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Theory of the jets ejected after the inertial collapse of cavities
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The dynamics of the axisymmetric jets originated from the bursting of bubbles in a
liquid of density ρ, viscosity μ, and interfacial tension coefficient σ can be rationalized
as a two-stage process in which, initially, the pressure jump ∼σ/Rb accelerates the liquid
towards the axis of symmetry, inducing a far-field flow rate per unit length Q∞ ∝ VcRb,
with Rb and Vc = √

σ/(ρRb) indicating the radius of the bubble and the capillary velocity,
respectively. The second stage, during which a fast jet of radius Rjet (T ) � Rb and velocity
Vjet (T ) � Vc is ejected, is driven by the far-field radial velocity field established initially,
which forces the collapse of the cavity walls while keeping Q∞ practically constant
in time because liquid inertia and mass conservation prevent appreciable changes of
this quantity during the very short timescale characterizing the ejection of the jet. Our
theoretical predictions for Rjet (T ) and Vjet (T ) reproduce fairly well the time evolution
of the jet width and of the jet velocity for over three decades in time, obtaining good
agreement with numerical simulations from the instant of jet inception until Rjet ∼ Rb. The
analytical expressions for the jet width and for the jet velocity provided here constitute
the initial conditions for the explicit solution of the ballistic equations deduced in Gekle
and Gordillo [J. Fluid Mech. 663, 293 (2010)], which, hence, can be straightforwardly
used in order to quantify the size and velocity of the first drop ejected and the fluxes of
mass, momentum, and energy transferred from the ocean into the atmosphere. In addition,
motivated by the results obtained for the particular case of bubble bursting jets, we also
present here a unified theoretical framework aimed at quantifying the dynamics of the
type of generic jets produced by the collapse of axisymmetric gas cavities of arbitrary
shape when their implosion is forced by the radial velocity induced by a far-field boundary
condition expressing that the dimensionless liquid flow rate per unit length directed towards
the axis of symmetry, q∞, remains constant in time. Making use of theory and of full
numerical simulations, we first analyze the case of the collapse of a conical bubble with
a half-opening angle β finding that, when the value of q∞ is fixed to a constant, this
type of axisymmetric jets converge towards a purely inertial β-dependent self-similar
solution of the inviscid Navier-Stokes equations, described here for the first time, which
is characterized by the fact that the jet width and velocity are respectively given, in the
limit β � 1, by rjet ≈ 2.25 tan β

√
q∞τ and vjet ≈ 3q∞/(2 tan β

√
q∞τ ), with τ indicating

the dimensionless time after the jet is ejected. For the case of parabolic cavities with a
dimensionless radius of curvature at the plane of symmetry rc, our theory predicts that
rjet ∝ (2rc )−1/2(q∞τ )3/4 and vjet ∝ q∞(2rc )1/2(q∞τ )−3/4, a result which is also in good
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agreement with full numerical simulations. The present results might also find applications
in the description of the very fast jets, with velocities reaching up to 1000 m s−1, produced
after a bubble cavitates very close to a wall and in the quantification of the so-called
bazooka effect.

DOI: 10.1103/PhysRevFluids.8.073606

I. INTRODUCTION

It is known that the type of high speed liquid jets produced after the implosion of a bubble, widely
used in applications related with the cleaning of surfaces [1], is partly responsible for the structural
damage in cavitating flows [2] and plays a key role in the dispersion of contaminants [3,4]. These
high speed jets, which share similarities with those formed by the so-called bazooka effect [5]
also possess applications in medicine, where they could be used in needle-free drug injection
systems [6,7] and are commonly observed after the impact of either a drop [8–13] or a solid [14,15]
against a gas-liquid interface and after the collapse of bubbles [16–19]. To our knowledge, and in
spite of the number of recent contributions on the subject, there does not exist a commonly accepted
framework capable of predicting the dynamics of the myriad of types of fast and thin inertial liquid
jets produced after the implosion of a cavity. Hence, it will be our main purpose here to present a
theory to describe the dynamics of the jets ejected after the collapse of slender axisymmetric cavities
whose predictions will be compared with the results of full numerical simulations carried out using
GERRIS [20,21].

The velocities of the jets produced after the implosion of a cavity depend very much on the initial
geometry of the interface from which they are ejected, which justifies classifying the jets in, at least,
two different categories: (i) the jets produced at the axis of an initially spherical surface and (ii)
the jets produced at the base of a truncated conical surface. For instance, the type of jets reported
Refs. [7,22], which can be analyzed as a function of the initial near-axis nonuniform radial velocity
field at the interface [23] and are employed, for instance, in ink-jet printing applications [24,25],
belong to the type of jets emerging from the bottom of a spherical cap. The jets produced by
the cavitation of bubbles near boundaries [26,27] also belong to the same type of jets when the
so-called standoff parameter, which expresses the ratio between the initial distance of the bubble
center to the boundary and the maximum bubble radius, is of order unity or larger. Indeed, when
the value of the standoff parameter is �O(0.1), Ref. [2] presented numerical results retaining
compressibility effects in the simulations revealing that the jets produced by cavitation bubbles
near a rigid boundary do not emerge from an initially smooth, locally spherical cap, but from the
base of a truncated conical interface. This numerical result was later confirmed experimentally in
Ref. [28], in which velocities of the order of ∼100 m/s for the case of jets produced by cavitation
bubbles emanating from a spherical cap were measured, i.e., for values of the standoff parameter
of order unity, and much larger velocities, of the order of ∼1000 m/s, for the case of jets emerging
from the base of a truncated conical bubble, a result in agreement with the original finding reported
in Ref. [2]. Moreover, Ref. [28] realized that the jets emanating from the base of the locally
conical bubble are the result of a boundary-parallel cylindrical flow converging towards the axis
of symmetry and, motivated by this fact, Reuter and Ohl [28] also reported the results of simplified
numerical simulations neglecting compressibility effects, obtaining results in agreement with their
own experimental measurements.

It will be the main purpose in this contribution to describe both numerically and theoretically the
“conical jets,” namely the jets emerging from the base of a truncated conical interface. The conical
jets, which are comparatively faster than those emerging from a spherical cap, are found not only in
the collapse of cavitation bubbles for small values of the standoff parameter but also in other types
of natural flows, like in the bursting of bubbles at an interface [12,29–31] or after the impact of a
drop on a liquid pool [9–12]. Indeed, in these two latter cases, before the jet is ejected, capillary
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waves traveling along the interface towards the bottom of the cavity deform the initially spherical
bubble into a truncated cone [32]. Moreover, our analysis on the collapse of conical cavities is
also extended here to the case of cavities with a generic shape, paying special attention to parabolic
cavities, because this is the type of void geometry found when a solid impacts a free surface [14,15].

The paper is structured as follows: Section II is devoted to present the results of numerical
simulations of bubble bursting jets, which motivates the theory in Sec. III, where we analyze the
ejection of jets from slender axisymmetric cavities whose collapse is forced by a constant value
of the flow rate per unit length. In this section, we also compare the predictions of our theory
with the results of the numerical simulations presented in Sec. II and with the numerical results
in Appendix A, where we also deduce a new self-similar axisymmetric solution of the inviscid
Navier-Stokes equations that, up to our knowledge, had not been reported before. Conclusions are
presented in Sec. IV.

II. BUBBLE BURSTING JETS: NUMERICAL RESULTS

Due to their widespread presence in nature and in technological applications, an increasing
number of numerical [14,29,30,33], experimental [10,11,13,19,34], and theoretical [35,36] studies
have been devoted to characterize the width and speed of the jets ejected after the collapse of a
cavity or a bubble, a process which is ubiquitously present in our daily life experience. A type
of jets exhaustively studied in recent times because of their crucial role played in the generation
of nanometric sea spray aerosol are the jets produced after the bursting of bubbles see, e.g.,
Refs. [4,31,37–45], which break into a number of droplets that inject mass, heat, and momentum
into the surrounding atmosphere, hence, influencing climate [33,46,47]. The only result in the
literature suggesting a prediction for the time evolution of the width Rjet (T ) and velocity Vjet (T )
of bubble bursting jets; see Fig. 1, which is the necessary intermediate step to properly quantify
the different fluxes transported by these jets, is the study of Lai, Eggers, and Deike [36], where the
authors suggested that the inertiocapillary self-similar solution first reported in Ref. [35] governs
the dynamics of bubble bursting jets. Therefore, the solution proposed in Ref. [36] is characterized
by the fact that inertial terms in the momentum equation for a liquid of density ρ, viscosity μ, and
interfacial tension coefficient σ are supposed to be in balance with the capillary pressure terms, a fact
implying that ρV 2

jet (T ) ∝ σ/Rjet (T ) and, consequently, Wel = ρV 2
jet (T ) Rjet (T )/σ should remain

constant in time [35]: In this contribution, we show that this is not the case and deduce, for the
first time, the correct equations for Rjet (T ) and Vjet (T ).

