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Abstract A two-layer shallow water type model is proposed to describe bedload
sediment transport for strong and weak interactions between the fluid and the
sediment. The key point falls into the definition of the friction law between the
two layers, which is a generalization of those introduced in Fernández-Nieto
et al. (https://doi.org/10.1051/m2an/2016018). Moreover, we prove formally that
the two-layer model converges to a Saint-Venant-Exner system (SVE) including
gravitational effects when the ratio between the hydrodynamic and morphodynamic
time scales is small. The SVE with gravitational effects is a degenerated nonlinear
parabolic system, whose numerical approximation can be very expensive from a
computational point of view, see for example T. Morales de Luna et al. (https://doi.
org/10.1007/s10915-010-9447-1). In this work, gravitational effects are introduced
into the two-layer system without any parabolic term, so the proposed model may
be a advantageous solution to solve bedload sediment transport problems.
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1 Introduction

Our goal is to obtain a general model for bedload sediment transport that is valid in
any regime, for strong and weak interactions between the fluid and sediment.

In most models a weak interaction between the sediment and the fluid is assumed.
In this case Saint-Venant-Exner models [7] are usually considered (SVE in what
follows). For the case of high bedload transport rate, two-layer shallow water type
model are considered instead, see for example [18, 20, 21]. In this work we focus
into the definition of a two-layer shallow water type model that can be applied in
both situations.

For the case of uniform flows the thickness of the moving sediment layer can be
predicted, because erosion and deposition rates are equal in those situations. This
is a general hypothesis that is assumed when modeling weak bedload transport.
The usual approach is to consider a coupled system consisting of a Shallow Water
system for the hydrodynamical part combined with a morphodynamical part given
by the so-called Exner equation. The whole system is known as Saint Venant Exner
system [7]. Exner equation depends on the definition of the solid transport discharge.
Different classical definitions can be found for the solid transport discharge, for
instance the ones given by Meyer-Peter and Müller [14], Van Rijn’s [23], Einstein
[5], Nielsen [17], Fernández-Luque and Van Beek [8], Ashida and Michiue [1],
Engelund and Fredsoe [6], Kalinske [12], Charru [4], etc. A generalization of these
classical models was introduced in [10] where the morphodynamical component is
deduced from a Reynolds equation and includes gravitational effects in the sediment
layer. Classical models do not take into account in general such gravitational effects
because in their derivation the hypothesis of nearly horizontal sediment bed is used
(see for example [13]).

In general, classical definitions for solid transport discharge can be written as
follows,

qb

Q
= sgn(τ )

k1

(1 − ϕ)
θ m1 (θ − k2 θc)

m2+
(√

θ − k3
√

θc

)m3

+ , (1)

whereQ represents the characteristic discharge,Q = ds

√
g(1/r − 1)ds , r = ρ1/ρ2

is the density ratio, ρ1 being the fluid density and ρ2 the density of the sediment
particles; ds the mean diameter of the sediment particles, and ϕ is the averaged
porosity. The coefficients kl and ml , l = 1, 2, 3, are positive constants that depend
on the model. We usually find m2 = 0 or m3 = 0, for example, Meyer-Peter and
Müller model takes m3 = 0 and Ashida and Michiue’s model uses m2 = 0.

The Shields stress, θ , is defined as the ratio between the agitating and the
stabilizing forces, θ = |τ |d2

s /(g(ρ2 −ρ1)d
3
s ), τ being the shear stress at the bottom.

For example, for Manning’s law, we have τ = ρ1gh1n
2u1|u1|/h

4/3
1 . Where h1 and

u1 are the thickness and the velocity of the fluid layer, respectively, and n is the
Manning coefficient.
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Finally, θc is the critical Shields stress. The positive part, ( · )+, in the definition
implies that the solid transport discharge is null if θ ≤ kθc (with k = k2 when
m2 > 0 and k = √

k3 when m3 > 0). If the velocity of the fluid is zero, u1 = 0,
we have θ = 0 < kθc, and for any model that can be written under the structure (1)
we obtain that qb = 0, which means that there is no movement of the sediment
layer. This is even true when the sediment layer interface is not horizontal which is
a consequence of the fact that classical models do not take into account gravitational
effects.

In order to introduce gravitational effects in classical models, Fowler et al.
proposed in [11] (see also [16]) a modification of the Meyer-Peter and Müller
formula that consists in replacing θ by θeff, where:

θeff = |sgn(u1)θ − ϑ∂x(b + h2)| , (2)

with

ϑ = θc

tan δ
, (3)

δ being the angle of repose of the sediment particles. The sediment surface is defined
by z = b+h2, where h2 is the thickness of the sediment layer and b the topography
function or bedrock layer. Then, θeff is defined in terms of the gradient of sediment
surface.

