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Abstract
For integers k, n with k, n ≥ 1, the n-color weak Schur number WSk(n) is defined as
the least integer N , such that for every n-coloring of the integer interval [1, N ], there
exists a monochromatic solution x1, . . . , xk, xk+1 in that interval to the equation:

x1 + x2 + · · · + xk = xk+1,

with xi �= x j , when i �= j . In this paper, we obtain the exact values ofWS6(2) = 166,
WS7(2) = 253, WS3(3) = 94 and WS4(3) = 259 and we show new lower bounds
on n-color weak Schur number WSk(n) for n = 2, 3.

Keywords Schur numbers · Sum-free sets · Weak Schur numbers · Weakly sum-free
sets · n-coloring

Mathematics Subject Classification 05C55 · 05D10 · 05-04 · 05A17

1 Introduction

For integers a ≤ b, we shall denote [a, b] the integer interval consisting of all t ∈
N+ = {1, 2, . . . } such that a ≤ t ≤ b. A function
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� : [1, N ] −→ {c1, . . . , cn},

where c1, . . . , cn ∈ N+ represent different colors, is an n-coloring of the interval
[1, N ].

Given an n-coloring � and the equation x1 + · · · + xk = xk+1 in k + 1 variables,
we say that a solution x1, . . . , xk, xk+1 to the equation is monochromatic if and only
if �(x1) = �(x2) = · · · = �(xk+1).

For integers k, n with k, n ≥ 1, the n-color weak Schur number WSk(n) is defined
as the least integer N , such that for every n-coloring of the integer interval [1, N ],
there exists a monochromatic solution x1, . . . , xk, xk+1 in that interval to the equation:
x1+x2+· · ·+xk = xk+1,with xi �= x j when i �= j . Irwing [14] showed the existence
and obtained the following general upper bound:

WSk(n) ≤
[
1

2
(n!(k − 1)n(kn + 1)exp(

1

k − 1
) + k

k − 1

]
.

For k = 2, we have 1 + 315
n−1
5 ≤ WS2(n) ≤ [n!ne] + 1, the lower bound is due to

Sierpinski [20] and the upper bound to Bornsztein [5].

1.1 Schur numbers and weak Schur numbers

Aset A of integers is called sum-free if it contains no elements x1, x2, x3 ∈ A satisfying
x1 + x2 = x3 where x1, x2 need not be distinct.

Schur [19] in 1916 proved that, given a positive integer n, there exists a greatest
positive integer S2(n) = N with the property that the integer interval [1, N − 1] can
be partitioned into n sum-free sets. The numbers S2(n) are called Schur numbers. The
current knowledge on these numbers for 1 ≤ n ≤ 7 is given in Table 1.

Many generalizations of Schur numbers have appeared since their introduction.
Now, a set A of integers is called weakly sum-free if it contains no pairwise distinct
elements x1, x2, x3 ∈ A satisfying x1 + x2 = x3. We denote by WS2(n), the greatest
integer N , for which the integer interval [1, N − 1]. The exact value of S2(4) was
given by Baumert [2] and recently S2(5) has been obtained by Heule [13]. Finally, the
lower bounds on S2(6) and S2(7) were obtained by Fredricksen and Sweet [11] by
considering symmetric sum-free partitions. A set A of integers is said to be k-sum-free
if it contains no k+1 elements x1, x2, · · · , xk+1 ∈ A satisfying x1+· · ·+ xk = xk+1,
where xi , i = 1, · · · , k are not necessarily distinct. In 1933, Rado [15] gave the
following generalization: given two positive integers, n and k ≥ 2, there exists a
greatest positive integer, Sk(n) = N , such that the integer interval [1, N − 1] can be
partitioned into n sets which are k-sum-free. In 1966, Znám [22] established a lower

Table 1 The first few Schur
numbers S2(n)

n 1 2 3 4 5 6 7

S2(n) 2 5 14 45 161 ≥ 537 ≥ 1681
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Table 2 The first few weak Schur numbers WS2(n)

n 1 2 3 4 5 6 7 8 9

WS2(n) 3 9 24 67 ≥ 197 ≥ 583 ≥ 1741 ≥ 5202 ≥ 15597

bound on the numbers Sk(n):

Sk(n) ≥ k − 1

k
((k + 1)n − 1) + 1.

In 1982, Beutelspacher andBrestovansky [3] proved the equality for two k-sum-free
sets:

Sk(2) = k2 + k − 1, k ≥ 2.

In 2010 [18], the last author obtained the exact value of S3(3) = 43. Independently,
Ahmed and Schaal [1] in 2016 gave the values of Sk(3) for k = 3, 4, 5. In 2019, Boza
et al. [6] determined the exact formula of Sk(3) = k3 + 2k2 − 2 for all k ≥ 3, finding
an upper bound that coincides with the lower bound given by Znám [22].

