input set of candidates, while still
containing as many suitable candidates as possible.

8.3 Software Architecture

The classes that comprise the architecture of CHAI are shown in Figure 8.1, while
its workflow is described in Figure 8.2. In the following, we further describe the
architecture of CHAI:

Figure 8.1: Architecture of CHAI

Class CriteriaCatalogue contains all the available criteria that can be used to build
candidate filtering rules, which can be obtained using the method getAll. Criteria are

79

Chapter 8. CHAI: Our candidate filtering proposal

Load KG

Create empty

rule for a

relation r

Sort criteria by

fitness

Add top

criterion to rule

Compute rule

fitness

Fitness meets

threshold?

no

Use rule to

generate

candidates for r

yes

All relations

processed?

no

yes

Figure 8.2: Workflow of CHAI

implemented using the class Criterion. The method apply of this class receives a set
of candidate triples, and produces a smaller, filtered set of candidates that meet the
criterion in question. For example, a criterion may determine that a triple is a valid
candidate if its source and target entities are less than three hops apart in the KG.

Class FitnessFunction is used to implement a given fitness function, which gives a
numerical score to a given set of candidate triples using the evaluate method. Some
possible examples of fitness functions are the relative number of total candidate triples
against the number of triples in the KG, or the percentage of candidate triples that are
present in the validation split of a KG and thus more likely to be correct.

The RuleGenerator class is responsible for generating a candidate filtering rule for
a given relation. A rule, as described in Section 8.2, is a conjunction of criteria that
determine whether a given triple is a valid candidate or not.

First, a new rule is produced using the getNew method. Then, a series of criteria are
iteratively added to it in order to progressively construct it. This is done by sorting all
the available criteria according to the fitness function, and then using the addCriterion
method to add the top criterion. The fitness of the resulting rule is subsequently
evaluated using the evalRule method, and this process is repeated until evalRule returns
a fitness value that meets a certain threshold.

Finally, the Rule instance produced by the RuleGenerator can be used to filter
candidate triples in a KG, using its apply method. The CandidateGenerator class handles
this process, applying a given rule to the desired set of candidates and returning the
set of triples that are considered promising candidates according to the rule.

80

8.4. Evaluation

8.3.1 Design and performance considerations

The software architecture of CHAI has been devised using a number of common
software patterns. First, given that only one instance of most classes is needed at
runtime, all such classes have been designed as singletons, to statically guarantee a
smaller memory footprint. However, there are two places where a singleton cannot
be used. One of them is for class Rule, since the execution of CHAI will result in the
generation of one rule per relation in the KG. Another similar case is class Criterion,
because it is clear that multiple different criteria should be instantiated at runtime.

To facilitate the inclusion of new criteria in the future, they are accessed through a
CriteriaCatalogue class, which takes care of detecting all available criteria in the system
and loading them at runtime. This way, no further changes in the system are needed if
additional criteria need to be added.

Finally, the way in which candidates are obtained from a rule enjoys a significant
optimization. Rather than following a filtering approach, where the entire set of
possible candidates needs to be instantiated and then pruned, we follow a generative
approach. The CandidateGenerator class is able to inspect the conditions of a rule, and
then generate exclusively those candidate triples that would have been allowed by it.
While the final set of filtered candidates can be proved to be the same, this results in
significant runtime and memory usage improvements.

8.4 Evaluation

In this section we present the experimental results that confirm that CHAI is effective
in practice. First, we introduce the experimental setting. Then, we present the results
of applying CHAI on several well-known Knowledge Graphs, comparing them against
those of a state-of-the-art baseline technique by Shi and Weninger [130], which is, to the
best of our knowledge, the only KG completion proposal that includes a well-defined
way to filter candidate triples and experimental results on this regard. Finally, we
discuss these results.

8.4.1 Setup and experimental data

We evaluated CHAI using a number of different Knowledge Graphs that are openly
available and commonly used for the task of KG completion: FB13, WN11 [134],
WN18 [18] (which are subsets of Freebase [14] and Wordnet [89], respectively), a
subset of NELL introduced by Gardner and Mitchell [47], and EPSRC2, which contains
information about the grants provided by the Engineering and Physical Sciences
Research Council of the United Kingdom. All of these Knowledge Graphs were

2http://epsrc.rkbexplorer.com

81

http://epsrc.rkbexplorer.com

Chapter 8. CHAI: Our candidate filtering proposal

obtained from the publicly available AYNEC-DataGen tool [6], and an overview of
their metadata can be found in Table 8.2. We used CHAI to generate rules for every
relation in every KG, except for the case of NELL, in which we focused on the same
subset of 10 relations as Gardner and Mitchell [47] due to the high number of total
relations. All experiments were conducted on a computer with 32GB of RAM and an
Intel Core i9-9900K CPU.

KG Training
triples Test triples Relations

FB13 285,208 78,490 13
WN18 117,160 58,564 18
NELL 201,870 13,491 519 (10)
EPSRC 341,372 85,337 20

Table 8.2: Overview of the KGs used for evaluating CHAI

The results of the approach followed by Shi and Weninger [130] were used as a
baseline. Their proposal consists in generating candidate triples by altering the target
entities of the triples already present in the KG, and replacing them by all entities that
can be found in the range of the relation present in the triple. This is equivalent to
applying only the ranKG,r criterion, where r is the relation for which CHAI is being
applied.

8.4.2 Evaluation parameters

To conduct our experiments, we set the distance threshold N for the distance criterion
to 4. This value was chosen empirically, aiming to allow for a threshold as high as
possible while still being reasonable in terms of computation time. Additionally, these
distances were computed on a partially undirected version of the KGs. This was done
to fully exploit the highly relational nature of KGs, while still not allowing paths that
would be connected by means of entities with a very high in-degree such as genders
or nationalities.

The training and testing splits of the KGs were already provided by the KGs that
we used, and thus we provided CHAI with these splits as is. We evaluated CHAI using
a fitness function that combines reduction rate (rr) and coverage using their harmonic
mean, as shown in Eq. 8.1. The θ threshold value required by the algorithm was set to
0.99, so as to allow CHAI to find highly satisfactory rules, and to study the evolution
of the coverage and reduction rate of said rules if they keep growing in size without
meeting the threshold. Formally, they are defined as follows:

Let C be a candidates set, and C ′ ⊆ C a set of filtered candidates:

82

8.4. Evaluation

fitness(KG, C, C ′) = 2 · rr(C, C ′) · coverage(KG, C ′)
rr(C, C ′) + coverage(KG, C ′) , where (8.1)

rr(C, C ′) = 1− |C
′|
|C|

coverage(KG = (E ,R, T), C ′) = |C
′ ∩ T |
|T |

This fitness function was devised under the following rationale: focusing only on
coverage would result in very long rules that allow as many candidates as possible,
however, this would not be desirable as we aim to reduce the size of the set of
candidates, to avoid having to evaluate low-quality candidates. Conversely, focusing
only on reduction rate would yield very short (and thus more restrictive) rules. As
a consequence, this fitness function achieves a compromise between reduction rate
and coverage, and allows for more flexibility in the lengths of the rules in contrast to
focusing only on one objective. To illustrate this difference, we have also tested CHAI
using two alternative fitness functions: only coverage, and only reduction rate. The
results achieved by every fitness function are shown in Figure 8.4.

8.4.3 Results and discussion

In the following, we present the results achieved by CHAI on the KGs under evaluation
and the conclusions we draw from them.

Figure 8.3 reports on the evolution of the coverage and reduction rate for all KGs
under study as rules grow in size, where each line represents a different relation; while
Figure 8.4 display the values for the coverage and reduction rate for every iteration in
all Knowledge Graphs as points in a 2-dimensional space. Finally, Table 8.3 provides
an overview on the average maximum coverage and reduction rate that CHAI achieves
for the relations in all KGs under study. This Table also includes the average coverage
and reduction rate values achieved by the proposal of Shi and Weninger [130], which
was denoted as “baseline” for brevity.

These results allow us to distinguish between two types of relations: those for
which a high coverage value is obtained with a very short rule, and those for which
the coverage starts at a lower value and increments as rules grow in size, as shown in
Figure 8.3. We consider the former type of relations to be categorical, as they have a
range of possible target entities that is relatively small: for example, the entities that
are targets for the relation location are unlikely to appear as the target for any other
relation, and thus using the entities that are targets for location as possible candidates
for locations yields a very good result. On the other hand, relations that are non-
categorical have a much wider range of possible candidates: in the case of the relation

83

Chapter 8. CHAI: Our candidate filtering proposal

1 3 5 7 9 11
Rule size

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

(a) FB13 - Coverage

1 3 5 7 9 11
Rule size

0.0

0.2

0.4

0.6

0.8

1.0

Re
du

ct
io
n
ra
te

(b) FB13 - Reduction rate

1 3 5 7 9 11
Rule size

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

(c) WN18 - Coverage

1 3 5 7 9 11
Rule size

0.0

0.2

0.4

0.6

0.8

1.0

Re
du

ct
io
n
ra
te

(d) WN18 - Reduction rate

1 3 5 7
Rule size

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

(e) NELL - Coverage

1 3 5 7
Rule size

0.0

0.2

0.4

0.6

0.8

1.0

Re
du

ct
io
n
ra
te

(f) NELL - Reduction rate

1 3 5 7
Rule size

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

(g) EPSRC - Coverage

1 3 5 7
Rule size

0.0

0.2

0.4

0.6

0.8

1.0

Re
du

ct
io
n
ra
te

(h) EPSRC - Reduction rate

Figure 8.3: Evolution of the coverage (left) and reduction rate (right) values

84

8.4. Evaluation

0.0 0.2 0.4 0.6 0.8 1.0
Reduction rate

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

Harmonic mean
Only coverage
Only reduction rate

(a) FB13

0.0 0.2 0.4 0.6 0.8 1.0
Reduction rate

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

Harmonic mean
Only coverage
Only reduction rate

(b) WN18

0.0 0.2 0.4 0.6 0.8 1.0
Reduction rate

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

Harmonic mean
Only coverage
Only reduction rate

(c) NELL

0.0 0.2 0.4 0.6 0.8 1.0
Reduction rate

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

Harmonic mean
Only coverage
Only reduction rate

(d) EPSRC

Figure 8.4: Reduction rate (x) and coverage (y) for different fitness functions

children, an entity may produce a good candidate even if it does not appear as the
target of children (for example, they may appear in the relation sibling).

This conclusion is reinforced by the results shown in Figure 8.4, where there are
groups of iterations in the top-right corner (the area of both high reduction rate and
high coverage), which are obtained for categorical relations with a small subset of
possible targets, while a different group of iterations show more scattered results
in the top area, denoting that in order to achieve a high coverage, a bigger set of
candidates must be used (non-categorical relations). Additionally, the results shown
in this Figure lead us to the conclusion that using only reduction rate as the fitness
function results in a very poor coverage, as the algorithm stops after having selected
only one criterion that allows a very small number of candidates. On the contrary,
using only coverage as the fitness function provides better results, but with a clear
tendency towards prioritizing coverage at the expense of a lower reduction rate, while
using the harmonic mean yields more balanced results.

In the case of non-categorical relations, there exists a trade-off between coverage
and reduction rate. This is to be expected, since rules are disjunctions of criteria and
thus rules that comprise more criteria are more likely to filter out less candidates,
increasing coverage but decreasing the reduction rate. In these cases, it is up to the
user to decide whether they are interested in achieving a very high coverage with a

85

Chapter 8. CHAI: Our candidate filtering proposal

KG
Avg. max.
coverage
(CHAI)

Avg.
coverage

(baseline)

Avg. max.
RR (CHAI)

Avg. RR
(baseline)

FB13 0.92
(0.76-1.00)

0.78
(0.58-0.99)

0.91
(0.76-1.00)

0.91
(0.76-1.00)

WN18 0.94
(0.89-0.99)

0.49
(0.26-0.72)

0.97
(0.93-1.00)

0.93
(0.85-1.00)

NELL 0.89
(0.78-1.00)

0.53
(0.26-0.80)

0.97
(0.95-1.00)

0.99
(0.99-1.00)

EPSRC 0.99
(0.98-1.00)

0.82
(0.68-0.97)

0.95
(0.91-0.99)

0.95
(0.92-0.99)

Table 8.3: Max. coverage and reduction rate values (avg and 95% conf.)

lower reduction rate, or a higher reduction rate with a usually lower coverage. For
this kind of relations, distance-based criteria are generally useful: for example, one’s
parents or spouse are usually found within a short distance in the KG. In categorical
relations, however, one is able to obtain both a high reduction rate and a high coverage,
because the entities that are suitable targets for said relations can easily be found by
analyzing the domains and ranges of the relation in question or other relations.

Regarding the reduction rate, it must be noted that it is computed with regard to
the set of candidates that are selected by the exists criterion, and not with respect to
the Cartesian product of all possible candidates. This results in reduction rates that are
in all cases lower than those that would be obtained in the latter case, though more
evenly spread between 0 and 1. Given that high reduction rates are still achieved, we
do not consider this to be a problem, but rather an adequate way of measuring how
many candidates are selected with respect to an initial set of filtered candidates, with
many unlikely candidates already filtered out.

Finally, it is worth noting that CHAI consistently manages to achieve high coverage
values for all Knowledge Graphs under study, as it can be seen in Figure 8.3. These
values start to converge with rules composed of approximately five criteria, and thus
we find that the criteria that are ranked higher by means of the proposed fitness
function (Eq. 8.1) are indeed successful in allowing promising candidates to pass the
filter. When comparing CHAI to the baseline approach proposed by Shi and Weninger
[130], CHAI achieves much higher values of coverage while still being able to obtain
similar reduction rates, as shown in Table 8.3. The values for CHAI shown in said
Table refer to the average maximum values that can be achieved, and thus our proposal
is more versatile as it allows the user to prioritize a higher coverage by using longer
rules, or a higher reduction rate by using shorter rules. CHAI works well for all kinds
of relations due to the versatility of the criteria it uses, while the proposal by Shi and
Weninger [130] is not able to deal as effectively with non-categorical relations in terms
of coverage, hindering its overall performance.

86

8.5. Limitations

8.5 Limitations

While CHAI obtains satisfactory results, it is not without limitations. Perhaps the
most important one would arise in the case of a KG with a very high number of
total relations, because the amount of domain and range-based criteria would be
equally high. In this case, the fitness function would have to be computed for every
criterion in order to sort them by decreasing fitness value, resulting in a potentially
high computational cost. Besides, CHAI may not work as well in very sparse KGs
where all or most relations share the same entities in their domains and ranges, because
the distance-based criterion would need a much higher threshold due to the sparsity
of possible paths, and the domain and range-based ones would not prove useful.

8.6 Summary

In this chapter we have introduced CHAI, our proposal to filter candidate triples for
Knowledge Graph completion. CHAI works by producing candidate filtering rules by
combining a set of criteria in such a way that it optimizes a fitness function.
Furthermore, CHAI produces a rule for every distinct relation in the KG, thus
ensuring that the result of applying such rules is specifically tailored to the nature of
every relation. Our experimental evaluation shows that CHAI is effective in practice,
producing sets of candidate triples that are considerably smaller than other
state-of-the-art approaches to this task, while still containing most of the candidates
that could be considered promising.

87

Chapter 8. CHAI: Our candidate filtering proposal

88

Chapter 9

CAFE: Our triple
classification proposal

“Coffee, the finest organic suspension ever devised.”

— Star Trek: Voyager

W
hen a set of candidate triples has been obtained, the next
step in Knowledge Graph completion is to classify every triple in said set
to determine if it represents correct knowledge or not and, if found to be

correct, added back to the KG in order to enrich it. In this chapter we introduce CAFE,
our proposal for candidate triple classification. This chapter is structured as follows:
Section 9.1 introduces it, Section 9.2 presents the neighborhood-aware features that
CAFE uses to discern between correct and incorrect triples, as well as the process it
follows to do so, Section 9.3 discusses its internal architecture and the design choices
behind it, Section 9.4 shows the experiments that we carried out to assess the
effectivity of CAFE, as well as their results; Section 9.5 discusses its practical
limitations; finally, Section 9.6 summarizes the chapter.

89

Chapter 9. CAFE: Our triple classification proposal

9.1 Introduction

This chapter presents CAFE [20], our proposal for triple classification. CAFE covers
the second main step in Knowledge Graph completion: once an adequately small set
of candidate triples has been obtained, every triple in it must be carefully evaluated to
determine whether or not it represents correct knowledge and, if so, added to the KG
to enrich and expand it.

CAFE works by transforming any possible triple into a numerical vector by using
a novel set of neighborhood-aware features, which measure the correctness of a triple
leveraging its context in a Knowledge Graph. By transforming all triples into vectors
in this manner, CAFE trains and uses a binary classifier to discern between correct and
incorrect triples.

We thoroughly evaluate CAFE using several well-known Knowledge Graphs, and
our evaluation shows that it is able to achieve a high precision in challenging, real-
world scenarios, thus allowing for a trustworthy KG completion process.

Over the course of this chapter, we continue to follow the running example
introduced in Section 7.1.

9.2 Our proposal

As previously described, the second major step when completing a Knowledge Graph
consists of analyzing the set of possible candidate triples, assessing which ones
represent correct knowledge, and adding them back to the KG in order to augment it.
In this step, it is important to achieve a high precision, in order to have a Knowledge
Graph completion process that is as trustworthy as possible [128].

To carry out this process, we have devised CAFE, a technique that classifies
candidate triples into correct or incorrect ones. Given a Knowledge Graph and a set of
candidate triples, CAFE evaluates each one of them and assigns them a binary label,
denoting whether it should be considered correct and added to the Knowledge Graph,
or incorrect and discarded. CAFE does this by defining a set of neighborhood-aware
features, which checks for shared neighborhoods at several distance levels and under
certain conditions, under the assumption that the entities in correct triples usually have
a higher degree of overlap in their neighborhoods. Then, using these features, each
candidate triple is converted into a numerical vector. Finally, CAFE trains a number of
neural classification models using these vectors to learn to separate correct triples from
incorrect ones. In the following subsections, we describe the features and architecture
of CAFE in detail.

90

9.2. Our proposal

9.2.1 Neighborhood-aware features

We propose a set of neighborhood-aware features that takes neighborhood subgraphs,
reachable entities and paths into account. Due to the large number of possible
variations of each feature, we present our feature set in terms of groups of features.
Each group can be parameterized to obtain a specific feature, which we call an
instance of the feature group.

For the sake of example, we illustrate a possible instance of every feature group
and its value using the example triple example =(Daniel Radcliffe, plays, Harry Potter),
and the KG shown in Figure 7.1.

Feature group f1: Number of entities in the neighborhood subgraph of size n of the
source entity in the triple. Features in this group are computed as:

f1(n) : (s, r, t) 7→ |En
s |

In the example shown in Figure 7.1, f1(2) applied to the example triple is |{Daniel
Radcliffe, Harry Potter and the Goblet of Fire (movie), Harry Potter and the Prisoner of
Azkaban (movie), Harry Potter and the Goblet of Fire (book), Harry Potter and the Prisoner of
Azkaban (book)}| = 5.

Feature group f2: Number of entities in the neighborhood subgraph of size n of the
target entity in the triple. Features in this group are computed as:

f2(n) : (s, r, t) 7→ |En
t |

In the example shown in Figure 7.1, f2(3) applied to the example triple is |{Harry Potter,
J.K. Rowling, Harry Potter and the Goblet of Fire (book), Harry Potter and the Prisoner of
Azkaban (book), Robin Ellacott, Hermione Granger}| = 6.

Feature group f3: Degree of N-path centrality of the source entity in the triple.
Features in this group are computed as:

f3(n) : (s, r, t) 7→ |En
s |

|E | − 1

In the example shown in Figure 7.1, f3(1) applied to the example triple is |{Harry Potter
and the Goblet of Fire (movie), Harry Potter and the Prisoner of Azkaban (movie)}|/(13− 1) =
2/12 ≈ 0.17.