In [10], a multi-scale analysis is performed taking into account that the velocity of
the sediment layer is smaller than the one of the fluid layer. This leads to a shallow
water type system for the fluid layer and a lubrication Reynolds equation for the
sediment one. The model includes gravitational effects and the authors deduce that it
can also be seen as a modification of classical models: θ is replaced by the proposed
values θ

(L)
eff or θ

(Q)
eff , depending on whether the friction law between the fluid and

the sediment is linear or quadratic. In the case when h2 is of order of ds/ϑ , for a
linear friction law, the definition of the effective shear stress proposed in [10] can be
written as follows:

θ
(L)
eff =

∣∣∣∣sgn(u1)θ − ϑ∂x(b + h2) − ϑ
ρ1

ρ2 − ρ1
∂x(b + h1 + h2)

∣∣∣∣ . (4)

Let us remark that if the water free surface is horizontal, the definition of θ
(L)
eff

coincides with θeff (2), proposed by Fowler et al. in [11]. Otherwise, the main
difference is that this definition for the effective shear stress takes into account not
only the gradient of the sediment surface but also the gradient of the water free
surface.

For the case of a quadratic friction law, although the definition is a combination
of the same components, it is rather different. In this case we can write the effective
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Shields parameter proposed in [10] as follows:

θ
(Q)
eff =

∣∣∣∣∣sgn(u1)
√

θ −
√

ϑρ1

ρ2 − ρ1
|∂x(

ρ1

ρ2
h1 + h2 + b)| sgn

(
∂x(

ρ1

ρ2
h1 + h2 + b)

)∣∣∣∣∣
2

.

(5)

In the case of submerged bedload sediment transport, the drag term is defined by
a quadratic friction law. Thus, we should consider an effective Shields stress given
by θ

(Q)
eff . Nevertheless, in the bibliography θeff (2) is usually considered, regardless

the fact that θeff is an approximation of θ
(L)
eff which is deduced from a linear friction

law. In any case, considering the definitions θeff (2), θ
(L)
eff (4), or θ

(Q)
eff (5), means that

the corresponding SVE system with gravitational effects is a parabolic degenerated
partial differential system with non linear diffusion. Moreover, the system cannot be
written as combination of a hyperbolic part plus a diffusion term.

Let us remark that in the literature a linearized version can be found, where
gravitational effects are included by considering a classical SVE model with an
additional viscous term, see for example [15, 22] and references therein. The
drawback of this approach is that the diffusive term should not be present in
stationary situations, for instance when the velocity is not high enough and sediment
slopes are under the one given by the repose angle. In such situations it is necessary
to include some external criteria that controls whether the diffusion term is applied
or not. This is not the case in definitions (4) or (5) where the effective Shields stress
is automatically limited by the effect of the Coulomb friction angle.

In this work we propose a two-layer shallow water model for bedload transport.
The model converges to a generalization of SVE model with gravitational effects
for low transport regimes while being valid for higher transport regimes as well.
Moreover, it has the advantage that the inclusion of gravitational effects does not
imply to approximate any non-linear parabolic degenerated term, as for the case of
SVE model with gravitational effects.

In the next section we propose the new two-layer Shallow Water model for
bedload transport. We also show the formal convergence to the SVE model and
the associated energy balance.

2 Proposed Model

We consider a domain with two immiscible layers corresponding to water (upper
layer) and sediment (lower layer). The sediment layer is in turn decomposed into a
moving layer of thickness hm and a sediment layer that does not move of thickness
hf , adjacent to the fixed bottom. These thicknesses are not fixed because there is
an exchange of sediment material between the layers. Particles are eroded from the
lower sediment layer and come into motion in the upper sediment layer. Conversely,
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particles from the upper layer are deposited into the lower sediment layer and stop
moving.

We propose a 2D shallow water model is obtained by averaging on the vertical
direction the Navier-Stokes equations and taking into account suitable boundary
conditions. In particular, at the free surface we impose kinematic boundary condi-
tions and vanishing pressure; at the bottom a Coulomb friction law is considered.
The friction between water and sediment is introduced through the term F at the
water/sediment interface and the mass transference term in the internal sediment
interface is denoted by T . The general notation for the water layer corresponds to
the subindex 1 and for the sediment layer to the subindex 2. Thus, the water of layer
has a thickness h1 and moves with horizontal velocity u1. The thickness of the total
sediment layer is denoted by h2 = hf + hm, and the moving sediment layer hm

flows with velocity um. The fixed bottom or bedrock is denoted by b. See Fig. 1 for
a sketch of the domain.

Note that the velocity of the sediment layer is defined as u2 = um in the moving
layer and u2 = 0 in the static layer. We assume an hydrostatic pressure regime.