In order to first test whether Wel remains constant in time, we have performed simulations of the
type depicted in Fig. 1 using GERRIS [20,21] because this numerical code has been proven to accu-
rately reproduce experimental results related with the bursting of bubbles [30,31]. In the following,
the bubble radius Rb and the capillary velocity Vc = √

σ/(ρ Rb) are used to build dimensionless
variables, written in lowercase to differentiate them from their dimensional counterparts, written in
capitals, i.e., rjet (τ ) = Rjet (τ )/Rb, vjet (τ ) = Vjet (τ )/Vc, and Wel (τ ) = v2

jetrjet with t = TVc/Rb and
τ = t − tbubble referring to the dimensionless time after the jet is ejected; see Figs. 1 and 2. Here we
consider that the Bond number verifies the condition Bo = ρ gR2

b/σ � 1, with g indicating gravity
and, therefore, the jet ejection process is controlled, for fixed values of the density and viscosity
ratios see Fig. 1, by just one dimensionless parameter, namely the Ohnesorge number, defined as
Oh = μ/

√
ρ Rb σ , related with the Laplace number as La = Oh−2, a parameter which is varied

here within the range 625 � La � 17 000, with each value of La identified using the color code of
Fig. 2(a).

The jets depicted in Fig. 1 are emitted once the capillary wave with a dimensionless wavelength
λ∗ ∝ Oh1/2, propagating with the Oh-independent dimensionless speed ≈ 5, reaches the bottom of
the cavity at the instant tbubble(La) depicted in Fig. 2(a) [32]. The capillary wave deforms the initial
spherical bubble into a truncated conical surface with a half-opening angle β(La) such that β 
 45◦
for La � 2500; see the green dashed line in the third panel of Fig. 1, as well as Figs. 3 and Fig. 1 in
the Supplemental Material [48]. For La � 2500, the minimum radius of the truncated cone is given
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FIG. 1. Bubble collapse and subsequent jet ejection processes for La = Oh−2 = 7200 with r and z indicat-
ing the dimensionless radial and axial cylindrical coordinates. As we did in Ref. [49], the numerical simulations
have been carried out for a value of the Bond number Bo = 0.01 and for fixed values of the density and viscosity
ratios: ρg/ρ = 1.2 × 10−3 and μg/μ = 1.8 × 10−2 with ρg and μg indicating the gas density and viscosity. The
last panel shows the base of the jet, which is the point at the interface r = rs(z, τ ) of coordinates r = rjet (τ ),
z = zjet (τ ) where ∂rs/∂z → ∞. The jet velocity is defined as vjet (τ ) = vz(r = 0, z = zjet ). The origin of times,
t = 0, is set at the instant when the interface of the initially spherical bubble starts deforming and tbubble(La)
denotes the instant of time when the capillary wave reaches the bottom of the cavity; see Fig. 2(a)

by [32,49]:

rjet0(La) = 0.2215

(
1 −

√
Oh

0.0305

)
, (1)

where the dependence with Oh1/2 comes from the fact that λ∗ ∝ Oh1/2 [32]; note also that, for
our subsequent purposes, it proves convenient to define here r∗

jet0 = rjet0(La = 2500) 
 0.05. It was
shown in Ref. [49] and in Fig. 3 that the topology of the interface changes for La < 2500 since,
in these cases, a tiny bubble is entrapped beneath the cavity before the jet is ejected; see Fig. 3.
For La < 2500, the jet is also issued from the base of a truncated conical surface with a radius
rjet0(La < 2500) < r∗

jet0 and with an opening semiangle which verifies β(La < 2500) < 45◦; see
Fig. 2(b) and Fig. 3 [51].
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(a) (b)

FIG. 2. (a) The values of tbubble, with tbubble the instant of time at which the capillary waves with a
wavelength λ∗ ∝ Oh1/2 reach the bottom of the cavity are almost independent of La because capillary waves
propagate with a velocity which is independent of La [32]. (b) The value of the opening semiangle β

depends on La: For La � 2500 a bubble is not entrapped beneath the bottom of the cavity and β ≈ 45◦; for
La < 2500, a satellite bubble is entrapped and β < 45◦; see Fig. 3 and the results in Fig. 1 of the Supplemental
Material [48].

FIG. 3. Local shape of the cavity at the instant tbubble(La) the capillary waves reach the bottom of the bubble.
Notice that, for La � 2500, a tiny satellite bubble is not entrapped beneath the cavity and the semiangle of the
truncated conical surface from which the jet is ejected is very close to β = 45◦, with this angle being indicated
in the figure using red dashed lines. In contrast, for 625 � La < 2500, a satellite bubble is entrapped and
β 
 37◦ for La ≈ 1000; see also Fig. 2(b).
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(a) (b)

FIG. 4. (a) Wel = rjet v
2
jet � 1, with Wel ∝ τ−1/2 for τ � 10−3. Inset: The values of the radial flow rate per

unit length calculated using GERRIS as q = −r vr for La = 2400 and different values of r/rjet (τ ) and z/zjet (τ )
remain nearly constant along two decades in time. (b) Streamlines calculated at τ = 10−5 and cavity shapes at
three instants of time for La = 1000. The streamlines in the liquid are mostly horizontal at the side of the cavity
walls, a fact indicating that the cavity collapse is driven by a radial velocity field. In contrast, the streamlines
also reveal that the flow in the gas cavity is mostly directed along the axial direction. The velocity vectors
plotted at two radial positions r ≈ 0.5 at τ = 10−5 (blue), τ = 2.18 × 10−3 (red), and τ = 4.18 × 10−3 (black)
do not change with time. The results in (b), together with the ones depicted in the inset of (a), indicate that the
velocity field driving the jet ejection process cannot be approximated by the velocity field generated by a three-
dimensional sink with a time-varying flow rate plus additional higher-order terms, a type of approximation
which, however, can be used to model the velocity field before the jet is ejected; see Ref. [50] for details. In
contrast, our results in Ref. [12] reveal that the axial velocity field at the bottom of the jets generated either after
either a bubble bursts at a free interface or after a drop impacts a liquid pool, can be very well approximated by
the flow generated by a line of sinks located at the axis of symmetry. In Ref. [12] we also show that the good
agreement between predictions and the numerical results is kept along the whole time evolution of the jet.

The result for Wel (τ ) in Fig. 4(a) show that (i) Wel = v2
jetrjet � 1 for all values of τ > 0, a fact

already suggesting that the jet dynamics cannot be driven by capillary forces and (ii) Wel is far
from being a constant since Wel ∝ τ−1/2 for τ � 10−3. These results indicate that bubble bursting
jets cannot be described using the inertiocapillary solution of Refs. [35,36]. It could be argued
that the result in Fig. 4(a) refers to magnitudes evaluated right at the base of the jet: However,
our previous results in Refs. [15,49] reveal that the time evolution of the jet radius and and of
the jet velocity, and even the diameter and the velocity of the drops ejected, can be calculated in
terms of the functions rjet (τ ), zjet (τ ), and vjet (τ ). Indeed, in Ref. [49], we coupled the ballistic
equations deduced in Ref. [15], valid in the limit Wel � 1 of interest here [see Fig. 4(a)] with the
mass and the momentum balances at the top drop, with this latter balance incorporating the relative
flux of momentum, the capillary retraction term, and the drag force exerted by the gas, finding an
excellent agreement between the numerical results and the predictions. Then, since rjet (τ ), zjet (τ ),
and vjet (τ ) do not follow the inertiocapillary scaling in Refs. [35,36], as revealed by the results
shown in Fig. 4(a), we can conclude that the jets emerging from the bursting of bubbles are not
driven by balance between inertia and capillarity, as is claimed in Ref. [36]. In addition, Fig. 5
reveals that the scaled shapes of bubble-bursting jets superimpose onto the purely inertial, self-
similar solution, found in Appendix A, which clearly differs from the inertiocapillary one reported
in Ref. [36] because our new self-similar solution verifies the condition that the value of the far-
field flow rate per unit length remains constant in time, a fact constituting an additional evidence

073606-6



THEORY OF THE JETS EJECTED AFTER THE INERTIAL …

(a)

(b)

FIG. 5. The time-evolving jet shapes in the top row corresponding, from left to right, to La = 17 000,
La = 7200, La = 4000, and La = 2500, overlap onto the universal self-similar and purely inertial solution
depicted in Fig. 16, represented here in dashed lines, for over a decade in time. Here χ = r/rjet (τ ) and η =
(z − 
0 )/(zjet (τ ) − 
0 ), with z − 
0 representing the distance measured from the vertex of the cone with an
opening semiangle β 
 45◦; see Figs. 1 and 3 and Appendix A.

supporting our description of the velocity field in terms of a line of sinks located at the axis of
symmetry [12,32], as it will become even more clear in Sec. III.

In summary, the analytical results in Refs. [15,49] permit us to explicitly calculate the spatiotem-
poral evolutions of the jet shape and velocity, and even the sizes and the velocities of the drops
ejected as a function of rjet (τ ), zjet (τ ), and vjet (τ ), this being the reason why the main purpose in
this contribution is to deduce the equations governing the three time-dependent variables illustrated
in Fig. 1.