The numbersWS2(n) are called theweak Schur numbers for the equation x1+x2 =
x3. The known weak Schur numbers are given in Table 2.

The current state of knowledge concerningWS2(n) is a bit confusing. The problem
seems to have been first considered in [21], which is Walker’s solution to Problem
E985 proposed a year earlier, in 1951, byMoser. Walker considered the cases n = 3, 4
and 5 and claimed the values WS2(3) = 24, WS2(4) = 67, and WS2(5) = 197.
Unfortunately, the short account written by Moser on Walker’s solution only gives
suitable partitions of [1, 23] for n = 3, and no details at all for the cases n = 4 and 5.
Walker’s claimed values of WS2(3) and WS2(4) were later confirmed by Blanchard,
Harary, and Reis using computers [4]. In 2012, the two last authors et al. [9] confirmed
the lower bound WS2(5) ≥ 197. In addition, a lower bound on WS2(6) was obtained
in [9] and later improved to WS2(6) ≥ 583 in [10]. The lower bounds for 7 ≤ n ≤ 9
were obtained [17] in 2015.

In terms of coloring, the WSk(n) is the least positive integer N such that for every
n-coloring of [1, N ],

� : [1, N ] −→ {c1, . . . , cn},

where c1, . . . , cn represent n different colors, there exists a monochromatic solution
to the equation x1 + · · · + xk = xk+1, such that �(x1) = · · · = �(xk) = �(xk+1)

where xi �= x j when i �= j .
In addition, for 2-coloring, the known weak Schur numbers WSk(2) are shown in

Table 3.
The exact values of WSk(2) for k = 3, 4 and the lower bounds were obtained in

[18], [7] and WS5(2) [8] in 2017.
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Table 3 The first few weak Schur numbers WSk (2)

k 2 3 4 5 6 7 8 9

WSk (2) 9 24 52 101 ≥ 156 ≥ 238 ≥ 344 ≥ 477

1.2 Main results

In Section 2, we determine a general lower bound on the 2-color weak Schur numbers
for the equation x1+· · ·+ xk = xk+1, with xi �= x j when i �= j , for k ≥ 5, improving
the lower bound given in [7].
Lemma 2.1 WSk(2) ≥ 1

2 (k
3 + 4k2 − 5k + 2) for any integer k ≥ 5.

In Section 3, we determine a general lower bound on WSk(3) improving the lower
bound given in [7].
Lemma 3.1 WSk(3) ≥ 1

2 (k
4 + 5k3 − k2 − 9k + 6) for any integer k ≥ 5.

Lemma3.2 WSk(3) ≥ 1
2 (k

4 + 5k3 − 8k + 4) for any integer k ≥ 8.
In Section 4, we obtain the exact values of the 2-color weak Schur number WS6(2)
and WS7(2). In addition, we determinate the exact values of the 3-color weak Schur
numbers WS3(3) and WS4(3).
Theorem4.2 WS6(2) = 166.
Theorem 4.6 WS7(2) = 253.
Theorem 4.9 WS3(3) = 94.
Theorem 4.12 WS4(3) = 259.

2 A general lower bound forWSk(2)

In terms of coloring, the weak Schur number WSk(2) is the least positive integer N
such that for every 2-coloring of [1, N ],

� : [1, N ] −→ {c1, c2},
where c1, c2 represent 2 different colors, there exists a monochromatic solution to the
equation x1 + x2 + · · · + xk = xk+1, such that �(x1) = · · · = �(xk) = �(xk+1)

where xi �= x j when i �= j .
In [7], a general lower bound of the weak Schur number WSk(2) was given, now

we show a new general lower bound that improves the previous one.

Lemma 2.1 For any integer k ≥ 5, we have

WSk(2) ≥ 1

2
(k3 + 4k2 − 5k + 2)

Proof Let � be a 2-coloring:

� : [1, 1
2
(k3 + 4k2 − 5k)] −→ {c1, c2},

where c1, c2 represent 2 different colors. Let Ai = �−1(ci ) for i = 1, 2, such that
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[
1,

1

2
(k3 + 4k2 − 5k)

]
= A1 � A2,

where{
A1 = {1} ∪ [ 12 (k2 + 3k), 1

2 (k
3 + 3k2 − 6k + 2)],

A2 = [2, 1
2 (k

2 + 3k − 2)] ∪ [ 12 (k3 + 3k2 − 6k + 4), 1
2 (k

3 + 4k2 − 5k)].