Then we propose the following two-layer shallow water model:

∂th1 + ∇ · (h1u1) = 0 (6a)

∂t (h1u1) + ∇ · (h1u1 ⊗ u1) + gh1∇x(b + h1 + h2) = −F (6b)

∂th2 + ∇ · (hmum) = 0 (6c)

Fig. 1 Sketch of the domain for the fluid-sediment problem
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∂t (hmum) + ∇ · (hmum ⊗ um) + ghm∇x(b + rh1 + h2)

= rF + 1
2umT − (1 − r)ghmsgn(um) tan δ

(6d)

∂thf = −T (6e)

where r = ρ1/ρ2 is the ratio between the densities of the water, ρ1, and the sediment
particles, ρ2. δ is the internal Coulomb friction angle. In the next lines we give the
closures for the friction term F and the mass transference T .

Following [10] we consider two types of friction laws at the interface: linear and
quadratic. The friction term for the linear friction law is defined as

FL = CL(u1 − um) with CL = g
(1

r
− 1

) h1hm

ϑ(h1 + hm)

√
( 1
r

− 1)gds

(7)

and for the quadratic friction law,

FQ = CQ(u1 − um)|u1 − um| with CQ = 1

β

h1hm

ϑ(h1 + hm)
, (8)

ds being the mean diameter of the sediment particles. ϑ is defined by Eq. (3). This
definition of ϑ complies with the analysis of Seminara et al. [19], who concluded
that the drag coefficient is proportional to tan(δ)/θc.

Remark that the calibration coefficient β has units of length so that CQ is
non-dimensional. In [10], β = ds was assumed for the bedload in low transport
situations. In our case, given that we deal with a complete bilayer system for any
regime, this value is not always valid. In bedload framework, we can establish from
experimental observations that the region of particles moving at this level is at most
10–20 particle-diameter in height [3].

So we may assume that the thickness of the bed load layer is hm = k ds with
k ∈ [0, kmax] (kmax = 10 or 20). So that, when hm ≤ kmaxds we are in a bedload
low rate regime and it makes sense to consider the friction coefficient as in [10], that
is, of the order of ds . Conversely, when hm > kmaxds we are in an intense bedload
regime and then we must turn to a more appropriate friction coefficient. Thus, to be
consistent with our previous work, we propose to take:

β =
{

hm if hm > kmaxds

ds if hm ≤ kmaxds

Another possibility would be to define β = kmaxds when hm ≤ kmaxds . The
coefficient kmax can be then considered as a calibration constant for the friction
law.

The mass transference between the moving and the static sediment layers T is
defined in terms of the difference between the erosion rate, że, and the deposition
rate żd . There exists in the literature different forms to close the definition of the
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erosion and deposition rates, all of them depending on calibration parameters (see
for example [4]). For instance the following definitions are given in [9]:

T = że − żd with że = Ke(θe − θc)+
√

g(1/r − 1)ds

1 − ϕ
, żd = Kdhm

√
g(1/r − 1)ds

ds
.

The coefficients Ke and Kd are erosion and deposition constants, respectively, ϕ is
the porosity. For the case of nearly flat sediment bed, θe = θ is usually set. This
corresponds to the Bagnold’s relation (see [2]). Nevertheless, in order to take into
account the gradient of the sediment bed θe must be defined in terms of the effective
Shields stress (see [10]). Then we define θe in terms of the friction law between the
fluid and the sediment layers: for a linear friction law it is given by (4) and Eq. (5)
gives its value for a quadratic friction law.

2.1 Convergence to the Classical SVE System for Weak
Regimes

In this subsection we show formally the convergence of system (6) to the Saint-
Venant-Exner model presented in [10]. This model is also obtained from an
asymptotic approximation of the Navier-Stokes equations but following a different
derivation for water and sediment under the hypothesis of large morphodynamic
time scale. In particular, it has the following advantages: it preserves the mass
conservation, the velocity (and hence, the discharge) of the bedload layer is
explicitly deduced, and it has a dissipative energy balance.

The model introduced in [10] reads as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂th1 + ∇x · q1 = 0,

∂tq1 + ∇x · (
h1(u1 ⊗ u1)

) + gh1∇x(b + h2 + h1) = −ghm

r
P,

∂th2 + ∇x ·
(
hm vb

√
(1/r − 1)gds

)
= 0,

∂thf = −T .

(9)

with

P = ∇x(rh1 + h2 + b) + (1 − r)sgn(u2) tan δ. (10)
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The definition of the non-dimensional sediment velocity vb depends on the friction
law. When a linear friction law is considered, it reads:

v
(LF)
b = u1√

(1/r − 1)gds

− ϑ

1 − r
P, (11)

where

sgn(u2) = sgn

(
u1√

(1/r − 1)gds

− ϑ

1 − r
∇x(rh1 + h2 + b)

)
.

