Exact values and lower bounds on the n-color weak Schur numbers for $n=2,3$

T. Ahmed ${ }^{1} \cdot$ L. Boza ${ }^{2} \cdot$ M. P. Revuelta ${ }^{2}$ (D) M. I. Sanz ${ }^{2}$

Received: 26 August 2019 / Accepted: 2 June 2023 / Published online: 23 August 2023
© The Author(s) 2023

Abstract

For integers k, n with $k, n \geq 1$, the n-color weak Schur number $W S_{k}(n)$ is defined as the least integer N, such that for every n-coloring of the integer interval $[1, N]$, there exists a monochromatic solution $x_{1}, \ldots, x_{k}, x_{k+1}$ in that interval to the equation:

$$
x_{1}+x_{2}+\cdots+x_{k}=x_{k+1},
$$

with $x_{i} \neq x_{j}$, when $i \neq j$. In this paper, we obtain the exact values of $W S_{6}(2)=166$, $W S_{7}(2)=253, W S_{3}(3)=94$ and $W S_{4}(3)=259$ and we show new lower bounds on n-color weak Schur number $W S_{k}(n)$ for $n=2,3$.

Keywords Schur numbers • Sum-free sets • Weak Schur numbers • Weakly sum-free sets $\cdot n$-coloring

Mathematics Subject Classification 05C55 • 05D10 • 05-04 • 05A17

1 Introduction

For integers $a \leq b$, we shall denote $[a, b]$ the integer interval consisting of all $t \in$ $\mathbb{N}_{+}=\{1,2, \ldots\}$ such that $a \leq t \leq b$. A function

[^0]$$
\Delta:[1, N] \longrightarrow\left\{c_{1}, \ldots, c_{n}\right\}
$$
where $c_{1}, \ldots, c_{n} \in \mathbb{N}_{+}$represent different colors, is an n-coloring of the interval $[1, N]$.

Given an n-coloring Δ and the equation $x_{1}+\cdots+x_{k}=x_{k+1}$ in $k+1$ variables, we say that a solution $x_{1}, \ldots, x_{k}, x_{k+1}$ to the equation is monochromatic if and only if $\Delta\left(x_{1}\right)=\Delta\left(x_{2}\right)=\cdots=\Delta\left(x_{k+1}\right)$.

For integers k, n with $k, n \geq 1$, the n-color weak Schur number $W S_{k}(n)$ is defined as the least integer N, such that for every n-coloring of the integer interval $[1, N]$, there exists a monochromatic solution $x_{1}, \ldots, x_{k}, x_{k+1}$ in that interval to the equation: $x_{1}+x_{2}+\cdots+x_{k}=x_{k+1}$, with $x_{i} \neq x_{j}$ when $i \neq j$. Irwing [14] showed the existence and obtained the following general upper bound:

$$
W S_{k}(n) \leq\left[\frac{1}{2}\left(n!(k-1)^{n}(k n+1) \exp \left(\frac{1}{k-1}\right)+\frac{k}{k-1}\right] .\right.
$$

For $k=2$, we have $1+315^{\frac{n-1}{5}} \leq W S_{2}(n) \leq[n!n e]+1$, the lower bound is due to Sierpinski [20] and the upper bound to Bornsztein [5].

1.1 Schur numbers and weak Schur numbers

A set A of integers is called sum-free if it contains no elements $x_{1}, x_{2}, x_{3} \in A$ satisfying $x_{1}+x_{2}=x_{3}$ where x_{1}, x_{2} need not be distinct.

Schur [19] in 1916 proved that, given a positive integer n, there exists a greatest positive integer $S_{2}(n)=N$ with the property that the integer interval $[1, N-1]$ can be partitioned into n sum-free sets. The numbers $S_{2}(n)$ are called Schur numbers. The current knowledge on these numbers for $1 \leq n \leq 7$ is given in Table 1 .

Many generalizations of Schur numbers have appeared since their introduction. Now, a set A of integers is called weakly sum-free if it contains no pairwise distinct elements $x_{1}, x_{2}, x_{3} \in A$ satisfying $x_{1}+x_{2}=x_{3}$. We denote by $W S_{2}(n)$, the greatest integer N, for which the integer interval $[1, N-1]$. The exact value of $S_{2}(4)$ was given by Baumert [2] and recently $S_{2}(5)$ has been obtained by Heule [13]. Finally, the lower bounds on $S_{2}(6)$ and $S_{2}(7)$ were obtained by Fredricksen and Sweet [11] by considering symmetric sum-free partitions. A set A of integers is said to be k-sum-free if it contains no $k+1$ elements $x_{1}, x_{2}, \cdots, x_{k+1} \in A$ satisfying $x_{1}+\cdots+x_{k}=x_{k+1}$, where $x_{i}, i=1, \cdots, k$ are not necessarily distinct. In 1933, Rado [15] gave the following generalization: given two positive integers, n and $k \geq 2$, there exists a greatest positive integer, $S_{k}(n)=N$, such that the integer interval [1, $N-1$] can be partitioned into n sets which are k-sum-free. In 1966, Znám [22] established a lower

Table 1 The first few Schur numbers $S_{2}(n)$

n	1	2	3	4	5	6	7
$S_{2}(n)$	2	5	14	45	161	≥ 537	≥ 1681

Table 2 The first few weak Schur numbers $W S_{2}(n)$

n	1	2	3	4	5	6	7	8	9
$W S_{2}(n)$	3	9	24	67	≥ 197	≥ 583	≥ 1741	≥ 5202	≥ 15597

bound on the numbers $S_{k}(n)$:

$$
S_{k}(n) \geq \frac{k-1}{k}\left((k+1)^{n}-1\right)+1 .
$$

In 1982, Beutelspacher and Brestovansky [3] proved the equality for two k-sum-free sets:

$$
S_{k}(2)=k^{2}+k-1, k \geq 2
$$

In 2010 [18], the last author obtained the exact value of $S_{3}(3)=43$. Independently, Ahmed and Schaal [1] in 2016 gave the values of $S_{k}(3)$ for $k=3,4$, 5. In 2019, Boza et al. [6] determined the exact formula of $S_{k}(3)=k^{3}+2 k^{2}-2$ for all $k \geq 3$, finding an upper bound that coincides with the lower bound given by Znám [22].

The numbers $W S_{2}(n)$ are called the weak Schur numbers for the equation $x_{1}+x_{2}=$ x_{3}. The known weak Schur numbers are given in Table 2.

The current state of knowledge concerning $W S_{2}(n)$ is a bit confusing. The problem seems to have been first considered in [21], which is Walker's solution to Problem E985 proposed a year earlier, in 1951, by Moser. Walker considered the cases $n=3,4$ and 5 and claimed the values $W S_{2}(3)=24, W S_{2}(4)=67$, and $W S_{2}(5)=197$. Unfortunately, the short account written by Moser on Walker's solution only gives suitable partitions of $[1,23]$ for $n=3$, and no details at all for the cases $n=4$ and 5 . Walker's claimed values of $W S_{2}(3)$ and $W S_{2}(4)$ were later confirmed by Blanchard, Harary, and Reis using computers [4]. In 2012, the two last authors et al. [9] confirmed the lower bound $W S_{2}(5) \geq 197$. In addition, a lower bound on $W S_{2}(6)$ was obtained in [9] and later improved to $W S_{2}(6) \geq 583$ in [10]. The lower bounds for $7 \leq n \leq 9$ were obtained [17] in 2015.

