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Resumen en Castellano

Para hacer mas accesibles sus contenidos, se incluye en esta memoria de investigacion
el presente capitulo en castellano. En este capitulo se da cuenta de los principales
resultados, enuncidndolos en el orden en que aparecen y respetando su numeracién en

el texto.

R-1 Resumen del Capitulo 2.

El este capitulo se definen los operadores sobre los que versa la presente memoria de
investigacién y se establecen sus propiedades bésicas. Dada una aplicacién medible ¢

del intervalo [0,1] en si mismo, se define el operador de tipo Volterra V,, como

o(z)
(wa)(x):/o f)dt con f € LP[0,1], 1<p<oo.

Obsérvese que cuando el simbolo ¢ es la identidad, se obtiene el clasico operador
de Volterra, V. Estos operadores son compactos en todos los espacios LP[0, 1], para
1 < p < oo [5 p. 44], ya que podemos factorizarlos como V,, = C,V, donde V es
compacto y C, es acotado sobre el rango de V/, que esta contenido en L*°[0, 1].

Los trabajos previos sobre estos operadores son casi inexistentes, ya que se reducen
a tan sdlo tres referencias: Lyubic [30], que se limita a enunciarlos y preguntar por su
quasi-nilpotencia, Whitley [56] y Tong [54]. Estos autores encontraron la caracteri-
zacién de la quasi-nilpotencia de los operadores de tipo Volterra. Aqui presentamos
una prueba mas corta, la cual se deduce de una caracterizacién més general que
abarca a todos los operadores integrales con nticleo positivo en el espacio L?([0,1]?).
Las pruebas se basan en la teoria de operadores nucleares y Hilbert-Schmidt, y en

particular en un resultado de Lidskii [45]. El teorema principal es el siguiente.

Teorema. 2.1.1 Sea K € L%([0,1]?) no negativo. Entonces el operador integral con

niucleo K es quasi-nilpotente si y solo si
K(t17 t2)K<t27 t3) ° 'K(tn—h tn)K<tna tl)

r-7



r-8 RESUMEN EN CASTELLANO

se anula e.c.t. [0,1]" para cada n > 2.

Utilizando que los operadores de tipo Volterra se pueden escribir como operadores
integrales con ntcleo

1, ift <o(z);

K¢($,t): 9 \80( )7

0, ift>¢(x),

se obtiene la siguiente caracterizacion.

Corolario. 2.1.2 Sea ¢ una aplicacion medible de [0,1] en si mismo. Entonces V,

es quasi-nilpotente si y sdlo si p(x) < x e.c.t.

FEl resultado anterior junto con el Teorema 2.2.8 son la causa de que los simbolos
para los que es méas natural estudiar el espectro sean los que verifican la condicién
p(x) 2 z.

Otro resultado bésico que presentamos es la formula para el operador adjunto a

un operador de tipo Volterra cuando el simbolo ¢ es creciente. Si definimos

) osup{y e(y) <z}, if 2> p(0);
p-1(z) = .
0, otherwise,

se tiene que
1
(VD)) = / f@dt con feLP0,1], 1<p< oo
©

En este punto debemos recalcar que la involucién isométrica (U f)(x) = f(1 — x)
jugard un papel fundamental en el trabajo, ya que UVZU = Vj, donde or) =1-—

¢_1(1 — ). Como consecuencia:
o(V) = o(Ve).

Otra propiedad general de operadores es la inyectividad. En particular, es util
conocer el nicleo de los operadores con los que se trabaja. Para enunciar el resultado

recordemos que el rango esencial de una aplicacién medible ¢ en [0, 1] es
ess (¢) = {y € R tales que pu{t: |y — p(t)| < e} > 0 para todo € > 0}.
Se tiene:

Proposicién. 2.1.3 Sea ¢ una aplicacion medible de [0,1] en si mismo. Entonces
el ker Vi, es trivial si y solo si el rango esencial de ¢ es [0,1]. Es mds, ker V,, es de

dimension finita si y sdlo si ker Vi, # {0}.
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El siguiente resultado atane a la acotacién de las normas de los operadores de
tipo Volterra. En algunas situaciones, la norma se computa exactamente en el espacio
L?[0,1].