For a quadratic friction law:

v
(QF)
b = u1√

(1/r − 1)gds

−
( ϑ

1 − r

)1/2 |P|1/2sgn(P), (12)

where sgn(u2) = sgn(
) and


 = u1√
(1/r − 1)gds

−
∣∣∣∣

ϑ

1 − r
∇x(rh1 + h2 + b)

∣∣∣∣
1/2

sgn

(
ϑ

1 − r
∇x(rh1 + h2 + b)

)
.

The convergence is obtained when we assume the adequate asymptotic regime
in terms of the time scales. As it is well known, for the weak bedload transport
problem, the morphodynamic time is much larger than the hydrodynamic time,
which makes the pressure effects much more important than the convective ones.
As a consequence, the behavior of the sediment layer is just defined by the
solid mass equation (Exner equation), omitting a momentum equation. This large
morphodynamic time turns into an assumption of a smaller velocity for the lower
layer. In order to fall into the low bedload transport regime we must also assume
that the thickness of the bottom layer is smaller, because it represents the layer of
moving sediment. Thus, we suppose:

um = εuũm; hm = εhh̃m; T = εuT̃ .

with εh and εu small parameters. Now we take these values into the momentum
conservation equation for the lower layer (6d):

∂t (εhεuh̃mũm) + ∇ · (εhε
2
uh̃mũm ⊗ ũm) + gεhh̃m∇x(b + rh1 + h2)

= rF̃ + ε2u
1

2
ũmT̃ − (1 − r)gεhh̃msgn(ũm) tan δ

Then, if we neglect second order terms in (εh, εu), we get

gεhh̃m∇x(b + rh1 + h2) = rF̃ − (1 − r)gεhh̃msgn(ũm) tan δ.
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Returning to dimension variables, this equation reads:

rF = ghm∇x(b + rh1 + h2) + (1 − r)ghmsgn(um) tan δ = ghmP,

where the last equality follows from the definition of P, (10). Thus the expression
of the friction term is

rF = ghmP; (13)

which coincides with the friction term in the momentum equation of layer 1, r.h.s.
of (9).

Now, from this equation and using the expressions of F , for linear (7) and
quadratic (8) laws, we have to compute the value of um to check that it fits with (11)
and (12) respectively.

• Linear friction law:

F̃ = g
(1

r
− 1

) 1

ϑ

√
( 1
r

− 1)gds

εhh̃m

1 + εh
h̃m

h1

(u1 − εuũm)

= g
(1

r
− 1

) εhh̃m

ϑ

√
( 1
r

− 1)gds

(u1 − εuũm) + O(ε2h)

where in the last equality we have used that
1

1 + εh
h̃m

h1

= 1 − εh
h̃m

h1
+ O(ε2h).

So turning to the dimension variables and neglecting second order terms,
Eq. (13) reads:

rg
(1

r
− 1

) hm

ϑ

√
( 1
r

− 1)gds

(u1 − um) = ghmP.

From where we directly obtain that um = v
(LF)
b

√
( 1
r

− 1)gds .
• Quadratic friction law:

Note that in this case β reduces to ds and then

F̃ = εhh1h̃m

ϑds(h1 + εhh̃m)
(u1−εuũm)|u1−εuũm| = εhh̃m

ϑds
(u1−εuũm)|u1−εuũm|+O(ε2h).

Following the same reasoning as above, Eq. (13) reads:

r
hm

ϑds

(u1 − um)|u1 − um| = ghmP.
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From where we obtain that

r
1

ϑds

(u1 − um)2 = gP sgn(P) and then um = v
(QF)
b

√(1
r

− 1
)
gds .

2.2 Energy Balance

The proposed model has an exact dissipative energy balance, which is an easy
consequence of two-layer shallow water systems. We obtain the following result.

Theorem 1 System (6) admits a dissipative energy balance that reads:

∂t

(
rh1

|u1|2
2

+ hm
|um|2
2

+ 1

2
g(rh21 + h22) + g rh1h2 + gb(rh1 + h2)

)

+∇ ·
(

rh1u1
|u1|2
2

+ hmum
|um|2
2

+ g rh1u1(h1 + h2 + b) + ghmum(rh1 + h2 + b)

)

≤ −r(u1 − um)F − (1 − r)ghm|um| tan δ;

where the friction term F is given by (7) or (8).

The proof of the previous result is straightforward and for the sake of brevity we
omit it.

Notice that classical SVE model does not verify in general a dissipative energy
balance. In [10] a modification of a classical SVE models by including gravitational
effects has been proposed that allows to verify this property. Nevertheless the
proposed model in this work presents several advantages: it preserves the mass
conservation, it accounts with a direct energy balance and it has a better structure
to be solved from a numerical point of view. Moreover it can be applied for
both regimes, weak and strong bedload transport without any a priori prescription.
Numerical approximation and tests will be presented in a forthcoming paper.
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