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A B S T R A C T   

This research proposes a Random Forest RF model to replace the experimental tests required by the ISO 
9459–5:2007 for predicting the annual energy supplied and the solar fraction covered by a thermosiphon solar 
water heating system (TSWHS) for the same locations and daily load volumes that this standard. 38 TSWHS have 
been tested according to the procedures outlined in the standard ISO 9459-5 and two more have been selected 
from the Solar Keymark database to get the training and testing data set. From these, data from 36 of the TSWHS 
were used for RF model training, while data from the remaining four TSWHS were used for its testing. To assess 
the performance of the RF model, three statistical indicators were calculated: mean absolute percentage error 
(MAPE), mean absolute error (MAE) and the determination coefficient (R-square). Results show MAPE between 
2.94% and 5.86% for the annual energy supplied and the solar fraction and R-Square between 0.995 and 0.998 
for the annual energy supplied and between 0.973 and 0.976 for the solar fraction for all locations and daily load 
volume. Consequently, the RF model could be used successfully to replace the experimental tests required by the 
Standard.   

1. Introduction 

More of the renewable energy technologies are cost-effective today 
in an increasing number of markets. Furthermore, these technologies 
play a significant role in mitigating the climatic effects of the use of the 
energy. As a result, requiring the adoption of these technologies is on 
rise. For example, Directive 2010/31/EU [1] states the implementation 
of Nearly Zero-Energy Buildings (NZEBs), and has been further 
enhanced by the Directive (EU) 2018/844 [2], which facilitates the 
cost-effective transformation of existing buildings into nearly 
zero-energy buildings. Among the renewable energy technologies, solar 
thermal system is one of the most widely used in the building sector. 

Most of the solar thermal systems installed worldwide are used for 
the production of hot water in buildings. Worldwide, more than three 
quarters of all solar thermal systems installed are thermosiphon solar 
water heating systems (TSWHS), and the rest are forced circulation solar 
heating systems. In these systems, water is heated directly by solar ra-
diation and circulated naturally through the system by convection. They 
are simpler and less expensive than pumped solar heating systems, 
which use pumps to circulate water or any alternative heat transfer fluid 

through the system. Thermosiphon systems are more common in warm 
climates, such as Africa, South America, Southern Europe, and the 
Middle East and North Africa (MENA) countries [3], where the demand 
for hot water is high and solar radiation is an abundant and free 
resource. In these regions, TSWHS can be considered a reliable and 
cost-effective source of hot water without any external energy input. 

Predicting the annual energy production by the TSWHS is chal-
lenging due to the complexity of those systems, the many factors that 
influence their performance [4], including the size and orientation of the 
collector, the thermal properties of the absorber and insulation [5], the 
efficiency of the heat transfer fluid, the flow rate of the water [6], the 
ambient temperature, solar irradiance [7], and the daily load volume of 
hot water required [8]. Furthermore, these factors interact in a 
non-linear relationship [9,10], making the prediction of the system 
energy output a complex task [11]. 

To ensure that TSWHS meet the technical required specifications, 
they must be experimentally tested according to the test standards, 
before they are commercially available. By testing TSWHS according to 
these standards, manufacturers and installers can ensure that their 
products are reliable, energy-efficient, and meet the expectations of 
their customers. On the European market, TSWHS must pass the 
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European Standard Tests, EN 12976:2019 [12]. EN 12976-2:2019 
standard establishes the procedures for the estimation of the annual 
energy production (QL) and solar fraction (fsol) for four European loca-
tions (Athens, Davos, Stockholm and Wurzburg) for daily load volumes 
between 0.5 and 1.5 times the tank volume of the TSWHS, based on 
experimental tests, jointly with the “In-situ” software [13]. The Euro-
pean Standard efficiency test refers to two International Standards ISO 
9459-2:1995 [14] and ISO 9459–5:2007 [15]. Those tests required a 
qualified laboratory and can be time-consuming and expensive. 

Artificial Neural Networks (ANNs) [16] are a promising alternative 
to those experimental tests when it comes to predicting the performance 
of TSWHS to those experimental tests. ANNs are a type of machine 
learning algorithm that can learn the non-linear relationships between 
the input variables (like its constructive parameters, climatic conditions, 
and daily load volume of hot water) and the output variables (such as 
energy output and performance). Previous studies [17–19] reported 
potential advantages of ANNs in modeling these energy systems, such as 
high accuracy, generalization capabilities, and short computing time, 
over other theoretical and experimental modeling techniques. Recent 
research on surrogate models based on various machine learning tech-
niques has demonstrated their potential in addressing numerous tech-
nical issues, making them a valuable predictive tool. [20–22]. Testing 
these models further enhances their reliability and usefulness. 

Therefore, ANNs has been applied to complex non-linear engineering 
problems in different real-world applications. ANNs might represent a 
cost-effective alternative to experimental tests as they do not require 
expensive infrastructures. However, they must be trained and tested 
against experimental data to ensure their accuracy and reliability. 