Feature group f4: Degree of N-path centrality of the target entity in the triple.
Features in this group are computed as:

f4(n) : (s, r, t) 7→ |En
t |

|E | − 1

91

Chapter 9. CAFE: Our triple classification proposal

In the example shown in Figure 7.1, f4(1) applied to the example triple is |{Harry Potter
and the Goblet of Fire (book), Harry Potter and the Prisoner of Azkaban (book)}|/(13− 1) =
2/12 ≈ 0.17.

Feature group f5: Number of common entities between the neighborhood subgraph
of size n of the source entity and the neighborhood subgraph of size m of the target
entity in the triple. Features in this group are computed as:

f5(n, m) : (s, r, t) 7→ |En
s ∩ Em

t |

In the example shown in Figure 7.1, f5(2, 3) applied to the example triple is |{Harry
Potter and the Goblet of Fire (book), Harry Potter and the Prisoner of Azkaban (book)}| = 2.

Feature group f6: Jaccard index of similarity between the entities in the
neighborhood subgraph of size n of the source entity and the neighborhood subgraph
of size m of the target entity in the triple. Features in this group are computed as:

f6(n, m) : (s, r, t) 7→ jaccard(En
s , Em

t)

In the example shown in Figure 7.1, f6(2, 3) applied to the example triple is |{Harry
Potter and the Goblet of Fire (book), Harry Potter and the Prisoner of Azkaban
(book)}| / |{Daniel Radcliffe, Harry Potter and the Goblet of Fire (movie), Harry Potter and
the Prisoner of Azkaban (movie), Harry Potter and the Goblet of Fire (book), Harry Potter and
the Prisoner of Azkaban (book), Harry Potter, J.K. Rowling, Robin Ellacott, Hermione
Granger}| = 2 / 9 = 0.22.

Feature group f7: Adamic-Adar index of closeness between the neighborhood
subgraphs of size n of the source and target entities in the triple. Features in this
group are computed as:

f7(n) : (s, r, t) 7→ ∑
e∈En

s∩En
t

1
log|En

e |

In the example shown in Figure 7.1, f7(2) applied to the example triple is
1

log|E2
Harry Potter and the Goblet of Fire (book)|

= 1
log|3| ≈ 2.09.

Feature group f8: Number of reachable entities through the relation r at distance
n from the source entity in the triple. Features in this group are computed as:

f8(r, n) : (s, r, t) 7→ |Reachable(s, r, n)|

In the example shown in Figure 7.1, f8(hasPrequel, 2) applied to the example triple is
|{Daniel Radcliffe, Harry Potter and the Prisoner of Azkaban (movie)}| = 2.

Feature group f9: Number of reachable entities through the relation r at distance

92

9.2. Our proposal

n from the target entity in the triple. Features in this group are computed as:

f9(r, n) : (s, r, t) 7→ |Reachable(t, r, n)|

In the example shown in Figure 7.1, f9(created, 2) applied to the example triple is
|{Harry Potter,Hermione Granger, Robin Ellacott}| = 3.

Feature group f10: Number of common reachable entities through the relation r
from the source entity at distance n and from the target entity at distance m. Features
in this group are computed as:

f10(r, n, m) : (s, r, t) 7→
|Reachable(s, r, n) ∩ Reachable(t, r, m)|

In the example shown in Figure 7.1, f10(created, 2, 3) applied to the example triple is
|{Daniel Radcliffe} ∩ {Harry Potter, Hermione Granger, Robin Ellacott}| = 0.

Feature group f11: Jaccard index of similarity between the reachable entities
through the relation r from the source entity at distance n, and those reachable
through the relation r from the target entity at distance m. Features in this group are
computed as:

f11(r, n, m) : (s, r, t) 7→
jaccard(Reachable(s, r, n), Reachable(t, r, m))

In the example shown in Figure 7.1, f11(created, 2, 3) applied to the example triple is
|∅| / |{Harry Potter, Hermione Granger, Robin Ellacott}| = 0 / 3 = 0.

Feature group f12: Number of distinct paths of length n between the source and
the target entity in the triple, using relations r1, . . . , rn. Features in this group are
computed as:

f12(n, r1, . . . , rn) : (s, r, t) 7→ |P(s, t, r1, . . . , rn)|

In the example shown in Figure 7.1, f12(4, starred_in, based_on, writer, created) applied
to the example triple is 1, as there is one path of length 4 between the entities Daniel
Radcliffe and Harry Potter that matches the given relations.

The rationale behind this set of features is manifold. Regarding f1 and f2, knowing
the size of the neighborhood of an entity can be helpful to determine whether said
neighborhood encompasses relevant information. For instance, our hypothesis is that
very large neighborhoods tend to contain a higher amount of unrelated information.
The same idea is leveraged in f3 and f4, which provide normalized indices of centrality
with respect to the total amount of entities in the KG. Following the previous reasoning,
we hypothesize that entities with large indices of centrality (i.e. highly connected to
other entities) will yield less useful information. Meanwhile, feature groups f5, f6 and
f7 measure the degree of overlap that exists in the neighborhoods of the two entities,

93

Chapter 9. CAFE: Our triple classification proposal

both in absolute and in relative terms, under the assumption that correct triples have a
higher degree of overlap between the neighborhoods of their entities.

The previously discussed feature groups do not consider the specific relations
involved. However, we deem it reasonable to assume that some relations may be
more useful than others to determine whether a triple is correct, depending on their
specific semantics. For example, having one or more children in common can be
an indication of a marriage, while having the same nationality is not. In order to
exploit this fine-grained information, feature groups f8, f9, f10 and f11 are similar to
the previously discussed groups but restrict themselves to only one relation. These
groups are computed for every relation in a KG.

Finally, feature group f12 allows CAFE to find the number of paths that exist
between two entities for any given relations. It is our intuition that correct triples have
more alternative paths between the two entities they contain than false ones.

9.2.2 Workflow

Our proposal, CAFE, receives a KG and a set of relations from that KG as input, and
outputs a classification model for each of the provided relations. These models are able
to determine if a given triple that represents an instance of the relation is correct and
should belong to the KG. Its workflow is depicted in Figure 9.1 and, in the following,
we describe each of its steps.

Generating negative

examples

Converting triples into

feature vectors

Loading the

Knowledge Graph

Grouping feature

vectors

Training and

evaluating the models

Relations to predict

r1 r2 r3

Features to apply

f
1

f
2

f
3

f
4

A

B

C

F

D

E
r2

r1

r2

r1

r3

r3

Input KG

r2

r4

A r2 B +

B

C

C

D

E

E

r2 D +

r2 A +

r1 B +

r3 E +

r3 C +

r1 F +

 s r t Label

A r2 B +

A

B

B

C

C

C

r2 D –

r2 D +

r2 A –

r2 A +

r2 D –

r1 B +

C r1 F –

D

D

E

E

E

E

r3 E +

r3 C –

r3 C +

r3 D –

r1 F +

r1 B –

 s r t Label f
1

f
2

 f
3

 f
4

 Label

0.20 2 0.40 4 1

0.10

0.75

0.13

0.53

0.24

0.94

0.64

0.85

0.10

1 0.12 2 0

3 0.63 0 1

0 0.37 0 0

2 0.64 1 1

2 0.41 0 0

3 0.54 2 1

2 0.52 1 0

2 0.50 0 1

4 0.51 1 0

0.34 2 0.43 3 1

0.18

0.68

0.22

2 0.21 2 0

3 0.97 4 1

0 0.42 1 0

 Rel. Feature vector Label

r1

r2

r3

[0.94, 3, 0.54, 2]

[0.64, 2, 0.52, 1]

[0.68, 3, 0.97, 4]

[0.22, 0, 0.42, 1]

[0.20, 2, 0.40, 4]

[0.10, 1, 0.12, 2]

[0.75, 3, 0.63, 0]

[0.13, 0, 0.37, 0]

[0.53, 2, 0.64, 1]

[0.24, 2, 0.41, 0]

[0.85, 2, 0.50, 0]

[0.10, 4, 0.51, 0]

[0.34, 2, 0.43, 3]

[0.18, 2, 0.21, 2]

1

0

1

0

1

0

1

0

1

0

1

0

1

0

r1

train+test

Neural

model for

r1

r2

train+test

Neural

model for

r2

r3

train+test

Neural

model for

r3

Figure 9.1: In-depth view of the CAFE workflow

• Loading the Knowledge Graph: CAFE internally stores the input KG in the
form of (s, r, t) triples, using an efficient data structure based on hash tables,
which is suitable for a high frequency of read operations due to its O(1) lookup
times. The triples that contain relations for which a predictive model does not
need to be generated are still taken into account when computing features, since
they may provide valuable predictive information, but they are not transformed

94

9.2. Our proposal

into feature vectors in the following steps.

• Generating negative examples: A Knowledge Graph contains only positive
information, i.e., it contains examples of the occurrence of a relation r between
two entities. However, it does not contain explicit information about pairs of
entities for which r does not hold. Our proposal relies on a classification model
that requires negative examples for training, which means that a number of
negatives for each positive triple must be produced. To accomplish this, we
follow the type-constrained local closed world assumption [11], i.e., we generate
negative examples from every triple (s, r, t) present in a KG by replacing their
target entity t with a different one, t′, such that the resulting triple (s, r, t′) does
not exist in the KG. Furthermore, to preserve the range of each relation, we
randomly choose t′ such that there exists some other triple in the KG where t′

appears as the target entity for the relation r. This is known as type constraint.

In the example depicted in Figure 7.1, a valid negative example is (Hermione
Granger, appears_in, The Cuckoo’s Calling), since we know that The Cuckoo’s Calling
is a valid target for the relation appears_in. However, (Hermione Granger,
appears_in, Daniel Radcliffe) would not be allowed as a negative example, because
Daniel Radcliffe never appears as the target of the relation appears_in.

It can be argued that generating negative evidence in this manner can produce
false negatives by mere chance, i.e., statements that are deemed incorrect but
that are true in the real world. While this is indeed plausible, it is generally
accepted [68, 82, 134] that the chances of this happening are very low and, as a
consequence, the possible effects on the final results are not significant.

• Converting triples into feature vectors: Once negative examples have been
generated, our feature set is instantiated and applied to all triples. For all feature
groups, we obtain all possible feature instances by applying all possible
combinations of the values of their parameters. Each feature instance assigns a
real number to each triple. Therefore, applying several features to a triple results
in a feature vector. Each position of the feature vector represents that real
number that the corresponding feature assigned to the triple.

It is important to note that, to compute features on a positive training triple, we
temporarily remove it from the KG, since not doing so would result in trivial
prediction models such as “a person plays a character if there exists a triple in
the KG stating that the person plays that character”.

95

Chapter 9. CAFE: Our triple classification proposal

• Grouping feature vectors: The previous step computes feature vectors of triples.
Since these triples can be either positive or negative, the feature vectors are
accordingly labeled as positive or negative. Based on the labeled feature vectors,
we train a classification model for each relation that predicts whether a triple
should be added to the KG. We do this in order to allow the models to capture
meaningful and distinctive information for every relation: even though the same
set of features is applied to all triples, some features might have more predictive
power for a relation, and other features may be more helpful for a different one.

• Training and evaluating the models: For every relation that we predict, we create
one or more neural models, where each model focuses only on the features that
are obtained from a certain neighborhood size. Thus, using only neighborhood
subgraphs of size 1 results in one model, using neighborhood subgraphs of size
of up to 2 results in two models, and so on. This allows each model to capture
the specific information that every neighborhood size may yield. To combine
two or more models, we use an additional combination layer to produce a single
output.
The neural models are trained using the labeled feature vectors in the training
split for the desired relation, where each model receives only the features
corresponding to its assigned neighborhood size, and the label or ground truth is
shared among them. Prior to training our models, we first remove any
individual features that have the exact same value in every feature vector and
thus lack any predictive power. An example of this are path-based features (f12),
since only a small subset of all possible paths of fixed length occur between two
given entities, and as a consequence most of them have a value of 0.
It is important to note that we use neural classification models because they
have been shown to consistently achieve satisfactory results in many different
classification tasks [2, 8, 165], although other classification models that make use
of our features could be used in this step.

9.3 Software Architecture

We show the internal class architecture of CAFE in Figure 9.2, and its data workflow is
displayed in Figure 9.3. We further describe and discuss the architecture of CAFE in
the following.

The main flow of CAFE is coordinated by the class ParallelWorker. This class can be
configured to use a certain number of threads, and then internally spawns processes to
parallelize the different tasks done by CAFE. This is done by splitting the total number
of triples in the KG between the different threads, since the processing of triples can
be done concurrently for the most part, as shown in Figure 9.3.

96

9.3. Software Architecture

Figure 9.2: Architecture of CAFE

Load KG

Generate

negatives

Compute

features

Remove

useless

features

Train model

for relation r

1

Train model

for relation r

2

Train model

for relation r

n

(…)

Figure 9.3: Workflow of CAFE

The method genNegs produces negative triples using the NegativeGenerator class
and a generation strategy, since they are necessary to train the classification models.

Then, the method compFeats transforms every triple in the KG into a labeled feature
vector, using a series of neighborhood-aware features that leverage the similarities of
the neighborhoods of two entities in a KG. This is done by measuring the similarities
of the entity neighborhoods of the source and target of a triple, using measures such
as the Jaccard index of similarity, analyzing the size of such neighborhoods using

97

Chapter 9. CAFE: Our triple classification proposal

measures such as the Adamic-Adar index; as well as assessing the overall connectivity
of the entities of a triple using the N-path centrality index.

The method filtFeats removes the features that have the same value in all labeled
vectors, since they have no predictive power. Finally, method getClassifier trains and
returns a neural classifier for a given set of labeled vectors, corresponding to a certain
relation in the KG. Given that the work done by these methods is usually carried out
in an independent manner for each triple, it is parallelized among different execution
threads.

Class ParallelWorker uses other classes by means of composition to perform
specialized tasks: Class NegativeGenerator provides a unified interface to easily
generate a negative triple in a KG following one of the available strategies, which are
implemented using NegGenerationStrategy classes.

Class KGLoader, through its load method, is used to read and write KGs in different
formats, namely: N3, Turtle, and RDF/XML.

Class FeatureVectorCalculator is responsible for applying the previously discussed
catalogue of features to any given triple using the method getVec, resulting in a labeled
vector for that triple. The catalogue of available features can be easily expanded thanks
to the Feature class, since each individual feature is implemented as an instance of that
class.

Class FeatureFilterer specializes in removing useless features from a feature vector,
i.e., those that share the same value in all vectors and thus have no predictive power.
Method filtFeat receives the labeled vector to be processed and a set of all other
labeled vectors, to allow for the multithreaded processing of different labeled vectors
simultaneously.

Finally, the NeuralClassifier class produces, trains and evaluates the neural models
that determine whether a triple is correct. These models receive as input the feature
vector generated from the triple in question, and outputs a confidence value between 0
and 1. The models used by CAFE have three feed-forward layers with 1024, 512 and
256 neurons each. The method initialize produces a new model for a certain relation, to
allow it to specialize in the specific details of said relation, which may be different to
other relations present in the KG. The method train receives the training set of labeled
vectors resulting from processing a KG with the ParallelWorker, and uses them to train
the classification model. This method uses a learning rate of 0.001, a dropout of 0.1 for
all layers, a batch size of 16 and 100 epochs, as these parameters have been proven to
yield satisfactory results in some of our previous work [20]. Then, all vectors in the
testing set are evaluated using the predict method.

Throughout the whole process, the Settings class is queried to retrieve the
configuration parameters set by the user, e.g., the relative sizes of the training and

98

9.3. Software Architecture

testing splits, or the negative generation strategy to use.

CAFE has two main dependencies with external libraries: NetworkX [58], which
is used to internally store the KG and apply graph-based algorithms to compute the
different features; and TensorFlow [1], which is used to create, train and apply the
neural classification models.

9.3.1 Design and performance considerations

The architecture of CAFE shares some common patterns and design decisions with that
of CHAI, described in the previous chapter. Most classes only need to be instantiated
once throughout the execution of CAFE and, for this reason, we have decided to turn
them into singletons for simplicity of use and to minimize the use of memory.

There are, nonetheless, a number of classes that clearly must allow multiple
instances of them to exist, in order to represent variations of the same concept. A
prime example of this is the Feature class: all features share the same interface,
since they receive a triple and the KG that contains it and produces a numeric value.
However, in order to accommodate all features defined in Section 9.2.1, each one of
them exists as an instance of Feature.

Another example is the possible existence of multiple negative generation strategies,
where one must be chosen at runtime according to the selection of the user. In both
cases, they are accessed through auxiliary classes that act as catalogues, automatically
detecting and loading all instances of the catalogued classes.

Given that CAFE is a very computationally intensive system, several optimizations
have been made to make the best possible use of the resources of the system it runs on.
Due to the fact that computing a feature vector for a triple can be done independently
of all other triples in a KG, this task is parallelized and evenly distributed among all
available cores in a CPU. This, however, comes at the cost of ensuring that all singletons
in the system are thread-safe, given that they will be accessed by multiple processes at
the same time.

Finally, it is important to note that all features defined by CAFE are deterministic,
and will always return the same value for the same triple in a KG. Most features only
analyze one of the entities in a triple at a time, and thus are re-computed very often
for the same entity. For this reason, we have implemented a thread-shared caching
strategy, in which the result of applying a feature to a triple is stored into a cache that
is accessed by all threads. This allows CAFE to significantly reduce the number of
calculations that must be performed when processing a KG.

99

Chapter 9. CAFE: Our triple classification proposal

9.4 Evaluation

In this section, we present the evaluation that we carried out to assess the performance
and effectiveness of CAFE. First, we introduce the Knowledge Graphs on which CAFE
was applied and an overview of their main characteristics. Next, we explain the
methodology that we used to evaluate CAFE. Finally, we show and discuss the results
of our evaluation.

9.4.1 Experimental data

We evaluated our proposal using four KGs provided by the freely available AYNEC-
DataGen [6] tool: FB13-A, WN11-AR, WN18-AR and NELL-AR. These KGs are based
on the well-known FB13, WN11 [134], WN18 [18], and a subset of NELL proposed
in [47]. However, they have been processed to remove reciprocal relations detected by
AYNEC, i.e., relations r and r′ such that, if (s, r, t) exists, then (t, r′, s) also exists very
frequently. Additionally, relations that amount to less than 5% of the total number of
triples in the graph have been removed.

These evaluation KGs originally contained one negative example per each positive
triple in both their training and testing splits. In order to study how the KG completion
techniques perform when presented with a much higher volume of negative evidence,
we created versions of these graphs whose testing splits contained 10 negative examples
per positive, using the AYNEC-DataGen tool. We believe that this is a more realistic
scenario, since a much higher number of negative examples per positive triple is
typically expected in real-world KG completion tasks [19]. To avoid confusion, we
denote these versions as FB13-A-10, WN11-AR-10, WN18-AR-10 and NELL-AR-10.

For FB13-A-10, WN11-AR-10 and WN18-AR-10, we aimed to predict all possible
relations, and for NELL-AR-10 we focused on the same subset of 10 relations that were
used to evaluate SFE [47]. However, in the latter KG, one relation was removed by
AYNEC for being the reciprocal of another relation, leaving 9 relations for evaluation.
In the specific case of FB13-A-10, we transferred 25% of the training triples over to
the testing set in order to provide testing examples for some relations, as they were
not available in the original KG as introduced in [134]. Table 9.1 provides an overview
of the aforementioned KGs. In the case of NELL-AR-10, we show in parentheses the
amount of triples and relations that were considered for evaluation, although the entire
graph was used for computing features.