We show that the above partition of the interval [1, 1
2 (k

3+4k2−5k)] has nomonochro-
matic solution to the equation x1 + x2 + · · · + xk = xk+1. For that, it is sufficient to
prove that for every i , 1 ≤ i ≤ k, if x1, . . . , xk ∈ Ai with xi < x j when i < j, then
x1 + · · · + xk /∈ Ai .

• If x1, . . . , xk ∈ A1, then

k∑
i=1

xi ≥ 1 +
k−2∑
i=0

(
1

2
(k2 + 3k) + i) = 1

2
(k3 + 3k2 − 6k + 4)

>
1

2
(k3 + 3k2 − 6k + 2)

Hence
∑k

i=1 xi /∈ A1.

• If x1, . . . , xk ∈ A2, then

– If xk ≤ 1
2 (k

2 + 3k − 2), then

k∑
i=1

xi ≥
k−1∑
i=0

(2 + i) = 1

2
(k2 + 3k) >

1

2
(k2 + 3k − 2).

In addition, for k ≥ 5,

k∑
i=1

xi ≤
k−1∑
i=0

(
1

2
(k2 + 3k − 2) − i)

= 1

2
(k3 + 2k2 − k) <

1

2
(k3 + 3k2 − 6k + 4)

Hence
∑k

i=1 xi /∈ A2.

– If xk ≥ 1
2 (k

3 + 3k2 − 6k + 4), then

k∑
i=1

xi ≥
k−2∑
i=0

(2 + i) + 1

2
(k3 + 3k2 − 6k + 4)

= 1

2
(k3 + 4k2 − 5k + 2) >

1

2
(k3 + 4k2 − 5k)

Hence
∑k

i=1 xi /∈ A2.

Therefore, we obtain the lower bound. 	�
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Table 4 New lower bound of
weak Schur numbers WSk (2)

k 5 6 7 8 9 10

WSk (2) 101 ≥ 166 ≥ 253 ≥ 365 ≥ 505 ≥ 676

Table 5 Lower bounds weak
Schur numbers WSk (3)

k 2 3 4 5 6 7

WSk (3) 24 ≥ 94 ≥ 259 ≥ 571 ≥ 1096 ≥ 1912

With this general lower bound, we improve the results shown in Table 3. In addition,
in the Section 4, we will prove that these new lower bounds shown in Table 4 for
k = 6 and k = 7, are exact values.

3 A lower bound forWSk(3)

Applying the result given in [7], the lower bounds shown in Table 5were obtained.
In the next result, we improve the general lower bound of WSk(3) obtained in [7].

Lemma 3.1 For any integer k ≥ 5, we have

WSk(3) ≥ 1

2
(k4 + 5k3 − k2 − 9k + 6).

Proof We will show that he following partition of the interval

[1, 1
2
(k4 + 5k3 − k2 − 9k + 4)] = B1 � B2 � B3

has no monochromatic solution to the equation x1 + x2 + · · · + xk = xk+1 with
x1 < x2 < . . . < xk . Consider the following 3-coloring where A1 and A2 are the
same as used in the construction of the 2-coloring in Lemma 2.1.

⎧⎪⎨
⎪⎩

B1 = A1 ∪ [ 12 (k4 + 4k3 − 3k2 + 2k − 2), 1
2 (k

4 + 5k3 − k2 − 9k + 4)],
B2 = A2 ∪ [ 12 (k4 + 4k3 − 4k2 + k), 1

2 (k
4 + 4k3 − 3k2 + 2k − 4)],

B3 = [ 12 (k3 + 4k2 − 5k + 2), 1
2 (k

4 + 4k3 − 4k2 + k − 2)].

Since the above 3-coloring is an extension of 2-coloring given by Lemma 2.1, we just
have to try the following cases:

• Let x1, x2, . . . , xk ∈ B1, with x1 < x2 < · · · < xk .
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– If xk ∈ A1, by Lemma 2.1,
∑k

i=1 xi /∈ A1. Therefore,

k∑
i=1

xi ≤
k−1∑
i=0

(
1

2
(k3 + 3k2 − 6k + 2) − i)

= 1

2
(k4 + 3k3 − 7k2 + 3k)

<
1

2
(k4 + 4k3 − 3k2 + 2k − 2).

Hence,
∑k

i=1 xi /∈ B1.

– If xk ≥ 1
2 (k

4 + 4k3 − 3k2 + 2k − 2), then

k∑
i=1

xi ≥ 1 +
k−3∑
i=0

(
1

2
(k2 + 3k) + i) + 1

2
(k4 + 4k3 − 3k2 + 2k − 2)

= 1

2
(k4 + 5k3 − k2 − 9k + 6)

>
1

2
(k4 + 5k3 − k2 − 9k + 4).

Hence,
∑k

i=1 xi /∈ B1.