In terms of coloring, the $W S_{k}(n)$ is the least positive integer N such that for every n-coloring of $[1, N]$,

$$
\Delta:[1, N] \longrightarrow\left\{c_{1}, \ldots, c_{n}\right\}
$$

where c_{1}, \ldots, c_{n} represent n different colors, there exists a monochromatic solution to the equation $x_{1}+\cdots+x_{k}=x_{k+1}$, such that $\Delta\left(x_{1}\right)=\cdots=\Delta\left(x_{k}\right)=\Delta\left(x_{k+1}\right)$ where $x_{i} \neq x_{j}$ when $i \neq j$.

In addition, for 2-coloring, the known weak Schur numbers $W S_{k}(2)$ are shown in Table 3.

The exact values of $W S_{k}(2)$ for $k=3,4$ and the lower bounds were obtained in [18], [7] and $W S_{5}(2)$ [8] in 2017.

Table 3 The first few weak Schur numbers $W S_{k}(2)$

k	2	3	4	5	6	7	8	9
$W S_{k}(2)$	9	24	52	101	≥ 156	≥ 238	≥ 344	≥ 477

1.2 Main results

In Section 2, we determine a general lower bound on the 2-color weak Schur numbers for the equation $x_{1}+\cdots+x_{k}=x_{k+1}$, with $x_{i} \neq x_{j}$ when $i \neq j$, for $k \geq 5$, improving the lower bound given in [7].
Lemma 2.1 $W S_{k}(2) \geq \frac{1}{2}\left(k^{3}+4 k^{2}-5 k+2\right)$ for any integer $k \geq 5$.
In Section 3, we determine a general lower bound on $W S_{k}(3)$ improving the lower bound given in [7].
Lemma 3.1 $W S_{k}(3) \geq \frac{1}{2}\left(k^{4}+5 k^{3}-k^{2}-9 k+6\right)$ for any integer $k \geq 5$.
Lemma3.2 $W S_{k}(3) \geq \frac{1}{2}\left(k^{4}+5 k^{3}-8 k+4\right)$ for any integer $k \geq 8$.
In Section 4, we obtain the exact values of the 2-color weak Schur number $W S_{6}(2)$ and $W S_{7}(2)$. In addition, we determinate the exact values of the 3-color weak Schur numbers $W S_{3}(3)$ and $W S_{4}(3)$.
Theorem4.2 $W S_{6}(2)=166$.
Theorem 4.6 WS $\mathrm{WS}_{7}(2)=253$.
Theorem 4.9 $W S_{3}(3)=94$.
Theorem 4.12 $W S_{4}(3)=259$.

2 A general lower bound for $W S_{k}(2)$

In terms of coloring, the weak Schur number $W S_{k}(2)$ is the least positive integer N such that for every 2 -coloring of $[1, N]$,

$$
\Delta:[1, N] \longrightarrow\left\{c_{1}, c_{2}\right\}
$$

where c_{1}, c_{2} represent 2 different colors, there exists a monochromatic solution to the equation $x_{1}+x_{2}+\cdots+x_{k}=x_{k+1}$, such that $\Delta\left(x_{1}\right)=\cdots=\Delta\left(x_{k}\right)=\Delta\left(x_{k+1}\right)$ where $x_{i} \neq x_{j}$ when $i \neq j$.

In [7], a general lower bound of the weak Schur number $W S_{k}(2)$ was given, now we show a new general lower bound that improves the previous one.

Lemma 2.1 For any integer $k \geq 5$, we have

$$
W S_{k}(2) \geq \frac{1}{2}\left(k^{3}+4 k^{2}-5 k+2\right)
$$

Proof Let Δ be a 2-coloring:

$$
\Delta:\left[1, \frac{1}{2}\left(k^{3}+4 k^{2}-5 k\right)\right] \longrightarrow\left\{c_{1}, c_{2}\right\}
$$

where c_{1}, c_{2} represent 2 different colors. Let $A_{i}=\Delta^{-1}\left(c_{i}\right)$ for $i=1,2$, such that

$$
\left[1, \frac{1}{2}\left(k^{3}+4 k^{2}-5 k\right)\right]=A_{1} \sqcup A_{2},
$$

where

$$
\left\{\begin{array}{l}
A_{1}=\{1\} \cup\left[\frac{1}{2}\left(k^{2}+3 k\right), \frac{1}{2}\left(k^{3}+3 k^{2}-6 k+2\right)\right], \\
A_{2}=\left[2, \frac{1}{2}\left(k^{2}+3 k-2\right)\right] \cup\left[\frac{1}{2}\left(k^{3}+3 k^{2}-6 k+4\right), \frac{1}{2}\left(k^{3}+4 k^{2}-5 k\right)\right] .
\end{array}\right.
$$

We show that the above partition of the interval $\left[1, \frac{1}{2}\left(k^{3}+4 k^{2}-5 k\right)\right]$ has no monochromatic solution to the equation $x_{1}+x_{2}+\cdots+x_{k}=x_{k+1}$. For that, it is sufficient to prove that for every $i, 1 \leq i \leq k$, if $x_{1}, \ldots, x_{k} \in A_{i}$ with $x_{i}<x_{j}$ when $i<j$, then $x_{1}+\cdots+x_{k} \notin A_{i}$.

- If $x_{1}, \ldots, x_{k} \in A_{1}$, then

$$
\begin{aligned}
\sum_{i=1}^{k} x_{i} & \geq 1+\sum_{i=0}^{k-2}\left(\frac{1}{2}\left(k^{2}+3 k\right)+i\right)=\frac{1}{2}\left(k^{3}+3 k^{2}-6 k+4\right) \\
& >\frac{1}{2}\left(k^{3}+3 k^{2}-6 k+2\right)
\end{aligned}
$$

Hence $\sum_{i=1}^{k} x_{i} \notin A_{1}$.

- If $x_{1}, \ldots, x_{k} \in A_{2}$, then
- If $x_{k} \leq \frac{1}{2}\left(k^{2}+3 k-2\right)$, then

$$
\sum_{i=1}^{k} x_{i} \geq \sum_{i=0}^{k-1}(2+i)=\frac{1}{2}\left(k^{2}+3 k\right)>\frac{1}{2}\left(k^{2}+3 k-2\right)
$$

In addition, for $k \geq 5$,

$$
\begin{aligned}
\sum_{i=1}^{k} x_{i} & \leq \sum_{i=0}^{k-1}\left(\frac{1}{2}\left(k^{2}+3 k-2\right)-i\right) \\
& =\frac{1}{2}\left(k^{3}+2 k^{2}-k\right)<\frac{1}{2}\left(k^{3}+3 k^{2}-6 k+4\right)
\end{aligned}
$$

Hence $\sum_{i=1}^{k} x_{i} \notin A_{2}$.