In order to explain the results in Fig. 4(a), where it is shown that Wel ∝ τ−1/2, we first review
our previous results in Ref. [12], where we calculated the initial value of the jet velocity, vjet0(La),
in terms of rjet0(La) given in Eq. (1) once the velocity field is expressed as the irrotational flow
induced by a line of sinks with a flow rate per unit length q∞ ≈ const. In Ref. [12] we showed that,
when the flow is induced by a line of sinks located at the axis of symmetry, the jet width and the jet
velocity verify the equation

rjet (τ, La)vjet (τ, La) ∝ q∞ (2)
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with the value of q∞ fixed during the initial cavity collapse process, namely before the jet is
ejected [52]. Indeed, the capillary suction at the liquid side of the cavity induces a velocity V
directed towards the axis of symmetry resulting from the balance ρV 2 ∼ σ/Rb ⇒ V ∝ Vc and,
hence, the value of the far-field radial flow rate per unit length driving the collapse of the cavity
is Q∞ ∝ VcRb → q∞ ≈ const. It was explained in Refs. [12,15] that, once the radial inflow is set
during the initial stage of the collapse, the value of q∞ remains approximately constant in time for
τ > 0 because liquid inertia and mass conservation prevent appreciable changes in this quantity
during the very short instants of time following the emergence of the jet. Our prediction for the
velocity field in terms of a line of sinks with a constant value of q∞ agrees very well with the
numerical velocity field calculated at the base of the jet, as shown in Ref. [12] and, moreover, our
description is further supported by (i) the result depicted in the inset of Fig. 4(a), where it is shown
that the flow rate per unit length q = −r vr remains approximately constant in time for different
values of r/rjet (τ ) and z/zjet (τ ), with vr denoting the radial velocity, and by (ii) the results shown in
Fig. 4(b), where it is seen that (a) the streamlines at the side of the cavity walls are horizontal and
(b) the velocity does not appreciably changes with time for a fixed value of r.

Before proceeding to deduce in the next section the equations for the time-dependent functions
rjet (τ ), zjet (τ ), and vjet (τ ) up to prefactors, in the following we briefly explain the reason behind the
result in Fig. 4(a), which shows that Wel ∝ τ−1/2 for τ � 3 × 10−3.

In order to calculate both rjet (τ, La) and vjet (τ, La), we need to add to Eq. (2) a relationship
for zjet (τ ), defined in Fig. 1, which we combine with the equation vjet = 2 dzjet/dτ : Indeed,
since Wel � 1, the liquid pressure remains approximately constant at the portion of the interface
surrounding the base of the jet. Hence, by virtue of the Euler-Bernoulli equation expressed in a frame
of reference moving vertically with a velocity dzjet/dτ , the modulus of the velocity remains constant
and equal to dzjet/dτ along the interface and, since the direction of the velocity is reversed in the
moving frame of reference at the jet base we conclude that, in the laboratory frame of reference,
vjet (τ ) = 2dzjet/dτ ; see also Sec. III. The remaining equation for zjet can be understood in simple
terms taking into account that zjet (τ ) is located, for each value of τ , at the vertical position where the
interface r = rs(z, τ ) meets the axis of symmetry, r = 0. Indeed, the integration of the kinematic
boundary condition yields to

drs

dτ
∝ −q∞

rs
⇒ r2

s (z, τ ) − (z tan β )2 ∝ −2q∞τ, (3)

where we have taken into account that vr 
 −q∞/r and that rs(z, τ = 0) = z tan β; see Fig. 1.
Then zjet (τ ) is deduced making rs(zjet (τ ), τ ) = 0 in Eq. (3), from which it follows that zjet ∝√

q∞ τ/ tan β ⇒ vjet (τ ) ∝ dzjet/dτ ∝ √
q∞/τ/ tan β. Hence, by virtue of the mass balance,

Eq. (2), rjet (τ ) ∝ tan β
√

q∞τ and, consequently, Wel = rjetv
2
jet ∝ τ−1/2, explaining the result de-

picted in Fig. 4(a).
The scalings in the paragraph above are properly quantified in the next section.

III. A THEORY ON THE EJECTION OF JETS FROM COLLAPSING CAVITIES

The results in Sec. II reveal that the bursting of a bubble with a radius Rb � √
σ/(ρg), with

g indicating the gravitational acceleration in a liquid of density ρ, viscosity μ, and interfacial
tension coefficient σ , can be described in terms of a two-stage process characterized by an initial
acceleration stage where the pressure difference � p ∝ σ/Rb induces a mostly radial velocity field
characterized by a value of the flow rate per unit length given by

Q∞ ∝ Vc Rb with ρV 2
c ∼ � p ⇒ Q∞ ∝ Rb

(
� p

ρ

)1/2

. (4)

The flow rate Q∞ in Eq. (4) remains mostly constant in time along the second stage, during which
the jet is issued, because liquid inertia and mass conservation prevent appreciable changes of this
quantity during the very short timescale characterizing the jet ejection process [12,15]. Clearly,
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the previous description of the flow can also be applied to other similar physical situations where
the initial acceleration stage is induced by either the hydrostatic pressure difference � p ∼ ρgRb

and, hence, Q∞ ∝ Rb
√

gRb [19] or by the jump between the liquid and vapor pressures, namely
� p ∼ pa − pv , from which it follows that Q∞ ∝ Rb[(pa − pv )/ρ]1/2 [2,28].

Then, in order to describe the ejection of jets produced by the implosion of cavities triggered by
the radial flow of a liquid which has been previously accelerated towards the axis of symmetry by
the pressure difference � p, here we will analyze the collapse of an axisymmetric bubble or cavity
like the ones sketched in Figs. 6(a) and 6(b) under the incompressible approach. The flow rate per
unit length Q∞ which is established during the initial acceleration process, remains constant in time
and acts as the far-field boundary condition driving the ejection of the jet because it forces the
inward motion of the cavity walls and, therefore, the jet is issued as a mere consequence of mass
conservation.

We then consider the axisymmetric bubble or cavity sketched in Figs. 6(a) and 6(b) of character-
istic length Lc filled with a gas of density ρg and viscosity μg whose collapse is driven by a far-field
radial flow characterized by the velocity Vc. Using Lc, Lc/Vc, and ρV 2

c as the characteristic scales
of length, time, and pressure, the physical situation under study here and sketched in Figs. 6(a)
and 6(b) can be described in terms of the following dimensionless parameters:

We = ρ V 2
c Lc

σ
, Re = ρ Vc Lc

μ
, m = μg

μ
, � = ρg

ρ
. (5)

As in Sec. II, dimensionless variables will be written using lowercase letters to differentiate
them from their dimensional counterparts, written in capitals, r and z will respectively indicate
the dimensionless radial and axial spatial coordinates in a cylindrical coordinate system, and τ

will indicate the dimensionless time after the jet is ejected. In Sec. II, Lc = Rb, with Rb indicating
the initial radius of the spherical bubble and Vc = √

σ/(ρRb) is the so-called capillary velocity.
Therefore, for the case of bubble bursting jets considered in Sec. II, We = 1 and Re = Oh−1, with
Oh = μ/

√
ρRbσ the so-called Ohnesorge number, which must be such that Oh � 1 for a jet to

be ejected from the bottom of the collapsing bubble [49]. As was also pointed out above, for the
case of jets ejected as a consequence of the gravitational collapse of a bubble of length H , Lc = H
and Vc = √

gH [19], and, for the case of the cavitation of a bubble of radius Rb considered in
Ref. [28], Lc = Rb and Vc = [(pa − pv )/ρ]1/2. The results in Sec. II show the relevance played by
the two time-dependent functions zjet (τ ) and rjet (τ ) characterizing the position of the interface of
equation r − rs(z, τ ) = 0 in the description of the jet dynamics; see Figs. 6(c) and 6(d). Then, it
will be our main purpose here to find analytical expressions for rjet (τ ), vjet (τ ), and zjet (τ ) in the
limit τ � 1.

The results in Sec. II indicate that rjet ∝ √
q∞τ and vjet ∝ dzjet/dτ ∝ √

q∞/τ when the collapse
of a conical cavity of semiangle β (see Figs. 6 and 13) is driven by a far-field boundary condition
expressing that q∞ remains constant in time. Hence, the value of the local Reynolds number
characterizing the flow at the base of the jet, Rel = Oh−1vjetrjet ∝ Oh−1, will remain constant in
time and the value of the local Weber number will diverge as Wel = v2

jetrjet ∝ τ−1/2 � 1 in the
limit τ � 1 of interest here; see Sec. II. Then, provided that the Reynolds number at the scale of
the bubble is large, i.e., provided that Oh−1 � 1 for the case considered in Sec. II, both capillary
and viscous effects can be neglected, an approximation which is further supported by the numerical
results presented in Appendix A. Moreover, since we will not consider the effects of the gas on the
jet ejection process, the solutions to be deduced next will not depend on any of the dimensionless
parameters defined in Eq. (5); however, as will be shown below, our results will strongly depend on
the value of the dimensionless flow rate per unit length q∞ and on the initial geometry of the cavity,
i.e., on the function rs(z, τ = 0).