• Let x1, . . . , xk ∈ B2, with x1 < · · · < xk .

– If xk ∈ A2, then by Lemma 2.1,
∑k

i=1 xi /∈ A2. Therefore,

k∑
i=1

xi ≤
k−1∑
i=0

(
1

2
(k3 + 4k2 − 5k) − i) = 1

2
(k4 + 4k3 − 6k2 + k)

<
1

2
(k4 + 4k3 − 4k2 + k).

Hence,
∑k

i=1 xi /∈ B2.

– If xk ≥ 1
2 (k

4 + 4k3 − 4k2 + k), then

k∑
i=1

xi ≥
k−2∑
i=0

(2 + i) + 1

2
(k4 + 4k3 − 4k2 + k)

= 1

2
(k4 + 4k3 − 3k2 + 2k − 2)

>
1

2
(k4 + 4k3 − 3k2 + 2k − 4).

Hence,
∑k

i=1 xi /∈ B2.
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Table 6 New lower bound of
weak Schur numbers WSk (3)

k 2 3 4 5 6 7

WSk (3) 24 ≥ 94 ≥ 259 ≥ 593 ≥ 1146 ≥ 2005

• Let x1, . . . , xk ∈ B3, with x1 < · · · < xk . Then

k∑
i=1

xi ≥
k−1∑
i=0

(
1

2
(k3 + 4k2 − 5k + 2) + i)

= 1

2
(k4 + 4k3 − 4k2 + k)

>
1

2
(k4 + 4k3 − 4k2 + k − 2).

Hence,
∑k

i=1 xi /∈ B3.

Therefore, we obtain the desired lower bound.

With this general lower bound,we improve the results shown in Table 5. In addition,
in Section 4, we will prove that these new lower bounds shown in Table 6 for k = 3
and k = 4 are exact values.

In the next result, we improve the lower bounds of Lemma 3.1 for any integer k ≥ 8.

Lemma 3.2 For any integer k ≥ 8, we have

WSk(3) ≥ 1

2
(k4 + 5k3 − 8k + 4).

Proof The following partition of the interval

[1, 1
2
(k4 + 5k3 − 8k + 2)] = C1 � C2 � C3

has no monochromatic solution to the equation x1 + x2 + · · · + xk = xk+1 with
x1 < x2 < . . . < xk .

⎧⎨
⎩
C1 = B1,

C2 = B2 ∪ [ 12 (k4 + 5k3 − k2 − 9k + 6), 1
2 (k

4 + 5k3 − 8k + 2)],
C3 = B3.

This 3-coloring is an extension of 3-coloring given in Lemma 3.1, so we just have
to try the following cases:

• Let x1, x2, . . . , xk ∈ C1, with x1 < x2 < · · · < xk , by Lemma 3.1,
∑k

i=1 xi /∈
B1 = C1.
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• Let x1, x2, . . . , xk ∈ C2, with x1 < x2 < · · · < xk , by Lemma 3.1,
∑k

i=1 xi /∈ B2.

We only need to prove that

k∑
i=1

xi /∈ [1
2
(k4 + 5k3 − k2 − 9k + 6),

1

2
(k4 + 5k3 − 8k + 2)].

We consider four cases:

– If xk ≤ 1
2 (k

3 + 4k2 − 5k), then

k∑
i=1

xi ≤
k−1∑
i=0

(
1

2
(k3 + 4k2 − 5k) − i

)
= 1

2
(k4 + 4k3 − 6k2 + k)

<
1

2
(k4 + 5k3 − k2 − 9k + 6).

Hence
∑k

i=1 xi /∈ C2.

– If xk ∈ [ 12 (k4 + 4k3 − 4k2 + k), 1
2 (k

4 + 4k3 − 3k2 + 2k − 4)] and xk−1 ≤
1
2 (k

2 + 3k − 2), then for k ≥ 8,

k∑
i=1

xi ≤
k−2∑
i=0

(
1

2
(k3 + 3k − 2) − i) + 1

2
(k4 + 4k3 − 3k2 + 2k − 4)

= 1

2
(k4 + 5k3 − 2k2 − 4) <

1

2
(k4 + 5k3 − k2 − 9k + 6).

Hence
∑k

i=1 xi /∈ C2.

– If xk ∈ [ 12 (k4 + 4k3 − 4k2 + k), 1
2 (k

4 + 4k3 − 3k2 + 2k − 4)] and xk−1 ≥
1
2 (k

3 + 3k2 − 6k + 4), then

k∑
i=1

xi ≥
k−3∑
i=0

(2 + i) + 1

2
(k3 + 3k2 − 6k + 4) +

1

2
(k4 + 4k3 − 4k2 + k)

= 1

2
(k4 + 5k3 − 6k + 2) >

1

2
(k4 + 5k3 − 8k + 2).