- If $x_{k} \geq \frac{1}{2}\left(k^{3}+3 k^{2}-6 k+4\right)$, then

$$
\begin{aligned}
\sum_{i=1}^{k} x_{i} & \geq \sum_{i=0}^{k-2}(2+i)+\frac{1}{2}\left(k^{3}+3 k^{2}-6 k+4\right) \\
& =\frac{1}{2}\left(k^{3}+4 k^{2}-5 k+2\right)>\frac{1}{2}\left(k^{3}+4 k^{2}-5 k\right)
\end{aligned}
$$

Hence $\sum_{i=1}^{k} x_{i} \notin A_{2}$.
Therefore, we obtain the lower bound.

Table 4 New lower bound of weak Schur numbers $W S_{k}(2)$

k	5	6	7	8	9	10
$W S_{k}(2)$	101	≥ 166	≥ 253	≥ 365	≥ 505	≥ 676

Table 5 Lower bounds weak Schur numbers $W S_{k}(3)$

k	2	3	4	5	6	7
$W S_{k}(3)$	24	≥ 94	≥ 259	≥ 571	≥ 1096	≥ 1912

With this general lower bound, we improve the results shown in Table 3. In addition, in the Section 4, we will prove that these new lower bounds shown in Table 4 for $k=6$ and $k=7$, are exact values.

3 A lower bound for $W_{k}(3)$

Applying the result given in [7], the lower bounds shown in Table 5were obtained. In the next result, we improve the general lower bound of $W S_{k}(3)$ obtained in [7].

Lemma 3.1 For any integer $k \geq 5$, we have

$$
W S_{k}(3) \geq \frac{1}{2}\left(k^{4}+5 k^{3}-k^{2}-9 k+6\right)
$$

Proof We will show that he following partition of the interval

$$
\left[1, \frac{1}{2}\left(k^{4}+5 k^{3}-k^{2}-9 k+4\right)\right]=B_{1} \sqcup B_{2} \sqcup B_{3}
$$

has no monochromatic solution to the equation $x_{1}+x_{2}+\cdots+x_{k}=x_{k+1}$ with $x_{1}<x_{2}<\ldots<x_{k}$. Consider the following 3-coloring where A_{1} and A_{2} are the same as used in the construction of the 2-coloring in Lemma 2.1.

$$
\left\{\begin{array}{l}
B_{1}=A_{1} \cup\left[\frac{1}{2}\left(k^{4}+4 k^{3}-3 k^{2}+2 k-2\right), \frac{1}{2}\left(k^{4}+5 k^{3}-k^{2}-9 k+4\right)\right], \\
B_{2}=A_{2} \cup\left[\frac{1}{2}\left(k^{4}+4 k^{3}-4 k^{2}+k\right), \frac{1}{2}\left(k^{4}+4 k^{3}-3 k^{2}+2 k-4\right)\right], \\
B_{3}=\left[\frac{1}{2}\left(k^{3}+4 k^{2}-5 k+2\right), \frac{1}{2}\left(k^{4}+4 k^{3}-4 k^{2}+k-2\right)\right] .
\end{array}\right.
$$

Since the above 3-coloring is an extension of 2-coloring given by Lemma 2.1, we just have to try the following cases:

- Let $x_{1}, x_{2}, \ldots, x_{k} \in B_{1}$, with $x_{1}<x_{2}<\cdots<x_{k}$.
- If $x_{k} \in A_{1}$, by Lemma 2.1, $\sum_{i=1}^{k} x_{i} \notin A_{1}$. Therefore,

$$
\begin{aligned}
\sum_{i=1}^{k} x_{i} & \leq \sum_{i=0}^{k-1}\left(\frac{1}{2}\left(k^{3}+3 k^{2}-6 k+2\right)-i\right) \\
& =\frac{1}{2}\left(k^{4}+3 k^{3}-7 k^{2}+3 k\right) \\
& <\frac{1}{2}\left(k^{4}+4 k^{3}-3 k^{2}+2 k-2\right) .
\end{aligned}
$$

Hence, $\sum_{i=1}^{k} x_{i} \notin B_{1}$.

- If $x_{k} \geq \frac{1}{2}\left(k^{4}+4 k^{3}-3 k^{2}+2 k-2\right)$, then

$$
\begin{aligned}
\sum_{i=1}^{k} x_{i} & \geq 1+\sum_{i=0}^{k-3}\left(\frac{1}{2}\left(k^{2}+3 k\right)+i\right)+\frac{1}{2}\left(k^{4}+4 k^{3}-3 k^{2}+2 k-2\right) \\
& =\frac{1}{2}\left(k^{4}+5 k^{3}-k^{2}-9 k+6\right) \\
& >\frac{1}{2}\left(k^{4}+5 k^{3}-k^{2}-9 k+4\right) .
\end{aligned}
$$

Hence, $\sum_{i=1}^{k} x_{i} \notin B_{1}$.

- Let $x_{1}, \ldots, x_{k} \in B_{2}$, with $x_{1}<\cdots<x_{k}$.
- If $x_{k} \in A_{2}$, then by Lemma 2.1, $\sum_{i=1}^{k} x_{i} \notin A_{2}$. Therefore,

$$
\begin{aligned}
\sum_{i=1}^{k} x_{i} \leq \sum_{i=0}^{k-1}\left(\frac{1}{2}\left(k^{3}+4 k^{2}-5 k\right)-i\right) & =\frac{1}{2}\left(k^{4}+4 k^{3}-6 k^{2}+k\right) \\
& <\frac{1}{2}\left(k^{4}+4 k^{3}-4 k^{2}+k\right)
\end{aligned}
$$

Hence, $\sum_{i=1}^{k} x_{i} \notin B_{2}$.

- If $x_{k} \geq \frac{1}{2}\left(k^{4}+4 k^{3}-4 k^{2}+k\right)$, then

$$
\begin{aligned}
\sum_{i=1}^{k} x_{i} & \geq \sum_{i=0}^{k-2}(2+i)+\frac{1}{2}\left(k^{4}+4 k^{3}-4 k^{2}+k\right) \\
& =\frac{1}{2}\left(k^{4}+4 k^{3}-3 k^{2}+2 k-2\right) \\
& >\frac{1}{2}\left(k^{4}+4 k^{3}-3 k^{2}+2 k-4\right) .
\end{aligned}
$$

Hence, $\sum_{i=1}^{k} x_{i} \notin B_{2}$.