Specifically, in the research field of solar energy systems, there are 
some previous studies reporting the advantages of the ANN models for 
predicting and optimizing the performance. Ammar et al., [23] reviewed 
the applications of ANN as an intelligent system-based method for pre-
dicting the performance of different solar energy devices’ performance 
like such as solar collectors, solar assisted heat pumps, solar air and 
water heaters, photovoltaic/thermal systems, solar stills, solar cookers, 
and solar dryers. Farkas [24], Kalogirou, [25] and Hamdan [26] used an 

ANN model to simulate the thermal behavior of flat plate collectors for 
its control operation. All of them found that ANN models could accu-
rately predict the performance of these devices and outperform tradi-
tional modelling techniques in terms of accuracy and computational 
efficiency. 

Kalogirou et al. [27] developed a model for solar domestic water 
heating systems using artificial neural networks. The model estimated 
the useful energy extracted from a solar water heating system and the 
temperature rise in the stored water under the stated physical parame-
ters of the system and the weather conditions. The accuracy of the 
predictions was within 7–9%. Moreover, Kalogirou et al., [28] uses an 
ANN to predict the long-term performance of TSWHS. This research 
estimates the thermal energy output of the TSWHS for a draw-off 
quantity equal to the tank volume and the thermal energy output of 
the system and the average amount of hot water per month at demand 
temperatures between 35 and 40 ◦C. In this research, the ANN input 
requires the results of the experimental tests of the Standard ISO 
9459-2:1995 and the proposed ANN is an alternative method to the 
simulation software supplied with the standard but cannot replace the 
experimental tests. 

Dikmen et al. [29] compare ANN, adaptive neuro-fuzzy inference 
system, and genetic algorithm to predict and maximize the thermal 
performance of an TSWHS with an evacuated tube solar collector. The 
inputs of the models were solar radiation, ambient temperature, mean 
storage tank temperature, and tilt angle. The results showed that ANN is 
recommended to model that type of solar collector. 

Muhammad et al. [30] present a comprehensive study to compare 
three machine learning models, Random Forest (RF), Decision Trees and 
Support Vector Regression, to predict the useful hourly energy from a 
solar thermal system. They found that amongst the algorithms studied, 
RF has the lowest mean square error. One of the advantages of the RF is 
its ability to use different types of inputs and evaluate their relevance, 
making it a versatile and flexible tool for analyzing complex data sets. In 
addition, as an ensemble learning method, RF is less likely to overfit 
than single decision trees, which can lead to more accurate predictions 
and better generalization to new data sets. 

Nomenclature 

A Collector aperture area (m2) 
AC* Effective collector loop area coefficient (m2) 
ATE Athens 
CS Heat capacity coefficient of the store (MJ/K) 
DJ Heat exchanger double jacket 
DJH Heat exchanger double jacket + Helix 
DL Mixing constant coefficient 
DAV Davos 
fsol,EXP Annual solar fraction covered by the TSWHS obtained 

experimentally in the laboratory (%) 
fsol,TRA Annual solar fraction covered by the TSWHS obtained from 

the RF Model in the training phase (%) 
fsol,TEST Annual solar fraction covered by the TSWHS obtained from 

the RF Model in the testing phase (%) 
GWo Collector thermal insulation of Glass Wool 
H Heat exchanger Helix 
HI Storage tank above the collectors 
LO Storage tank behind the collectors 
MWo Collector thermal insulation of Mineral Wool 
PFo Collector thermal insulation of Polyisocyanate 
PGWo Collector thermal insulation of Polyurethane and Glass 

Wool 
PI Tank thermal insulation material of Polyisocyanate 
PMWo Collector thermal insulation of Polyurethane and Mineral 

Wool 
PU Tank thermal insulation material of Polyurethane 
QL,TEST Supplied annual energy by the TSWHS obtained 

experimentally in the laboratory (MJ/year) 
QL,TRA Supplied annual energy by the TSWHS obtained from the 

RF model in the training phase (MJ/year) 
QL,TEST Supplied annual energy by the TSWHS obtained from the 

RF model in the testing phase (MJ/year) 
RF Random Forest model 
RWo Collector thermal insulation of Rock Wool 
SC Collector loop stratification parameter 
SEL 1.1 Collector selective absorber with Tinox treatment 
SEL 1.2 Collector selective absorber Bluetec Eta-Plus treatment 
SEL 1.3 Collector selective absorber with Mirotherm treatment 
SEL 2 Collector selective absorber with Mirosol treatment 
SEL 3 Collector selective absorber with Chromium oxide 

treatment 
SEL 4 Collector selective absorber with polyester powder coating 

treatment 
SEL 5 Collector selective absorber with PVD treatment 
STO Stockholm 
uC* Heat-loss coefficient of the collector loop parameter (W/ 

m2⋅K) 
US Total store heat loss coefficient (W/K) 
V Storage volume (l) 
WUR Wurzburg  
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The RF model, devised by Breiman [31], is a flexible machine 
learning algorithm consisting of a large number of individual decision 
trees generated by subsets of the training data. The optimal split for each 
node is identified from a set of randomly chosen candidate variables in 
the tree building procedure. Random forests are widely used in a variety 
of applications, such as solar and wind forecasting [32,33], chemo 
informatics [34], ecology [35], genomic data analysis [36] and solar 
resource [37] among others. Random Forest algorithm offers mainly 
accuracy and robustness with respect to noise and outliers in the input 
data, which makes it suitable for predicting the behavior of new 
equipment. Also, its combination of multiple trees improves its ability to 
generalize to new data reducing overfitting. These advantages outweigh 
the disadvantages of Random Forest, as the complexity of its interpre-
tation or training and prediction time due to its use of computational 
resources and memory. 