Hence
∑k

i=1 xi /∈ C2.

– If xk ≥ 1
2 (k

4 + 5k3 − k2 − 9k + 6), then

k∑
i=1

xi ≥
k−2∑
i=0

(2 + i) + 1

2
(k4 + 5k3 − k2 − 9k + 6)

= 1

2
(k4 + 5k3 − 8k + 4) >

1

2
(k4 + 5k3 − 8k + 2)
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Table 7 Lower bounds of weak Schur numbers WSk (3)

k 8 9 10 11 12

Lemma 3.1 ≥ 3263 ≥ 5025 ≥ 7408 ≥ 10541 ≥ 14565

Lemma 3.2 ≥ 3298 ≥ 5069 ≥ 7462 ≥ 10606 ≥ 14642

Hence,
∑k

i=1 xi /∈ C2.

• Let x1, . . . , xk ∈ C3, with x1 < · · · < xk , by Lemma 3.1,
∑k

i=1 xi /∈ B3 = C3.

Therefore,we obtain the desired improved lower bound.

Applying Lemmas 3.1 and 3.2, the following lower bounds are shown in Table 7.

4 Computer-assisted proofs for the exact values ofWS6(2),WS7(2),
WS3(3) andWS4(3)

4.1 The exact value ofWS6(2)

We shall prove that WS6(2) = 166. By Lemma 2.1,we have WS6(2) ≥ 166.
To prove that the equation x1 + · · · + x6 = x7 has a monochromatic solution for

every 2-coloring of the integer interval [1, 166], it is necessary to show the following
result.

Lemma 4.1 The set Y = {yn}42n=1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
16, 18, 21, 22, 23, 26, 27, 28, 29, 30, 31, 35, 36, 40, 41, 46, 48, 51, 56, 61, 66, 106,
141, 146, 151, 156, 161, 166} satisfies:
1. We have Y ⊆ [1, 166].
2. For every partition of Y into two subsets A1, A2, some Ai contains a monochro-

matic solution of x1 + x2 + x3 + x4 + x5 + x6 = x7, with xi �= x j , if
i �= j .

Proof 1. This is trivial.
2. We have checked the result transforming the problem into a Boolean satisfiability

problem and solving it with a SAT solver [12].
Let � be a 2-coloring of [1, 166]:

� : [1, 166] −→ {c1, c2},

For any {yn} ∈ Y , we consider a Boolean variable φ defined on [1, 42] as follows:

φ(n) =
{
True i f �(yn) = c1,
False i f �(yn) = c2.

LetS = {(ya, yb, yc, yd , ye, y f , yg) ∈ Y7 | ya+yb+yc+yd+ye+y f = yg,with a <

b < c < d < e < f }.
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For any s = (ya, yb, yc, yd , ye, y f , yg) ∈ S, we consider two clauses:

p(s) = (φ(a) ∨ φ(b) ∨ φ(c) ∨ φ(d) ∨ φ(e) ∨ φ( f ) ∨ φ(g)) ;
q(s) = (¬φ(a) ∨ ¬φ(b) ∨ ¬φ(c) ∨ ¬φ(d) ∨ ¬φ(e) ∨ ¬φ( f ) ∨ ¬φ(g)) .

Then, p(s) is satisfiable if and only if �(a) �= c1, �(b) �= c1, �(c) �= c1, �(d) �= c1,
�(e) �= c1, �( f ) �= c1 or �(g) �= c1, i.e., � does not induce in s a monochromatic
solution on c1 of the equation x1+· · ·+x6 = x7.Analogously, q(s) is satisfiable if and
only if� does not induce in s amonochromatic solution of the equation x1+· · ·+x6 =
x7 on c2.

Let C =
∧
s∈S

(p(s) ∧ q(s)).

Clearly C is satisfiable if and only if� does not induce onY a monochromatic solution
of the equation x1 + · · · + x6 = x7. The SAT-Solver shows that C is not satisfiable,
hence for every 2-coloring of the set,Y has a monochromatic solution to the equation
x1 + · · · + x6 = x7. 	�
With this result, we have tested the upper bound on WS6(2).
Therefore, we conclude with the following result:

Theorem 4.2 WS6(2) = 166.

4.2 The exact value ofWS7(2)

We shall prove that WS7(2) = 253. By Lemma 2.1, we have WS7(2) ≥ 253.
We have to prove that the equation x1 + · · · + x7 = x8 has a monochromatic

solution for every 2-coloring of the interval [1, 253]. We will suppose the opposite:
for every 2-coloring � : [1, 253] −→ {c1, c2} without monochromatic solution, we
can consider without loss of generality �(61) = c1. Let D1 = {un}73n=1 = (6[0, 42]+
{1}) ∪ (6{0, 1, 4, 8, 16, 32} + {2, 3, 4, 5, 6}) ⊂ [1, 253] and F1 = {43, 49, 55, 61, 67,
73, 79, 85, 91, 97, 103, 109, 115, 133, 139, 145, 151, 157, 163, 169, 175} ⊂ D1.