Consequently, since in view of the discussion in the paragraphs above, viscous and capillary
effects can be neglected, we consider here the case of an incompressible flow in which vorticity is
zero, enabling us to express the velocity field in terms of a velocity potential φ, i.e., v = ∇φ, with
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(a)

(c) (d)

(b)

FIG. 6. [(a) and (b)] Sketches showing the collapse of cavities with different shapes and with characteristic
lengths Lc that implode as a consequence of an imposed far-field radial velocity field such that the flow rate per
unit length Q∞ ∝ Vc Lc remains constant in time. (c) Sketch illustrating the definitions of the time-dependent
variables used to analyze the jet ejection process: The interface is located at r = rs(z, τ ), the base of the jet
is the point at the interface of coordinates r = rjet (τ ), z = zjet (τ ), where ∂rs/∂z → ∞, and the jet velocity is
defined as vjet (τ ) = vz(r = 0, z = zjet + αrjet ) with α ∼ 1 being z = zjet (τ ) + αrjet (τ ) the vertical coordinate
within the jet where the pressure approximately relaxes to that of the gas. (d) Sketch of the flow in a frame of
reference moving vertically with the velocity dzjet/dτ . In this frame of reference, there exists a stagnation point
of the flow located at a distance from the base of the jet zjet − zs ∝ rjet (τ ), where the pressure is maximum and
is equal to pmax(τ ).

φ satisfying the Laplace equation ∇2φ = 0. We then analyze, at short times, τ � 1, the implosion
of an axisymmetric cavity, symmetric with respect to the plane z = 0, which collapses forced by a
far-field boundary condition of the type illustrated in Fig. 7; see also Figs. 6 and 13,

r
∂φ

∂r
= −q∞ for r → ∞. (6)
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FIG. 7. The sketch illustrates that, for instants of time τ � 1, the irrotational velocity field satisfying the
boundary conditions in Eqs. (6) and (7) is a line of sinks of intensity q∞[1 + |� q(z, τ )|] extending along
the axis in the region |z| > zjet (τ ) with q∞� q(z, τ ) such that ∂φ/∂z = 0 at r = rs(z � zjet (τ ), τ ) 
 0 since
rs � 1; see Eqs. (8)–(11).

We also consider that the cavity is slender, i.e., the position of the interface satisfies rs(z, τ ) � 1
and ∂rs/∂z � 1. Before the jet is ejected, namely for instants of time τ < 0, the irrotational velocity
field satisfying the boundary condition (6) is the one generated by a line of sinks of intensity q∞
located at the axis of symmetry. Due to the fact that the cavity is slender, the velocity field produced
by the line of sinks at the axis is, in a first approximation, normal to the interface and, therefore, the
potential at τ = 0+, which is when the jet is first issued, can be set to φ = const at r = rs(z, τ = 0+).
As it is sketched in Fig. 7, once the two symmetrical jets are ejected from z = ±zjet (τ ) for instants
of time τ > 0, the free interface disappears along the region |z| < zjet (τ ) and two symmetric jets are
ejected from z = ±zjet (τ ). Consequently,

r
∂φ

∂r
(r = 0, z, τ ) = 0 for |z| < zjet (τ ) and τ > 0, (7)

since, otherwise, the liquid velocity would tend to infinity at the axis. Hence, the irrotational and
incompressible velocity field satisfying the boundary conditions (6) and (7) is the one induced by a
line of sinks with intensities q∞[1 + |� q(z, τ )|] extending along |z| � zjet (τ ); see Fig. 7. In order to
determine the unknown function � q(z, τ ) we describe the “impact” of an axisymmetric flow over
r = 0, which shares similarities with the free boundary problem of Wagner type that needs to be
solved, for instance, in order to quantify the impact of two-dimensional solids with small deadrise
angles over free surfaces [53–55]. Indeed, notice that the integration in time of the Euler-Bernoulli
equation (A5) permits us to conclude that, for τ � 1, φ 
 const at r = rs(z, τ ) � 1 for |z| � zjet (τ )
because at τ = 0+ φ = const at the free interface and τ |∇φ|2/2 → 0 as τ → 0. Moreover, since
rs � 1, this boundary condition for the Laplace equation can be linearized by retaining only the
first term in the Taylor series expansion of φ around r = 0, which yields the following boundary
condition for ∂φ/∂z at r = 0:

φ(r = 0, z, τ ) = const ⇒ ∂φ

∂z
(r = 0, z, τ ) = 0 for |z| � zjet (τ ), (8)

a condition also expressing that, in the limit of slender cavities of interest here, velocities are
normal to the interface. Now notice that the solution of the Laplace equation ∇2φ = 0 subjected
to the boundary conditions (6)–(8) is a distribution of sinks with intensity q∞ located at the axis of
symmetry and extending along |z| < ∞, plus a line of sources of intensity q∞ that extends along
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(a) (b)

FIG. 8. (a) The function f (x̄), with x̄ = z̄ − 1, such that f (x̄ = 0) = 0 and f (x̄ → ∞) → −1 is calculated
solving the integral equation (11) using the numerical code provided in Appendix B (see also the Supplemental
Material [48]). (b) The function �q(x̄) = df /dx̄ is such that −�q(x̄ → 0) → 0.7.

the axis in the region |z| < zjet (τ ), plus a line of sinks with a strength q∞� q(z, τ ) that extends
along the axis in the region |z| � zjet (τ ). Notice that the distribution q∞� q(z, τ ) is needed in order
to preserve the flow rate per unit length imposed by the far-field boundary condition (6) and to
compensate the flow rate which is not suctioned through the axis along the region |z| < zjet. Hence
� q(z, τ ) is determined from the solution of the integral equation that results from imposing the
boundary condition expressed by Eq. (8):∫ zjet

−zjet

(z − z0)d z0

[(z − z0)2]3/2
+

∫ ∞

zjet

� q(z0)(z − z0)d z0

[(z − z0)2]3/2
+

∫ −zjet

−∞

� q(−z0)(z − z0)d z0

[(z − z0)2]3/2
= 0. (9)

The first integral in Eq. (9) corresponds to the axial velocity generated at r = 0 and z > zjet (τ ) by the
line of sources of intensity q∞ located at |z| < zjet, whereas the second and third integrals correspond
to the axial velocities at r = 0 generated by the distribution of sinks of intensity q∞� q(z, τ ) located
at |z| � zjet; see the sketch in Fig. 7. Notice that the contribution of the third integral is rather small
when compared with that of the second integral in Eq. (9), this being the reason why this term will
be neglected in what follows.

In order to solve the integral equation for � q, we first notice that, in terms of the variables

z̄ = z

zjet (τ )
, z̄0 = z0

zjet (τ )
, � q = df

dz̄
(10)

with f (z̄ = 1) = 0, the integral equation (9) reads:

1

z̄ − 1
− 1

z̄ + 1
+

∫ ∞

1

df /dz̄0(z̄ − z̄0)d z̄0

[(z̄ − z̄0)2]3/2
= 0. (11)

Equation (11) is solved numerically using the method detailed in Appendix B, and the resulting
functions f and � q are represented in Fig. 8, where it is also shown that −�q(z̄ → 1) ≈ 0.7. Let us
point out here that the predicted sink distribution q∞(1 + |�q|) with � q given in Fig. 8 is compared
in Fig. 17 with the results of full numerical simulations of the type described in Appendix A,
finding good agreement between the theoretical and the numerical results. Once � q is known,
the equation for zjet (τ ) is deduced following the same ideas as those in Refs. [53,55,56], namely
making use of the kinematic boundary condition at the interface and considering that the jet root is
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TABLE I. The table provides the numerical values of the integral in Eq. (15) for different values of n using
the values of � q(x̄) depicted in Fig. 3.

n = 2 n = 3 n = 4 n = 5 n = 6 n = 8 n = 10

1 + n
∫ ∞

0 |� q(x̄)|/(1 + x̄)(n+1)dx̄ 1.14 1.18 1.20 1.20 1.24 1.24 1.30

located at the position where the interface meets the axis of symmetry:

drs

dτ
= vr (r = rs) = −q∞

1 + |� q|
rs

⇒ − r2
s (z = zjet )

2 q∞
= −τ −

∫ τ

0
|� q[z = zjet (τ )]| dτ ′. (12)

At an instant of time τ ′ � τ and for a fixed value of zjet (τ ), we define

x̄ = zjet (τ )/z′
jet − 1 with z′

jet = zjet (τ
′) (13)

and, therefore, the integral equation (12) can be written as

− r2
s (z = zjet )

2q∞
= −τ −

∫ 0

∞
|� q(x̄)| dτ ′

dz′
jet

dz′
jet

dx̄
dx̄. (14)