Hao Li et al. [38] proposed a machine learning-based high--
throughput screening method to show the potential application to the 
design and optimization of solar energy systems with tube solar collec-
tors where the selection of the inputs data, a throughput screening 
process and validation steps are proposed. Therefore, with an optimized 
RF model the best set of constructive characteristics could be selected to 
allow the prediction of the annual energy supplied (QL) and the solar 
fraction (fsol) covered by the solar thermal. Finally, with a proper 
experimental database to train and test the model, a predictive model 
can be acquired. 

This research proposes a RF model, as an alternative to conducting 
the experimental tests required by the ISO 9459–5:2007, to predict, 
jointly with the In-Situ software of the Standard, the annual energy 
supplied (QL) and the solar fraction (fsol) covered by the TSWHS. The 
predictions are made for four different locations and daily load volumes 
that are specified in the Standard. How the Standard requires experi-
mental test and the In-Situ software to estimate the performance of the 
TSWHS, the novelty of this paper is to replace the experimental tests 
with a RF model using the constructive parameters of the thermal solar 
system as input variables and using the In-Situ software. 

In addition, this RF model would facilitate the work of design engi-
neers to customize the TSWHS design to meet the specific hot water 
demand according to each climatic condition and the daily load de-
mand. This approach can potentially save time and resources compared 
to traditional experimental testing methods. Fig. 1 shows the procedure 

to estimate QL and fsol with the RF model and the In-Situ software. 
The research is presented as follows: Section 2 describes the RF 

model and the characteristics of the thermosyphon solar systems. Sec-
tion 3 shows the experimental results and the methodology followed for 
training and testing the full procedure described in Fig. 2 (RF model and 
In-Situ software). Conclusions are then presented in Section 4. 

2. Material and methods 

2.1. RF model description 

Random Forest is a flexible machine learning algorithm that consists 
of a large number of individual decision trees generated by subsets of the 
training data to make predictions. Each tree in the forest is generated 
using a subset of the training data, and the optimal split for each node is 
chosen from a randomly chosen subset of candidate variables. This helps 
to reduce the overfitting and improve the generalization performance of 
the model. In this particular case, the RF model was developed using the 
R programming language (version 4.0.2) which supports regression, and 
it is implemented as in the original RF algorithm of Breiman [31], but in 
addition includes extra implementations of extremely randomized trees 
and quantile regression forests, being also faster than the original al-
gorithm, and the “Ranger” Package (random forest generator, version 
0.12.1) [39]. The package was used to build the forests with the esti-
mated response variances as a splitting rule, and a total of 500 trees were 
generated in each forest. The tree type used is the estimated response 
variances. RF overfitting may be caused by different reasons. As 
mentioned above, if we fit the training data too closely (trees are too 
deep), we lose the generalization. Consequently, to avoid overfitting we 
have tuned the hyper-parameters of the algorithm, as number of trees, 
number of features to be considered for each tree, the split rule (i.e., the 
rule by which each split is considered in a tree), or the maximum depth 
of the tree, among others. 

To obtain the training data 36 TSWHS were experimentally tested in 
our experimental facilities [15], according to the Standard ISO 
9459-5:2007. Considering the TSHWS characteristic parameters, the 
climatic conditions in four different locations (Athens, Davos, Stock-
holm and Wurzburg), and the daily load volume as inputs in the In-Situ 
software, the annual energy supplied (QL,EXP) and the solar fraction (fsol, 

EXP) as final results have been calculated. 

Fig. 1. Procedure to estimate QL and fsol with the RF model and the In-Situ software.  

Fig. 2. Procedure to estimate QL and fsol using experimental tests and the In-Situ software.  
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In order to fit the RF model, the first step was to define the features 
from the list of constructive parameters. For the sake of clarity, features 
are also known as input variables that are used to predict the outcome or 
the dependent variable (QL and fsol). Table 1 shows the constructive 
parameters selected using as input to the RF model. Once the indepen-
dent variables were defined, the next step was to collect and prepare the 
data for training and testing the RF model jointly with the In-Situ soft-
ware. This involved collecting data from the constructive parameters 
(Table 1) for a set of samples. 

With the propose of improving the selection of the features of the RF 
model, the construction parameters that have a significant influence on 
each of the characteristic parameters have been previously selected. 
Table 2 shows the features selected from Table 1 for each TSWHS 
characteristic parameter defined in the Standard ISO 9459-5:2007: A∗

C, 
u∗

C, US, CS, DL and SC. These characteristics parameters are assigned as 
labels of the RF model, and they are one of the inputs in the In-Situ 
software. 