The following two lemmas can be proved transforming the problem into a Boolean
satisfiability problem and solving it with a SAT solver [12].

Lemma 4.3 For every 2-coloring � of D1 without monochromatic solution, we have
�(F1) = {c1}.
Proof Let � be a 2-coloring of D1:

� : D1 −→ {c1, c2},

such that �(61) = c1. For any {un} ∈ D1, we consider a Boolean variable φ defined
on [1, 73] as follows:

φ(n) =
{
True i f �(un) = c1,
False i f �(un) = c2.
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Let S = {(ua, ub, uc, ud , ue, u f , ug, uh) ∈ D8
1 | ua +ub +uc +ud +ue +u f +ug =

uh,with a < b < c < d < e < f < g}.
For any s = (ua, ub, uc, ud , ue, u f , ug, uh) ∈ S, we consider two clauses:

p(s) = (φ(a) ∨ φ(b) ∨ φ(c) ∨ φ(d) ∨ φ(e) ∨ φ( f ) ∨ φ(g) ∨ φ(h)) ;
q(s) = (¬φ(a) ∨ ¬φ(b) ∨ ¬φ(c) ∨ ¬φ(d) ∨ ¬φ(e) ∨ ¬φ( f ) ∨ ¬φ(g) ∨ ¬φ(h)) .

Then, p(s) is satisfiable if and only if �(a) �= c1, �(b) �= c1, �(c) �= c1, �(d) �= c1,
�(e) �= c1, �( f ) �= c1, or �(g) �= c1 or �(h) �= c1, i.e., � does not induce in s
a monochromatic solution on c1 of the equation x1 + · · · + x7 = x8. Analogously,
q(s) satisfiable if and only if � does not induce in s a monochromatic solution of the
equation x1 + · · · + x7 = x8 on c2.

Let C =
∧
s∈S

(p(s) ∧ q(s)).

Clearly C is satisfiable if and only if � does not induce on D1 a monochromatic
solution of the equation x1 + · · · + x7 = x8. The SAT-Solver shows that C is not
satisfiable, hence we have the result. 	�

Trivially we have,

Corollary 4.4 For every 2-coloring � of [1, 253] without monochromatic solution, we
have �(F1) = {c1}.

Let D2 = {vn}78n=1 = (6[0, 42] + {1}) ∪ (6{0, 1, 2, 5, 6, 36, 37} + {2, 3, 4, 5, 6}).
We have [1, 8] ∪ F1 ∪ {217} ⊂ D2 ⊂ [1, 253].
Lemma 4.5 For every 2-coloring � of D2 without monochromatic solution such that
�(F1) = {c1}, we have �(217) = c1 and �([1, 8]) = {c2}.
Proof Let � be a 2-coloring of D1:

� : D1 −→ {c1, c2},

such that�(F1) = {c1}. For any {vn} ∈ D2, we consider a Boolean variable φ defined
on [1, 78] as follows:

φ(n) =
{
True i f �(vn) = c1,
False i f �(vn) = c2.

Let S = {(ua, ub, uc, ud , ue, u f , ug, uh) ∈ D8
2 | ua +ub +uc +ud +ue +u f +ug =

uh,with a < b < c < d < e < f < g}.
For any s = (ua, ub, uc, ud , ue, u f , ug, uh) ∈ S, we consider two clauses:

p(s) = (φ(a) ∨ φ(b) ∨ φ(c) ∨ φ(d) ∨ φ(e) ∨ φ( f ) ∨ φ(g) ∨ φ(h)) ;
q(s) = (¬φ(a) ∨ ¬φ(b) ∨ ¬φ(c) ∨ ¬φ(d) ∨ ¬φ(e) ∨ ¬φ( f ) ∨ ¬φ(g) ∨ ¬φ(h)) .
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Then, p(s) is satisfiable if and only if �(a) �= c1, �(b) �= c1, �(c) �= c1, �(d) �= c1,
�(e) �= c1, �( f ) �= c1, or �(g) �= c1 or �(h) �= c1, i.e., � does not induce in s
a monochromatic solution on c1 of the equation x1 + · · · + x7 = x8. Analogously,
q(s) satisfiable if and only if � does not induce in s a monochromatic solution of the
equation x1 + · · · + x7 = x8 on c2.

Let C =
∧
s∈S

(p(s) ∧ q(s)).