9.4.2 Experimental setup

A neural prediction model was created for every relation of interest and trained using
its corresponding training set. Then, the model was applied to all feature vectors in
the test set, and we compared the expected label (which denotes whether it represents

100

9.4. Evaluation

KG Training
triples Test triples Entities Relations

FB13-A-10 228,172 481,457 74,998 13
WN11-AR-10 77,948 198,231 38,195 9
WN18-AR-10 71,984 183,051 40,943 11

NELL-AR-10 86,971 (1,451) 219,374
(5,083) 53,934 148 (9)

Table 9.1: Overview of the KGs used for evaluating CAFE

a correct triple or not) against the label that was produced by our model. We report
our results in terms of precision, recall and F1, in order to determine how effective our
proposal is when determining the correctness of a given triple.

We evaluated three versions of CAFE, denoted CAFE1 to CAFE3, which were
limited to using feature instances that exploited neighborhood subgraphs and paths
of a maximum size of 1, 2, and 3, respectively. This was done in order to study how
using larger neighborhoods affects the effectiveness of CAFE.

There exist many different KG completion proposals, and they often use different
evaluation metrics [135]. Due to this, it is very difficult to perform a comparison across
a large number of them in a manner that is fair and rigorous. For this reason, we used
TransE [17], TransD [68], TransH [155], TransR [82], Analogy [83], SimplE [72] and
RotatE [138] as baselines for our evaluation, since they are some of the most well-known
state-of-the-art KG completion proposals. In order to provide a common evaluation
environment for these different proposals, we used the OpenKE [59] framework to
train and evaluate these proposals using the previously discussed Knowledge Graphs.
Additionally, since these proposals usually report metrics like MRR and Precision@N,
we used the utilities provided by OpenKE to obtain binary labels for the testing triples,
by setting a likelihood threshold in a way that optimized the classification results.

We selected the following values for the hyperparameters of our neural models:
3 layers with 1024, 512 and 256 neurons each, learning rate of 0.001, batch size of
16, dropout of 0.1 for all layers, 100 epochs and validation ratio of 10%. When two
or more models were to be combined, we joined their results using a hidden layer
with 3 neurons and an output layer with a single neuron. These values for the
hyperparameters were chosen using a hold-out or “dev” set for the FB13-A-10 KG,
and all KGs were then evaluated using the same hyperparameters. We chose them
because they provided satisfactory results in our empirical tests.

All our experiments were conducted on a computer equipped with an Intel Core
i9-9900K CPU, 32GB of RAM and an Nvidia RTX 2080 Ti GPU.

101

Chapter 9. CAFE: Our triple classification proposal

9.4.3 Results and discussion

In Figure 9.4, we show the evaluation results for CAFE1, CAFE2, CAFE3, and the
related state-of-the-art proposals. For the sake of clarity, this Figure only displays the
F1 values for each technique. Additionally, Table 9.2 shows the detailed results for all
relations in every KG and for all metrics under evaluation.

CAFE1

CAFE2

CAFE3

Analogy

RotatE

SimplE

TransE

TransD

TransH

TransR

0.00 0.25 0.50 0.75 1.00

(a) FB13-A-10

CAFE1

CAFE2

CAFE3

Analogy

RotatE

SimplE

TransE

TransD

TransH

TransR

0.00 0.25 0.50 0.75 1.00

(b) NELL-AR-10

CAFE1

CAFE2

CAFE3

Analogy

RotatE

SimplE

TransE

TransD

TransH

TransR

0.00 0.25 0.50 0.75 1.00

(c) WN11-AR-10

Figure 9.4: F1 comparison between CAFE and other proposals

Our results show that CAFE is able to match the performance of state-of-the-art
proposals, and in many cases achieve higher values on the metrics under evaluation. In

102

9.4. Evaluation

CAFE1

CAFE2

CAFE3

Analogy

RotatE

SimplE

TransE

TransD

TransH

TransR

0.00 0.25 0.50 0.75 1.00

(a) WN18-AR-10

Figure 9.4: F1 comparison between CAFE and other proposals (cont.)

0.00

0.20

0.40

0.60

0.80

1.00

F

1

����� ����� �����

Figure 9.5: F1 scores in the WN11-AR-10 KG

the cases of FB13-A-10 (Figure 9.4(a)) and WN18-AR-10 (Figure 9.5(a)), CAFE can reach
or surpass the F1 scores achieved by other proposals in a consistent manner. CAFE
also provides better results in the WN11-AR-10 (Figure 9.4(c)) KG, although with a
higher degree of variability, and matches the performance of the rest of the analyzed
techniques in the NELL-AR-10 (Figure 9.4(b)) KG. These results show that CAFE can
be more effective than other proposals in challenging classification scenarios.

103

Chapter 9. CAFE: Our triple classification proposal

P R F1 P R F1 P R F1 P R F1

CauseOfDeath 0.33 0.73 0.45 0.29 0.79 0.42 0.31 0.76 0.44 0.04 0.02 0.02

Children 0.40 0.78 0.53 0.44 0.88 0.59 0.50 0.88 0.64 0.17 0.14 0.16

Ethnicity 0.60 0.60 0.60 0.53 0.63 0.57 0.48 0.56 0.52 0.03 0.01 0.02

Gender 0.88 0.88 0.88 0.89 0.89 0.89 0.89 0.89 0.89 0.00 0.00 0.00

Institution 0.26 0.70 0.38 0.28 0.67 0.39 0.28 0.67 0.40 0.10 0.05 0.07

Location 0.37 0.51 0.43 0.28 0.63 0.39 0.34 0.57 0.42 0.36 0.38 0.37

Nationality 0.45 0.90 0.60 0.46 0.89 0.61 0.46 0.89 0.60 0.02 0.01 0.02

Parents 0.35 0.77 0.49 0.44 0.85 0.58 0.45 0.85 0.59 0.16 0.14 0.15

PlaceOfBirth 0.39 0.49 0.44 0.29 0.58 0.39 0.31 0.55 0.40 0.37 0.39 0.38

PlaceOfDeath 0.36 0.70 0.47 0.39 0.67 0.50 0.38 0.69 0.49 0.33 0.31 0.32

Profession 0.40 0.85 0.55 0.40 0.85 0.55 0.41 0.85 0.55 0.03 0.02 0.02

Religion 0.37 0.77 0.50 0.32 0.83 0.46 0.38 0.77 0.51 0.03 0.02 0.02

Spouse 0.27 0.89 0.41 0.32 0.90 0.47 0.33 0.89 0.48 0.25 0.17 0.20

ActorStarredInMovie 0.14 0.89 0.25 0.11 0.94 0.19 0.11 0.94 0.20 0.42 0.59 0.49

AthletePlaysForTeam 0.33 0.80 0.46 0.24 0.83 0.37 0.19 0.85 0.31 0.39 0.51 0.44

CityLocatedInState 0.15 0.61 0.24 0.15 0.66 0.24 0.15 0.62 0.25 0.43 0.57 0.49

JournalistWritesForPublication 0.47 0.89 0.61 0.40 0.92 0.56 0.39 0.92 0.55 0.34 0.35 0.34

RiverFlowsThroughCity 0.15 0.65 0.24 0.13 0.81 0.23 0.12 0.81 0.21 0.37 0.51 0.43

SportsteamPositionAthlete 0.07 0.92 0.12 0.07 1.00 0.13 0.06 0.85 0.11 0.22 0.17 0.19

StadiumLocatedInCity 0.15 0.77 0.24 0.11 0.91 0.20 0.12 0.95 0.21 0.42 0.56 0.48

TeamPlaysInLeague 0.47 0.85 0.60 0.55 0.88 0.67 0.56 0.86 0.68 0.08 0.04 0.06

WriterWroteBook 0.13 0.86 0.23 0.12 0.89 0.21 0.14 0.93 0.24 0.45 0.71 0.55

DomainRegion 0.22 0.14 0.17 0.42 0.42 0.42 0.38 0.47 0.42 0.39 0.63 0.48

DomainTopic 0.16 0.09 0.11 0.26 0.17 0.21 0.27 0.13 0.18 0.49 0.93 0.64

HasInstance 0.92 0.74 0.82 0.52 0.82 0.64 0.54 0.82 0.65 0.17 0.20 0.18

HasPart 0.63 0.81 0.71 0.59 0.86 0.70 0.65 0.86 0.74 0.13 0.15 0.14

MemberMeronym 0.12 0.47 0.19 0.22 0.74 0.34 0.32 0.81 0.46 0.35 0.53 0.42

PartOf 0.67 0.78 0.72 0.56 0.85 0.67 0.61 0.86 0.71 0.16 0.19 0.17

SimilarTo 0.24 0.90 0.39 0.23 0.91 0.37 0.24 0.90 0.38 0.22 0.27 0.24

SubordinateInstanceOf 0.72 0.89 0.80 0.72 0.92 0.81 0.75 0.93 0.83 0.11 0.12 0.11

TypeOf 0.84 0.82 0.83 0.77 0.84 0.81 0.80 0.84 0.82 0.15 0.17 0.16

AlsoSee 0.25 0.79 0.38 0.26 0.82 0.39 0.25 0.83 0.38 0.22 0.26 0.24

DerivationallyRelatedForm 0.28 0.87 0.43 0.41 0.90 0.57 0.43 0.92 0.59 0.09 0.09 0.09

HasPart 0.16 0.69 0.26 0.21 0.70 0.33 0.24 0.73 0.36 0.36 0.53 0.43

Hypernym 0.31 0.50 0.38 0.23 0.60 0.33 0.27 0.68 0.39 0.37 0.54 0.44

InstanceHypernym 0.44 0.50 0.47 0.29 0.77 0.42 0.31 0.82 0.45 0.32 0.45 0.37

MemberHolonym 0.17 0.21 0.19 0.19 0.69 0.30 0.26 0.81 0.39 0.26 0.33 0.29

MemberOfDomainRegion 0.27 0.17 0.21 0.17 0.28 0.21 0.19 0.26 0.22 0.33 0.41 0.37

MemberOfDomainUsage 0.15 0.09 0.11 0.44 0.29 0.35 0.48 0.30 0.37 0.39 0.46 0.42

SimilarTo 0.26 1.00 0.42 0.19 1.00 0.32 0.21 1.00 0.34 0.00 0.00 0.00

SynsetDomainTopicOf 0.30 0.60 0.40 0.26 0.76 0.39 0.27 0.75 0.39 0.32 0.43 0.37

VerbGroup 0.36 0.92 0.52 0.40 0.94 0.56 0.38 0.96 0.54 0.04 0.04 0.04

CAFE

3

Analogy

CAFE

2

FB13-A-10

NELL-AR-10

WN11-AR-10

WN18-AR-10

CAFE

1

Table 9.2: Detailed CAFE results

104

9.4. Evaluation

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

0.09 0.06 0.07 0.05 0.03 0.04 0.23 0.57 0.33 0.18 0.78 0.29 0.19 0.73 0.31 0.13 0.86 0.23

0.20 0.24 0.22 0.17 0.18 0.18 0.15 0.59 0.24 0.19 0.46 0.27 0.17 0.52 0.25 0.14 0.54 0.22

0.11 0.08 0.09 0.11 0.07 0.09 0.25 0.67 0.37 0.26 0.71 0.38 0.35 0.64 0.45 0.11 0.94 0.20

0.18 0.14 0.16 0.00 0.00 0.00 0.55 0.98 0.70 0.71 0.81 0.76 0.82 0.88 0.85 0.74 0.84 0.79

0.11 0.09 0.10 0.14 0.09 0.11 0.20 0.52 0.29 0.18 0.61 0.28 0.16 0.72 0.27 0.10 0.95 0.18

0.20 0.19 0.20 0.18 0.14 0.16 0.23 0.55 0.33 0.18 0.65 0.28 0.19 0.64 0.29 0.10 0.93 0.18

0.11 0.08 0.09 0.03 0.01 0.02 0.32 0.91 0.48 0.38 0.86 0.53 0.35 0.88 0.50 0.09 1.00 0.17

0.21 0.26 0.23 0.18 0.18 0.18 0.17 0.55 0.26 0.19 0.48 0.27 0.19 0.51 0.27 0.16 0.59 0.25

0.27 0.30 0.28 0.22 0.17 0.19 0.16 0.54 0.24 0.18 0.50 0.27 0.16 0.56 0.25 0.10 0.91 0.18

0.24 0.25 0.24 0.18 0.13 0.15 0.21 0.67 0.32 0.24 0.62 0.34 0.25 0.62 0.35 0.09 0.94 0.17

0.09 0.06 0.07 0.03 0.02 0.02 0.27 0.79 0.40 0.26 0.83 0.39 0.26 0.80 0.40 0.10 1.00 0.18

0.08 0.05 0.06 0.08 0.04 0.06 0.24 0.69 0.35 0.25 0.73 0.38 0.24 0.73 0.36 0.12 0.94 0.21

0.24 0.30 0.27 0.26 0.27 0.26 0.12 0.59 0.20 0.12 0.65 0.20 0.14 0.49 0.21 0.19 0.67 0.29

0.47 0.76 0.58 0.45 0.73 0.56 0.08 0.50 0.14 0.20 0.72 0.31 0.16 0.72 0.26 0.10 0.78 0.18

0.14 0.07 0.09 0.22 0.15 0.18 0.18 0.67 0.28 0.30 0.54 0.38 0.24 0.52 0.33 0.13 0.80 0.23

0.21 0.13 0.16 0.09 0.05 0.06 0.13 0.75 0.22 0.11 0.56 0.19 0.14 0.62 0.23 0.11 0.92 0.20

0.28 0.22 0.25 0.26 0.22 0.24 0.24 0.68 0.36 0.25 0.60 0.36 0.22 0.82 0.35 0.18 0.97 0.30

0.39 0.37 0.38 0.39 0.40 0.39 0.12 0.23 0.16 0.12 0.42 0.19 0.10 0.79 0.17 0.10 0.47 0.17

0.36 0.39 0.38 0.32 0.22 0.26 0.12 0.46 0.19 0.12 0.69 0.20 0.11 0.46 0.18 0.06 0.08 0.06

0.37 0.35 0.36 0.29 0.30 0.30 0.35 0.41 0.38 0.21 0.68 0.32 0.18 0.59 0.27 0.20 0.09 0.13

0.09 0.04 0.06 0.00 0.00 0.00 0.32 0.77 0.46 0.33 0.79 0.47 0.35 0.62 0.45 0.19 0.86 0.31

0.45 0.68 0.54 0.44 0.69 0.54 0.13 0.34 0.19 0.15 0.58 0.23 0.21 0.46 0.28 0.10 0.77 0.18

0.30 0.40 0.34 0.39 0.62 0.48 0.09 0.12 0.10 0.09 0.42 0.15 0.09 0.38 0.14 0.09 0.90 0.16

0.30 0.37 0.33 0.47 0.89 0.62 0.11 0.33 0.17 0.10 0.19 0.13 0.11 0.45 0.18 0.11 0.94 0.20

0.14 0.16 0.15 0.16 0.18 0.17 0.15 0.82 0.25 0.20 0.71 0.31 0.20 0.64 0.30 0.20 0.65 0.30

0.06 0.07 0.06 0.12 0.13 0.12 0.17 0.75 0.28 0.17 0.70 0.27 0.16 0.71 0.26 0.13 0.79 0.23

0.19 0.23 0.21 0.31 0.44 0.37 0.08 0.10 0.09 0.07 0.32 0.12 0.08 0.50 0.14 0.09 0.77 0.16

0.09 0.09 0.09 0.14 0.16 0.15 0.27 0.66 0.38 0.21 0.74 0.32 0.20 0.71 0.31 0.19 0.68 0.30

0.33 0.48 0.39 0.22 0.28 0.25 0.15 0.38 0.22 0.12 0.59 0.21 0.14 0.51 0.22 0.23 0.82 0.35

0.04 0.04 0.04 0.09 0.10 0.10 0.38 0.68 0.49 0.36 0.75 0.49 0.34 0.76 0.47 0.18 0.90 0.30

0.13 0.15 0.14 0.14 0.16 0.15 0.22 0.88 0.36 0.41 0.79 0.54 0.38 0.78 0.51 0.26 0.80 0.39

0.23 0.30 0.26 0.17 0.21 0.19 0.11 0.56 0.19 0.14 0.56 0.23 0.12 0.56 0.20 0.13 0.76 0.22

0.15 0.17 0.16 0.08 0.08 0.08 0.20 0.81 0.32 0.27 0.75 0.39 0.25 0.74 0.37 0.25 0.87 0.38

0.32 0.44 0.37 0.32 0.45 0.37 0.08 0.39 0.13 0.08 0.49 0.14 0.08 0.45 0.13 0.08 0.59 0.14

0.36 0.52 0.42 0.36 0.50 0.42 0.14 0.54 0.22 0.17 0.45 0.24 0.16 0.47 0.24 0.13 0.39 0.20

0.35 0.52 0.42 0.33 0.48 0.39 0.20 0.69 0.31 0.20 0.69 0.31 0.19 0.72 0.29 0.12 0.85 0.22

0.28 0.39 0.33 0.23 0.29 0.26 0.12 0.40 0.19 0.12 0.53 0.19 0.13 0.38 0.20 0.11 0.45 0.18

0.43 0.66 0.52 0.47 0.87 0.61 0.12 0.25 0.17 0.11 0.77 0.20 0.12 0.22 0.16 0.14 0.53 0.23

0.40 0.57 0.47 0.39 0.57 0.46 0.10 0.53 0.16 0.09 0.47 0.15 0.08 0.23 0.11 0.11 0.87 0.19

0.21 0.25 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.33 0.45 0.38 0.32 0.44 0.37 0.13 0.79 0.23 0.16 0.71 0.26 0.20 0.53 0.29 0.14 0.69 0.23

0.13 0.14 0.14 0.04 0.04 0.04 0.14 0.61 0.23 0.26 0.44 0.33 0.21 0.57 0.30 0.36 0.61 0.46

TransH TransRRotatE SimplE TransE TransD

Table 9.2: Detailed CAFE results (cont.)

105

Chapter 9. CAFE: Our triple classification proposal

Table 9.2 displays that, in general, both a satisfactory precision and recall can be
achieved, and thus we consider that CAFE is generally effective. However, there exists
a number of relations for which a very high precision value is obtained at the expense
of a lower recall or vice-versa, resulting in a typical precision-recall trade-off. We also
observe that the nature of every individual relation has a significant impact in the
results, since some of them are harder to predict than others. Such is the case of the
relation cause_of_death, since learning to predict the cause of the death of a person with
a very high effectiveness would be a remarkable achievement that unfortunately falls
out of the scope of this work. We further discuss this limitation in Section 9.5.

Regarding the question of how using different neighborhood sizes affects the
effectiveness of CAFE, Figure 9.4 shows that the metrics under evaluation are generally
higher for CAFE2 than for CAFE1, but the same cannot always be said for CAFE3

and CAFE2. Indeed, metrics appear to remain stagnant or even decrease when using
larger neighborhoods in some cases. For example, in FB13-A-10 (Figure 9.4(a)), we
do not observe a significant increase in effectiveness when using larger neighborhood
subgraphs, which suggests that the most useful information is readily available in
the immediate vicinities of the relevant entities. In the cases of WN11-AR-10 (Figure
9.4(c)) and WN18-AR-10 (Figure 9.5(a)), an improvement is observed when using
neighborhoods of size 2, but further expanding the neighborhood size does not seem to
have a significant impact. A possible conclusion for this is that, at a certain point, larger
neighborhood subgraphs do not provide additional value or predictive power over
smaller ones. In a worst-case scenario, the number of features with little to no predictive
power would greatly increase by using larger neighborhood sizes, negatively affecting
the results. This effect actually occurs in the case of the NELL-AR-10 KG (Figure 9.4(b)),
where effectiveness decreases when increasing the size of the neighborhood subgraphs
for which we compute features. A plausible explanation for this is that it has been
noted that NELL contains noisier data [108], and thus taking larger neighborhoods
into account significantly increases the amount of noise that our classification model
has to deal with, reducing its effectiveness.