Table 6 New lower bound of weak Schur numbers $W S_{k}(3)$

k	2	3	4	5	6	7
$W S_{k}(3)$	24	≥ 94	≥ 259	≥ 593	≥ 1146	≥ 2005

- Let $x_{1}, \ldots, x_{k} \in B_{3}$, with $x_{1}<\cdots<x_{k}$. Then

$$
\begin{aligned}
\sum_{i=1}^{k} x_{i} & \geq \sum_{i=0}^{k-1}\left(\frac{1}{2}\left(k^{3}+4 k^{2}-5 k+2\right)+i\right) \\
& =\frac{1}{2}\left(k^{4}+4 k^{3}-4 k^{2}+k\right) \\
& >\frac{1}{2}\left(k^{4}+4 k^{3}-4 k^{2}+k-2\right) .
\end{aligned}
$$

Hence, $\sum_{i=1}^{k} x_{i} \notin B_{3}$.
Therefore, we obtain the desired lower bound.
With this general lower bound,we improve the results shown in Table 5. In addition, in Section 4, we will prove that these new lower bounds shown in Table 6 for $k=3$ and $k=4$ are exact values.

In the next result, we improve the lower bounds of Lemma 3.1 for any integer $k \geq 8$.
Lemma 3.2 For any integer $k \geq 8$, we have

$$
W S_{k}(3) \geq \frac{1}{2}\left(k^{4}+5 k^{3}-8 k+4\right)
$$

Proof The following partition of the interval

$$
\left[1, \frac{1}{2}\left(k^{4}+5 k^{3}-8 k+2\right)\right]=C_{1} \sqcup C_{2} \sqcup C_{3}
$$

has no monochromatic solution to the equation $x_{1}+x_{2}+\cdots+x_{k}=x_{k+1}$ with $x_{1}<x_{2}<\ldots<x_{k}$.

$$
\left\{\begin{array}{l}
C_{1}=B_{1} \\
C_{2}=B_{2} \cup\left[\frac{1}{2}\left(k^{4}+5 k^{3}-k^{2}-9 k+6\right), \frac{1}{2}\left(k^{4}+5 k^{3}-8 k+2\right)\right] \\
C_{3}=B_{3}
\end{array}\right.
$$

This 3-coloring is an extension of 3-coloring given in Lemma 3.1, so we just have to try the following cases:

- Let $x_{1}, x_{2}, \ldots, x_{k} \in C_{1}$, with $x_{1}<x_{2}<\cdots<x_{k}$, by Lemma 3.1, $\sum_{i=1}^{k} x_{i} \notin$ $B_{1}=C_{1}$.
- Let $x_{1}, x_{2}, \ldots, x_{k} \in C_{2}$, with $x_{1}<x_{2}<\cdots<x_{k}$, by Lemma 3.1, $\sum_{i=1}^{k} x_{i} \notin B_{2}$. We only need to prove that

$$
\sum_{i=1}^{k} x_{i} \notin\left[\frac{1}{2}\left(k^{4}+5 k^{3}-k^{2}-9 k+6\right), \frac{1}{2}\left(k^{4}+5 k^{3}-8 k+2\right)\right] .
$$

We consider four cases:

- If $x_{k} \leq \frac{1}{2}\left(k^{3}+4 k^{2}-5 k\right)$, then

$$
\begin{aligned}
\sum_{i=1}^{k} x_{i} & \leq \sum_{i=0}^{k-1}\left(\frac{1}{2}\left(k^{3}+4 k^{2}-5 k\right)-i\right)=\frac{1}{2}\left(k^{4}+4 k^{3}-6 k^{2}+k\right) \\
& <\frac{1}{2}\left(k^{4}+5 k^{3}-k^{2}-9 k+6\right)
\end{aligned}
$$

Hence $\sum_{i=1}^{k} x_{i} \notin C_{2}$.

- If $x_{k} \in\left[\frac{1}{2}\left(k^{4}+4 k^{3}-4 k^{2}+k\right), \frac{1}{2}\left(k^{4}+4 k^{3}-3 k^{2}+2 k-4\right)\right]$ and $x_{k-1} \leq$ $\frac{1}{2}\left(k^{2}+3 k-2\right)$, then for $k \geq 8$,

$$
\begin{aligned}
\sum_{i=1}^{k} x_{i} & \leq \sum_{i=0}^{k-2}\left(\frac{1}{2}\left(k^{3}+3 k-2\right)-i\right)+\frac{1}{2}\left(k^{4}+4 k^{3}-3 k^{2}+2 k-4\right) \\
& =\frac{1}{2}\left(k^{4}+5 k^{3}-2 k^{2}-4\right)<\frac{1}{2}\left(k^{4}+5 k^{3}-k^{2}-9 k+6\right)
\end{aligned}
$$

Hence $\sum_{i=1}^{k} x_{i} \notin C_{2}$.

- If $x_{k} \in\left[\frac{1}{2}\left(k^{4}+4 k^{3}-4 k^{2}+k\right), \frac{1}{2}\left(k^{4}+4 k^{3}-3 k^{2}+2 k-4\right)\right]$ and $x_{k-1} \geq$ $\frac{1}{2}\left(k^{3}+3 k^{2}-6 k+4\right)$, then

$$
\begin{aligned}
\sum_{i=1}^{k} x_{i} \geq & \sum_{i=0}^{k-3}(2+i)+\frac{1}{2}\left(k^{3}+3 k^{2}-6 k+4\right)+ \\
& \frac{1}{2}\left(k^{4}+4 k^{3}-4 k^{2}+k\right) \\
= & \frac{1}{2}\left(k^{4}+5 k^{3}-6 k+2\right)>\frac{1}{2}\left(k^{4}+5 k^{3}-8 k+2\right) .
\end{aligned}
$$

Hence $\sum_{i=1}^{k} x_{i} \notin C_{2}$.

- If $x_{k} \geq \frac{1}{2}\left(k^{4}+5 k^{3}-k^{2}-9 k+6\right)$, then

$$
\begin{aligned}
\sum_{i=1}^{k} x_{i} & \geq \sum_{i=0}^{k-2}(2+i)+\frac{1}{2}\left(k^{4}+5 k^{3}-k^{2}-9 k+6\right) \\
& =\frac{1}{2}\left(k^{4}+5 k^{3}-8 k+4\right)>\frac{1}{2}\left(k^{4}+5 k^{3}-8 k+2\right)
\end{aligned}
$$

Table 7 Lower bounds of weak Schur numbers $W S_{k}(3)$

k	8	9	10	11	12
Lemma 3.1	≥ 3263	≥ 5025	≥ 7408	≥ 10541	≥ 14565
Lemma 3.2	≥ 3298	≥ 5069	≥ 7462	≥ 10606	≥ 14642

Hence, $\sum_{i=1}^{k} x_{i} \notin C_{2}$.

- Let $x_{1}, \ldots, x_{k} \in C_{3}$, with $x_{1}<\cdots<x_{k}$, by Lemma 3.1, $\sum_{i=1}^{k} x_{i} \notin B_{3}=C_{3}$.

Therefore, we obtain the desired improved lower bound.
Applying Lemmas 3.1 and 3.2, the following lower bounds are shown in Table 7.

4 Computer-assisted proofs for the exact values of $W S_{6}(2), W S_{7}(2)$, $W_{3}(3)$ and $W_{4}(3)$

4.1 The exact value of $W S_{6}(2)$

We shall prove that $W S_{6}(2)=166$. By Lemma 2.1,we have $W S_{6}(2) \geq 166$.
To prove that the equation $x_{1}+\cdots+x_{6}=x_{7}$ has a monochromatic solution for every 2 -coloring of the integer interval [1,166], it is necessary to show the following result.