Clearly C is satisfiable if and only if � does not induce on D2 a monochromatic
solution of the equation x1 + · · · + x7 = x8. The SAT-Solver shows that C is not
satisfiable, hence we have the result. 	�

Now, we can prove:

Theorem 4.6 WS7(2) = 253.

Proof Let � be a 2-coloring of [1, 253] without monochromatic solution. Then
�(217) = c1 and �([1, 8]) = {c2}. Therefore, ∑8

i=1 i = 36 − n with i �= n,
which implies �([28, 34]) = {c1} and 217 = 28 + 29 + 30 + 31 + 32 + 33 + 34.
Therefore �(217) �= c1, contradicting Lemma 4.5. 	�

4.3 The exact value ofWS3(3)

The weak Schur number WS3(3) is the least positive integer N such that for every
3-coloring of [1, N ],

� : [1, N ] −→ {c1, c2, c3},

where c1, c2, c3 represent 3 different colors, there exists a monochromatic solution to
the equation x1 + x2 + x3 = x4, such that �(x1) = · · · = �(x3) = �(x4) where
xi �= x j when i �= j .

We shall prove that WS3(3) = 94. Let us first show a lower bound.

Lemma 4.7 WS3(3) ≥ 94.

Proof It is easy to verify that the 3-coloring

� : [1, 93] −→ {c1, c2, c3}

defined by

�(x) =
⎧⎨
⎩
c1 if x ∈ [1, 5] ∪ [21, 23] ∪ [75, 77] ∪ [91, 93]
c2 if x ∈ [6, 20] ∪ [78, 90]
c3 if x ∈ [24, 74]

has no monochromatic solution to the equation x1 + x2 + x3 = x4 such that xi �= x j
when i �= j . 	�
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To prove that the equation x1 + x2 + x3 = x4 has a monochromatic solution for
every 3-coloring of the integer interval [1, 94], it is necessary to prove the following
result.

Lemma 4.8 The set Y = {yn}51n=1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 38, 39, 40,
42, 44, 45, 52, 58, 64, 65, 66, 72, 75, 78, 82, 91, 94} satisfies:
1. We have Y ⊆ [1, 94].
2. For every partition of Y into three subsets A1, A2, A3, some Ai contains a

monochromatic solution of x1 + x2 + x3 = x4, xi �= x j , with i �= j .

Proof 1. This is trivial.
2. We have checked the result transforming the problem into a Boolean satisfiability

problem and solving it with a SAT solver [12].
Let � be a 3-coloring of [1, 94]:

� : [1, 94] −→ {c1, c2, c3},
For any {yn} ∈ Y , we consider two Boolean variables φ and ψ defined on [1, 51]

as follows:

φ(n) =
{
True i f �(yn) = c1 or c2,
False i f �(yn) = c3.

ψ(n) =
{
True i f �(yn) = c1 or c3,
False i f �(yn) = c2.

Thus, for any n ∈ [1, 51] we have that φ(n) is True or ψ(n) is True. Therefore,
D = ∧

1≤n≤51(φ(n) ∨ ψ(n)) is satisfiable.
Let S = {(ya, yb, yc, yd) ∈ Y4 | ya + yb + yc = yd ,with a < b < c}.

For any s = (ya, yb, yc, yd) ∈ S, we consider three clauses:

p(s) = (¬φ(a) ∨ ¬ψ(a) ∨ ¬φ(b) ∨ ¬ψ(b) ∨ ¬φ(c) ∨ ¬ψ(c) ∨ ¬φ(d) ∨ ¬ψ(d)) ;
q(s) = (¬φ(a) ∨ ψ(a) ∨ ¬φ(b) ∨ ψ(b) ∨ ¬φ(c) ∨ ψ(c) ∨ ¬φ(d) ∨ ψ(d)) ;
r(s) = (φ(a) ∨ φ(b) ∨ φ(c) ∨ φ(d)) .

Then, p(s) is satisfiable if and only if �(a) �= c1, �(b) �= c1, �(c) �= c1 or �(d) �=
c1, i.e., � does not induce in s a monochromatic solution on c1 of the equation
x1 + x2 + x3 = x4. Analogously, q(s) or r(s) is satisfiable if and only if � does not
induce in s a monochromatic solution of the equation x1 + x2 + x3 = x4 on c2 or c3,
respectively.

Let C =
∧
s∈S

(p(s) ∧ q(s) ∧ r(s)).

Clearly D ∧ C is satisfiable if and only if � does not induce on Y a monochromatic
solution of the equation x1 + x2 + x3 = x4. The SAT-Solver shows that D ∧ C is not
satisfiable, hence WS3(3) ≤ 94.
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With this result, we have tested the upper bound on WS3(3).