9.5 Limitations

Despite our triple classification proposal being generally effective, it has some
limitations. It does not work well for relations for which useful predictive information
cannot always be found in the neighborhoods of the entities in a triple. In this regard,
we identify two types of relations: those that can be predicted using other information
present in the KG, and those for which the entities and relations in their
neighborhoods do not provide useful information, and thus are much harder to
predict. This dichotomy can be observed in the results shown in Table 9.2, and it is
especially notable in the WN11-AR-10 KG. For the sake of visualization, we display

106

9.6. Summary

the results of applying CAFE to this Knowledge Graph in Figure 9.5.

This difference is particularly visible in the Similar to and Domain topic relations,
which have low F1 scores. Upon manual inspection, we found that Similar to tends
to link words that are generally isolated within the KG and share very little common
context. Also, Domain topic is extremely broad, causing the two entities in a triple
to have few or no relevant common elements in their neighborhoods, e.g., (Britain,
Domain topic, Surgery).

In other cases, even if some information is present in the neighborhoods under
consideration, it may be not successfully captured by CAFE due to the large amount of
irrelevant data surrounding it. In this regard, the NELL-AR-10 KG shows that larger
neighborhood sizes are not always better for predictive purposes, since the amount
of noise they may include can be detrimental for the performance of CAFE. This can
be due to some source or target entities being present in many triples (for example,
countries). Therefore, larger neighborhoods of these entities introduce many other
entities that are not relevant to the triple under evaluation. In these cases, it is up to
the users to decide which maximum neighborhood size best caters to their interests.

9.6 Summary

In this chapter we have introduced CAFE, our proposal to classify candidate triples for
Knowledge Graph completion. CAFE defines a set of neighborhood-aware features
which evaluate several aspects of a triple, by checking for shared neighborhoods at
several distances with other triples in a KG, and then combines the values of all
features into a feature vector. Once all candidate triples have been transformed into
feature vectors, CAFE trains and applies a neural binary classifier to discern between
correct and incorrect triples, and provides the user with a set of correct candidate
triples to add back to the KG. Our experimental evaluation shows that CAFE is very
effective, outperforming other state-of-the-art approaches in a number of well-known
Knowledge Graphs of different sizes and domains.

107

Chapter 9. CAFE: Our triple classification proposal

108

Chapter 10

SciCheck: Completing
scientific Knowledge Graphs

äîâåðÿé, íî ïðîâåðÿé.

(Trust, but verify.)

— Russian proverb

S
cientific knowledge is in constant expansion, and many efforts have
been developed throughout the years to capture it in a structured format.
Knowledge Graphs can support this task, by linking entities representing

research concepts together. These scientific KGs have particular nuances that make
completing them a particularly challenging task. In this chapter, we introduce
SciCheck, our proposal to complete Knowledge Graphs representing research
concepts. This chapter is structured in the following manner: Section 10.1 provides an
introduction, Section 10.2 describes SciCheck in detail, including the features that it
uses to characterize triples representing scientific knowledge, Section 10.3 presents the
experimental evaluation that we have carried out to assess its efficacy and efficiency in
practice, Section 10.4 shows a practical application of SciCheck on AI-KG, a large-scale
Knowledge Graph of research concepts and, finally, Section 10.5 provides a summary
of the chapter.

109

Chapter 10. SciCheck: Completing scientific Knowledge Graphs

10.1 Introduction

In recent years, we have witnessed the appearance of a number of Knowledge Graphs
that represent research and scientific knowledge. These graphs are generally either
manually curated [13, 64, 76], or constructed automatically from academic metadata [34,
118, 123]. However, just like most KGs, they suffer from incompleteness, which means
that some well-known scientific knowledge may not be present in them.

This chapter introduces SciCheck [22], our proposal to complete scientific
Knowledge Graphs. SciCheck extends our generic triple classification technique,
CAFE, by adding a number of features and heuristics specifically tailored for the
scientific domain. SciCheck is able to compute a confidence score for every triple
representing a scientific claim, and then derive a binary classification for it based on
its confidence. Similarly to CAFE, SciCheck works by transforming a triple into
numeric features, but includes additional heuristics to immediately discard incorrect
scientific triples.

We evaluate the efficacy of SciCheck on seven different Knowledge Graphs and
against nine alternative approaches to this task. Our evaluation shows that SciCheck
is able to obtain a significantly better precision than its state-of-the-art counterparts,
which is of the essence to reliably extend scientific Knowledge Graphs.

Additionally, we used SciCheck to extend the Artificial Intelligence Knowledge
Graph (AI-KG) [34], a large-scale open KG that is constructed automatically using the
300K most cited papers in the field of Artificial Intelligence. Initially, AI-KG contained
1.2M statements about scientific claims in this field. By applying SciCheck to it, we
have expanded it with 300K additional high-confidence statements. This application
has resulted in the release of a new, expanded version of AI-KG, as well as in the
creation of two high-quality Knowledge Graphs that can be used to benchmark KG
completion.

10.2 Our proposal

SciCheck is a triple classification technique specifically designed to complete scientific
statements in a Knowledge Graph. It is an extension of the CAFE approach [20] that
incorporates a new set of features and heuristics that are specifically tailored to capture
scientific knowledge.

SciCheck takes an entire KG in the form of triples as input, and produces one
neural-based classifier for each relation in the KG as output. Specifically, given a
relationship r, SciCheck generates a model fr : (s, r, t)→ c, that assigns a confidence
score c in the range [0, 1] to any arbitrary triple (s, r, t) to solve a binary classification
task (“is the triple correct or not?”). To feed the models, triples are converted into

110

10.2. Our proposal

a numerical vector representation using ad-hoc features and contextual embedding
representations. SciCheck can operate on any KG and focuses on optimizing precision,
to ensure that the knowledge deemed correct is trustworthy.

In the following, we describe and discuss the features that SciCheck uses to
characterize a triple in the context of a scientific KG.

neural_network

dbpedia

rdf_graph

link_predictionaccuracy

triple_classification

evaluatesTask

usesMethod

performsTask

includesMateria l

usesMaterial

Figure 10.1: A small KG with research information about the Semantic Web

For the sake of illustration, Figure 10.1 displays a small KG that will be used to
provide specific examples.

10.2.1 Extended feature set

SciCheck uses an extensible set of features specifically made to capture and process
scientific information, which represent the neighborhoods of the two entities of a triple
in a variety of ways. Each triple is evaluated by all features. Additionally, each feature
can also depend on a number of parameters, such as a maximum neighborhood size.

Since, as described, SciCheck is an extension of CAFE, we enumerate only the
additional features that it incorporates with respect to the original CAFE approach.

Feature f1: Cosine similarity of the word embeddings of the source and target
entities. This feature measures the semantic similarity of the two entities in a triple,
using any entity embeddings. If we consider A and B to be the embeddings of the
source and target entities of the triple respectively, it is defined as:

cos(A, B) = ∑n
i=1 AiBi√

∑n
i=1 (Ai)2

√
∑n

i=1 (Bi)2

Feature f2: Dot product of the word embeddings of the source and target entities.
This feature complements the previous one by also taking into account the magnitudes
of the embeddings of the entities. If we consider A and B to be the embeddings of the
source and target entities of the triple respectively, it is defined as:

A · B =
n

∑
i=1

AiBi

111

Chapter 10. SciCheck: Completing scientific Knowledge Graphs

Feature f3: Types of the source and target entities according to the ontology of
the Knowledge Graph. This feature encodes the known types of the entities according
to the available ontology as two one-hot vectors. In Figure 10.1, the entity dbpedia is of
type Resource, while accuracy is a Metric.

Regarding the rationales of the new features, f1 incorporates information from
the word embeddings of the two entities, which have been shown to be advantageous
for triple classification [72, 138]. SciCheck uses by default the RoBERTa model [85]
to generate the word embeddings, since is able to capture and represent semantic
similarities across a wide range of domains. Similarly, f2 provides a similar assessment,
but uses the magnitudes of the embedding vectors to extract additional information
from them.

Feature f3 leverages the ontological schema of the KG. This allows SciCheck to
include information regarding the types of the two entities in a triple into the feature
vector for that triple. Furthermore, SciCheck can automatically classify a triple as
incorrect if the triple does not respect the domains and ranges of the relation as
defined in the ontological schema. For example, in the KG shown in Figure 10.1,
the triple (accuracy, evaluatesTask, rdf_graph) would be considered incorrect without
further evaluation, because the range of the relation evaluatesTask is the type Task, while
rdf_graph is a Material.

This extension of the set of features allows SciCheck to better characterize scientific
entities and predicates. In particular, the features based on word embeddings enable
SciCheck to exploit the implicit contextual information from the training papers that
may not be encoded in the KG. Additionally, the inclusion of ontology-based features
allows SciCheck to take advantage of the available high-level knowledge about any
specific domain. These improvements are particularly crucial for assessing scientific
claims, which tend to use a specific jargon and to rely on a well-defined epistemological
framework.

Furthermore, different types of relations in the graph may carry specific insight
that should be captured separately. For this reason, SciCheck first computes all
features in the input KG as-is, and then it computes them again in different versions
of the KG where only relations of a single type are present. This is done for all the
different relations in the KG. Additionally, in features that use the neighborhoods of
the source and target entities, such as those originally defined by CAFE, these two
neighborhoods are calculated using all possible combinations of relations. Finally,
SciCheck concatenates all the resulting features in the final feature vector. The features
which involve computing entity neighborhoods or paths use a maximum neighborhood
size for their computations. Following the findings in [20], by default SciCheck
computes them for a maximum size of 1, 2, and 3. The resulting set of features using
different neighborhood sizes are eventually all added to the final feature vector.

112

10.3. Evaluation

10.3 Evaluation

In this section, we describe the experimental setup that we devised to test the
effectiveness of SciCheck in practice. First, we introduce a number of similar
state-of-the-art approaches to triple classification that serve as baselines for our
evaluation. Next, we present the KGs that we used to validate our proposal. Finally,
we show and discuss the results of our evaluation.

10.3.1 Baselines

We evaluated the performance of SciCheck against a number of alternative approaches.
Five of the baselines are well-known embedding-based KG completion techniques:
TransE [17], TransD [68], TransH [155], SimplE [72], and ComplEx [145]. To provide a
common ground to train and test these techniques, we used the OpenKE [59] tool.

In order to better assess the contributions of the different components of SciCheck,
we also considered five alternative versions of our approach:

• CAFE Baseline, which uses solely the context-aware features for KG completion
such as neighborhood size, shared entities and connectivity from the original
CAFE implementation [20].

• CAFE+RoBERTa, which extends CAFE by considering features based on the
similarity of the embeddings of the source and target entities, using the RoBERTa
model.

• CAFE+SciBERT, which extends CAFE by considering features based on the
similarity of the embeddings of the source and target entities, using SciBERT, an
alternative BERT-based text embedding model [112] specifically tailored to
scientific documents.

• CAFE+Ontology, which extends CAFE by considering features that identify the
types of the source and target entities according to the domain ontology and also
filters triples whose entities are not consistent with the domain and range
restrictions of the relation.

• SciCheck, the full version of our approach, which incorporates both features based
on word embeddings and features based on the ontology of the Knowledge
Graph.

To predict the correctness of a triple using SciCheck, we convert its confidence
score in the interval [0, 1] into a binary label by setting a confidence threshold for a
correct triple of 0.5, as suggested in [20]. The thresholds of the other state-of-the-art

113

Chapter 10. SciCheck: Completing scientific Knowledge Graphs

techniques under evaluation and their results were obtained using the OpenKE tool,
allowing it to choose the optimal value for each one.

10.3.2 Evaluation data

The previously discussed baselines were evaluated on the following Knowledge Graphs,
whose characteristics are summarized in Table 10.1:

KG
Training
triples

Test
triples Entities Relations

AIKG-1M 860,512 430,280 820,708 20
AIKG-500 860,512 500 228 7
FB13 228,172 105,509 74,998 13
WN11 77,948 36,042 38,195 9
WN18 71,984 33,282 40,943 11
WN18RR 86,835 3,134 40,943 11
NELL 86,971 40,104 53,934 148

Table 10.1: Overview of the KGs used for evaluating SciCheck

• AIKG-1M, a new KG that we created from AI-KG. We used a de-reified version
of AI-KG, in order to consider only triples which involve tasks, methods,
materials, metrics, and other scientific entities. As a result, 1,075,652 triples were
directly generated from scientific literature, without considering facts that were
materialized using the domain semantics defined in the AI-KG ontology (e.g.,
transitivity). Triples were split into a training and a testing set with a split ratio
of 80%-20%, respectively. To generate negative triples in the testing split, each
positive triple was corrupted once by randomly replacing the target entity with
another one within the domain of the relation in the triple, i.e., if the range of the
target entity is a Task, then it is substituted by another entity whose type is Task.
We also make sure that the randomly generated negative triple is not already
present in the KG, to prevent creating false negatives whenever possible. As an
example, the triple (dbpedia, usesOtherEntity, sparql_query) is correct, while the
corrupted version (dbpedia, usesOtherEntity, cost_function) is considered incorrect,
where sparql_query and cost_function are both of type OtherEntity. However,
negative examples were not generated for the training split, as specific KG
completion techniques usually have a preferred way to generate them
automatically [19]. In total, the training split comprised 860,512 positive triples
and the testing split includes 430,280 triples (50% positive and 50% negative).

• AIKG-500, a new KG that we constructed by manually annotating triples in
AI-KG about the Semantic Web. To construct it, we randomly selected 250 triples
which had as their source entity one of the 24 sub-topics of the Semantic Web
according to the CSO ontology [124] and were considered to be correct by at

114

10.3. Evaluation

least 2 methods among TransE, TransD, TransH, SimplE, ComplEx, and SciCheck.
Another 250 triples were randomly selected out of those deemed incorrect by at
least 2 of the previously mentioned techniques. The resulting 500 triples were
manually annotated by five domain experts, with an inter-reviewer agreement of
0.61 (according to Cohen’s kappa), which is typically considered a substantial
agreement. A majority vote approach was used to determine that 221 triples
were correct and 279 were incorrect. Since this Knowledge Graph was created for
the purpose of providing a small but high-quality and manually-annotated
testing split, in this evaluation we used AIKG-1M for the training split.

• FB13 [134], a subset of FreeBase [14] that focuses on relevant people and their
family relations, locations, professions, and other personal data.

• WN11 [17], a subset of WordNet centered around different semantic relations
between over 38K words.

• WN18 [18], which expands WN11 with additional relations.

• WN18RR [38], which improves WN18 by removing reciprocal relations in the test
set. This makes triple classification more challenging, since otherwise the model
can predict that a triple (a, hasChildren, b) is true whenever the triple (b, hasParent,
a) appears in the training set.

• NELL [47], a subset of the NELL KG [91] with information and relations about
many different domains, e.g., actors which starred in movies, writers and their
works, or athletes and their teams.

It is well-known [38] that these traditional KGs suffer from information leakage
between the training and test sets, due to the presence of reciprocal relations. For this
reason, we removed all reciprocal relations in all KGs except WN18, since we also
include its previously discussed sanitized version, WN18RR.

10.3.3 Results and discussion

Table 10.2 and Table 10.3 report the precision and recall of the KG completion
techniques on AIKG-1M. The results show that all CAFE-based variants outperform
embedding-based techniques in precision, achieving notably higher values. Including
features from the text embeddings also provides an important improvement over the
base version of CAFE. Both SciCheck and the variants that improve the baseline using
embedding-based features rank consistently among those with the highest precision
for all relations, with the differences between them being very narrow.

115

Chapter 10. SciCheck: Completing scientific Knowledge Graphs

Relation # triples

SciCheck Baseline RoBERTa SciBERTOntology TransE TransD TransH SimplE ComplEx

usesMethod 460,723 0.71 0.67 0.70 0.70 0.70 0.38 0.49 0.36 0.56 0.56

usesOtherEntity 136,310 0.72 0.70 0.72 0.71 0.70 0.41 0.50 0.40 0.57 0.56

includesOtherEntity 113,678 0.79 0.77 0.79 0.78 0.76 0.43 0.49 0.41 0.55 0.55

narrower 107,811 0.84 0.80 0.83 0.81 0.76 0.49 0.49 0.48 0.57 0.56

usesMaterial 41,075 0.67 0.68 0.68 0.67 0.68 0.49 0.50 0.36 0.57 0.56

includesMethod 30,332 0.82 0.79 0.83 0.78 0.77 0.44 0.50 0.43 0.56 0.56

usesTask 22,341 0.76 0.73 0.75 0.68 0.73 0.49 0.49 0.48 0.55 0.54

evaluatesMethod 17,954 0.57 0.56 0.57 0.56 0.56 0.51 0.53 0.49 0.60 0.60

includesMaterial 10,190 0.70 0.67 0.71 0.67 0.65 0.49 0.49 0.40 0.57 0.56

usesMetric 7,749 0.67 0.64 0.68 0.60 0.66 0.41 0.50 0.37 0.56 0.56

includesTask 4,375 0.78 0.69 0.73 0.70 0.81 0.44 0.49 0.48 0.55 0.54

supportsTask 3,622 0.87 0.86 0.87 0.87 0.86 0.39 0.50 0.37 0.68 0.68

evaluatesOtherEntity 2,994 0.56 0.54 0.55 0.54 0.54 0.49 0.52 0.46 0.60 0.59

evaluatesTask 2,275 0.56 0.57 0.58 0.58 0.56 0.50 0.52 0.47 0.59 0.59

improvesMetric 1,860 0.84 0.81 0.84 0.81 0.85 0.54 0.52 0.53 0.67 0.67

supportsMethod 1,850 0.85 0.86 0.85 0.82 0.83 0.52 0.51 0.47 0.66 0.65

supportsOtherEntity 1,691 0.85 0.82 0.87 0.85 0.83 0.37 0.51 0.30 0.64 0.62

predictsOtherEntity 913 0.84 0.81 0.84 0.84 0.83 0.43 0.48 0.36 0.65 0.64

improvesMethod 814 0.67 0.68 0.69 0.68 0.69 0.39 0.52 0.44 0.67 0.66

improvesTask 639 0.75 0.72 0.75 0.73 0.71 0.43 0.48 0.42 0.66 0.66

0.74 0.70 0.73 0.72 0.71 0.42 0.49 0.39 0.56 0.56Micro-average

Table 10.2: Precision values for SciCheck in AIKG-1M

Relation # triples SciCheck

Baseline RoBERTa SciBERT Ontology

TransE TransD TransH SimplE ComplEx

usesMethod 460,723 0.27 0.22 0.28 0.21 0.19 0.20 0.69 0.16 0.71 0.74

usesOtherEntity 136,310 0.26 0.19 0.26 0.21 0.19 0.25 0.56 0.20 0.69 0.73

includesOtherEntity 113,678 0.26 0.16 0.25 0.20 0.16 0.27 0.67 0.22 0.75 0.77

narrower 107,811 0.39 0.17 0.32 0.20 0.28 0.67 0.51 0.59 0.70 0.73

usesMaterial 41,075 0.21 0.14 0.20 0.14 0.13 0.61 0.53 0.16 0.70 0.72

includesMethod 30,332 0.29 0.17 0.28 0.21 0.17 0.30 0.75 0.25 0.71 0.73

usesTask 22,341 0.28 0.15 0.28 0.20 0.15 0.65 0.65 0.61 0.77 0.81

evaluatesMethod 17,954 0.30 0.28 0.30 0.30 0.28 0.48 0.76 0.40 0.61 0.62

includesMaterial 10,190 0.25 0.16 0.24 0.16 0.17 0.60 0.67 0.20 0.73 0.75

usesMetric 7,749 0.18 0.10 0.17 0.12 0.10 0.25 0.63 0.18 0.73 0.73

includesTask 4,375 0.31 0.22 0.35 0.26 0.18 0.30 0.65 0.68 0.77 0.80

supportsTask 3,622 0.58 0.55 0.57 0.55 0.58 0.19 1.00 0.17 0.43 0.44

evaluatesOtherEntity 2,994 0.32 0.35 0.32 0.35 0.31 0.41 0.77 0.33 0.62 0.63

evaluatesTask 2,275 0.37 0.29 0.32 0.28 0.30 0.49 0.86 0.38 0.64 0.64

improvesMetric 1,860 0.41 0.41 0.42 0.40 0.37 0.67 0.86 0.49 0.44 0.45

supportsMethod 1,850 0.43 0.42 0.43 0.46 0.43 0.67 0.77 0.31 0.47 0.50

supportsOtherEntity 1,691 0.42 0.39 0.40 0.38 0.39 0.16 0.63 0.10 0.52 0.56

predictsOtherEntity 913 0.59 0.51 0.60 0.59 0.55 0.19 0.66 0.16 0.50 0.52

improvesMethod 814 0.33 0.29 0.34 0.32 0.33 0.19 0.56 0.34 0.44 0.48

improvesTask 639 0.70 0.65 0.70 0.69 0.65 0.29 0.82 0.25 0.49 0.48

0.28 0.20 0.28 0.21 0.20 0.31 0.65 0.24 0.71 0.74Micro-average

Table 10.3: Recall values for SciCheck in AIKG-1M

116

10.3. Evaluation

The best performing method in terms of precision is the full version of SciCheck
(0.74), followed by CAFE+RoBERTa (0.73), which can obtain better precision for some
less common relationships. Interestingly, using text embeddings trained specifically
on academic abstracts (SciBERT) yields a slightly worse performance than using
the generic RoBERTa model. This may suggest that more general embeddings may
sometimes produce better performance on KGs of research concepts, but this needs to
be investigated further.