Equation (14) can be solved using a procedure similar to that followed in Ref. [56], where we
considered the analogous case of the impact of a spherical drop over a wall: Indeed, for the case
of axisymmetric cavities with equations of the type r2

s (z = zjet ) = 2C−1 zn
jet with C an arbitrary

constant, the solution of Eq. (14) is of the form τ = A−1 zn
jet and, consequently,

− r2
s (z = zjet )

2q∞
= −2C−1zn

jet

2q∞
= −τ −

∫ 0

∞
−|� q(x̄)| nA−1(z′

jet )
(n−1)

z′2
jet

zjet (τ )
dx̄

= −A−1 zn
jet − n A−1 zn

jet

∫ ∞

0

|� q(x̄)|
(1 + x̄)n+1 dx̄ ⇒ A

= C q∞

[
1 + n

∫ ∞

0

|� q(x̄)|
(1 + x̄)n+1 dx̄

]
⇒

zjet =
[

1 + n
∫ ∞

0

|� q(x̄)|
(1 + x̄)n+1 dx̄

]1/n

(Cq∞τ )1/n, (15)

where we have made use of Eq. (13). Notice that the values of the integral
∫ ∞

0 |� q|/(1 + x̄)(n+1)dx̄,
which can be calculated numerically for different values of n using the function �q(x̄) depicted
in Fig. 8, are given in Table I. Once zjet (τ ) is calculated through Eq. (15), the jet velocity in the
laboratory frame of reference, vjet , is calculated expressing the Euler-Bernoulli equation in a relative
frame of reference moving with the jet base velocity, dzjet/dτ . Indeed, the numerical results in
Fig. 9(a), which correspond to the type of numerical simulations detailed in Appendix A indicate
that, in the moving frame of reference, the free surface is a streamline along a vertical distance ∼rjet

pointing upwards from the base of the jet and that the stagnation point of the flow is located at a
distance ∼rjet (τ ) below the base of the jet; see also Fig. 6. Moreover, Fig. 9(a) reveals that the jet
is fed from a narrow region of width ∼rjet (τ ) located nearby the free interface, a result which was
already noticed in Ref. [37] experimentally and in Ref. [14] numerically. In addition, Fig. 9(b) shows
that the jet shapes corresponding to different instants of time superimpose onto a single curve when
rescaled using rjet (τ ) as the characteristic length scale, whereas Fig. 9(c) shows the values of the
rescaled pressure evaluated at the axis of symmetry along the spatial region z − zjet (τ ) ∼ rjet (τ ) for
different instants of time. Figure 9(c) reveals that the stagnation point of the flow is indeed located at
a distance ∼rjet below the base of the jet and that the liquid pressure relaxes to that of the gas, pgas,
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(a) (b)

(c) (d)

FIG. 9. (a) Streamlines corresponding to a conical cavity with an opening semiangle of β = 20◦ (see
Appendix A for numerical details) represented at a generic instant τ0 in a frame of reference moving vertically
with the velocity dzjet/dτ (τ0). The thick blue line represents the dividing streamline. (b) When scaled using
rjet (τ ), the jet shapes corresponding to β = 20◦ superimpose onto a single curve for over two decades in time.
(c) Scaled pressure at the axis of symmetry in a region surrounding the base of the jet for over two decades
in time, here β = 20◦. Pressures are scaled in terms of the value of the stagnation pressure in the moving
frame of reference, 1/2(dzjet/dτ )2. (d) Time evolution of the location of the stagnation point of the flow in the
moving frame of reference. Green, red, black, and blue squares indicate, respectively, the results corresponding
to conical cavities with opening semiangles β = 10◦, 20◦, 30◦, and 40◦; see Appendix A for numerical details.

at z 
 zjet (τ ) + rjet (τ ). Therefore, since the jet is slender and capillary effects are subdominant,
the pressure in the liquid will remain, in a first approach, constant for z � zjet (τ ) + rjet (τ ), this
fact meaning that both the jet shape and the velocity within the spatiotemporal region (z, τ ), with
z � zjet (τ ) + rjet (τ ), can be predicted using the ballistic equations deduced in Ref. [15]. Figure 9(c)
also shows that the maximum pressure pmax is the stagnation pressure, with this value being attained
at the point where the dividing streamline meets the axis of symmetry; see Fig. 9(a). Hence, pmax

can be calculated using the Euler-Bernoulli equation in the moving frame of reference as

pmax − pgas 
 1

2

(
dzjet

dτ

)2

, (16)

because the modulus of the upstream velocity in the moving frame of reference at the dividing
streamline is ≈ dzjet/dτ and the pressure upstream the dividing streamline, which is in close
proximity to the free surface, is that of the gas because capillary effects are negligible. Therefore,
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taking into account that the flow field is quasisteady in a region of width ∼rjet (τ ) surrounding the
base of the jet and making use of the Euler-Bernoulli equation along a streamline connecting the
stagnation point of the flow in the relative frame of reference and the downstream position within
the jet where the pressure relaxes to that of the gas, we find that

pmax − pgas 
 1

2
ṽ2

jet with ṽjet = vz(r = 0, z = zjet + rjet ) − dzjet

dτ
, (17)

indicating the axial velocity in the moving frame of reference. Consequently, making use of Eq. (16)
we conclude that the jet velocity in the laboratory frame of reference at the axial coordinate z where
the liquid pressure relaxes to that of the gas is given by

vjet (τ ) = vz(r = 0, z = zjet + rjet ) = 2
dzjet

dτ
. (18)

Finally, the result in Fig. 9(d) indicates that the maximum value of the pressure, namely the
stagnation pressure in the moving frame of reference [see also the sketch in Fig. 6(d)], is reached at
a distance from the base of the jet zjet (τ ) − zs(τ ), such that the ratio [zjet (τ ) − zs(τ )]/rjet (τ ) ∼ O(1)
remains approximately constant in time.

Then, making use of Eqs. (15) and (18), we conclude that the velocity within the jet at the location
where the liquid pressure relaxes to that of the gas, namely at z = zjet (τ ) + α rjet (τ ) with α 
 1, is

vjet 
 2
d zjet

dτ

 2C q∞

n

[
1 + n

∫ ∞

0

|� q(x̄)|
(1 + x̄)n+1 dx̄

]1/n

(Cq∞τ )(1−n)/n. (19)

The particularization of Eqs. (15) and (19) to the case of conical cavities with an equation of the
form rs = z tan β, (C = 2/ tan2 β) yields

zjet =
[

1 + 2
∫ ∞

0

|� q(x̄)|
(1 + x̄)3 dx̄

]1/2

(2 q∞ τ/ tan2 β )1/2 
 1.5

tan β

√
q∞τ (20)

and

vjet 
 2
dzjet

dτ

 1.5

tan β

√
q∞
τ

, (21)

where we have made use of the value of the integral given in Table I corresponding to n = 2. For the
analogous case of parabolic cavities with an equation of the form rs = z2/(2rc), Eqs. (15) and (19)
yield the following expressions for zjet and vjet:

zjet = 1.25(2rc)1/2(q∞τ )1/4 and vjet = 0.625 q∞ (2rc)1/2 (q∞ τ )−3/4, (22)

where we have made use of the value of the integral given in Table I corresponding to n = 4.
In order to deduce the equation for rjet (τ ), notice first that the sink distribution along the axis of

symmetry q∞(1 + |� q|), with � q the function represented in Fig. 8, exactly balances the flow rate
imposed as the far-field boundary condition in Eq. (6). However, as shown in Fig. 9(a), the interface
is a streamline in a frame of reference moving vertically with the velocity dzjet/dτ along a distance
∼rjet extending upwards from the base of the jet, a fact meaning that the normal velocities to the
interface in the moving frame of reference are zero in this region. Therefore, mass conservation
enforces the emergence of a jet of width ∼rjet in order to compensate the flow rate which cannot be
suctioned by the sink distribution q∞(1 + |� q|) where the normal velocities are zero in the moving
frame of reference. Consequently, mass conservation demands that the flow rate which cannot be
suctioned by the interface through this region of length ∼rjet is expelled into the gaseous atmosphere
in the form of a jet of width rjet given by:

2π

∫ zjet+rjet

zjet

q∞[1 + |� q(z)|]dz ≈ 2πr2
jet

dzjet

dτ
⇒ rjet

dzjet

dτ

 1.7q∞, (23)
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(a) (b)

(c) (d)

FIG. 10. Comparison between the numerical results in Appendix A corresponding to the case of conical
cavities with different values of the opening semiangle β with the predictions in Eqs. (16), (23), and (25). Here
vjet (τ ) = vz[z = zjet (τ ) + α rjet (τ )] with α = 1 for the case of slender cavities, namely the conical cavities
with β = 5◦, β = 10◦, and β = 20◦, whereas α = 0 for the cases of nonslender conical cavities, namely those
with β = 30◦ and β = 40◦. The reason for the different values of α is that the liquid pressure relaxes to that
of the gas at a different vertical locations within the jet depending on the value of the opening semiangle;
see Fig. 9(c) for the case β = 20◦. Here 
0(β = 5◦) = 0.0080, 
0(β = 10◦) = 0.0045, 
0(β = 20◦) = 0.0028,