Lemma 4.1 The set $\mathcal{Y}=\left\{y_{n}\right\}_{n=1}^{42}=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14$, $16,18,21,22,23,26,27,28,29,30,31,35,36,40,41,46,48,51,56,61,66,106$, 141, 146, 151, 156, 161, 166\} satisfies:

1. We have $\mathcal{Y} \subseteq[1,166]$.
2. For every partition of \mathcal{Y} into two subsets A_{1}, A_{2}, some A_{i} contains a monochromatic solution of $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=x_{7}$, with $x_{i} \neq x_{j}$, if $i \neq j$.

Proof 1. This is trivial.
2. We have checked the result transforming the problem into a Boolean satisfiability problem and solving it with a SAT solver [12].
Let Δ be a 2 -coloring of $[1,166]$:

$$
\Delta:[1,166] \longrightarrow\left\{c_{1}, c_{2}\right\}
$$

For any $\left\{y_{n}\right\} \in \mathcal{Y}$, we consider a Boolean variable ϕ defined on [1, 42] as follows:

$$
\phi(n)=\left\{\begin{array}{l}
\text { True if } \Delta\left(y_{n}\right)=c_{1}, \\
\text { False if } \Delta\left(y_{n}\right)=c_{2} .
\end{array}\right.
$$

Let $\mathcal{S}=\left\{\left(y_{a}, y_{b}, y_{c}, y_{d}, y_{e}, y_{f}, y_{g}\right) \in \mathcal{Y}^{7} \mid y_{a}+y_{b}+y_{c}+y_{d}+y_{e}+y_{f}=y_{g}\right.$, with $a<$ $b<c<d<e<f\}$.

For any $s=\left(y_{a}, y_{b}, y_{c}, y_{d}, y_{e}, y_{f}, y_{g}\right) \in \mathcal{S}$, we consider two clauses:

$$
\begin{aligned}
& p(s)=(\phi(a) \vee \phi(b) \vee \phi(c) \vee \phi(d) \vee \phi(e) \vee \phi(f) \vee \phi(g)) ; \\
& q(s)=(\neg \phi(a) \vee \neg \phi(b) \vee \neg \phi(c) \vee \neg \phi(d) \vee \neg \phi(e) \vee \neg \phi(f) \vee \neg \phi(g)) .
\end{aligned}
$$

Then, $p(s)$ is satisfiable if and only if $\Delta(a) \neq c_{1}, \Delta(b) \neq c_{1}, \Delta(c) \neq c_{1}, \Delta(d) \neq c_{1}$, $\Delta(e) \neq c_{1}, \Delta(f) \neq c_{1}$ or $\Delta(g) \neq c_{1}$, i.e., Δ does not induce in s a monochromatic solution on c_{1} of the equation $x_{1}+\cdots+x_{6}=x_{7}$. Analogously, $q(s)$ is satisfiable if and only if Δ does not induce in s a monochromatic solution of the equation $x_{1}+\cdots+x_{6}=$ x_{7} on c_{2}.

$$
\text { Let } \mathcal{C}=\bigwedge_{s \in \mathcal{S}}(p(s) \wedge q(s))
$$

Clearly \mathcal{C} is satisfiable if and only if Δ does not induce on \mathcal{Y} a monochromatic solution of the equation $x_{1}+\cdots+x_{6}=x_{7}$. The SAT-Solver shows that \mathcal{C} is not satisfiable, hence for every 2 -coloring of the set, \mathcal{Y} has a monochromatic solution to the equation $x_{1}+\cdots+x_{6}=x_{7}$.

With this result, we have tested the upper bound on $W S_{6}(2)$.
Therefore, we conclude with the following result:
Theorem 4.2 $W S_{6}(2)=166$.

4.2 The exact value of $W S_{7}(2)$

We shall prove that $W S_{7}(2)=253$. By Lemma 2.1, we have $W S_{7}(2) \geq 253$.
We have to prove that the equation $x_{1}+\cdots+x_{7}=x_{8}$ has a monochromatic solution for every 2 -coloring of the interval [1,253]. We will suppose the opposite: for every 2 -coloring $\Delta:[1,253] \longrightarrow\left\{c_{1}, c_{2}\right\}$ without monochromatic solution, we can consider without loss of generality $\Delta(61)=c_{1}$. Let $D_{1}=\left\{u_{n}\right\}_{n=1}^{73}=(6[0,42]+$ $\{1\}) \cup(6\{0,1,4,8,16,32\}+\{2,3,4,5,6\}) \subset[1,253]$ and $F_{1}=\{43,49,55,61,67$, $73,79,85,91,97,103,109,115,133,139,145,151,157,163,169,175\} \subset D_{1}$.

The following two lemmas can be proved transforming the problem into a Boolean satisfiability problem and solving it with a SAT solver [12].

Lemma 4.3 For every 2-coloring Δ of D_{1} without monochromatic solution, we have $\Delta\left(F_{1}\right)=\left\{c_{1}\right\}$.

Proof Let Δ be a 2-coloring of D_{1} :

$$
\Delta: D_{1} \longrightarrow\left\{c_{1}, c_{2}\right\}
$$

such that $\Delta(61)=c_{1}$. For any $\left\{u_{n}\right\} \in D_{1}$, we consider a Boolean variable ϕ defined on $[1,73]$ as follows:

$$
\phi(n)=\left\{\begin{array}{l}
\text { True if } \Delta\left(u_{n}\right)=c_{1}, \\
\text { False if } \Delta\left(u_{n}\right)=c_{2} .
\end{array}\right.
$$

Let $\mathcal{S}=\left\{\left(u_{a}, u_{b}, u_{c}, u_{d}, u_{e}, u_{f}, u_{g}, u_{h}\right) \in D_{1}^{8} \mid u_{a}+u_{b}+u_{c}+u_{d}+u_{e}+u_{f}+u_{g}=\right.$ u_{h}, with $\left.a<b<c<d<e<f<g\right\}$.

For any $s=\left(u_{a}, u_{b}, u_{c}, u_{d}, u_{e}, u_{f}, u_{g}, u_{h}\right) \in \mathcal{S}$, we consider two clauses:
$p(s)=(\phi(a) \vee \phi(b) \vee \phi(c) \vee \phi(d) \vee \phi(e) \vee \phi(f) \vee \phi(g) \vee \phi(h)) ;$
$q(s)=(\neg \phi(a) \vee \neg \phi(b) \vee \neg \phi(c) \vee \neg \phi(d) \vee \neg \phi(e) \vee \neg \phi(f) \vee \neg \phi(g) \vee \neg \phi(h))$.