Table 1 shows the pool of available parameters for each TSWHS. 
Table 2 shows the features selected from Table 1 used as input in the RF 
model, distinguishing them according to each of the characteristic 
parameter to be determined. The selection criterion has been to include 
all the available constructive parameters that could have some kind of 
influence on the characteristic parameter, according to the definition of 
the parameter itself, and without previously discarding any of them. 

To train the RF model jointly with the In-Situ software features from 
36 different TSWHS systems are used as input. Each datasheet of con-
struction parameters are used to predict the annual energy (QL,TRA) and 
the solar fraction (fsol,TRA) at four different locations (Athens, Davos, 
Stockholm, and Wurzburg) with adverse climatic conditions. 

Additionally, for each previous state the solar thermal system modified 
the daily load volume in the range of 0.5–1.5 times its nominal volume 
(12800 data). Finally, the predicted values (QL,TRA and fsol,TRA) will be 
compared to results obtained experimentally in the laboratory (QL,EXP 
and fsol,EXP) to evaluate their correlation. 

Secondly, a new phase was carried out to test the RF model with the 
In-Situ software. In this second stage, 4 commercial TSWHS were used 
(constructive parameters detailed in Table 4). Two of them (ID 37 and 
38) have been experimentally tested according to the Standard ISO 
9459-5:2007 in our testing laboratory and the required information for 
the other ones (ID 39 and 40) was obtained from the manufacturer 
datasheet in the Solar Keymark database [40], with license number 
011-7S2865A, model GreenoneTec TSC 160 [41] and 011-7S2817A, 
model Zelios Thermo CF-GR 150/1 TR/TT/TT DT [42] respectively. In 
order to test the process, the prediction of the annual energy (QL,TEST) 
supplied by the solar system and the solar fraction (fsol,TEST) covered by 
the solar system is compared to QL,EXP and fsol,EXP values respectively, to 
analyze their correlation. 

2.2. TSWHS characteristics 

As explained, 36 TSWHS from different manufacturers have been 
tested according to the Standard ISO 9459-5:2007 in the accredited solar 
system testing laboratory of the School of Engineering of the University 
of Seville (Spain), all of them closed, with flat plate collectors, horizontal 
tanks, and without auxiliary heating. Details of each TSWHS used during 
training phase can be found in Table 3; TSWHS specifications used 
during RF testing phase can be found in Table 4. This laboratory is 
accredited according to the European Standard EN 12976:2019 and the 
Standard ISO 9459-5:2007. The data acquisition and test equipment 
used in our test facility (pyranometer, ambient temperature sensor, 
anemometer, flow-meter, inlet and outlet temperature sensors) are 
calibrated in an accredited laboratory, according to the accuracy and 
precision requirements shown in Standard ISO 9459-5:2007. All tests 
are performed with the TSWHS installed according to the manufac-
turer’s installation instructions. The sequence is shown in Fig. 2. 

The experimental testing procedure for TSWHS described in Stan-
dard ISO 9459-5:2007 consists of two sequences (S-Sol and S-Store), in 
which certain parameters such as solar irradiation, inlet and outlet water 
temperature, ambient temperature, and flow rate are samples. Based on 
these parameters, the annual energy supplied by the solar system (QL, 

EXP) is calculated using characteristic parameters and the In-situ soft-
ware. The calculations take into consideration the referenced locations 
and the daily load volumes. The draw-off flow rate is fixed in the 
Standard at 10 l/min. A more detailed description of these tests and the 
constructive parameters can be found in the reference [43]. Training 
TSWHS samples correspond to 90% of the data (36 systems), and 
remaining 10% (4 systems) of the data samples were used for testing the 
total process. The TSWHS used to collect experimental data are the full 
portfolio of equipments available in our experimental facilities, which 
corresponds to a wide range of commercial equipments available in the 
current market. 

So, considering 40 equipments with 10 features each of them and the 
performance analyzed for 4 locations using 8 daily load volume, it 
means we are managing 12800 data. 

3. Results and Discussion 

This section details the prediction results for the annual energy 
supplied and the solar fraction covered by the solar system obtained 
using the RF model jointly with the In-Situ software. First, Fig. 3 shows 
the dependence of each constructive parameter on the annual energy 
(QL,EXP) of the TSWHS, respectively, estimated according the Fig. 1 from 
measurements in the laboratory. It is observed that there is no correla-
tion between any input parameter and the output. This means that there 
is no linear relationship between the variables analyzed, so any change 

Table 1 
Features selected from constructive parameters.  

Equipment Features 

Collector Collector absorber type 
Material of the collector thermal insulation 
Thickness of the collector thermal insulation 
Aperture Area 

Storage Tank Volume of the tank thermal insulation 
Material of the tank thermal insulation 
Thickness of the tank thermal insulation 

Heat Exchanger Type 
Exchange surface 

Collector Loop Tube Length of the thermal insulation 
Thickness of the thermal insulation 

Others Profile of the tank respect to the collector  

Table 2 
Feature selected for each characteristic parameter.  

Features Characteristic Parameter 

Collector absorber type 
Collector thermal insulation material 
Collector thermal insulation thickness 
Profile type 
Aperture area 
Heat exchanger surface 
Collector loop tube length 
Collector insulation thickness. 