0(β = 30◦) = 0.0022, and 
0(β = 40◦) = 0.0012.

where we have taken into account that (i) the rate of volume increase in the bulk of the liquid is
πr2

jetdzjet/dτ ; (ii) by virtue of the Euler-Bernoulli equation, the jet velocity in the moving frame of
reference is dzjet/dτ ; and (iii) the function �q, represented in Fig. 10 is such that −�q(x̄ → 0) →
0.7 and, consequently, ∫ zjet+rjet

zjet

|� q| dz 
 |�q(x̄ = 0)| rjet ≈ 0.7rjet. (24)

In order to validate the results in Eqs. (15), (16), (19), and (23) we make use of the results of the
incompressible numerical simulations described in Appendix A. Indeed, in Appendix A we analyze
the results of numerical simulations using the GERRIS [20,21] script used in Ref. [28] to simulate
the emergence of very fast jets, with velocities up to 1000 m s−1, which are emitted when a bubble
cavitates in very close proximity to a solid wall once the value of the flow rate per unit length
is prescribed as a far-field boundary condition. At this point, notice that our own analysis of the
governing equations and of the numerical results reported in Appendix A permits us to conclude that
both the jet shapes and the velocity field converge towards a β-dependent self-similar solution of the
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(a) (b)

(c) (d)

FIG. 11. Comparison between the numerical results of pmax(τ ) − pgas, zjet (τ ), vjet (τ ) = vz(r = 0, z =
zjet + rjet ), and rjet (τ ) and the respective values predicted by Eqs. (16), (22), and (23). The reason for the
small deviation between the predicted and the calculated jet velocity is because the liquid pressure relaxes
to that of the gas at a vertical position within the jet which is slightly above z = zjet (τ ) + rjet (τ ). Here

0(rc = 1) = 0.015.

Euler-Bernoulli and Laplace equations such that lengths and velocities are respectively proportional
to

√
q∞τ and

√
q∞/τ for arbitrary values of β a result which, to our knowledge, had not been

reported before.
Figure 10 compares the predictions given in Eqs. (16), (20), (21), and (23) with the numerical

values of rjet (τ ), vjet (τ ), pmax(τ ), and of rjetdzjet/dτ (τ ) obtained from the numerical simulations
detailed in Appendix A for the case of conical cavities with different values of the opening semiangle
β taking q∞ = 1. The results depicted in Fig. 10 confirm our predictions in the slender limit β � 1
and permit us to extend our results to generic values of β by just writing

zjet (β, τ ) = K (β )zjet (β � 1, τ ) = K (β )
1.5

tan β

√
q∞τ with K (β � 5◦) = 1 and (25)

K (β = 10◦) = 1.13, K (β = 20◦) = 1.33, K (β = 30◦) = 1.47, and K (β = 40◦) = 1.63.
Moreover, Fig. 11 compares the predictions in Eqs. (16), (22), and (23) with the numerical values

of rjet (τ ), vjet (τ ), pmax(τ ), and rjetdzjet/dτ (τ ) calculated using the same type of simulations as those
detailed in Appendix A but replacing the equation for the initial shape of the interface by a parabola
of equation rs(z, τ = 0) = z2/2. The results shown in Fig. 11, which do not include any type of
adjustable constant, provide further support to our theory.

In order to compare our predictions with the numerical results corresponding to the case of
bubble bursting jets, we make use of the equations for rjet and vjet corresponding to the case of
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conical cavities; see Eqs. (18), (23), and (25):

vjet = 1.5K (β )

tan β

√
q∞(rjet )

τ
, rjetvjet 
 3.4 q∞. (26)

with K (β ≈ 40◦) ≈ 1.6; see Fig. 2(b). The results in Figs. 12(a) and 12(b) reveal that the predictions
of Eqs. (26) for Wel (τ ), rjet (τ ), and zjet (τ ) closely follow the numerical results and that, in contrast,
the analogous scalings deduced using the inertiocapillary ansatz [35,36], rjet ∝ τ 2/3, vjet ∝ τ−1/3,
and rjetdzjet/dτ ∝ τ 1/3, clearly deviate from the data. The results in Fig. 12 have been obtained for
the slowly varying values of the forcing flow rate per unit length q∞ given by the following:

If rjet � r∗
jet0 = 0.05 : q∞ = 0.82

If rjet < r∗
jet0 = 0.05 : q∞(rjet ) = −r0ṙ0(0)

[r0/(2rc)(0)]
× exp

⎛
⎝−

√{
ln

[
r0(0)

2rc(0)

]}2

− ln

[
rjet

r0(0)

]2
⎞
⎠,

(27)

see Fig. 3 in the Supplemental Material [48], where we find that r0(0) = 0.2, r0 ṙ0(0) = −1.5,
and r0(0)/[2 rc(0)] = 0.16 for the whole range of La < 2500 considered here. The reason for
the different expressions of the far-field forcing q∞ in Eq. (27) can be explained as follows: For
rjet > r∗

jet0 
 0.05, the radius of the jet is sufficiently large for the flow rate per unit length q∞ ≈ 1
driving the jet ejection process to be fixed by the radial flow induced during the initial capillary
collapse process of the cavity. However, for the cases corresponding to La < 2500, rjet (τ � 1) � 1
and, in addition, in these cases a tiny satellite bubble is entrapped beneath the bursting bubble.
The satellite bubbles depicted in Fig. 3 (see also Fig. 1 in the Supplemental Material [48]) are
produced as a result of the purely inertial collapse of a cylindrical gas thread and, consequently,
when rjet � 0.05, the flow rate per unit length q∞ < 0.82 forcing the ejection of the jet is fixed by
the value of the local flow rate per unit length driving the purely inertial pinch-off of the bubble
at the instant when the collapsing bubble radius coincides with that of the jet. Hence, the result in
Eq. (27) for the case rjet < 0.05, which has been deduced making use of the theory in Ref. [17],
simply reflects the well-known fact that the flow rate driving the pinch-off of bubbles [18,58–62],
see also the Supplemental Material [48] for details, is a decreasing function of the minimum radius
of the entrapped bubble.

Next we deduce the initial values of the jet width and velocity, namely the minimum value of the
jet radius and the maximum value of the jet velocity for a given value of La. For La � 2500, the
initial jet radius, rjet0, is given by Eq. (1) and, from Eq. (26),

rjet0(La > 2500) = 0.2215

(
1 −

√
Oh

0.0305

)
, vjet0(La > 2500) 
 2.5

rjet0(La > 2500)
. (28)

For the cases in which a bubble is entrapped, namely La < 2500, a jet will be ejected following the
solution of Eqs. (26) and (27) if viscous effects are negligible, namely if the local Reynolds number
Rel = Oh−1 rjet vjet � O(1) ⇒ q∞ � K Oh [32], with K a constant. Therefore, using the result in
Eq. (27), the equations for the initial jet width and velocity deduced taking q∞ = K Oh when a
bubble is entrapped, read:

rjet0(La < 2500) = r0(0) × exp

[
−1

2

({
ln

[−KOh r0(0)

(2rcr0ṙ0)(0)

]}2

−
{

ln

[
r0(0)

2rc(0)

]}2
)]

vjet0(La < 2500) = 3.4q∞(rjet0 )

rjet0
= 3.4KOh

rjet0(La < 2500)
, (29)

where we have made use of the second of the equations in (26). The predictions in Eqs. (29) taking
K = 10 are pretty close to the numerical values depicted in Figs. 12(c) and 12(d).
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(a) (b)

(c) (d)

FIG. 12. (a) Wel = rjetv
2
jet � 1, with Wel ∝ τ−1/2 for τ � 10−3. The green line indicates the predicted val-

ues of Wel [rjet (τ )] = v2
jet rjet = {3.4 q∞[rjet (τ )]}2/rjet (τ ), with rjet and vjet calculated using Eqs. (26) and (27).

(b) The values of vjet (τ ), rjetdzjet/dτ , and rjet (τ ) calculated using Eqs. (26) and (27), in green, reproduce
the numerical results. In contrast, the inertiocapillary predictions [35,36], in pink, vjet ∝ τ−1/3, rjetdzjet/dτ ∝
τ 1/3, and rjet ∝ τ 2/3, substantially deviate from the data. The numerical values in the figure correspond to
τ > τ ∗(La), with τ ∗(La) > 0 the instant of time such that (ztip − zjet )/rjet � 1.25; see Fig. 1 and Fig. 2 in SM.
[(c) and (d)] Comparison of the numerical values of rjet0(La) and vjet0(La) with the predictions (blue continuous
line) in Eqs. (28) and (29). The numerical results in Ref. [57] for vjet0 are also included in Fig. 12(d). The
differences existing between their results and ours for La < 2500 are attributable to the differences existing in
the instant of time at which the numerical values are calculated: In our case, the numerical values corresponds to
instants of time τ ∼ 10−5. Notice that the diameter and the velocity of the first drop ejected can be calculated
using the ballistic equations in Refs. [15,49] using the results in this figure. Notice, however, that, as was
pointed out in Ref. [12], for La � 2500, the tip of the jet is hardly decelerated by capillary forces and by the
viscous drag exerted by the gas, a fact implying that Eqs. (28) can be used to approximate the diameter and the
initial velocity of the first drop ejected.
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As pointed out in Sec. II, the values of rjet0(La) and vjet0(La) deduced above when a bubble
is entrapped are not the ones of the initial drop radius and velocity which, however, can be
expressed as a function of rjet (τ ) and of vjet (τ ) following the results in Ref. [49], where the ballistic
equations deduced in Ref. [15] are coupled with the mass and the momentum balances at the top
drop [63].