Then, $p(s)$ is satisfiable if and only if $\Delta(a) \neq c_{1}, \Delta(b) \neq c_{1}, \Delta(c) \neq c_{1}, \Delta(d) \neq c_{1}$, $\Delta(e) \neq c_{1}, \Delta(f) \neq c_{1}$, or $\Delta(g) \neq c_{1}$ or $\Delta(h) \neq c_{1}$, i.e., Δ does not induce in s a monochromatic solution on c_{1} of the equation $x_{1}+\cdots+x_{7}=x_{8}$. Analogously, $q(s)$ satisfiable if and only if Δ does not induce in s a monochromatic solution of the equation $x_{1}+\cdots+x_{7}=x_{8}$ on c_{2}.

$$
\text { Let } \mathcal{C}=\bigwedge_{s \in \mathcal{S}}(p(s) \wedge q(s))
$$

Clearly \mathcal{C} is satisfiable if and only if Δ does not induce on D_{1} a monochromatic solution of the equation $x_{1}+\cdots+x_{7}=x_{8}$. The SAT-Solver shows that \mathcal{C} is not satisfiable, hence we have the result.

Trivially we have,
Corollary 4.4 For every 2-coloring Δ of $[1,253]$ without monochromatic solution, we have $\Delta\left(F_{1}\right)=\left\{c_{1}\right\}$.

Let $D_{2}=\left\{v_{n}\right\}_{n=1}^{78}=(6[0,42]+\{1\}) \cup(6\{0,1,2,5,6,36,37\}+\{2,3,4,5,6\})$. We have $[1,8] \cup F_{1} \cup\{217\} \subset D_{2} \subset[1,253]$.

Lemma 4.5 For every 2-coloring Δ of D_{2} without monochromatic solution such that $\Delta\left(F_{1}\right)=\left\{c_{1}\right\}$, we have $\Delta(217)=c_{1}$ and $\Delta([1,8])=\left\{c_{2}\right\}$.

Proof Let Δ be a 2-coloring of D_{1} :

$$
\Delta: D_{1} \longrightarrow\left\{c_{1}, c_{2}\right\}
$$

such that $\Delta\left(F_{1}\right)=\left\{c_{1}\right\}$. For any $\left\{v_{n}\right\} \in D_{2}$, we consider a Boolean variable ϕ defined on $[1,78]$ as follows:

$$
\phi(n)=\left\{\begin{array}{l}
\text { True if } \Delta\left(v_{n}\right)=c_{1}, \\
\text { False if } \Delta\left(v_{n}\right)=c_{2} .
\end{array}\right.
$$

Let $\mathcal{S}=\left\{\left(u_{a}, u_{b}, u_{c}, u_{d}, u_{e}, u_{f}, u_{g}, u_{h}\right) \in D_{2}^{8} \mid u_{a}+u_{b}+u_{c}+u_{d}+u_{e}+u_{f}+u_{g}=\right.$ u_{h}, with $\left.a<b<c<d<e<f<g\right\}$.

For any $s=\left(u_{a}, u_{b}, u_{c}, u_{d}, u_{e}, u_{f}, u_{g}, u_{h}\right) \in \mathcal{S}$, we consider two clauses:

$$
\begin{aligned}
& p(s)=(\phi(a) \vee \phi(b) \vee \phi(c) \vee \phi(d) \vee \phi(e) \vee \phi(f) \vee \phi(g) \vee \phi(h)) ; \\
& q(s)=(\neg \phi(a) \vee \neg \phi(b) \vee \neg \phi(c) \vee \neg \phi(d) \vee \neg \phi(e) \vee \neg \phi(f) \vee \neg \phi(g) \vee \neg \phi(h)) .
\end{aligned}
$$

Then, $p(s)$ is satisfiable if and only if $\Delta(a) \neq c_{1}, \Delta(b) \neq c_{1}, \Delta(c) \neq c_{1}, \Delta(d) \neq c_{1}$, $\Delta(e) \neq c_{1}, \Delta(f) \neq c_{1}$, or $\Delta(g) \neq c_{1}$ or $\Delta(h) \neq c_{1}$, i.e., Δ does not induce in s a monochromatic solution on c_{1} of the equation $x_{1}+\cdots+x_{7}=x_{8}$. Analogously, $q(s)$ satisfiable if and only if Δ does not induce in s a monochromatic solution of the equation $x_{1}+\cdots+x_{7}=x_{8}$ on c_{2}.

$$
\text { Let } \mathcal{C}=\bigwedge_{s \in \mathcal{S}}(p(s) \wedge q(s))
$$

Clearly \mathcal{C} is satisfiable if and only if Δ does not induce on D_{2} a monochromatic solution of the equation $x_{1}+\cdots+x_{7}=x_{8}$. The SAT-Solver shows that \mathcal{C} is not satisfiable, hence we have the result.

Now, we can prove:
Theorem 4.6 $W S_{7}(2)=253$.
Proof Let Δ be a 2 -coloring of $[1,253]$ without monochromatic solution. Then $\Delta(217)=c_{1}$ and $\Delta([1,8])=\left\{c_{2}\right\}$. Therefore, $\sum_{i=1}^{8} i=36-n$ with $i \neq n$, which implies $\Delta([28,34])=\left\{c_{1}\right\}$ and $217=28+29+30+31+32+33+34$. Therefore $\Delta(217) \neq c_{1}$, contradicting Lemma 4.5.

4.3 The exact value of $W S_{3}(3)$

The weak Schur number $W S_{3}(3)$ is the least positive integer N such that for every 3 -coloring of $[1, N]$,

$$
\Delta:[1, N] \longrightarrow\left\{c_{1}, c_{2}, c_{3}\right\}
$$

where c_{1}, c_{2}, c_{3} represent 3 different colors, there exists a monochromatic solution to the equation $x_{1}+x_{2}+x_{3}=x_{4}$, such that $\Delta\left(x_{1}\right)=\cdots=\Delta\left(x_{3}\right)=\Delta\left(x_{4}\right)$ where $x_{i} \neq x_{j}$ when $i \neq j$.

We shall prove that $W S_{3}(3)=94$. Let us first show a lower bound.
Lemma 4.7 $W_{3}(3) \geq 94$.
Proof It is easy to verify that the 3-coloring

$$
\Delta:[1,93] \longrightarrow\left\{c_{1}, c_{2}, c_{3}\right\}
$$

defined by

$$
\Delta(x)= \begin{cases}c_{1} & \text { if } x \in[1,5] \cup[21,23] \cup[75,77] \cup[91,93] \\ c_{2} \text { if } x \in[6,20] \cup[78,90] \\ c_{3} \text { if } x \in[24,74]\end{cases}
$$

has no monochromatic solution to the equation $x_{1}+x_{2}+x_{3}=x_{4}$ such that $x_{i} \neq x_{j}$ when $i \neq j$.