A∗
C (m2)

u∗
C (W ⋅m− 2 ⋅K− 1)

Tank volume 
Tank thermal insulation material 
Tank thermal insulation thickness 

US (WK− 1)

CS (MJ ⋅K− 1)

Collector absorber type 
Profile type 
Heat exchanger type 
Aperture area 
Tank volume 
Volume/Area ratio 
Heat exchanger surface. 

DL ( − )

SC ( − )
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in the value of one parameter does not systematically increase or 
decrease the output parameter. They do not exhibit any clear pattern, 
and the learnt simple model may not be able to predict accurately. As 
there is a relationship between QL and fsol., defined as fsol = QL/Qd,

where Qd is the annual heat demand, there is also no clear pattern be-
tween the constructive parameters and fsol. 

Fig. 3 show that there are no trivial correlations between the 
constructive parameters of the TSWHS with QL,EXP. The Pearson corre-
lation coefficient is calculated from the experimental annual energy 
supplied and the solar fraction, and each constructive parameter is 
defined as input in the RF model. This coefficient is a measure of the 
linear relationship between two variables, and if the correlation coeffi-
cient is close to zero, it suggests that there is non-linear relationship 
between the variables. To ensure that there is a non-linear relationship 
between QL,EXP or fsol,EXP, and the constructive parameters, the 
Spearman correlation coefficient and the Kendall rank correlation co-
efficient have been calculated, as these coefficients are defined to 
quantify the strength of the monotonic relationship between variables 
which do not necessarily follow a straight line (details of the values 

obtained are presented in Tables SI1 to SI3 in the Supporting Informa-
tion Section). As Pearson coefficient, Spearman and Kendall coefficients 
have a range from − 1 to +1, where +/-1 indicates a perfect correlation, 
and values close to 0 indicate no correlation. 

It is noted that the constructive parameters have a different impor-
tance score for each of the input features. All constructive parameters 
have a similar importance in all four locations for each constructive 
parameter, except for Athens, where the influence of the material col-
lector thermal insulation and the collector tube length in the annual 
energy production do not follow the same trend as in the other locations. 
As expected, the collector area and the tank volume are the most sig-
nificant constructive parameters on the annual energy production and 
solar fraction, followed by the interchange surface of the heat 
exchanger. The thickness of the collector tube and the thermal insulation 
of the material collector are positively related to both QL,EXP and fsol,EXP. 
However, the length and thickness of the collector tube and collector 
thermal insulation are negatively related to both QL,EXP and fsol,EXP. 

It has been demonstrated that the input and output variables do not 
follow one strict linear relationship. In this case, Radom Forest is a 

Table 3 
Constructive parameters of the tested TSWHS for the process training.  

TSWHS 
ID 

Absorber type Collector thermal insulation Profile A (m2) V(l) Tank thermal insulation Heat exchanger Collector loop tube 

material thickness (mm) material thickness (mm) type surface (m2) length (m) thickness (mm) 

1 SEL 3 MWo 40 High 4.14 300 PU 50 DJ 1.8 1.6 25 
2 SEL 1.3 GWo 40 High 1.91 200 PU 50 DJ 0.97 3 9 
3 SEL 1.3 GWo 40 High 3.82 300 PU 50 DJ 1.78 3 9 
4 SEL 1.3 GWo 40 High 2.4 200 PU 50 DJ 0.97 3 9 
5 SEL 1.3 GWo 40 High 1.9 149 PU 50 DJ 0.8 2.8 9 
6 SEL 1.3 PMWo 38 High 2.58 209 PU 38 DJ 1.2 3.1 25 
7 SEL 1.3 PMWo 38 Low 2.58 209 PU 38 DJ 1.2 3.5 25 
8 SEL 1.2 GWo 20 High 3.54 301 PU 40 DJ 1.57 3.5 20 
9 SEL 1.1 MWo 40 High 1.92 154 PU 43 DJ 1.16 3.05 20 
10 SEL 4 RWo 55 High 1.95 192 PU 40 DJ 1.2 2.4 0 
11 SEL 1.1 RWo 40 High 3.24 318 PU 50 DJ 1.8 3.75 35 
12 SEL 2 PFo 20 High 2.08 158 PU 55 DJ 1 3.25 30 
13 SEL 1.3 RWo 50 High 1.94 155 PU 50 DJ 0.73 1.2 9 
14 SEL 1.3 RWo 50 High 3.88 314 PU 50 DJ 2.03 1.6 9 
15 SEL 1.2 GWo 40 High 1.88 157 PI. 25 DJ 0.81 3.1 15 
16 SEL 1.2 GWo 40 Low 3.76 317 PI. 25 DJ 1.78 3.1 15 
17 SEL 1.3 GWo 60 Low 1.99 145 PU 50 DJH 0.48 2.1 20 
18 SEL 1.3 GWo 25 Low 2.01 157 PU 50 DJ 0.78 2.6 9 
19 SEL 1.3 RWo 40 High 2.4 210 PI 30 DJ 0.97 3.25 9 
20 SEL 1.3 GWo 60 Low 3.98 282 PU 40 DJ 1.51 2.7 20 
21 SEL 1.3 RWo 30 High 4.2 241 PU 50 DJ 1.32 1.1 9 
22 SEL 1.3 MWo 30 High 4.46 282 PU 50 DJ 1.51 3 20 
23 SEL 1.3 RWo 40 High 4.8 315 PI 30 DJ 1.78 3.9 9 
24 SEL 1.1 GWo 50 High 1.94 155 PU 50 DJ 1.6 2.75 19 
25 SEL 1.2 GWo 40 Low 3.76 300 PU 38 DJ 1.88 3 15 
26 SEL 1.3 RWo 40 High 1.92 156 PU 40 DJ 0.74 2.9 9 
27 SEL 1.3 MWo 35 High 4.72 314 PU 38 DJ 2 1.8 13 
28 SEL 1.2 GWo 40 High 1.88 152 PU 25 DJ 0.81 3.5 13 
29 SEL 1.2 MWo 40 High 2.65 170 PU 60 DJ 1.93 3.3 20 
30 SEL 1.3 GWo 20 High 3.84 317 PU 50 DJ 1.66 3.35 9 
31 SEL 1.2 MWo 30 High 4.02 282 PU 38 DJ 1.49 3 19 
32 SEL 1.3 MWo 25 High 2.01 159 PU 50 DJ 0.87 2.5 14 
33 SEL 1.1 GWo 50 High 2.01 211 PU 50 DJ 1.28 2.9 15 
34 SEL 1.1 GWo 20 Low 2.44 164 PU 50 DJ 0.91 2.5 15 
35 SEL 5 PGWo 40 Low 2.38 170 PU 50 H 2.42 2.4 13 
36 SEL 1.1 RWo 15 Low 4.9 299 PU 50 DJ 1.78 2.8 15  