As a final remark, notice that both the numerical simulations and the theoretical results have
been deduced under the incompressible approximation and under the assumption that both the
cavity collapse process and the jet produced, are axisymmetric. In real applications, however,
asymmetries are always present but Ref. [64] showed that the amplitude of these asymmetries does
not grow during the cavity collapse process. Then, when the minimum radius of the cavity equals
the amplitude of the asymmetry, the liquid is no longer accelerated inwards, the cavity breaks and
a jet is issued [15]. This fact possesses two important implications for the dynamics of the jet: On
the one hand, the ejected jet is not axisymmetric, as it can be clearly appreciated in the experiments
reported in Ref. [15] and in the experiments with cavitation bubbles reported in Ref. [28] and,
on the other hand, provided that the local Reynolds number at the instant of jet ejection is large,
the equation expressing that the minimum radius of the imploding cavity equals the amplitude of
the asymmetry, sets the value of the minimum jet radius rjet0 and also the maximum value for
the jet velocity, vjet0, through the mass conservation equation derived above, rjet0vjet0 
 3.4q∞;
see Eq. (23). Consequently, the viscous cut-off values of rjet0(La) and vjet0(La) deduced here will
describe a real experiment provided that the amplitude of the asymmetries is smaller than rjet0(La).

IV. CONCLUSIONS

To conclude, here we have analyzed the high-Reynolds number implosion of cavities under the
incompressible approach when the collapse is driven by a far-field boundary condition expressing
that the flow rate per unit length remains constant in time. We have presented a self-consistent
theory which describes the collapse of slender axisymmetric cavities with a generic geometry and
provides with algebraic equations, with no adjustable constants, for the time evolution of the speed,
width, and of the vertical position of the jets. When particularized to the case of conical bubbles,
our algebraic equations reproduce the self-similar results obtained numerically in the limit of small
values of the opening semiangle and, when particularized to the case of parabolic cavities, we also
find that our predictions for the jet radius, the jet velocity, and the maximum liquid pressure are
in good agreement with simulations. We have also shown here that the jets produced right after a
bubble bursts at an interface can be described in terms of our purely inertial theory, which differs
from the common belief that the dynamics of the jets produced after the inertiocapillary collapse of
cavities can be described in terms of an inertiocapillary balance; see, e.g., Ref. [36]. For the case
of bubble bursting jets, we have also deduced the equations describing the time-varying jet radius
rjet (τ, La) � rjet0(La) and the velocity vjet (τ, La) � vjet0(La), as well as the initial values of the jet
radius and of the jet velocity, i.e., rjet0(La) and vjet0(La), respectively. Our predictions agree well
with the numerical results, which could reproduce a real experiment provided that the amplitude
of the unavoidable asymmetries do not disturb the interface before the jet is ejected. As shown in
Ref. [49], the time-dependent jet shape and the time-dependent velocity field within the jet can
be expressed in closed form in terms of the time-dependent functions rjet (La, τ ), zjet (La, τ ), and
vjet (La, τ ), which constitute the initial conditions of the ballistic equations deduced in Ref. [15].
Hence, here we provide with the necessary information for the correct quantification of the different
fluxes transported by bubble bursting jets from the ocean into the atmosphere. In spite of the
results presented here resort on the incompressible approximation, they might also be applied to
describe the type of very high speed jets generated when a conical bubble implodes very close to a
wall, a phenomenon which could play a role in the degradation of the material produced by liquid
cavitation.
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APPENDIX A: SELF-SIMILAR CONICAL JETS

In this Appendix we present numerical results describing the high-Reynolds-number implosion
of conical voids such as those found in the collapsing depressions of standing waves [35], during
the collapse of bursting bubbles [29,32], or as a consequence of the collapse of the cavity formed
after a drop impacts a liquid pool [9,10,12]. The numerical results have been obtained using the
open-source package GERRIS [20,21] and therefore the effects of compressibility on the collapse
and jet ejection processes are not retained in the simulations. In fact, the results in this section have
been obtained using the GERRIS script provided in Ref. [28] in their study of the dynamic of jets
produced in cavitation bubbles near a rigid boundary for small values of the standoff parameter.
The numerical setup in Fig. 13(a) illustrates the radial and axial coordinates, R and Z , respectively;
the initial shape of a conical cavity with a half-opening angle β; and Lc, namely the radius of the
cylindrical surface where the value of the far-field radial velocity, Vc, is imposed. In the following,
ρ, μ, and σ will respectively denote the liquid density, viscosity, and interfacial tension coefficient,
whereas ρg and μg will be used to refer to the gas density and viscosity. The numerical code is solved
fixing the value of the flow rate per unit length, LcVc, at R = Lc and imposing outflow boundary
conditions at Z = ±Lc/2, i.e., the Z derivatives of the velocity and pressure fields are zero at the
top and bottom boundaries. The minimum grid size is 2−12Lc and the jet radius at the region where
it meets the conical surface [see Fig. 13(b)] will be resolved with at least six numerical cells.

Using Lc, Lc/Vc, and ρV 2
c as the characteristic scales of length, time, and pressure, the flow

sketched in Fig. 13(a) can be described in terms of the following dimensionless parameters:

We = ρ V 2
c Lc

σ
, Re = ρ VcLc

μ
, m = μg

μ
, � = ρg

ρ
, and β, (A1)

but, since here we fix the values of the density and viscosity ratios to those characterizing the air-
water system, � = 1.2 × 10−3, m = 1.8 × 10−2, the numerical solutions will only depend on We,
Re, and β. Notice also that, from now on, dimensionless variables will be written using lowercase
letters to differentiate them from their dimensional counterparts, written in capitals, and τ and n
will indicate, respectively, the dimensionless time after the jet is ejected and the unit normal vector
to the interface of equation

r = rs(z, τ ) ⇒ F = r − rs(z, τ ) = 0. (A2)

Figure 14 shows that the numerical results are virtually independent of both We and Re for the
range of values of these two parameters considered in this study, namely Re � 50 and We � 0.5.
While the results regarding the effect of the Reynolds number could have been anticipated in view
of the fact that the minimum value of Re is already large, Re = 50, the independence of the solution
with We indicates that the mechanism of jet ejection is not driven by capillarity. The influence of
the opening semiangle β on the temporal evolution of the jet shapes is analyzed in Fig. 15, where it
can be clearly appreciated that the jet velocity increases when β decreases.

It is our purpose now to explore whether there exists a self-similar solution for the high-Reynolds
number jets depicted in Fig. 15 for instants of time such that τ � 1. The analysis starts by
considering that the vorticity production at the interface can be neglected in the description of the jet
dynamics in the limit Re � 1 and then the velocity field v can be expressed in terms of the velocity
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FIG. 13. (a) Sketch of the numerical setup indicating the far-field boundary condition, the initial shape of
the conical interface, the material properties of the liquid and the gas, as well as the radial and axial coordinates,
R and Z , respectively. (b) Numerical results corresponding to Re = 100, We = 1, and β = 40◦. [(c) and (d)]
Numerical values of rvr corresponding to the simulations depicted in (b) at two different instants of time:
τ = 4 × 10−4 (c) and τ = 4 × 10−3 (d). Notice that the type of numerical simulations carried out using the
boundary conditions sketched in (a) impose, as a far-field boundary condition, a constant value of the flow rate
per unit length, rvr → −1.

potential φ as

v = ∇φ. (A3)

Therefore, in the incompressible limit of interest here, continuity demands that

∇ · v = 0 ⇒ ∇2φ = 0, (A4)

where we have made use of Eq. (A3). The Laplace equation (A4) must be solved subjected to the
value of the velocity potential calculated particularizing the Euler-Bernoulli equation

∂φ

∂τ
+ |∇φ|2

2
− We−1 ∇ · n = C(τ ) (A5)

at the interface of equation F = 0, with F the function defined in (A2) satisfying the kinematic
boundary condition,

DF

Dt
= 0 ⇒ ∂φ

∂r
= ∂rs

∂τ
+ ∂φ

∂z

∂rs

∂z
, with rs(z → ∞, τ ) → z tan β (A6)
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(a) (b)