To prove that the equation $x_{1}+x_{2}+x_{3}=x_{4}$ has a monochromatic solution for every 3 -coloring of the integer interval [1, 94], it is necessary to prove the following result.
Lemma 4.8 The set $\mathcal{Y}=\left\{y_{n}\right\}_{n=1}^{51}=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14$, $15,16,17,18,19,20,21,23,24,25,26,27,28,29,31,32,33,34,35,36,38,39,40$, $42,44,45,52,58,64,65,66,72,75,78,82,91,94\}$ satisfies:

1. We have $\mathcal{Y} \subseteq[1,94]$.
2. For every partition of \mathcal{Y} into three subsets A_{1}, A_{2}, A_{3}, some A_{i} contains a monochromatic solution of $x_{1}+x_{2}+x_{3}=x_{4}, x_{i} \neq x_{j}$, with $i \neq j$.
Proof 1. This is trivial.
3. We have checked the result transforming the problem into a Boolean satisfiability problem and solving it with a SAT solver [12].
Let Δ be a 3-coloring of $[1,94]$:

$$
\Delta:[1,94] \longrightarrow\left\{c_{1}, c_{2}, c_{3}\right\}
$$

For any $\left\{y_{n}\right\} \in \mathcal{Y}$, we consider two Boolean variables ϕ and ψ defined on $[1,51]$ as follows:

$$
\begin{aligned}
& \phi(n)=\left\{\begin{array}{l}
\text { True if } \Delta\left(y_{n}\right)=c_{1} \text { or } c_{2}, \\
\text { False if } \Delta\left(y_{n}\right)=c_{3} .
\end{array}\right. \\
& \psi(n)=\left\{\begin{array}{l}
\text { True if } \Delta\left(y_{n}\right)=c_{1} \text { or } c_{3}, \\
\text { False if } \Delta\left(y_{n}\right)=c_{2} .
\end{array}\right.
\end{aligned}
$$

Thus, for any $n \in[1,51]$ we have that $\phi(n)$ is True or $\psi(n)$ is True. Therefore, $\mathcal{D}=\bigwedge_{1 \leq n \leq 51}(\phi(n) \vee \psi(n))$ is satisfiable.
Let $\mathcal{S}=\left\{\left(y_{a}, y_{b}, y_{c}, y_{d}\right) \in \mathcal{Y}^{4} \mid y_{a}+y_{b}+y_{c}=y_{d}\right.$, with $\left.a<b<c\right\}$.
For any $s=\left(y_{a}, y_{b}, y_{c}, y_{d}\right) \in \mathcal{S}$, we consider three clauses:
$p(s)=(\neg \phi(a) \vee \neg \psi(a) \vee \neg \phi(b) \vee \neg \psi(b) \vee \neg \phi(c) \vee \neg \psi(c) \vee \neg \phi(d) \vee \neg \psi(d)) ;$
$q(s)=(\neg \phi(a) \vee \psi(a) \vee \neg \phi(b) \vee \psi(b) \vee \neg \phi(c) \vee \psi(c) \vee \neg \phi(d) \vee \psi(d)) ;$
$r(s)=(\phi(a) \vee \phi(b) \vee \phi(c) \vee \phi(d))$.
Then, $p(s)$ is satisfiable if and only if $\Delta(a) \neq c_{1}, \Delta(b) \neq c_{1}, \Delta(c) \neq c_{1}$ or $\Delta(d) \neq$ c_{1}, i.e., Δ does not induce in s a monochromatic solution on c_{1} of the equation $x_{1}+x_{2}+x_{3}=x_{4}$. Analogously, $q(s)$ or $r(s)$ is satisfiable if and only if Δ does not induce in s a monochromatic solution of the equation $x_{1}+x_{2}+x_{3}=x_{4}$ on c_{2} or c_{3}, respectively.

$$
\text { Let } \mathcal{C}=\bigwedge_{s \in \mathcal{S}}(p(s) \wedge q(s) \wedge r(s))
$$

Clearly $\mathcal{D} \wedge \mathcal{C}$ is satisfiable if and only if Δ does not induce on \mathcal{Y} a monochromatic solution of the equation $x_{1}+x_{2}+x_{3}=x_{4}$. The SAT-Solver shows that $\mathcal{D} \wedge \mathcal{C}$ is not satisfiable, hence $W S_{3}(3) \leq 94$.

With this result, we have tested the upper bound on $W S_{3}(3)$.
Therefore, we conclude with the following result:
Theorem 4.9 $W_{3}(3)=94$.

4.4 The exact value of $W S_{4}(3)$

The weak Schur number $W S_{4}(3)$ is the least positive integer N such that for every 3 -coloring of $[1, N]$,

$$
\Delta:[1, N] \longrightarrow\left\{c_{1}, c_{2}, c_{3}\right\}
$$

where c_{1}, c_{2}, c_{3} represent 3 different colors, there exists a monochromatic solution to the equation $x_{1}+x_{2}+\cdots+x_{4}=x_{5}$, such that $\Delta\left(x_{1}\right)=\cdots=\Delta\left(x_{4}\right)=\Delta\left(x_{5}\right)$ where $x_{i} \neq x_{j}$ when $i \neq j$.

We shall prove that $W S_{4}(3)=259$. Let us first show a lower bound.
Lemma 4.10 $W S_{4}(3) \geq 259$.
Proof It is easy to verify that the 3-coloring

$$
\Delta:[1,258] \longrightarrow\left\{c_{1}, c_{2}, c_{3}\right\}
$$

defined by $\Delta(x)= \begin{cases}c_{1} & \text { if } x \in[1,9] \cup[46,51] \cup[214,219] \cup[253,258] \\ c_{2} & \text { if } x \in[10,45] \cup[220,252] \\ c_{3} & \text { if } x \in[52,213]\end{cases}$
has no monochromatic solution to the equation $x_{1}+x_{2}+x_{3}+x_{4}=x_{5}$ such that $x_{i} \neq x_{j}$ when $i \neq j$.

To prove that the equation $x_{1}+x_{2}+x_{3}+x_{4}=x_{5}$ has a monochromatic solution for every 3 -coloring of the integer interval [1, 259], it is necessary to prove the following result.

Lemma 4.11 The set $\mathcal{Z}=\left\{z_{n}\right\}_{n=1}^{86}=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14$, $15,16,17,18,19,20,21,22,23,25,26,27,28,30,31,34,42,43,44,46,47,49,52$, $53,54,55,56,57,58,59,61,64,65,66,67,68,70,73,74,76,78,79,85,86,88,91$, $99,103,106,109,115,118,124,130,139,169,190,199,202,208,211,214,217$, $220,223,226,229,235,238,250,253,259\}$ satisfies:

1. We have $\mathcal{Z} \subseteq[1,259]$.
2. For every partition of \mathcal{Z} into three subsets A_{1}, A_{2}, A_{3}, some A_{i} contains a monochromatic solution of $x_{1}+x_{2}+x_{3}+x_{4}=x_{5}, x_{i} \neq x_{j}$, with $i \neq j$.

Proof 1. This is trivial.
2. We have checked the result transforming the problem into a Boolean satisfiability problem and solving it with a SAT solver [12].