The Ontology variation, which includes one-hot type vectors and domain/range
checking for the relation, only slightly improves the baseline. This is most likely due to
the type-constrained way in which the negative triples were generated, since it already
guarantees that the domain and range types of the relation are preserved.

The recall of SciCheck is naturally lower than that of the embedding-based
approaches, in a typical precision-recall trade-off. However, this is acceptable since the
main goal is to expand scientific Knowledge Graphs with correct triples, hence, a high
precision is desirable. SciCheck also has a generally higher recall than all other CAFE
variants. Consequently, the results suggest that SciCheck is the best performing
technique for the task of reliably completing scientific Knowledge Graphs.

It is noteworthy that different relations can lead to very different performances.
For instance, relations such as narrower, supportsTask and supportsMethod yield very
good performance. Conversely, the methods under evaluation did not perform as well
on relations such as evaluatesTask and evaluatesOtherEntity. This may depend on the
number of relevant examples or the fact that some relations are inherently harder to
predict.

In order to study the performance of the different techniques for all possible
threshold values, we also report their corresponding ROC curves in Figure 10.2. This
analysis confirms the previous findings:

• SciCheck outperforms all other methods under evaluation.
• Text embedding-based features significantly improve the baseline state-of-the-art

methods.
• Ontology-based features provide slight further improvements.

In addition, Figure 10.2(b) confirms that SciCheck outperforms the standard state-
of-the art methods regardless of the threshold.

To check whether the differences between the methods were statistically significant,
we used DeLong’s test [32] to compare the areas under two curves. The p-values
obtained when comparing the ROC curve of SciCheck with the alternative methods in
Figures 10.2(a) and 10.2(b) were all < 0.0001. This very high statistical confidence is
due to the large number of observations, since the testing set of AIKG-1M includes
more than 400,000 triples.

117

Chapter 10. SciCheck: Completing scientific Knowledge Graphs

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0
T

P
R

SciCheck CAFE+SciBERT
CAFE baseline CAFE+Ontology
CAFE+RoBERTa

(a) SciCheck variants

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

SciCheck TransD SimplE
TransE TransH ComplEx

(b) SciCheck and embedding techniques

Figure 10.2: ROC curves of the different methods on AIKG-1M

Table 10.4 shows the performance of the methods on AIKG-500, which are
consistent with the previous findings. For the sake of brevity, here we do not report
the results of all CAFE variants, which are in line with those obtained on AIKG-1M.
Even in a smaller, manually annotated Knowledge Graph, SciCheck achieves a high
precision, which confirms that it is suitable for completing scientific Knowledge
Graphs.

Relation # triples SciCheckTransE TransD TransH SimplE ComplEx SciCheckTransE TransD TransH SimplE ComplEx

includesMaterial 115

0.69 0.40 0.62 0.38 0.47 0.45 0.48 1.00 0.57 0.59 0.89 0.86

includesOtherEntity 93 0.57 0.50 0.55 0.38 0.49 0.45 0.76 0.24 0.74 0.42 0.74 0.61

usesMethod 88 0.66 0.39 0.46 0.42 0.53 0.59 0.72 0.44 0.53 0.53 0.50 0.61

usesMaterial 62 0.86 0.67 0.67 0.65 0.76 0.74 0.45 0.95 0.24 0.74 0.90 0.93

includesMethod 53 0.61 0.31 0.39 0.30 0.27 0.53 0.56 0.72 0.50 0.44 0.17 0.44

usesTask 46

0.70 0.48 0.55 0.48 0.57 0.51 0.73 1.00 0.77 1.00 0.95 0.86

usesOtherEntity 43

0.78 0.33 0.00 0.38 0.63 0.53 0.37 0.21 0.00 0.47 0.53 0.47

0.68 0.44 0.50 0.42 0.52 0.53 0.59 0.66 0.51 0.58 0.69 0.70

RecallPrecision

Micro-average

Table 10.4: Precision and recall values for AIKG-500

Table 10.5 reports the performance of all the techniques on five standard KGs
for triple classification. The results show that SciCheck is able to outperform other
techniques in almost all cases, thus being an effective triple classification tool for
KGs of many different natures. They also confirm that completing scientific KGs is
indeed a challenging task that requires specialized techniques, as the general-purpose
embedding-based approaches yield worse results on KGs extracted from AI-KG in
comparison to generic ones.

118

10.3. Evaluation

KG SciCheck TransETransD TransH SimplE ComplEx SciCheck TransETransD TransH SimplE ComplEx

FB13 0.87 0.60 0.64 0.67 0.31 0.41 0.76 0.66 0.67 0.67 0.10 0.16

WN11 0.89 0.45 0.48 0.47 0.57 0.44 0.74 0.53 0.58 0.60 0.33 0.22

WN18 0.65 0.40 0.39 0.19 0.51 0.49 0.81 0.56 0.60 0.12 0.88 0.87

WN18RR 0.80 0.31 0.36 0.35 0.62 0.73 0.73 0.51 0.53 0.44 0.36 0.40

NELL 0.66 0.47 0.50 0.45 0.68 0.77 0.86 0.53 0.62 0.62 0.31 0.34

Precision Recall

Table 10.5: Micro-average precision and recall on four general KGs

In order to assess the scalability of our solution, Table 10.6 reports the seconds
used by SciCheck to process the previously discussed graphs. To ensure statistical
significance, we measured the runtime for each KG 10 times, and we report the average
and the standard deviation for each one.

KG Runtime
AIKG-1M 2,758.79 ± 37.27
AIKG-500 1,794.94 ± 12.58

FB13 9,400.10 ± 63.04
WN11 34.30 ± 0.28
WN18 55.59 ± 0.45

WN18RR 26.00 ± 0.14
NELL 4.33 ± 0.09

Table 10.6: SciCheck runtimes in seconds for all KGs (avg ± std)

Table 10.6 shows that the runtime ranges from a few seconds to over two hours
according to the specific Knowledge Graph. These differences are caused by mainly
two factors. First, the amount of distinct entities corresponds directly to the number
of RoBERTa embeddings that have to be computed, which are typically quite time-
consuming. Hence, a larger number of entities has a negative impact on runtime.
Second, and most importantly, the specific topology of every KG affects the size of
the neighborhoods of the entities, and thus also affects the time it takes to compute
features on them. The case of FB13 is particularly noteworthy since, in contrast with
the other KGs, it contains many entities with a very high cardinality. This causes the
sizes of the entity neighborhoods to grow exponentially in size, resulting in longer
runtimes.

Finally, in order to provide some insights on how these times compare to other
state-of-the-art approaches, Table 10.7 reports their runtime in seconds compared to
that of SciCheck for AIKG-1M.

Embedding-based KG completion approaches were run using 1, 000 iterations, as
it is commonly done in related literature [17, 68, 72, 145]. SciCheck took considerably
less time to run on the large AIKG-1M KG than its state-of-the-art counterparts. This
suggests that it is able to complete scientific facts in a reasonable amount of time, thus
making it efficient for its application to large-scale scientific Knowledge Graphs.

119

Chapter 10. SciCheck: Completing scientific Knowledge Graphs

Technique Runtime
SciCheck 2,758.79

TransE 7,147.52
TransD 13,871.79
TransH 10,134.41
SimplE 6,592.20

ComplEx 11,767.73

Table 10.7: Runtime comparison on AIKG-1M

10.4 Practical application: AI-KG

One practical application of SciCheck is the advancement and expansion of AI-KG [34],
a comprehensive Knowledge Graph that encompasses information about research
entities in the AI field. When it was introduced in late 2020, it contained roughly
14 million RDF triples and 1.2 million reified statements related to 800,000 entities
extracted from 333,000 articles about AI. It defines 5 categories of entities (tasks,
methods, materials, metrics, and others) connected by 27 relations (e.g., usesMaterial,
evaluatesMethod, or supportsTask). The triples in AI-KG illustrate the associations
between two entities based on their joint appearances in a group of scientific papers,
for instance, (sentiment_analysis, usesMaterial, twitter_data).

It should be emphasized that, in the context of AI-KG, the correctness of a triple
depends on the content of its associated papers, i.e., a triple connected to a group of
papers is considered to be true if said papers contain that statement. As a result, triples
in AI-KG are constructed to represent particular statements made by researchers. For
instance, the entity sentiment_analysis only captures the notion of sentiment analysis
that existed in the original corpus of scientific articles on which AI-KG was built, and
does not attempt to encompass all existing techniques for analyzing emotions and
sentiments that are present, or under research, nowadays. A complete representation of
such information would require elevating research entities into more abstract elements
representing ontological knowledge, which is currently beyond the intended scope of
AI-KG.

AI-KG was constructed by extracting entities and their relations from a corpus of
scientific articles using Natural Language Processing (NLP) and Machine Learning
(ML) techniques [35], using the following data pipeline:

1. Entity detection and extraction using transformer-based, domain-specific
extractors [149].

2. Entity classification into the CSO ontology [122].

3. Relation detection and extraction through a number of NLP and ML techniques [4,
143, 149].

120

10.4. Practical application: AI-KG

4. Fact identification and validation using AI-KG’s own ontology.

5. Fact ranking using the number of research papers that contain the fact as a
measurement of support.

The interested reader can find the fine-grained steps of this process in the relevant
literature [34, 35]. At the time of the application of our technique, the entities contained
within AI-KG were classified into one of the following types:

• Task: A specific challenge or piece of work to be completed as part of a research
project.

• Method: A proposed approach or plan for accomplishing a research task.
• Material: Resources that are utilized for a research task, such as a dataset, image,

or text corpus.
• Metric: Entities that can be measured and are used to evaluate the effectiveness

of a research method.
• OtherEntity: A category that encompasses entities that do not fit into any of the

previous terms.

The relations were created by clustering frequent verbs together, and asking human
experts to define domain, range, and transitiveness restrictions. Some examples of
object properties are evaluatesMethod, includesMaterial, or usesMethod.

AI-KG is currently in use by a number of organizations due to its ability to store
structured information about the AI field, and has supported other related research,
for example, entity extraction in the context of scientific articles [81], classifying such
articles [63], and describing and managing competencies [61].

Despite AI-KG being a large-scale Knowledge Graph, extracting unstructured
knowledge from natural language is a difficult and error-prone task. For this reason,
AI-KG does not cover all well-known facts in the AI domain, either because they were
not detected or not extracted correctly. As a consequence, AI-KG, as most automatically
generated Knowledge Graphs, is incomplete. An example of this is the absence of the
triple (neural_network, usesMaterial, rdf_graph) from AI-KG, even though RDF graphs
are used as input for most of the neural network-based techniques that perform link
prediction or triple classification, for example, CAFE.

Because of this, scientific Knowledge Graphs require specific methods for their
completion [65]. Nevertheless, the most well-known methods that work on general-
purpose Knowledge Graphs, like TransE, TransR, or RotatE, have not been successful
in predicting triples with a high precision in AI-KG. As discussed in Section 10.3.3,
even though these methods provide reasonable F1 values, they yield low precision
values (usually between 40-60%). Applying these existing methods would lead to a
considerable amount of inaccurate information being introduced in AI-KG. This, in
turn, has been the motivation for this particular use case.

121

Chapter 10. SciCheck: Completing scientific Knowledge Graphs

We applied SciCheck to AI-KG and, by setting a confidence threshold of 0.7,
generated 303, 760 new high-confidence facts. To do this, we used SciCheck to connect
the most popular 500 entities that meet the domain and range restrictions imposed by
the AI-KG ontology for every relation. As a result, many significant triples
representing well-known facts that were missed by AI-KG’s NLP extraction pipeline
were materialized, such as:

(search_engine, includesMaterial, knowledge_base)
(f_measure, evaluatesMethod, neural_network)

(neural_network, usesMaterial, rdf_graph)
(recommender_system, usesMethod, predictive_model)

We collaborated with the original authors of AI-KG to make this improved version
available online at https://zenodo.org/record/7276434.

10.5 Summary

In this chapter we introduced SciCheck, our proposal for scientific Knowledge Graph
completion. SciCheck extends CAFE by adding a number of features specifically
tailored for the scientific domain, namely, measuring the similarity of the embedded
representations of two concepts in a certain way, as well as representing and applying
ontological constraints on what is considered correct knowledge.

We have performed an extensive evaluation, comparing SciCheck with other state-
of-the-art approaches and analyzing its individual components. The results show that
SciCheck is able to classify triples representing scientific knowledge with a considerably
higher precision than its counterparts, and that it is also more efficient in practice,
requiring shorter runtimes than other proposals.

Finally, we have applied SciCheck to the large-scale AI-KG Knowledge Graph,
which contains more than 1.2 million facts about the Artificial Intelligence domain. As
a result of this process, we have expanded AI-KG with more than 300,000 additional
high-confidence statements. In cooperation with the original authors of AI-KG, we
have publicly released this improved version of it to the scientific community.

122

https://zenodo.org/record/7276434

10.5. Summary

123

Chapter 10. SciCheck: Completing scientific Knowledge Graphs

124

Part IV
Final Remarks

Chapter 11

Conclusions

“Be proud: you’ve come such a long way.
Be careful: there is so much further to go.”

— Letter to Marble 3, Exurb1a

In this dissertation, we have presented a proposal to automatically complete large
Knowledge Graphs. Our proposal takes as input the KG itself, and outputs a set of
facts that it is missing and can be added back to it, enriching the graph with new
knowledge. To achieve this, our proposal relies on a series of subsystems that address
different problems of completing KGs.

First, it generates a set of candidate triples using CHAI, a technique that is able
to efficiently generate rules to filter out incorrect knowledge. These rules combine
aspects such as the distance between the entities of a triple, the domain and range
restrictions of the relations in the KG, and the previous appearances of similar triples.
Thanks to CHAI, our proposal is able to generate most of the missing facts in a KG
while immediately discarding a large volume of incorrect knowledge.

Then, the candidate triples are evaluated using CAFE, our triple classification
technique. CAFE defines a number of neighborhood-aware features that are able
to accurately characterize the neighborhood of an entity, as well as the similarities
between the neighborhoods of a pair of entities. These features are used to transform all
triples in a KG, as well as possible candidate triples, into numeric vectors. CAFE then
trains deep neural classification models using these vectors, learning to differentiate
between correct and incorrect triples.

Both CAFE and CHAI have been evaluated using some of the most well-known
Knowledge Graphs available today, and their theoretical performance has been shown

127

Chapter 11. Conclusions

to be efficient and effective. However, to demonstrate the applicability in practice
of our proposal, we have introduced SciCheck, a technique for completing scientific
Knowledge Graphs that builds upon the previously discussed ones, extending them
with capabilities specifically tailored for these KGs. We have applied SciCheck to
AI-KG, a large-scale KG that contains more than 14 million triples representing 1.2
million statements about scientific facts regarding the Artificial Intelligence domain.
This resulted in more than 300K additional facts being generated by SciCheck since
they were missing in AI-KG, which were later included in a subsequent update of this
graph.

As future work, we think that some shortcomings of the current proposals for KG
completion deserve more attention: most of the existing proposals in the literature
focus only on single-modal KGs, and they do not address the fact that many multi-
modal and multi-media KGs currently exist and are still incomplete; more research
should be carried out in the field of efficiently generating candidate triples, since there
is still a very small body of work in this regard; and an emphasis should be put on
developing methods with a high explainability that can scale up to very large KGs,
since this is still an area of active research. Additionally, it would be interesting to
further analyze the possibility of completing Knowledge Graphs using less studied
or recently proposed approaches, such as reinforcement learning or graph neural
networks.

128

Bibliography

[1] M. Abadi, A. Agarwal, P. Barham, et al. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. URL https://www.tensorflow.org/.
Software available from tensorflow.org.

[2] C. C. Aggarwal and C. Zhai. A survey of text classification algorithms. In Mining
Text Data, pages 163–222. Springer, 2012. doi: 10.1007/978-1-4614-3223-4_6.

[3] I. Aliyu, A. Kana, and S. Aliyu. Development of knowledge graph for
university courses management. International Journal of Education and Management
Engineering, 10:1–10, 04 2020. doi: 10.5815/ijeme.2020.02.01.

[4] G. Angeli, M. J. J. Premkumar, and C. D. Manning. Leveraging linguistic structure
for open domain information extraction. In Proceedings of the 53rd Annual Meeting
of the ACL and the 7th IJCNLP, volume 1, pages 344–354, 2015.

[5] S. Angioni, A. A. Salatino, F. Osborne, D. R. Recupero, and E. Motta. AIDA: A
knowledge graph about research dynamics in academia and industry. Quant. Sci.
Stud., 2(4):1356–1398, 2021. doi: 10.1162/qss_a_00162. URL https://doi.org/

10.1162/qss_a_00162.

[6] D. Ayala, A. Borrego, I. Hernández, C. R. Rivero, and D. Ruiz. AYNEC: All
you need for evaluating completion techniques in knowledge graphs. In ESWC,
pages 397–411, 2019. doi: 10.1007/978-3-030-21348-0_26.

[7] D. Ayala, I. Hernández, D. Ruiz, and M. Toro. Tapon: A two-phase machine
learning approach for semantic labelling. Knowledge-Based Systems, 163:931–943,
2019. doi: 10.1016/j.knosys.2018.10.017.

[8] D. Ayala, A. Borrego, I. Hernández, and D. Ruiz. A neural network for semantic
labelling of structured information. Expert Syst. Appl., 143, 2020. doi: 10.1016/
j.eswa.2019.113053. URL https://doi.org/10.1016/j.eswa.2019.113053.

[9] D. Ayala Hernández. On Data Engineering and Knowledge Graphs - A holistic,
smarter approach to data enrichment. PhD dissertation, 2020.