Table 4 
Constructive parameters of the TSWHS used for the process training.  

TSWHS 
ID 

Absorber type Collector thermal insulation Profile A (m2) V(l) Tank thermal insulation Heat exchanger Collector loop tube 

material thickness (mm) material thickness (mm) type surface (m2) length (m) thickness (mm) 

37 SEL 1.1 GWo 20 High 2.44 164 PU 50 DJ 0.91 2.8 15 
38 SEL 1.3 MWo 20 High 3.84 294 PU 65 DJ 1.67 3.34 15 
39 SEL 1.3 MWo 30 High 1.92 145 PU 50 DJ 1.3 3 15 
40 SEL 5 MWo 25 High 2,01 14 PU 50 DJ 0.82 3 15  
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recommended option to predict the thermal response of the TSWHS 
system, because it can capture complex interactions between the 
requirement of any assumption about the functional form of the rela-
tionship, in contrast to linear regression models. The first stage to 
develop the Random Forest consists in the training. 

Fig. 4 show the correlation between the annual energy (QL,EXP) 
supplied by the solar system and the solar fraction (fsol,EXP) covered by 
the solar system, experimentally obtained in the laboratory, and the 
values of QL,TRA and fsol,TRA from the prediction of the trained RF model 
for the four locations defined in the Standard, Athens, Davos, Stockholm 

and Wurzburg for different daily volume, jointly with In-Situ software in 
both cases, as shown in Figures 1 and 2. 

Those results show a good correlation between the experimental 
values and the prediction values of QL,EXP versus QL,TRA and fsol,EXP 
versus fsol,TRA for all climatic conditions and daily load volume. So, ac-
cording to these figures, the RF model with the In-Situ software predict 
well the annual energy and the solar fraction for all locations. To assess 
the performance of the RF model on training phase, three common Key 
Performance Indicators (KPI) are calculated: mean absolute percentage 
deviation (MAPE), mean absolute error (MAE) and the determination 

Fig. 3. Correlation between the constructive parameters of the TSWHS to QL,EXP for four locations, obtained experimentally in the laboratory: a) absorber type; b) 
aperture area; c) collector loop length; d) collector thermal insulation thickness; e) collector loop insulation thickness; f) tank volume; g) heat exchange surface; h) 
collector thermal insulation; i) tank thermal insulation thickness. 

Fig. 4. (a) Correlation between the annual energy supplied (QL,EXP) experimentally in the laboratory and the predicted values in the training phase (QL,TRA) of the 
Random Forest model at four locations: Athens, Davos, Stockholm, and Wurzburg. (b) Correlation between experimental solar fraction covered by the solar system 
(fsol,EXP) and predicted values in the training (fsol,TRA) phase of the Random Forest model, for the same locations as in (a). 
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coefficient (R2):  

a) Mean Absolute Percentage Error (MAPE) represents a measure of 
prediction accuracy of a forecasting method in statistics, expressed 
as: 

MAPE =
100%

N

∑N

i=1

⃒
⃒
⃒
⃒
yi − ŷi

yi

⃒
⃒
⃒
⃒ (Eq 1)  

where yi is the actual value, ŷi is the forecast value, and N is the total 
number of measurements. 

b) Mean Absolute Error (MAE) is another measure of the average dis-
tance between the predicted and the experimental values. It is a good 
indicator for models where outliers are expected. 