Let Δ be a 3-coloring of $[1,259]$:

$$
\Delta:[1,259] \longrightarrow\left\{c_{1}, c_{2}, c_{3}\right\}
$$

For any $\left\{z_{n}\right\} \in \mathcal{Z}$, we consider two Boolean variables ϕ and ψ defined on $[1,86]$ as follows:

$$
\begin{aligned}
& \phi(n)=\left\{\begin{array}{l}
\text { True if } \Delta\left(z_{n}\right)=c_{1} \text { or } c_{2}, \\
\text { False if } \Delta\left(z_{n}\right)=c_{3} .
\end{array}\right. \\
& \psi(n)=\left\{\begin{array}{l}
\text { True if } \Delta\left(z_{n}\right)=c_{1} \text { or } c_{3}, \\
\text { False if } \Delta\left(z_{n}\right)=c_{2} .
\end{array}\right.
\end{aligned}
$$

Thus, for any $n \in[1,86]$, we have that $\phi(n)$ is True or $\psi(n)$ is True. Therefore, $\mathcal{D}=\bigwedge_{1 \leq n \leq 86}(\phi(n) \vee \psi(n))$ is satisfiable.
Let $\mathcal{S}=\left\{\left(z_{a}, z_{b}, z_{c}, z_{d}, z_{e}\right) \in \mathcal{Z}^{5} \mid z_{a}+z_{b}+z_{c}+z_{d}=z_{e}\right.$, with $\left.a<b<c<d\right\}$.
For any $s=\left(z_{a}, z_{b}, z_{c}, z_{d}, z_{e}\right) \in \mathcal{S}$, we consider three clauses:

$$
\begin{aligned}
p(s)= & (\neg \phi(a) \vee \neg \psi(a) \vee \neg \phi(b) \vee \neg \psi(b) \vee \neg \phi(c) \\
& \vee \neg \psi(c) \vee \neg \phi(d) \vee \neg \psi(d) \vee \neg \phi(e) \vee \neg \psi(e)) ; \\
q(s)= & (\neg \phi(a) \vee \psi(a) \vee \neg \phi(b) \vee \psi(b) \vee \neg \phi(c) \\
& \vee \psi(c) \vee \neg \phi(d) \vee \psi(d) \vee \neg \phi(e) \vee \psi(e)) ; \\
r(s)= & (\phi(a) \vee \phi(b) \vee \phi(c) \vee \phi(d) \vee \phi(e)) .
\end{aligned}
$$

Then, $p(s)$ is satisfiable if and only if $\Delta(a) \neq c_{1}, \Delta(b) \neq c_{1}, \Delta(c) \neq c_{1}, \Delta(d) \neq c_{1}$ or $\Delta(e) \neq c_{1}$, i.e., Δ does not induce in s a monochromatic solution on c_{1} of the equation $x_{1}+x_{2}+x_{3}+x_{4}=x_{5}$. Analogously, $q(s)$ or $r(s)$ is satisfiable if and only if Δ does not induce in s a monochromatic solution of the equation $x_{1}+x_{2}+x_{3}+x_{4}=x_{5}$ on c_{2} or c_{3}, respectively.

$$
\text { Let } \mathcal{C}=\bigwedge_{s \in \mathcal{S}}(p(s) \wedge q(s) \wedge r(s))
$$

Clearly $\mathcal{D} \wedge \mathcal{C}$ is satisfiable if and only if Δ does not induce on \mathcal{Z} a monochromatic solution of the equation $x_{1}+x_{2}+x_{3}+x_{4}=x_{5}$. The SAT-Solver shows that $\mathcal{D} \wedge \mathcal{C}$ is not satisfiable, hence $W S_{4}(3) \leq 259$.

With this result, we have verified the upper bound for $W S_{4}(3)$. Therefore, we obtain the following result:

Theorem 4.12 $W S_{4}(3)=259$.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ahmed, T., Schaal, D.J.: On generalized Schur numbers. Exp. Math. 25, 213-218 (2015)
2. Baumert, L.D.: Sum-free sets. J.P.L. Res. Summary 36-10, 16-18 (1961)
3. Beutelspacher, A., Brestovansky, W.: Generalized Schur Number. Lecture Note Math, pp. 30-38. Springer, New York (1982)
4. Blanchard, P.F., Harary, F., Reis, R.: Partitions into sum-free sets. Electron. J. Combin. Numbers Theory 6, 1-10 (2006)
5. Bornsztein, P.: On an extension of a theorem of Schur. Acta Arith. 101(4), 395-399 (2002)
6. Boza, L., Marín, J.M., Revuelta, M.P., Sanz, M.I.: 3- color Schur number. Discrete Appl. Math. 263, 59-68 (2019)
7. Boza, L., Revuelta, M.P., Sanz, M.I.: A general lower bound on the weak Schur number. Electron. Notes Discrete Math. 68, 137-142 (2018)
8. Boza, L., Marín, J.M., Revuelta, M.P., Sanz, M.I.: On the n-color weak Rado numbers for the equation $x_{1}+x_{2}+\cdots+x_{k}+c=x_{k+1}$. Exp. Math. 28(2), 194-208 (2019)
9. Eliahou, S., Marín, J.M., Revuelta, M.P., Sanz, M.I.: Weak Schur numbers and the search for G.W. Walker's lost partitions. Comput. Math. Appl. 63, 175-182 (2012)
10. Eliahou, S., Fonlupt, C., Fromentin, J., Marion-Poty, V., Robilliard, D., Teytaud, F.: Investigating Monte-Carlo methods on the weak Schur problem. Lect. Notes Comput. Sci. 7832, 191-201 (2013)
11. Fredricksen, H., Sweet, M.: Symmetric sum-free partitions and lower bounds for Schur numbers. Electron. J. Comb. 7, \#R32 (2000)
12. Heule, M.: http://www.st.ewi.tudelft.nl/sat/, March RW. SAT Competition (2011)
13. Heule, M.J.H.: Schur Number Five. In: The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18) (2018)
14. Irwing, R.W.: An extension of Schur' s theorem on sum-free partitions. Acta Arith. XXV, 55-64 (1973)
15. Rado, R.: Studien zur Kombinatorik. Math. Z. 36, 424-480 (1933)
16. Rado, R.: Some solved and unsolved problems in the theory of numbers. Math. Gaz. 25, 72-77 (1941)
17. Rafilipojaona, F.A.: Nombres de Schur classiques et faibles. Ph. Thesis, Université Lille Nord-deFrance (2015)
18. Sanz, M.I.: Números de Schur y Rado. Ph. Thesis, Universidad de Sevilla (2010)
19. Schur, I.: Uber die Kongruenz $x^{m}+y^{m} \equiv z^{m}(\bmod p)$. Jber. Deutsch. Math.- Verein. 25, 114-117 (1916)
20. Sierpinski, W.: Theory of Numbers, part 2. PWN Warszawa, 440 (1959)
21. Walker, G.W.: A problem in partitioning. Am. Math. Mon. 59, 253 (1952)
22. Znám, S.: Generalization of a number-theoretical result. Mat-Fyz.Casopis. Sloven Akad Vied 17, 297-307 (1966)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: M. P. Revuelta
 pastora@us.es
 T. Ahmed
 tanbir@gmail.com
 L. Boza
 boza@us.es
 M. I. Sanz
 isanz@us.es
 1 Montreal Health Innovations Coordinating Center (MHICC), Montreal Heart Institute (MHI), Montréal, Canada
 2 Departamento de Matemática Aplicada I, Universidad de Sevilla, Sevilla, Spain