[10] I. Balazevic, C. Allen, and T. M. Hospedales. Hypernetwork knowledge graph

129

https://www.tensorflow.org/
https://doi.org/10.1162/qss_a_00162
https://doi.org/10.1162/qss_a_00162
https://doi.org/10.1016/j.eswa.2019.113053

Bibliography

embeddings. In Proceedings of the 28th International Conference on Artificial Neural
Networks, ICANN 2019, volume 11731, pages 553–565. Springer, 2019. doi:
10.1007/978-3-030-30493-5_52. URL https://doi.org/10.1007/978-3-030-

30493-5_52.

[11] I. Bansal, S. Tiwari, and C. R. Rivero. The impact of negative triple generation
strategies and anomalies on knowledge graph completion. In Proceedings of
the 29th ACM International Conference on Information and Knowledge Management,
CIKM 2020, pages 45–54. ACM, 2020. doi: 10.1145/3340531.3412023. URL
https://doi.org/10.1145/3340531.3412023.

[12] T. Bansal, D. Juan, S. Ravi, and A. McCallum. A2N: attending to neighbors
for knowledge graph inference. In Proceedings of the 57th Conference of the
Association for Computational Linguistics, ACL 2019, pages 4387–4392. Association
for Computational Linguistics, 2019. doi: 10.18653/v1/p19-1431. URL https:

//doi.org/10.18653/v1/p19-1431.

[13] O. Bodenreider. The unified medical language system (UMLS): integrating
biomedical terminology. Nucleic Acids Res., 32(Database-Issue):267–270, 2004.
doi: 10.1093/nar/gkh061. URL https://doi.org/10.1093/nar/gkh061.

[14] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: A
collaboratively created graph database for structuring human knowledge. In
SIGMOD, pages 1247–1250. ACM, 2008. doi: 10.1145/1376616.1376746.

[15] P. A. Bonatti, A. Hogan, A. Polleres, and L. Sauro. Robust and scalable linked
data reasoning incorporating provenance and trust annotations. J. Web Semant.,
9(2):165–201, 2011. doi: 10.1016/j.websem.2011.06.003. URL https://doi.org/

10.1016/j.websem.2011.06.003.

[16] A. Bordes and E. Gabrilovich. Constructing and mining web-scale knowledge
graphs. In SIGKDD, pages 1967–1967. ACM, 2014. doi: 10.1145/2623330.2630803.

[17] A. Bordes, N. Usunier, A. García-Durán, J. Weston, and O. Yakhnenko.
Translating embeddings for modeling multi-relational data. In NIPS, pages
2787–2795, 2013.

[18] A. Bordes, X. Glorot, J. Weston, and Y. Bengio. A semantic matching energy
function for learning with multi-relational data - application to word-sense
disambiguation. Machine Learning, 94(2):233–259, 2014. doi: 10.1007/s10994-013-
5363-6.

[19] A. Borrego, D. Ayala, I. Hernández, C. R. Rivero, and D. Ruiz. Generating
rules to filter candidate triples for their correctness checking by knowledge
graph completion techniques. In Proceedings of the 10th International Conference

130

https://doi.org/10.1007/978-3-030-30493-5_52
https://doi.org/10.1007/978-3-030-30493-5_52
https://doi.org/10.1145/3340531.3412023
https://doi.org/10.18653/v1/p19-1431
https://doi.org/10.18653/v1/p19-1431
https://doi.org/10.1093/nar/gkh061
https://doi.org/10.1016/j.websem.2011.06.003
https://doi.org/10.1016/j.websem.2011.06.003

Bibliography

on Knowledge Capture, K-CAP 2019, pages 115–122, 2019. doi: 10.1145/
3360901.3364418.

[20] A. Borrego, D. Ayala, I. Hernández, C. R. Rivero, and D. Ruiz. CAFE:
Knowledge graph completion using neighborhood-aware features. Engineering
Applications of Artificial Intelligence, 103:104302, 2021. ISSN 0952-1976.
doi: 10.1016/j.engappai.2021.104302. URL https://www.sciencedirect.com/

science/article/pii/S0952197621001500.

[21] A. Borrego, M. Bermudo, F. Sola, D. Ayala, I. Hernández, and D. Ruiz. Silence
— A web framework for an agile generation of RESTful APIs. SoftwareX, 20:
101260, 2022. doi: 10.1016/j.softx.2022.101260. URL https://doi.org/10.1016/

j.softx.2022.101260.

[22] A. Borrego, D. Dessì, I. Hernández, F. Osborne, D. Reforgiato Recupero, D. Ruiz,
D. Buscaldi, and E. Motta. Completing scientific facts in knowledge graphs
of research concepts. IEEE Access, 10:125867–125880, 2022. doi: 10.1109/
ACCESS.2022.3220241. URL https://doi.org/10.1109/ACCESS.2022.3220241.

[23] T. B. Brown, B. Mann, N. Ryder, et al. Language models are few-shot learners. In
Proceedings of the 33rd Annual Conference on Neural Information Processing Systems,
NeurIPS 2020, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/

1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

[24] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally
connected networks on graphs. In Proceedings of the 2nd International Conference
on Learning Representations, ICLR 2014, 2014. URL http://arxiv.org/abs/

1312.6203.

[25] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. Hruschka, and T. Mitchell.
Toward an architecture for never-ending language learning. In Proceedings of the
AAAI conference on artificial intelligence, volume 24, pages 1306–1313, 2010.

[26] D. Chakravarty, J. Gao, S. Phillips, et al. Oncokb: a precision oncology knowledge
base. JCO precision oncology, 1:1–16, 2017.

[27] P. Chen, Y. Lu, V. W. Zheng, X. Chen, and B. Yang. KnowEdu: A system
to construct knowledge graph for education. IEEE Access, 6:31553–31563,
2018. doi: 10.1109/ACCESS.2018.2839607. URL https://doi.org/10.1109/

ACCESS.2018.2839607.

[28] B. Cheng, J. Zhu, and M. Guo. MultiJAF: Multi-modal joint entity alignment
framework for multi-modal knowledge graph. Neurocomputing, 500:581–591,
2022. doi: 10.1016/j.neucom.2022.05.058. URL https://doi.org/10.1016/

j.neucom.2022.05.058.

[29] E. F. Codd. A relational model of data for large shared data banks. Commun.

131

https://www.sciencedirect.com/science/article/pii/S0952197621001500
https://www.sciencedirect.com/science/article/pii/S0952197621001500
https://doi.org/10.1016/j.softx.2022.101260
https://doi.org/10.1016/j.softx.2022.101260
https://doi.org/10.1109/ACCESS.2022.3220241
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
http://arxiv.org/abs/1312.6203
http://arxiv.org/abs/1312.6203
https://doi.org/10.1109/ACCESS.2018.2839607
https://doi.org/10.1109/ACCESS.2018.2839607
https://doi.org/10.1016/j.neucom.2022.05.058
https://doi.org/10.1016/j.neucom.2022.05.058

Bibliography

ACM, 13(6):377–387, 1970. doi: 10.1145/362384.362685. URL https://doi.org/

10.1145/362384.362685.

[30] R. Das, A. Neelakantan, D. Belanger, and A. McCallum. Chains of reasoning
over entities, relations, and text using recurrent neural networks. In Proceedings
of the 15th Conference of the European Chapter of the Association for Computational
Linguistics, EACL 2017, pages 132–141. Association for Computational Linguistics,
2017. doi: 10.18653/v1/e17-1013. URL https://doi.org/10.18653/v1/e17-

1013.

[31] S. Decker, S. Melnik, F. Van Harmelen, D. Fensel, M. Klein, J. Broekstra,
M. Erdmann, and I. Horrocks. The semantic web: The roles of XML and
RDF. IEEE Internet computing, 4(5):63–73, 2000.

[32] E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson. Comparing the
areas under two or more correlated receiver operating characteristic curves:
a nonparametric approach. Biometrics, pages 837–845, 1988.

[33] T. Denoeux. A k-nearest neighbor classification rule based on dempster-shafer
theory. IEEE Trans. Syst. Man Cybern., 25(5):804–813, 1995. doi: 10.1109/21.376493.
URL https://doi.org/10.1109/21.376493.

[34] D. Dessì, F. Osborne, D. R. Recupero, D. Buscaldi, E. Motta, and H. Sack. AI-
KG: an automatically generated knowledge graph of artificial intelligence. In
Proceedings of the 19th International Semantic Web Conference, ISWC 2020, volume
12507, pages 127–143. Springer, 2020. doi: 10.1007/978-3-030-62466-8_9. URL
https://doi.org/10.1007/978-3-030-62466-8_9.

[35] D. Dessì, F. Osborne, D. R. Recupero, D. Buscaldi, and E. Motta. Generating
knowledge graphs by employing natural language processing and machine
learning techniques within the scholarly domain. Future Generation Computer
Systems, 116:253–264, 2021. doi: 10.1016/j.future.2020.10.026.

[36] D. Dessì, D. R. Recupero, and H. Sack. An assessment of deep learning models
and word embeddings for toxicity detection within online textual comments.
Electronics, 10(7):779, 2021.

[37] D. Dessì, F. Osborne, D. Reforgiato Recupero, D. Buscaldi, and E. Motta. CS-
KG: A large-scale knowledge graph of research entities and claims in computer
science. In ISWC 2022, volume 13489, pages 678–696. Springer, 2022. doi: 10.1007/
978-3-031-19433-7_39. URL https://doi.org/10.1007/978-3-031-19433-7_39.

[38] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel. Convolutional 2D
knowledge graph embeddings. In AAAI, 2018.

[39] K. Do, T. Tran, and S. Venkatesh. Knowledge graph embedding with multiple
relation projections. In Proceedings of the 24th International Conference on Pattern

132

https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/362384.362685
https://doi.org/10.18653/v1/e17-1013
https://doi.org/10.18653/v1/e17-1013
https://doi.org/10.1109/21.376493
https://doi.org/10.1007/978-3-030-62466-8_9
https://doi.org/10.1007/978-3-031-19433-7_39

Bibliography

Recognition, ICPR 2018, pages 332–337. IEEE Computer Society, 2018. doi: 10.1109/
ICPR.2018.8545027. URL https://doi.org/10.1109/ICPR.2018.8545027.

[40] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann,
S. Sun, and W. Zhang. Knowledge vault: A web-scale approach to probabilistic
knowledge fusion. In SIGKDD, pages 601–610. ACM, 2014. doi: 10.1145/
2623330.2623623.

[41] M. Fan, Q. Zhou, E. Chang, and T. F. Zheng. Transition-based knowledge graph
embedding with relational mapping properties. In Proceedings of the 28th Pacific
Asia Conference on Language, Information and Computation, PACLIC 2014, pages
328–337, 2014. URL https://aclanthology.org/Y14-1039/.

[42] S. Ferré. Link prediction in knowledge graphs with concepts of nearest
neighbours. In The Semantic Web - 16th International Conference, ESWC 2019,
volume 11503, pages 84–100. Springer, 2019. doi: 10.1007/978-3-030-21348-0_6.
URL https://doi.org/10.1007/978-3-030-21348-0_6.

[43] L. Galárraga, C. Teflioudi, K. Hose, and F. M. Suchanek. Fast rule mining in
ontological knowledge bases with AMIE+. VLDB J., 24(6):707–730, 2015. doi:
10.1007/s00778-015-0394-1.

[44] L. A. Galárraga, C. Teflioudi, K. Hose, and F. M. Suchanek. AMIE: association
rule mining under incomplete evidence in ontological knowledge bases. In
Proceedings of the 22nd International World Wide Web Conference, WWW 2013,
pages 413–422. International World Wide Web Conferences Steering Committee
/ ACM, 2013. doi: 10.1145/2488388.2488425. URL https://doi.org/10.1145/

2488388.2488425.

[45] A. García-Durán, A. Bordes, and N. Usunier. Composing relationships with
translations. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2015, pages 286–290. The Association for
Computational Linguistics, 2015. doi: 10.18653/v1/d15-1034. URL https:

//doi.org/10.18653/v1/d15-1034.

[46] A. García-Durán, A. Bordes, N. Usunier, and Y. Grandvalet. Combining two and
three-way embeddings models for link prediction in knowledge bases. CoRR,
abs/1506.00999, 2015. URL http://arxiv.org/abs/1506.00999.

[47] M. Gardner and T. Mitchell. Efficient and expressive knowledge base completion
using subgraph feature extraction. In EMNLP, pages 1488–1498. The Association
for Computational Linguistics, 2015. URL https://aclweb.org/anthology/D/

D15/D15-1173.pdf.

[48] M. Gardner, P. P. Talukdar, B. Kisiel, and T. M. Mitchell. Improving learning and
inference in a large knowledge-base using latent syntactic cues. In Proceedings of

133

https://doi.org/10.1109/ICPR.2018.8545027
https://aclanthology.org/Y14-1039/
https://doi.org/10.1007/978-3-030-21348-0_6
https://doi.org/10.1145/2488388.2488425
https://doi.org/10.1145/2488388.2488425
https://doi.org/10.18653/v1/d15-1034
https://doi.org/10.18653/v1/d15-1034
http://arxiv.org/abs/1506.00999
https://aclweb.org/anthology/D/D15/D15-1173.pdf
https://aclweb.org/anthology/D/D15/D15-1173.pdf

Bibliography

the 2013 Conference on Empirical Methods in Natural Language Processing, EMNLP
2013, pages 833–838. ACL, 2013. URL https://aclanthology.org/D13-1080/.

[49] D. Gerber, D. Esteves, J. Lehmann, L. Bühmann, R. Usbeck, A. N. Ngomo,
and R. Speck. Defacto - temporal and multilingual deep fact validation. J.
Web Semant., 35:85–101, 2015. doi: 10.1016/j.websem.2015.08.001. URL https:

//doi.org/10.1016/j.websem.2015.08.001.

[50] M. Glass and A. Gliozzo. A dataset for web-scale knowledge base population.
In ESWC, pages 256–271. Springer, 2018. doi: 10.1007/978-3-319-93417-4_17.

[51] F. Gong, M. Wang, H. Wang, S. Wang, and M. Liu. SMR: medical knowledge
graph embedding for safe medicine recommendation. Big Data Res., 23:
100174, 2021. doi: 10.1016/j.bdr.2020.100174. URL https://doi.org/10.1016/

j.bdr.2020.100174.

[52] S. Guan, X. Jin, Y. Wang, and X. Cheng. Shared embedding based neural networks
for knowledge graph completion. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, CIKM 2018, pages 247–256.
ACM, 2018. doi: 10.1145/3269206.3271704. URL https://doi.org/10.1145/

3269206.3271704.

[53] H. Guo, J. Tang, W. Zeng, X. Zhao, and L. Liu. Multi-modal entity alignment
in hyperbolic space. Neurocomputing, 461:598–607, 2021. doi: 10.1016/
j.neucom.2021.03.132. URL https://doi.org/10.1016/j.neucom.2021.03.132.

[54] Q. Guo, F. Zhuang, C. Qin, H. Zhu, X. Xie, H. Xiong, and Q. He. A survey
on knowledge graph-based recommender systems. IEEE Trans. Knowl. Data
Eng., 34(8):3549–3568, 2022. doi: 10.1109/TKDE.2020.3028705. URL https:

//doi.org/10.1109/TKDE.2020.3028705.

[55] S. Guo, Q. Wang, L. Wang, B. Wang, and L. Guo. Jointly embedding knowledge
graphs and logical rules. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2016, pages 192–202. The Association
for Computational Linguistics, 2016. doi: 10.18653/v1/d16-1019. URL https:

//doi.org/10.18653/v1/d16-1019.

[56] S. Guo, Q. Wang, L. Wang, B. Wang, and L. Guo. Knowledge graph embedding
with iterative guidance from soft rules. In Proceedings of the 32ns Conference
on Artificial Intelligence, AAAI 2018, pages 4816–4823. AAAI Press, 2018. URL
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16369.

[57] K. Guu, J. Miller, and P. Liang. Traversing knowledge graphs in vector space.
In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2015, pages 318–327. The Association for Computational

134

https://aclanthology.org/D13-1080/
https://doi.org/10.1016/j.websem.2015.08.001
https://doi.org/10.1016/j.websem.2015.08.001
https://doi.org/10.1016/j.bdr.2020.100174
https://doi.org/10.1016/j.bdr.2020.100174
https://doi.org/10.1145/3269206.3271704
https://doi.org/10.1145/3269206.3271704
https://doi.org/10.1016/j.neucom.2021.03.132
https://doi.org/10.1109/TKDE.2020.3028705
https://doi.org/10.1109/TKDE.2020.3028705
https://doi.org/10.18653/v1/d16-1019
https://doi.org/10.18653/v1/d16-1019
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16369

Bibliography

Linguistics, 2015. doi: 10.18653/v1/d15-1038. URL https://doi.org/10.18653/

v1/d15-1038.

[58] A. Hagberg, P. Swart, and D. S Chult. Exploring network structure, dynamics,
and function using networkx. Technical report, Los Alamos National Lab.(LANL),
Los Alamos, NM (United States), 2008.

[59] X. Han, S. Cao, X. Lv, Y. Lin, Z. Liu, M. Sun, and J. Li. Openke: An open toolkit
for knowledge embedding. In EMNLP, pages 139–144, 2018.

[60] F. Hayes-Roth. Building expert systems, volume 1 of Advanced book program.
Addison-Wesley, 1983. ISBN 0201106868. URL https://www.worldcat.org/

oclc/09154010.

[61] N. Heist and P. Haase. Flexible and extensible competency management with
knowledge graphs. In ISWC (Posters/Demos/Industry), volume 2980. CEUR-
WS.org, 2021. URL http://ceur-ws.org/Vol-2980/paper412.pdf.

[62] A. Hogan, E. Blomqvist, M. Cochez, et al. Knowledge graphs. CoRR,
abs/2003.02320, 2020.

[63] F. Hoppe, D. Dessì, and H. Sack. Understanding class representations: An
intrinsic evaluation of zero-shot text classification. In Workshop on Deep Learning
for Knowledge Graphs (DL4KG@ ISWC2021), volume 3034 of CEUR Workshop
Proceedings, 2021.

[64] M. Y. Jaradeh, A. Oelen, K. E. Farfar, M. Prinz, J. D’Souza, G. Kismihók,
M. Stocker, and S. Auer. Open research knowledge graph: Next generation
infrastructure for semantic scholarly knowledge. In Proceedings of the 10th
International Conference on Knowledge Capture, K-CAP 2019, pages 243–246.
ACM, 2019. doi: 10.1145/3360901.3364435. URL https://doi.org/10.1145/

3360901.3364435.

[65] M. Y. Jaradeh, K. Singh, M. Stocker, and S. Auer. Triple classification for scholarly
knowledge graph completion. In Proceedings of the 11th Conference on Knowledge
Capture, K-CAP 2021, pages 225–232, New York, NY, USA, 2021. doi: 10.1145/
3460210.3493582. URL https://doi.org/10.1145/3460210.3493582.

[66] U. Javed, K. Shaukat, I. A. Hameed, F. Iqbal, T. M. Alam, and S. Luo. A
review of content-based and context-based recommendation systems. Int. J.
Emerg. Technol. Learn., 16(3), 2021. doi: 10.3991/ijet.v16i03.18851. URL https:

//doi.org/10.3991/ijet.v16i03.18851.

[67] R. Jenatton, N. L. Roux, A. Bordes, and G. Obozinski. A latent
factor model for highly multi-relational data. In Proceedings of the 26th
Annual Conference on Neural Information Processing Systems, NIPS 2012, pages

135

https://doi.org/10.18653/v1/d15-1038
https://doi.org/10.18653/v1/d15-1038
https://www.worldcat.org/oclc/09154010
https://www.worldcat.org/oclc/09154010
http://ceur-ws.org/Vol-2980/paper412.pdf
https://doi.org/10.1145/3360901.3364435
https://doi.org/10.1145/3360901.3364435
https://doi.org/10.1145/3460210.3493582
https://doi.org/10.3991/ijet.v16i03.18851
https://doi.org/10.3991/ijet.v16i03.18851

Bibliography

3176–3184, 2012. URL https://proceedings.neurips.cc/paper/2012/hash/

0a1bf96b7165e962e90cb14648c9462d-Abstract.html.