MAE =
1
N

∑N

i=1
|yi − ŷi| (Eq 1)   

c) R-square (R2) represents the proportion of the variance in the inde-
pendent variable that is explained by the independent variables in 
the model. An R2 score of 1 indicates a perfect fit between predicted 
and experimental results, while a score of 0 indicates no relationship 
between the independent and dependent variable. 

R2 =

∑N

i=1
(yi − ŷi)

2

∑N

i=1
(yi − y)2

(Eq 3) 

Table 3 summarizes these KPIs calculated for all climatic conditions 
and different daily load volume within the Standard range. A high 
correlation is observed between experimental and predicted datasets 
during the training phase. R-square of QL,TRA vs QL,EXP varies from 0.968 
to 0.987 and R-square of fsol,TRA vs fsol,EXP varies from 0.899 to 0.905 
(close to 1 for both parameters). This result is aligned with Fig. 5. It is 

likely that the RF model prediction fit well with the experimental data 
obtained in the laboratory. Data summarized in Table 5 also point out 
that MAPE and MAE parameters are different for each location. This 
result might suggest that the training RF model may be more accurate 
for some locations than others; for example, Athens (high solar irradi-
ance and high ambient temperature over the year) shows the best 
operational conditions to run this model meanwhile Davos (high solar 
irradiance but low ambient temperature) is the worst scenario. 

As shown in Table 5, MAPE values are the same for QL and fsol as 
expected. It is consistent due the definition of MAPE (Eq. 13) and the 
solar fraction. fsol, which relates QL and Qd, and Qd has the same value 
for the training and experimental testing procedure. 

Once the training phase was completed and the RF model has been 
trained, a new batch of samples, that is separate from the data used for 
the training, was used to make predictions and test the proposed model. 
Two requirements were sought for the new data used: first, they should 
have the same characteristics variable as the training dataset, while 
being entirely separate from it; and second, the testing dataset must be 
representative of the data that the model is expected to solve in the real 
world. It is important to point out that the dataset used for this second 
phase (testing) is only used for evaluation purposes, but any hyper-
parameter of the RF model, which defines the number of trees used in 
the model, has been tuned to avoid overfitting the model to the testing 
data. 4 commercially available TSWHS in the market were selected for 
this second phase (constructive parameters described in Tables 3 and 4). 

The annual energy supplied (QL) and the solar fraction (fsol) testing 
data are plotted in Fig. 5, respectively. The correlation observed on these 
data collection fits well and, they have the same tendency of the pre-
vious collection data used during the training phase of the RF model. 
Note the new data overlapped with previous results obtained during the 
training phase. As it was previously explained, a good fit of the testing 
data is not a necessary and sufficient condition to conclude that the RF 
model will perform well on any new data in the future. To ensure the 
model reliability of the model, additional KPI (MAPE and MAE) to R- 
square were evaluated, following the same analysis procedure than 
during the training phase. 

By comparing these KPIs for both the testing and training results, we 
can get a good idea of how well the RF model is performing on both the 
training and testing data. It is observed high correlation between 
experimental and simulated datasets. R-square of QL varies from 0.968 
to 0.987 and R-square of fsol varies from 0.977 to 0.981 (close to 1 for 
both parameters). It is likely that a prediction model based on this 
correlation fits well. However, it is important to assess the quality of the 
fit and the performance of the trained model on new and unseen data. To 
characterize the quality of the training model R-square parameter is not 
sufficient as correlation does not imply necessary causation. In order to 
achieve a better capability of the training model, a cross sectional 
analysis is performed for each location tested, using MAPE and MAE 

Fig. 5. (a) Annual energy supplied (QL), and (b) the solar fraction (fsol) covered by the solar system predicted with RF model and experimentally in the laboratory 
obtained during the testing phase for four different locations: Athens, Davos, Stockholm, and Wurzburg. 

Table 5 
Statistical Key Parameter Indicators obtained during the training of the RF 
model.   

QL fsol 

Location MAPE 
(%) 

MAE (MJ/ 
year) 

R2 MAPE 
(%) 

MAE 
(%) 

R2 

Athens 3.41 159.6 0.987 3.41 2.4 0.899 
Davos 5.72 400.3 0.968 5.72 3.4 0.905 
Stockholm 5.54 263.7 0.974 5.54 2.4 0.903 
Wurzburg 5.00 250.4 0.970 5.00 2.3 0.904  
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metrics. 
MAPE and MAE results are presented in Table 6 for RF model testing 

phase. Both KPIs are lower than those obtained with the previous dataset 
in the training phase (Table 5), from which can be interpreted that 
overfitting to the training sets has been avoided. Overfitting occurs 
when the RF model learns the noise and idiosyncrasies of the training 
data rather than the underlying patters that generalize the new data. As 
conclusion, the developed RF model is able to memorize the training 
dataset and, more importantly, it is able to generalize to new data. 