Therefore, we conclude with the following result:

Theorem 4.9 WS3(3) = 94.

4.4 The exact value ofWS4(3)

The weak Schur number WS4(3) is the least positive integer N such that for every
3-coloring of [1, N ],

� : [1, N ] −→ {c1, c2, c3},

where c1, c2, c3 represent 3 different colors, there exists a monochromatic solution to
the equation x1 + x2 +· · ·+ x4 = x5, such that�(x1) = · · · = �(x4) = �(x5)where
xi �= x j when i �= j .

We shall prove that WS4(3) = 259. Let us first show a lower bound.

Lemma 4.10 WS4(3) ≥ 259.

Proof It is easy to verify that the 3-coloring

� : [1, 258] −→ {c1, c2, c3}

defined by �(x) =
⎧⎨
⎩
c1 if x ∈ [1, 9] ∪ [46, 51] ∪ [214, 219] ∪ [253, 258]
c2 if x ∈ [10, 45] ∪ [220, 252]
c3 if x ∈ [52, 213]

has no monochromatic solution to the equation x1 + x2 + x3 + x4 = x5 such that
xi �= x j when i �= j . 	�

To prove that the equation x1+x2+x3+x4 = x5 has a monochromatic solution for
every 3-coloring of the integer interval [1, 259], it is necessary to prove the following
result.

Lemma 4.11 The set Z = {zn}86n=1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 34, 42, 43, 44, 46, 47, 49, 52,
53, 54, 55, 56, 57, 58, 59, 61, 64, 65, 66, 67, 68, 70, 73, 74, 76, 78, 79, 85, 86, 88, 91,
99, 103, 106, 109, 115, 118, 124, 130, 139, 169, 190, 199, 202, 208, 211, 214, 217,
220, 223, 226, 229, 235, 238, 250, 253, 259} satisfies:
1. We have Z ⊆ [1, 259].
2. For every partition of Z into three subsets A1, A2, A3, some Ai contains a

monochromatic solution of x1 + x2 + x3 + x4 = x5, xi �= x j , with i �= j .

Proof 1. This is trivial.
2. We have checked the result transforming the problem into a Boolean satisfiability

problem and solving it with a SAT solver [12].
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Let � be a 3-coloring of [1, 259]:

� : [1, 259] −→ {c1, c2, c3},

For any {zn} ∈ Z , we consider two Boolean variables φ and ψ defined on [1, 86]
as follows:

φ(n) =
{
True i f �(zn) = c1 or c2,
False i f �(zn) = c3.

ψ(n) =
{
True i f �(zn) = c1 or c3,
False i f �(zn) = c2.

Thus, for any n ∈ [1, 86],we have that φ(n) is True or ψ(n) is True. Therefore,
D = ∧

1≤n≤86(φ(n) ∨ ψ(n)) is satisfiable.
Let S = {(za, zb, zc, zd , ze) ∈ Z5 | za + zb + zc + zd = ze,with a < b < c < d}.

For any s = (za, zb, zc, zd , ze) ∈ S, we consider three clauses:

p(s) = (¬φ(a) ∨ ¬ψ(a) ∨ ¬φ(b) ∨ ¬ψ(b) ∨ ¬φ(c)

∨¬ψ(c) ∨ ¬φ(d) ∨ ¬ψ(d) ∨ ¬φ(e) ∨ ¬ψ(e)) ;
q(s) = (¬φ(a) ∨ ψ(a) ∨ ¬φ(b) ∨ ψ(b) ∨ ¬φ(c)

∨ψ(c) ∨ ¬φ(d) ∨ ψ(d) ∨ ¬φ(e) ∨ ψ(e)) ;
r(s) = (φ(a) ∨ φ(b) ∨ φ(c) ∨ φ(d) ∨ φ(e)) .

Then, p(s) is satisfiable if and only if �(a) �= c1, �(b) �= c1, �(c) �= c1, �(d) �= c1
or �(e) �= c1, i.e., � does not induce in s a monochromatic solution on c1 of the
equation x1 + x2 + x3 + x4 = x5. Analogously, q(s) or r(s) is satisfiable if and only if
� does not induce in s amonochromatic solution of the equation x1+x2+x3+x4 = x5
on c2 or c3, respectively.

Let C =
∧
s∈S

(p(s) ∧ q(s) ∧ r(s)).

Clearly D ∧ C is satisfiable if and only if � does not induce on Z a monochromatic
solution of the equation x1 + x2 + x3 + x4 = x5. The SAT-Solver shows that D ∧ C
is not satisfiable, hence WS4(3) ≤ 259. 	�

With this result, we have verified the upper bound for WS4(3).
Therefore, we obtain the following result:

Theorem 4.12 WS4(3) = 259.
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