[68] G. Ji, S. He, L. Xu, K. Liu, and J. Zhao. Knowledge graph embedding via
dynamic mapping matrix. In ACL (1), pages 687–696. The Association for
Computer Linguistics, 2015.

[69] T. Jiang, T. Liu, T. Ge, L. Sha, B. Chang, S. Li, and Z. Sui. Towards time-aware
knowledge graph completion. In Proceedings of the 26th International Conference
on Computational Linguistics, COLING 2016, pages 1715–1724. ACL, 2016. URL
https://aclanthology.org/C16-1161/.

[70] X. Jiang, Q. Wang, B. Qi, Y. Qiu, P. Li, and B. Wang. Attentive path combination
for knowledge graph completion. In Proceedings of The 9th Asian Conference on
Machine Learning, ACML 2017, volume 77 of Proceedings of Machine Learning
Research, pages 590–605. PMLR, 2017. URL http://proceedings.mlr.press/

v77/jiang17a.html.

[71] M. Kanehisa, S. Goto, M. Furumichi, M. Tanabe, and M. Hirakawa. KEGG for
representation and analysis of molecular networks involving diseases and drugs.
Nucleic acids research, 38(suppl_1):D355–D360, 2010.

[72] S. M. Kazemi and D. Poole. Simple embedding for link prediction in knowledge
graphs. In Advances in Neural Information Processing Systems, 2018.

[73] T. N. Kipf and M. Welling. Semi-supervised classification with graph
convolutional networks. In Proceedings of the 5th International Conference on
Learning Representations, ICLR 2017, 2017. URL https://openreview.net/

forum?id=SJU4ayYgl.

[74] F. Kong, R. Zhang, Y. Mao, and T. Deng. LENA: locality-expanded neural
embedding for knowledge base completion. In Proceedings of the Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019, pages 2895–2902. AAAI
Press, 2019. doi: 10.1609/aaai.v33i01.33012895. URL https://doi.org/10.1609/

aaai.v33i01.33012895.

[75] A. Krishnan. Making search easier: How amazon’s product graph
is helping customers find products more easily, 2018. URL https://

blog.aboutamazon.com/innovation/making-search-easier.

[76] T. Kuhn, C. Chichester, M. Krauthammer, N. Queralt-Rosinach, R. Verborgh,
G. Giannakopoulos, A. N. Ngomo, R. Viglianti, and M. Dumontier. Decentralized
provenance-aware publishing with nanopublications. PeerJ Comput. Sci., 2:e78,
2016. doi: 10.7717/peerj-cs.78. URL https://doi.org/10.7717/peerj-cs.78.

[77] O. Kuzelka and J. Davis. Markov logic networks for knowledge base completion:
A theoretical analysis under the MCAR assumption. In Proceedings of the

136

https://proceedings.neurips.cc/paper/2012/hash/0a1bf96b7165e962e90cb14648c9462d-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/0a1bf96b7165e962e90cb14648c9462d-Abstract.html
https://aclanthology.org/C16-1161/
http://proceedings.mlr.press/v77/jiang17a.html
http://proceedings.mlr.press/v77/jiang17a.html
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1609/aaai.v33i01.33012895
https://doi.org/10.1609/aaai.v33i01.33012895
https://blog.aboutamazon.com/innovation/making-search-easier
https://blog.aboutamazon.com/innovation/making-search-easier
https://doi.org/10.7717/peerj-cs.78

Bibliography

35th Conference on Uncertainty in Artificial Intelligence, UAI 2019, volume 115
of Proceedings of Machine Learning Research, pages 1138–1148. AUAI Press, 2019.
URL http://proceedings.mlr.press/v115/kuzelka20a.html.

[78] N. Lao, T. M. Mitchell, and W. W. Cohen. Random walk inference and learning
in A large scale knowledge base. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, EMNLP 2011, pages 529–539. ACL, 2011.
URL https://aclanthology.org/D11-1049/.

[79] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes,
S. Hellmann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer. Dbpedia - A large-
scale, multilingual knowledge base extracted from wikipedia. Semantic Web, 6
(2):167–195, 2015. doi: 10.3233/SW-140134. URL https://doi.org/10.3233/SW-

140134.

[80] K. Lei, J. Zhang, Y. Xie, D. Wen, D. Chen, M. Yang, and Y. Shen. Path-based
reasoning with constrained type attention for knowledge graph completion.
Neural Comput. Appl., 32(11):6957–6966, 2020. doi: 10.1007/s00521-019-04181-1.
URL https://doi.org/10.1007/s00521-019-04181-1.

[81] X. Li and M. Daoutis. Unsupervised key-phrase extraction and clustering for
classification scheme in scientific publications. In Proceedings of the Workshop
on Scientific Document Understanding, SDU@AAAI 2021, volume 2831 of CEUR
Workshop Proceedings, 2021. URL https://ceur-ws.org/Vol-2831/paper2.pdf.

[82] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu. Learning entity and relation
embeddings for knowledge graph completion. In AAAI, volume 15, pages
2181–2187. AAAI Press, 2015.

[83] H. Liu, Y. Wu, and Y. Yang. Analogical inference for multi-relational embeddings.
In International conference on machine learning, pages 2168–2178. PMLR, 2017.

[84] Q. Liu, H. Jiang, Z. Ling, S. Wei, and Y. Hu. Probabilistic reasoning via deep
learning: Neural association models. CoRR, abs/1603.07704, 2016. URL http:

//arxiv.org/abs/1603.07704.

[85] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov. Roberta: A robustly optimized BERT
pretraining approach. CoRR, abs/1907.11692, 2019. URL http://arxiv.org/

abs/1907.11692.

[86] J. Ma, Y. Qiao, G. Hu, Y. Wang, C. Zhang, Y. Huang, A. K. Sangaiah, H. Wu,
H. Zhang, and K. Ren. ELPKG: A high-accuracy link prediction approach
for knowledge graph completion. Symmetry, 11(9):1096, 2019. doi: 10.3390/
sym11091096. URL https://doi.org/10.3390/sym11091096.

[87] F. Mahdisoltani, J. Biega, and F. Suchanek. Yago3: A knowledge base from

137

http://proceedings.mlr.press/v115/kuzelka20a.html
https://aclanthology.org/D11-1049/
https://doi.org/10.3233/SW-140134
https://doi.org/10.3233/SW-140134
https://doi.org/10.1007/s00521-019-04181-1
https://ceur-ws.org/Vol-2831/paper2.pdf
http://arxiv.org/abs/1603.07704
http://arxiv.org/abs/1603.07704
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.3390/sym11091096

Bibliography

multilingual wikipedias. In 7th biennial conference on innovative data systems
research. CIDR Conference, 2014.

[88] C. Meilicke, M. W. Chekol, D. Ruffinelli, and H. Stuckenschmidt. Anytime
bottom-up rule learning for knowledge graph completion. In Proceedings of
the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019, pages
3137–3143. ijcai.org, 2019. doi: 10.24963/ijcai.2019/435. URL https://doi.org/

10.24963/ijcai.2019/435.

[89] G. A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38(11):
39–41, 1995. doi: 10.1145/219717.219748.

[90] P. Minervini, M. Bosnjak, T. Rocktäschel, and S. Riedel. Towards neural theorem
proving at scale. CoRR, abs/1807.08204, 2018. URL http://arxiv.org/abs/

1807.08204.

[91] T. Mitchell, W. Cohen, E. Hruschka, et al. Never-ending learning. Commun. ACM,
61(5):103–115, 2018. doi: 10.1145/3191513.

[92] S. H. Muggleton and L. D. Raedt. Inductive logic programming: Theory and
methods. J. Log. Program., 19/20:629–679, 1994. doi: 10.1016/0743-1066(94)90035-
3. URL https://doi.org/10.1016/0743-1066(94)90035-3.

[93] V. Nastase and B. Kotnis. Abstract graphs and abstract paths for knowledge
graph completion. In Proceedings of the 8th Joint Conference on Lexical and
Computational Semantics, SEM@NAACL-HLT 2019, pages 147–157. Association
for Computational Linguistics, 2019. doi: 10.18653/v1/s19-1016. URL https:

//doi.org/10.18653/v1/s19-1016.

[94] D. Nathani, J. Chauhan, C. Sharma, and M. Kaul. Learning attention-based
embeddings for relation prediction in knowledge graphs. In Proceedings of the
57th Conference of the Association for Computational Linguistics, ACL 2019, pages
4710–4723. Association for Computational Linguistics, 2019. doi: 10.18653/v1/
p19-1466. URL https://doi.org/10.18653/v1/p19-1466.

[95] A. Neelakantan, B. Roth, and A. McCallum. Compositional vector space models
for knowledge base completion. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics, ACL 2015, pages 156–166. The Association
for Computer Linguistics, 2015. doi: 10.3115/v1/p15-1016. URL https://

doi.org/10.3115/v1/p15-1016.

[96] S. Neumaier, J. Umbrich, J. X. Parreira, and A. Polleres. Multi-level semantic
labelling of numerical values. In ISWC, volume 9981, pages 428–445, 2016. doi:
10.1007/978-3-319-46523-4_26.

[97] D. Q. Nguyen, T. Vu, T. D. Nguyen, D. Q. Nguyen, and D. Q. Phung. A
capsule network-based embedding model for knowledge graph completion

138

https://doi.org/10.24963/ijcai.2019/435
https://doi.org/10.24963/ijcai.2019/435
http://arxiv.org/abs/1807.08204
http://arxiv.org/abs/1807.08204
https://doi.org/10.1016/0743-1066(94)90035-3
https://doi.org/10.18653/v1/s19-1016
https://doi.org/10.18653/v1/s19-1016
https://doi.org/10.18653/v1/p19-1466
https://doi.org/10.3115/v1/p15-1016
https://doi.org/10.3115/v1/p15-1016

Bibliography

and search personalization. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, pages 2180–2189. Association for Computational
Linguistics, 2019. doi: 10.18653/v1/n19-1226. URL https://doi.org/10.18653/

v1/n19-1226.

[98] M. Nickel, V. Tresp, and H. Kriegel. A three-way model for collective learning
on multi-relational data. In L. Getoor and T. Scheffer, editors, Proceedings of
the 28th International Conference on Machine Learning, ICML 2011, pages 809–816.
Omnipress, 2011. URL https://icml.cc/2011/papers/438_icmlpaper.pdf.

[99] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich. A review of
relational machine learning for knowledge graphs. Proc. IEEE, 104(1):11–33,
2016. doi: 10.1109/JPROC.2015.2483592. URL https://doi.org/10.1109/

JPROC.2015.2483592.

[100] G. Niu, Y. Zhang, B. Li, P. Cui, S. Liu, J. Li, and X. Zhang. Rule-guided
compositional representation learning on knowledge graphs. In Proceedings of
the 34th Conference on Artificial Intelligence, AAAI 2020, pages 2950–2958. AAAI
Press, 2020. URL https://ojs.aaai.org/index.php/AAAI/article/view/5687.

[101] N. F. Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson, and J. Taylor. Industry-
scale knowledge graphs: lessons and challenges. Commun. ACM, 62(8):36–43,
2019. doi: 10.1145/3331166. URL https://doi.org/10.1145/3331166.

[102] B. Oh, S. Seo, and K. Lee. Knowledge graph completion by context-aware
convolutional learning with multi-hop neighborhoods. In Proceedings of the
27th ACM International Conference on Information and Knowledge Management,
CIKM 2018, pages 257–266. ACM, 2018. doi: 10.1145/3269206.3271769. URL
https://doi.org/10.1145/3269206.3271769.

[103] P. G. Omran, K. Wang, and Z. Wang. Scalable rule learning via learning
representation. In Proceedings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence, IJCAI 2018, pages 2149–2155. ijcai.org, 2018. doi:
10.24963/ijcai.2018/297. URL https://doi.org/10.24963/ijcai.2018/297.

[104] E. Palumbo, D. Monti, G. Rizzo, R. Troncy, and E. Baralis. entity2rec: Property-
specific knowledge graph embeddings for item recommendation. Expert Syst.
Appl., 151:113235, 2020. doi: 10.1016/j.eswa.2020.113235. URL https://doi.org/

10.1016/j.eswa.2020.113235.

[105] J. Pasternack and D. Roth. Knowing what to believe (when you already know
something). In C. Huang and D. Jurafsky, editors, Proceedings of the 23rd
International Conference on Computational Linguistics, COLING 2010, pages 877–885.
Tsinghua University Press, 2010. URL https://aclanthology.org/C10-1099/.

139

https://doi.org/10.18653/v1/n19-1226
https://doi.org/10.18653/v1/n19-1226
https://icml.cc/2011/papers/438_icmlpaper.pdf
https://doi.org/10.1109/JPROC.2015.2483592
https://doi.org/10.1109/JPROC.2015.2483592
https://ojs.aaai.org/index.php/AAAI/article/view/5687
https://doi.org/10.1145/3331166
https://doi.org/10.1145/3269206.3271769
https://doi.org/10.24963/ijcai.2018/297
https://doi.org/10.1016/j.eswa.2020.113235
https://doi.org/10.1016/j.eswa.2020.113235
https://aclanthology.org/C10-1099/

Bibliography

[106] J. Pasternack and D. Roth. Making better informed trust decisions with
generalized fact-finding. In T. Walsh, editor, Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, IJCAI 2011, pages 2324–2329. IJCAI/AAAI,
2011. doi: 10.5591/978-1-57735-516-8/IJCAI11-387. URL https://doi.org/

10.5591/978-1-57735-516-8/IJCAI11-387.

[107] H. Paulheim. Knowledge graph refinement: A survey of approaches and
evaluation methods. Semantic Web, 8(3):489–508, 2017. doi: 10.3233/SW-160218.

[108] H. Paulheim and C. Bizer. Improving the quality of linked data using statistical
distributions. Int. J. Semantic Web Inf. Syst., 10(2):63–86, 2014. doi: 10.4018/
ijswis.2014040104.

[109] C. Peng, F. Xia, M. Naseriparsa, and F. Osborne. Knowledge graphs:
Opportunities and challenges. Artif. Intell. Rev., 2023. doi: 10.1007/s10462-
023-10465-9.

[110] R. J. Pittman, A. Srivastava, S. Hewavitharana, A. Kale, and S. Mansour. Making
search easier: How amazon’s product graph is helping customers find products
more easily, 2017. URL https://www.ebayinc.com/stories/news/cracking-

the-code-on-conversational-commerce/.

[111] T. Rebele, F. Suchanek, J. Hoffart, J. Biega, E. Kuzey, and G. Weikum. Yago:
A multilingual knowledge base from wikipedia, wordnet, and geonames. In
Proceedings of the 15th International Semantic Web Conference, ISWC 2017, pages
177–185. Springer, 2016.

[112] N. Reimers and I. Gurevych. Sentence-BERT: Sentence Embeddings using
Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing. Association for Computational Linguistics, 11
2019. URL http://arxiv.org/abs/1908.10084.

[113] G. Rele, S. Adeshina, D. Bhargavi, K. Sindwani, V. S. Ravipati, , and
M. Rhodes. Power recommendation and search using an imdb knowledge
graph, 2022. URL https://aws.amazon.com/blogs/machine-learning/part-1-

power-recommendation-and-search-using-an-imdb-knowledge-graph/.

[114] H. Ren, H. Dai, B. Dai, X. Chen, D. Zhou, J. Leskovec, and D. Schuurmans.
SMORE: knowledge graph completion and multi-hop reasoning in massive
knowledge graphs. In Proceedings of the 28th Conference on Knowledge Discovery
and Data Mining, SIGKDD 2022, pages 1472–1482. ACM, 2022. doi: 10.1145/
3534678.3539405. URL https://doi.org/10.1145/3534678.3539405.

[115] M. Richardson and P. M. Domingos. Markov logic networks. Mach. Learn., 62
(1-2):107–136, 2006. doi: 10.1007/s10994-006-5833-1. URL https://doi.org/

10.1007/s10994-006-5833-1.

140

https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-387
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-387
https://www.ebayinc.com/stories/news/cracking-the-code-on-conversational-commerce/
https://www.ebayinc.com/stories/news/cracking-the-code-on-conversational-commerce/
http://arxiv.org/abs/1908.10084
https://aws.amazon.com/blogs/machine-learning/part-1-power-recommendation-and-search-using-an-imdb-knowledge-graph/
https://aws.amazon.com/blogs/machine-learning/part-1-power-recommendation-and-search-using-an-imdb-knowledge-graph/
https://doi.org/10.1145/3534678.3539405
https://doi.org/10.1007/s10994-006-5833-1
https://doi.org/10.1007/s10994-006-5833-1

Bibliography

[116] T. Rocktäschel and S. Riedel. End-to-end differentiable proving. In Proceedings of
the 30th Annual Conference on Neural Information Processing Systems, NIPS 2017,
pages 3788–3800, 2017. URL https://proceedings.neurips.cc/paper/2017/

hash/b2ab001909a8a6f04b51920306046ce5-Abstract.html.

[117] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution
image synthesis with latent diffusion models. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2022, pages 10674–10685. IEEE,
2022. doi: 10.1109/CVPR52688.2022.01042. URL https://doi.org/10.1109/

CVPR52688.2022.01042.

[118] A. Rossanez, J. C. dos Reis, and R. da Silva Torres. Representing scientific
literature evolution via temporal knowledge graphs. In Proceedings of the 6th
Workshop on Managing the Evolution and Preservation of the Data Web (MEPDaW),
volume 2821 of CEUR Workshop Proceedings, pages 33–42. CEUR-WS.org, 2020.
URL https://ceur-ws.org/Vol-2821/paper5.pdf.

[119] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach (4th Edition).
Pearson, 2020. ISBN 9780134610993. URL http://aima.cs.berkeley.edu/.

[120] S. Sabour, N. Frosst, and G. E. Hinton. Dynamic routing between capsules. In
Proceedings of the 30th Conference on Neural Information Processing Systems, NIPS
2017, pages 3856–3866, 2017. URL https://proceedings.neurips.cc/paper/

2017/hash/2cad8fa47bbef282badbb8de5374b894-Abstract.html.

[121] A. Sadeghian, M. Armandpour, P. Ding, and D. Z. Wang. DRUM: end-to-end
differentiable rule mining on knowledge graphs. In Proceedings of the 32nd
Annual Conference on Neural Information Processing Systems, NeurIPS 2019, pages
15321–15331, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/

0c72cb7ee1512f800abe27823a792d03-Abstract.html.

[122] A. A. Salatino, F. Osborne, A. Birukou, and E. Motta. Improving editorial
workflow and metadata quality at springer nature. In The Semantic Web – ISWC
2019, pages 507–525, Cham, 2019. Springer Int. Publishing. ISBN 978-3-030-30796-
7.

[123] A. A. Salatino, F. Osborne, and E. Motta. Researchflow: Understanding the
knowledge flow between academia and industry. In Proceedings of the 22nd
International Conference on Knowledge Engineering and Knowledge Management,
EKAW 2020, volume 12387, pages 219–236. Springer, 2020. doi: 10.1007/978-3-
030-61244-3_16. URL https://doi.org/10.1007/978-3-030-61244-3_16.

[124] A. A. Salatino, T. Thanapalasingam, A. Mannocci, A. Birukou, F. Osborne, and
E. Motta. The computer science ontology: A comprehensive automatically-
generated taxonomy of research areas. Data Intell., 2(3):379–416, 2020.