Once the RF model has been tested (i.e. it has been shown to be able 
to memorize the training set, and to predict new data), the simulated 
and experimental datasheets are compared to investigate if the experi-
mental test might be replaced by the simulation. For this purpose, a 
paired t-test was carried out to determine the significance of differences 
in the mean and deviation QL,EXP and QL,TEST for each location and daily 
load volume tested. This test measures one parameter, such as QL, that 
undergoes four different locations and eight daily loads volume (0.5–1.5 
times the nominal volume of TSWHS). For the t-test, there are two 
possible results depending on the p-value: if the p-value is less than the 
reference probability (0.05), the result is statistically significant and 
there is no null hypothesis. However, if the p-value is greater than the 
reference probability, the result is not significant. In this study, the t-test 
has been performed to analyze the mean and standard deviation. The 
test statistic for the paired-difference t-test is calculated as: 

t=
X − μ0

σ/
̅̅̅
n

√ Eq 4  

where X is the average difference, σ is the standard deviation of the 
difference, and n is the sample size. In paired tests, the null hypothesis is 
assumed when μ0 = 0, meaning that there is no difference between 
groups [41]. The significant probabilities obtained from the t-test are 
shown in Tables 7 and 8, including Standard Error of Mean (SEM) and 
Standard Deviation (SD). 

The p-value for all cases exceeded 0.05. As a result of significant 

tests, there was no significant difference in QL and fsol predicted from the 
RF model and equivalent data experimentally obtained in the laboratory 
following the ISO 9549-5:2007 Standard. Therefore, we concluded that 
the annual energy supplied (QL,EXP) and the solar fraction (fsol,EXP) can 
be evaluated directly from the RF model without the need of experi-
mental tests, which require complex facilities and are highly expensive. 

4. Conclusions 

The paper details the feasibility of using a Random Forest model to 
predict the annual energy supplied and solar fraction covered by a 
TSWHS in comparison with the resulting values using the experimental 
procedure described in ISO 9549-5:2007. Different statistical measures 
were used to assess the use of RF models with the In-Situ software. Re-
sults show MAPE between 2.94% and 5.86% for the annual energy 
supplied and the solar fraction, MAE between 157.6 and 325.9 MJ/year 
for the annual energy supplied and between 2.1% and 3.4% for the solar 
fraction and R-Square between 0.995 and 0.998 for the annual energy 
supplied and between 0.973 and 0.976 for the solar fraction for all lo-
cations and daily load volume. Consequently, the RF model could be 
used successfully to replace the experimental tests required by the 
Standard, avoiding cost, experimental resources and time required by 
the experiments. All these advantages have a positive impact in the 
commercialization of this renewable energy technology. 

In addition, the use of the RF model would facilitate the work of 
TSWHS designers to predict the relative influence of each of the 
constructive parameters on the energy performance of the solar system. 

The performance of RF model with the In-Situ software will be 
enhanced in the future with more training samples. Finally, RF models 
will need to be developed for other types of factory made solar thermal 
systems, such as forced-circulation systems and integrated collector 
storage systems, or with other types of collectors, such as evacuated tube 
solar collector or unglazed solar collector. 
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Table 6 
Statistical Key Parameter Indicators obtained during the testing of the RF model.   

QL fsol 

Location MAPE 
(%) 

MAE (MJ/ 
year) 

R2 MAPE 
(%) 

MAE 
(%) 

R2 

Athens 2.94 157.6 0.998 2.94 2.2 0.975 
Davos 5.86 325.9 0.995 5.86 3.4 0.974 
Stockholm 4.96 192.9 0.995 4.96 2.1 0.976 
Wurzburg 4.51 182.1 0.995 4.51 2.1 0.973  

Table 7 
Results of a statistical t-test (QL).  

Location Mean SD SEM t Statistic Prob > | t | 

QL,EXP (MJ/year) QL,TEST (MJ/year) QL,EXP (MJ/year) QL,TEST (MJ/year) QL,EXP (MJ/year) QL,TEST (MJ/year) QL,EXP QL,TEST QL,EXP QL,TEST 

ATE 5501 5343 2074 2036 476 467 0.2363 0.2363 0.81452 0.81452 
DAV 5999 5674 2012 2016 461 463 0.4888 0.4888 0.62096 0.62096 
STO 4084 3892 1419 1399 326 321 0.4221 0.4221 0.67547 0.67547 
WUR 4257 4075 1491 1476 342 339 0.3781 0.3781 0.70755 0.70755  

Table 8 
Results of a statistical t-test (fsol).  

Location Mean SD SEM t Statistic Prob > | t | 

fsol,EXP (%) fsol,TEST (%) fsol,EXP (%) fsol,TEST (%) fsol,EXP (%) fsol,TEST (%) fsol,EXP fsol,TEST fsol,EXP fsol,TEST 

ATE 77.281 75.053 7.752 8.085 1.17 1.85 0.8672 0.8672 0.39157 0.39157 
DAV 59.142 55.738 10.001 9.994 2.29 2.30 1.0489 1.0489 0.30121 0.30121 
STO 43.435 41.316 6.726 6.747 1.54 1.55 0.9694 0.9694 0.33879 0.33879 
WUR 47.057 44.971 6.650 6.753 1.52 1.54 0.9589 0.9589 0.34398 0.34398  
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