FIG. 14. Analysis of the influence of Re and We on the jet ejection process for a fixed value of β = 30◦

and two different instants of time τ = 4 × 10−6 (a) and τ = 4 × 10−5 (b). The results in the figure have been
obtained for the following values of the control parameters: Re = 100 and We = 1 (blue continuous line);
Re = 50 and We = 1 (red dashed line); Re = 200 and We = 1 (red continuous line); Re = 100 and We = 5
(black continuous line); and Re = 100 and We = 0.5 (black dashed line). Notice that the differences between
the jet shapes are practically indistinguishable and are only appreciable in the zoomed images corresponding
to the jet tip, a fact indicating that the spatiotemporal evolution of the jet is virtually independent of Re
and We.

and with D/Dt indicating the material derivative. In Ref. [35], the self-similar structure of the flow
field was deduced, introducing the scaled variables

φ = (τ − τ0)δ h

[
z − 
0

(τ − τ0)ε
,

r

(τ − τ0)ε

]
and rs(z, τ ) = (τ − τ0)ε g

[
z − 
0

(τ − τ0)ε

]
(A7)

(a) (b) (c)

FIG. 15. This figure analyzes the influence of the opening semiangle on the spatiotemporal evolution of the
jet: (a) β = 20◦, (b) β = 30◦, and (c) β = 40◦. In the three cases considered, Re = 100 and We = 1. Notice
that the jet speed increases when β decreases.
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into the system of Eqs. (A4)–(A6), finding that both Eqs. (A4) and (A6) can be written in terms
of the self-similar variables defined in (A7) if δ = 2ε − 1, with this condition also ensuring that
the terms ∂φ/∂τ and |∇φ|2/2 in the Euler-Bernoulli equation (A5) possess an identical functional
dependence with time. In Ref. [35], the value of the exponent ε = 2/3 characterizing the length
scale in their inertiocapillary self-similar solutions was deduced imposing the additional condition
that the time dependence of the three terms at the left-hand side of Eq. (A5) must be the same.

However, the results depicted in Fig. 14 reveal that the time evolution of the jet is independent of
the Weber number, a fact indicating that the type of jets considered here are not forced by capillarity.
Consequently, in the present case, the only restriction imposed by Eqs. (A4)–(A6) for self-similar
solutions to exist is that δ = 2ε − 1 and then the value of the exponent ε in Eq. (A7) should be
fixed by the far-field boundary condition of the Laplace equation (A4) which, in our case, reads; see
Fig. 13:

r
∂φ

∂r
→ −1 for r → ∞. (A8)

The far-field boundary condition (A8) differs from the one corresponding to the inertiocapillary
collapse of a cavity, which happens to be analogous to that driving the self-similar wave created
after the impact of a disk over a liquid pool. Indeed, in this latter case, Refs. [65,66] reported
that the far-field boundary condition for the velocity potential is the well-known two-dimensional
irrotational flow around a wedge of angle 2π ,

φ(r → ∞) ∝ r1/2w(θ ), (A9)

with r and θ indicating the polar coordinates. The different boundary conditions (A8) and (A9)
explain the differences between the exponent ε = 2/3 characterizing the self-similar solutions
reported in Refs. [35,66] and the corresponding value of ε which is imposed by Eq. (A8). Indeed,
here ε = 1/2 because, as pointed out above, δ = 2ε − 1 and, in addition, Eq. (A8) can only be
written in terms of the self-similar variables defined in (A7) if δ = 0. Since ε = 1/2, in the case
the numerical solution converged to a self-similar solution of the system of equations and boundary
conditions for sufficiently large values of τ > τ0, the characteristic length scale of the jets depicted
in Fig. 14 should depend on time as (τ − τ0)1/2, whereas velocities should depend on time as
(τ − τ0)−1/2, with these predictions also implying that, in the limit (τ − τ0) � 1 of interest here,
both C and the capillary term in Eq. (A5) are subdominant with respect to the inertial terms ∂φ/∂τ

and |∇φ|2/2.
In view of the previous analysis, here explore whether the different jet shapes depicted in Fig. 15

can be collapsed onto a single curve. For this purpose, we define the time-dependent functions
zjet (τ, β ) and rjet (τ, β ) illustrated in Fig. 6. Figure 16 shows that the time-dependent jet shapes
depicted in Fig. 15 do indeed collapse for over two decades in time onto a time-independent and
almost β-independent function when plotted in terms of the scaled radial and vertical coordinates
suggested by our previous analysis and defined as

χ = r

rjet (τ, β )
, and η = z − 
0(β )

zjet (τ, β ) − 
0(β )
, (A10)

with the values of 
0(β ) given in Fig. 10, where it is depicted that, indeed, zjet (τ, β ) − 
0(β ) ∝ τ 1/2,
d zjet/dτ ∝ τ−1/2, and rjet (τ, β ) ∝ τ 1/2.

The numerical results corresponding the case of a parabolic cavity shown in Fig. 11, have been
obtained using the same numerical code and the same boundary conditions as those detailed in this
Appendix, being the only difference that the equation for the initial shape of the interface is, in this
case, rs(z, τ = 0) = z2/2.
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FIG. 16. The spatiotemporal evolution of the jet shapes of the type shown in Fig. 15 collapse, along two
decades in time and for four different values of β, namely β = 10◦, 20◦, 30◦, and 40◦, onto the τ -independent
and almost β-independent function depicted in the figure, with χ and η defined in Eq. (A10). This function
for the self-similar shapes of the jets is compared in Fig. 5 with the numerical results obtained for the case of
bubble bursting jets emerging from the base of a truncated conical surface.

APPENDIX B: SOLUTION OF THE INTEGRAL EQUATION FOR � q

Equation (11) is solved integrating by parts, once we notice that the integrands in Eq. (11) can
be written, for z̄ > z̄0, as:

df /dz̄0

(z̄ − z̄0)2 = d

dz̄0

[
f

(z̄ − z̄0)2

]
− 2

f

(z̄ − z̄0)3 (B1)

and for z̄ < z̄0 as:

− df /dz̄0

(z̄ − z̄0)2 = −
{

d

dz̄0

[
f

(z̄ − z̄0)2

]
− 2

f

(z̄ − z̄0)3

}
. (B2)

Notice that

lim
γ→0

∫ z̄−γ

1

d

dz̄0

[
f

(z̄ − z̄0)2

]
dz̄0 = f (z̄)

γ 2
, (B3)

where we have taken into account that f (z̄ = 1) = 0. Moreover, notice that

lim
γ→0

∫ ∞

z̄+γ

− d

dz̄0

[
f

(z̄ − z̄0)2

]
dz̄0 = f (z̄)

γ 2
. (B4)

We now discretize f , which is assumed to be constant and of value f (z̄i) = fi along N panels of
constant width h, centered at z̄i = 1 + 3h/4 + (i − 1)h. Then, for i > j:∫ z̄ j+h/2

z̄ j−h/2
− 2 f j

(z̄i − z̄0)3 dz̄0 = − f j

[
1

(z̄i − z̄ j − h/2)2
− 1

(z̄i − z̄ j + h/2)2

]
, (B5)
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FIG. 17. The numerical values of −q(rs, vs ) = −rs(z, τ )vr (r = rs, z, τ ) calculated at two instants of time
for a value of the opening semiangle β = 5◦ are compared with q∞(1 + |� q|) (black continuous line) with
� q given in Fig. 8, finding good agreement between simulations and the theoretical prediction.

for i < j: ∫ z̄ j+h/2

z̄ j−h/2

2 f j

(z̄i − z̄0)3 dz̄0 = f j

[
1

(z̄i − z̄ j − h/2)2
− 1

(z̄i − z̄ j + h/2)2

]
, (B6)

whereas for i = j: ∫ z̄i−γ

z̄i−h/2
− 2 fi

(z̄i − z̄0)3 dz̄0 = − fi

[
1

γ 2
− 1

(h/2)2

]
and

∫ z̄i+h/2

z̄i+γ

2 fi

(z̄i − z̄0)3 dz̄0 = fi

[
− 1

γ 2
+ 1

(h/2)2

]
(B7)

For values z̄ > z̄N + h/2, with z̄N � 1 we impose mass conservation, namely that the flow rate
injected by the distribution of sources located at 0 � z̄ � 1 equals the flow rate through the free
interface; see Eq. (11): ∫ ∞

1
�qdz̄ =

∫ ∞

1

df

dz̄
dz̄ = f∞ = −1 (B8)

and, therefore, the integral in Eq. (11) for z̄ > z̄N + h/2 can be solved analytically to give:∫ ∞

z̄N +h/2

2 f∞
(z̄i − z̄0)3 dz̄0 = 1

(z̄i − z̄N − h/2)2 (B9)

The numerical code provided in the Supplemental Material [48] solves the integral equation (11)
using the results in Eqs. (B1)–(B9) and, once the function f is calculated solving the resulting linear
system of equations, the function � q is calculated as

� qi = � q(z̄i ) = fi+1 − fi

h
. (B10)

The results in Fig. 17 compare the values of the flow rate at the interface calculated numerically
as −q(rs, vs) = −rs(z, τ )vr (r = rs, z, τ ) for a value of the opening semiangle β = 5◦ with our
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prediction, q∞(1 + |� q|), at two different instants of time, finding good agreement between our
theory and the numerical results.
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