141

https://proceedings.neurips.cc/paper/2017/hash/b2ab001909a8a6f04b51920306046ce5-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/b2ab001909a8a6f04b51920306046ce5-Abstract.html
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/CVPR52688.2022.01042
https://ceur-ws.org/Vol-2821/paper5.pdf
http://aima.cs.berkeley.edu/
https://proceedings.neurips.cc/paper/2017/hash/2cad8fa47bbef282badbb8de5374b894-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/2cad8fa47bbef282badbb8de5374b894-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0c72cb7ee1512f800abe27823a792d03-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0c72cb7ee1512f800abe27823a792d03-Abstract.html
https://doi.org/10.1007/978-3-030-61244-3_16

Bibliography

[125] M. S. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov, and M. Welling.
Modeling relational data with graph convolutional networks. In Proceedings
of the 15th Extended Semantic Web Conference, ESWC 2018, volume 10843, pages
593–607. Springer, 2018. doi: 10.1007/978-3-319-93417-4_38. URL https://

doi.org/10.1007/978-3-319-93417-4_38.

[126] A. Schrijver. Theory of linear and integer programming. Wiley-Interscience series in
discrete mathematics and optimization. Wiley, 1999. ISBN 978-0-471-98232-6.

[127] C. Shang, Y. Tang, J. Huang, J. Bi, X. He, and B. Zhou. End-to-end structure-
aware convolutional networks for knowledge base completion. In Proceedings of
the 33rd Conference on Artificial Intelligence, AAAI 2019, pages 3060–3067. AAAI
Press, 2019. doi: 10.1609/aaai.v33i01.33013060. URL https://doi.org/10.1609/

aaai.v33i01.33013060.

[128] T. Shen, F. Zhang, and J. Cheng. A comprehensive overview of knowledge
graph completion. Knowledge Based Systems, 255:109597, 2022. doi: 10.1016/
j.knosys.2022.109597. URL https://doi.org/10.1016/j.knosys.2022.109597.

[129] Y. Shen, P. Huang, M. Chang, and J. Gao. Modeling large-scale structured
relationships with shared memory for knowledge base completion. In Proceedings
of the 2nd Workshop on Representation Learning for NLP, Rep4NLP@ACL 2017, pages
57–68. Association for Computational Linguistics, 2017. doi: 10.18653/v1/w17-
2608. URL https://doi.org/10.18653/v1/w17-2608.

[130] B. Shi and T. Weninger. Open-world knowledge graph completion. In AAAI,
pages 1957–1964, 2018. URL https://www.aaai.org/ocs/index.php/AAAI/

AAAI18/paper/view/16055.

[131] S. Shrivastava. Bring rich knowledge of people, places, things and local
businesses to your apps. Bing blogs., 2017. URL https://blogs.bing.com/

search-quality-insights/2017-07/bring-rich-knowledge-of-people-

places-things-and-local-businesses-to-your-apps.

[132] A. Singhal. Introducing the knowledge graph: things, not strings, 2012. URL
https://www.blog.google/products/search/introducing-knowledge-graph-

things-not/.

[133] A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B. P. Hsu, and K. Wang. An
overview of microsoft academic service (MAS) and applications. In Proceedings
of the 24th International World Wide Web Conference, WWW 2015, pages 243–246.
ACM, 2015. doi: 10.1145/2740908.2742839. URL https://doi.org/10.1145/

2740908.2742839.

[134] R. Socher, D. Chen, C. D. Manning, and A. Ng. Reasoning with neural tensor
networks for knowledge base completion. In NIPS, pages 926–934, 2013.

142

https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1609/aaai.v33i01.33013060
https://doi.org/10.1609/aaai.v33i01.33013060
https://doi.org/10.1016/j.knosys.2022.109597
https://doi.org/10.18653/v1/w17-2608
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16055
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16055
https://blogs.bing.com/search-quality-insights/2017-07/bring-rich-knowledge-of-people-places-things-and-local-businesses-to-your-apps
https://blogs.bing.com/search-quality-insights/2017-07/bring-rich-knowledge-of-people-places-things-and-local-businesses-to-your-apps
https://blogs.bing.com/search-quality-insights/2017-07/bring-rich-knowledge-of-people-places-things-and-local-businesses-to-your-apps
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
https://doi.org/10.1145/2740908.2742839
https://doi.org/10.1145/2740908.2742839

Bibliography

[135] M. Speranskaya, M. Schmitt, and B. Roth. Ranking vs. classifying: Measuring
knowledge base completion quality. In AKBC, 2020.

[136] D. Stepanova, M. H. Gad-Elrab, and V. T. Ho. Rule induction and reasoning
over knowledge graphs. In Reasoning Web. Learning, Uncertainty, Streaming, and
Scalability, 2018, volume 11078, pages 142–172. Springer, 2018. doi: 10.1007/978-
3-030-00338-8_6. URL https://doi.org/10.1007/978-3-030-00338-8_6.

[137] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic knowledge.
In Proceedings of the 16th International Conference on World Wide Web, WWW
2007, pages 697–706. ACM, 2007. doi: 10.1145/1242572.1242667. URL https:

//doi.org/10.1145/1242572.1242667.

[138] Z. Sun, Z.-H. Deng, J.-Y. Nie, and J. Tang. RotatE: Knowledge graph embedding
by relational rotation in complex space. In International Conference on Learning
Representations, 2019.

[139] Z. H. Syed, M. Röder, and A. N. Ngomo. FactCheck: Validating RDF
triples using textual evidence. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, CIKM 2018, pages 1599–1602.
ACM, 2018. doi: 10.1145/3269206.3269308. URL https://doi.org/10.1145/

3269206.3269308.

[140] Y. Tay, A. T. Luu, S. C. Hui, and F. Brauer. Random semantic tensor ensemble
for scalable knowledge graph link prediction. In Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining, WSDM 2017, pages 751–
760. ACM, 2017. doi: 10.1145/3018661.3018695. URL https://doi.org/10.1145/

3018661.3018695.

[141] C. F. Thorn, T. E. Klein, and R. B. Altman. Pharmgkb: the pharmacogenomics
knowledge base. Pharmacogenomics: Methods and Protocols, pages 311–320, 2013.

[142] G. Töpper, M. Knuth, and H. Sack. DBpedia ontology enrichment for
inconsistency detection. In V. Presutti and H. S. Pinto, editors, I-SEMANTICS 2012
- 8th International Conference on Semantic Systems, I-SEMANTICS ’12, Graz, Austria,
September 5-7, 2012, pages 33–40. ACM, 2012. doi: 10.1145/2362499.2362505. URL
https://doi.org/10.1145/2362499.2362505.

[143] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer. Feature-rich part-of-speech
tagging with a cyclic dependency network. In Proceedings of the 2003 Human
Language Technology Conference of the North American Chapter of the Association for
Computational Linguistics, pages 252–259, 2003.

[144] K. Toutanova, X. V. Lin, W. Yih, H. Poon, and C. Quirk. Compositional learning
of embeddings for relation paths in knowledge base and text. In Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016.

143

https://doi.org/10.1007/978-3-030-00338-8_6
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1145/3269206.3269308
https://doi.org/10.1145/3269206.3269308
https://doi.org/10.1145/3018661.3018695
https://doi.org/10.1145/3018661.3018695
https://doi.org/10.1145/2362499.2362505

Bibliography

The Association for Computer Linguistics, 2016. doi: 10.18653/v1/p16-1136.
URL https://doi.org/10.18653/v1/p16-1136.

[145] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard. Complex
embeddings for simple link prediction. In ICML, volume 48, pages 2071–2080,
2016.

[146] S. Vashishth, S. Sanyal, V. Nitin, N. Agrawal, and P. P. Talukdar. Interacte:
Improving convolution-based knowledge graph embeddings by increasing
feature interactions. In Proceedings of the Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, pages 3009–3016. AAAI Press, 2020. URL
https://ojs.aaai.org/index.php/AAAI/article/view/5694.

[147] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin. Attention is all you need. In Proceedings
of the 30th Conference on Neural Information Processing Systems, NIPS, pages
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/

3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

[148] D. Vrandečić and M. Krötzsch. Wikidata: a free collaborative knowledgebase.
Communications of the ACM, 57(10):78–85, 2014.

[149] D. Wadden, U. Wennberg, Y. Luan, and H. Hajishirzi. Entity, relation, and
event extraction with contextualized span representations. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019,
pages 5783–5788, 2019. doi: 10.18653/v1/D19-1585. URL https://doi.org/

10.18653/v1/D19-1585.

[150] H. Wang, F. Zhang, M. Zhao, W. Li, X. Xie, and M. Guo. Multi-task feature
learning for knowledge graph enhanced recommendation. In Proceedings of
the World Wide Web Conference, WWW 2019, pages 2000–2010. ACM, 2019. doi:
10.1145/3308558.3313411. URL https://doi.org/10.1145/3308558.3313411.

[151] P. Wang, J. Han, C. Li, and R. Pan. Logic attention based neighborhood
aggregation for inductive knowledge graph embedding. In Proceedings of the
33rd Conference on Artificial Intelligence, AAAI 2019, pages 7152–7159. AAAI
Press, 2019. doi: 10.1609/aaai.v33i01.33017152. URL https://doi.org/10.1609/

aaai.v33i01.33017152.

[152] Q. Wang, B. Wang, and L. Guo. Knowledge base completion using embeddings
and rules. In Proceedings of the 24th International Joint Conference on Artificial
Intelligence, IJCAI 2015, pages 1859–1866. AAAI Press, 2015. URL http:

//ijcai.org/Abstract/15/264.

[153] R. Wang, Y. Yan, J. Wang, Y. Jia, Y. Zhang, W. Zhang, and X. Wang. AceKG:

144

https://doi.org/10.18653/v1/p16-1136
https://ojs.aaai.org/index.php/AAAI/article/view/5694
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.1145/3308558.3313411
https://doi.org/10.1609/aaai.v33i01.33017152
https://doi.org/10.1609/aaai.v33i01.33017152
http://ijcai.org/Abstract/15/264
http://ijcai.org/Abstract/15/264

Bibliography

A large-scale knowledge graph for academic data mining. In Proceedings of
the 27th ACM International Conference on Information and Knowledge Management,
CIKM 2018, pages 1487–1490. ACM, 2018. doi: 10.1145/3269206.3269252. URL
https://doi.org/10.1145/3269206.3269252.

[154] Z. Wang and J. Li. Rdf2rules: Learning rules from RDF knowledge bases by
mining frequent predicate cycles. CoRR, abs/1512.07734, 2015. URL http:

//arxiv.org/abs/1512.07734.

[155] Z. Wang, J. Zhang, J. Feng, and Z. Chen. Knowledge graph embedding by
translating on hyperplanes. In AAAI, volume 14, pages 1112–1119. AAAI Press,
2014.

[156] Z. Wei, J. Zhao, K. Liu, Z. Qi, Z. Sun, and G. Tian. Large-scale knowledge
base completion: Inferring via grounding network sampling over selected
instances. In Proceedings of the 24th ACM International Conference on Information
and Knowledge Management, CIKM 2015, pages 1331–1340. ACM, 2015. doi:
10.1145/2806416.2806513. URL https://doi.org/10.1145/2806416.2806513.

[157] C. Wise, V. N. Ioannidis, M. R. Calvo, X. Song, G. Price, N. Kulkarni, R. Brand,
P. Bhatia, and G. Karypis. COVID-19 knowledge graph: Accelerating information
retrieval and discovery for scientific literature. CoRR, abs/2007.12731, 2020. URL
https://arxiv.org/abs/2007.12731.

[158] D. S. Wishart, C. Knox, A. C. Guo, D. Cheng, S. Shrivastava, D. Tzur, B. Gautam,
and M. Hassanali. Drugbank: a knowledgebase for drugs, drug actions and drug
targets. Nucleic acids research, 36(suppl_1):D901–D906, 2008.

[159] D. S. Wishart, C. Knox, A. C. Guo, et al. Hmdb: a knowledgebase for the human
metabolome. Nucleic acids research, 37(suppl_1):D603–D610, 2009.

[160] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. A comprehensive
survey on graph neural networks. IEEE Trans. Neural Networks Learn. Syst., 32(1):
4–24, 2021. doi: 10.1109/TNNLS.2020.2978386. URL https://doi.org/10.1109/

TNNLS.2020.2978386.

[161] H. Xiao, M. Huang, Y. Hao, and X. Zhu. Transa: An adaptive approach
for knowledge graph embedding. CoRR, abs/1509.05490, 2015. URL http:

//arxiv.org/abs/1509.05490.

[162] S. Xiong, W. Huang, and P. Duan. Knowledge graph embedding via relation
paths and dynamic mapping matrix. In Advances in Conceptual Modeling - ER 2018,
volume 11158, pages 106–118. Springer, 2018. doi: 10.1007/978-3-030-01391-2_18.
URL https://doi.org/10.1007/978-3-030-01391-2_18.

[163] W. Xiong, M. Yu, S. Chang, X. Guo, and W. Y. Wang. One-shot relational learning
for knowledge graphs. In Proceedings of the 2018 Conference on Empirical Methods

145

https://doi.org/10.1145/3269206.3269252
http://arxiv.org/abs/1512.07734
http://arxiv.org/abs/1512.07734
https://doi.org/10.1145/2806416.2806513
https://arxiv.org/abs/2007.12731
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386
http://arxiv.org/abs/1509.05490
http://arxiv.org/abs/1509.05490
https://doi.org/10.1007/978-3-030-01391-2_18

Bibliography

in Natural Language Processing, EMNLP 2018, pages 1980–1990. Association for
Computational Linguistics, 2018. doi: 10.18653/v1/d18-1223. URL https:

//doi.org/10.18653/v1/d18-1223.

[164] K. Xu, L. Wang, M. Yu, Y. Feng, Y. Song, Z. Wang, and D. Yu. Cross-lingual
knowledge graph alignment via graph matching neural network. In Proceedings
of the 57th Conference of the Association for Computational Linguistics, ACL 2019,
pages 3156–3161. Association for Computational Linguistics, 2019. doi: 10.18653/
v1/p19-1304. URL https://doi.org/10.18653/v1/p19-1304.

[165] V. Yadav and S. Bethard. A survey on recent advances in named entity recognition
from deep learning models. CoRR, 2019.

[166] B. Yang, W. Yih, X. He, J. Gao, and L. Deng. Embedding entities and relations for
learning and inference in knowledge bases. In Proceedings of the 3rd International
Conference on Learning Representations, ICLR, 2015. URL http://arxiv.org/abs/

1412.6575.

[167] F. Yang, Z. Yang, and W. W. Cohen. Differentiable learning of logical
rules for knowledge base reasoning. In Proceedings of the 30th Annual
Conference on Neural Information Processing Systems, NIPS 2017, pages
2319–2328, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/

0e55666a4ad822e0e34299df3591d979-Abstract.html.

[168] Z. Ye, Y. J. Kumar, G. O. Sing, F. Song, and J. Wang. A comprehensive survey
of graph neural networks for knowledge graphs. IEEE Access, 10:75729–75741,
2022. doi: 10.1109/ACCESS.2022.3191784. URL https://doi.org/10.1109/

ACCESS.2022.3191784.

[169] W. Zhang, B. Paudel, L. Wang, J. Chen, H. Zhu, W. Zhang, A. Bernstein, and
H. Chen. Iteratively learning embeddings and rules for knowledge graph
reasoning. In The World Wide Web Conference, WWW 2019, pages 2366–2377.
ACM, 2019. doi: 10.1145/3308558.3313612. URL https://doi.org/10.1145/

3308558.3313612.

[170] W. Zhang, S. Deng, M. Chen, L. Wang, Q. Chen, F. Xiong, X. Liu, and H. Chen.
Knowledge graph embedding in e-commerce applications: Attentive reasoning,
explanations, and transferable rules. In Proceedings of the 10th International
Joint Conference on Knowledge Graphs IJCKG 2021, pages 71–79. ACM, 2021. doi:
10.1145/3502223.3502232. URL https://doi.org/10.1145/3502223.3502232.

[171] Y. Zhang, M. Sheng, R. Zhou, Y. Wang, G. Han, H. Zhang, C. Xing, and J. Dong.
HKGB: an inclusive, extensible, intelligent, semi-auto-constructed knowledge
graph framework for healthcare with clinicians’ expertise incorporated. Inf.
Process. Manag., 57(6):102324, 2020. doi: 10.1016/j.ipm.2020.102324. URL https:

//doi.org/10.1016/j.ipm.2020.102324.

146

https://doi.org/10.18653/v1/d18-1223
https://doi.org/10.18653/v1/d18-1223
https://doi.org/10.18653/v1/p19-1304
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1412.6575
https://proceedings.neurips.cc/paper/2017/hash/0e55666a4ad822e0e34299df3591d979-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/0e55666a4ad822e0e34299df3591d979-Abstract.html
https://doi.org/10.1109/ACCESS.2022.3191784
https://doi.org/10.1109/ACCESS.2022.3191784
https://doi.org/10.1145/3308558.3313612
https://doi.org/10.1145/3308558.3313612
https://doi.org/10.1145/3502223.3502232
https://doi.org/10.1016/j.ipm.2020.102324
https://doi.org/10.1016/j.ipm.2020.102324

Bibliography

[172] Z. Zhang, F. Zhuang, H. Zhu, Z. Shi, H. Xiong, and Q. He. Relational graph
neural network with hierarchical attention for knowledge graph completion.
In Proceedings of the 34th Conference on Artificial Intelligence, AAAI 2020, pages
9612–9619. AAAI Press, 2020. URL https://ojs.aaai.org/index.php/AAAI/

article/view/6508.

[173] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun.
Graph neural networks: A review of methods and applications. AI Open, 1:
57–81, 2020. doi: 10.1016/j.aiopen.2021.01.001. URL https://doi.org/10.1016/

j.aiopen.2021.01.001.

147

https://ojs.aaai.org/index.php/AAAI/article/view/6508
https://ojs.aaai.org/index.php/AAAI/article/view/6508
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1016/j.aiopen.2021.01.001

	Acknowledgments
	Agradecimientos
	Abstract
	Resumen
	I Preface
	Introduction
	Research context
	Research rationale
	Hypothesis
	Thesis

	Summary of contributions
	Collaborations
	Structure of this dissertation

	Motivation
	Introduction
	Problems
	Analysis of current solutions
	Discussion
	Our proposal
	Summary

	II Background Information
	Knowledge Graphs
	Introduction
	Current Knowledge Graphs
	Applications
	Open challenges
	Integration
	Correction
	Completion

	Summary

	Latent triple representations
	Introduction
	Tensor factorization models
	Translational models
	Neural network-based models
	Summary

	Path-based approaches
	Introduction
	Using relational paths
	Using entity neighborhoods
	Hybrid approaches
	Summary

	Rule-based approaches
	Introduction
	Rule mining methods
	Candidate filtering
	Hybrid approaches
	Summary

	III Our Proposal
	Conceptual framework
	Introduction
	Triple
	Knowledge Graph
	Topology-based concepts
	Paths between entities
	Distance between entities
	Reachability

	Neighborhood subgraphs
	Candidates
	Candidate triples
	Fitness function

	Candidate filtering
	Criterion
	Rule

	Graph-based features
	Feature
	Feature group

	Summary

	CHAI: Our candidate filtering proposal
	Introduction
	Our proposal
	Proposed criteria and rules
	Algorithm

	Software Architecture
	Design and performance considerations

	Evaluation
	Setup and experimental data
	Evaluation parameters
	Results and discussion

	Limitations
	Summary

	CAFE: Our triple classification proposal
	Introduction
	Our proposal
	Neighborhood-aware features
	Workflow

	Software Architecture
	Design and performance considerations

	Evaluation
	Experimental data
	Experimental setup
	Results and discussion

	Limitations
	Summary

	SciCheck: Completing scientific Knowledge Graphs
	Introduction
	Our proposal
	Extended feature set

	Evaluation
	Baselines
	Evaluation data
	Results and discussion

	Practical application: AI-KG
	Summary

	IV Final Remarks
	Conclusions
	Bibliography