Proposicién. 2.1.5 Sean ¢ y 1 transformaciones medibles de [0,1] en si mismo.

Entonces
) Ve = Vallo < [lo = 9P [} <1 para 1<p < ool
(i) Ve = Vylloo = llo = ¥lloe para p = oo.
Tomando ¢ = 0 en la proposicién anterior, obtenemos el siguiente resultado.

Corolario. 2.1.6 Sea ¢ una aplicacion medible de [0,1] en si mismo. Entonces
T ,
Vollp < Hgop 1H1/p para 1 < p < 00 y [|Volloo = ||¢lloe para p = oo. En particu-

lar, Vi, siempre es una contraccion.

Usando un método bien conocido para el calculo de normas en espacios de Hilbert,
[15, p. 300], se puede computar la del operador de tipo Volterra con simbolo ¢, (x) =

.

Ejemplo. 2.1.7 Sea po(z) = 2% con 0 < o < co. Entonces ||V, |2 es igual a raiz

cuadrada del mayor zero de
L sy (201 a) a2 1).
donde J_(141q)-1 €s la funcion de Bessel de tipo uno y orden —(14+a)7 L

Los siguientes dos resultados son ejemplos particulares de simbolos para los que es
posible calcular las autofunciones y los autovalores de los correspondientes operadores

de tipo Volterra.

Teorema. 2.1.10 Sea p(x) = 2® con 0 < o < 1. Entonces los autovalores de V,, son
simples y 0(V,,) = {(1 — a)a™ }pn>0 U {0}. Es mds, para cada n > 0, la autofuncion
n

correspondiente a (1 — a)a” es fn(z) = z*/(=p (Inz), donde

pn(z) =2 +Z ( ) a Hl—al ",

=1

En particular, las autofunciones {fn}n>0 tienen span lineal denso en L?[0,1].

El segundo ejemplo de célculo concreto es el siguiente.
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Teorema. 2.1.11 Sea 1(x) = 1 — (1 —2)Y con 0 < a < 1. Entonces los autovalores
de Vy son simples y o(Vy) = {(1 — a)a”},>0 U {0}. Es mds, para cada n > 0, la

autofuncion de Vy, correspondiente a (1 —a)a”, es

k(1 — a)kank a—k—1_,—1

> (-1 ahmlal
fn(x) = zz: (Oz(_l _) 1() ) -(a_k — 1) (1 - $) ami-1

k=0

En particular, las autofunciones de Vy, no tienen span lineal denso en L?[0,1].

Un primer resultado respecto a la ciclicidad de los operadores de tipo Volterra, es

el siguiente.

Proposicién. 2.1.13 Sea p(r) = 2* con a > 0. Entonces la funcion ¢(z) = z° con

B> —1/p es ciclica para Vi, acting on LP[0,1], 1 < p < oo, si y solo s 0 < o < 1.

La demostracién del resultado anterior es una aplicacién del clasico Teorema de
Miintz-Szasz.

Ahora prestaremos atencion a la acotacién del espectro y en particular al radio
espectral. Por el Teorema de Krein-Rutman sabemos que los operadores compactos y
positivos tienen siempre un autovalor simple en el valor del radio espectral, véase [26]

o [31, Theorem 4.1.4]. Este resultado nos permite obtener el teorema siguiente.

Teorema. 2.2.1 Sea K un nicleo no negativo en L?([0,1]%). Si el radio espectral del
correspondiente operador integral con nicleo es positivo, tenemos que este mismo valor

es un autovalor del operador, al que corresponde una unica autofuncion no negativa.

Estableciendo una relacion de acotacién entre los operadores de tipo Volterra aqui
definidos y los operadores integrales con nicleo, obtenemos la siguiente mejora del

Teorema 2.2.1.

Teorema. 2.2.2 Sea K un micleo no negativo en L*([0,1]?) y sea positivo el radio
espectral del operador integral asociado. Si hay una aplicacion continua 1 de [0, 1]
en s mismo, de manera que (xr) > x cuando 0 < x < 1 y K(z,t) > 0 e.c.t.
cuando 0 < t < ¢Y(x) < 1, entonces la autofuncion suministrada en el Theorem 2.2.1
es estrictamente positiva e.c.t. Es mds, no hay mds autofunciones generalizadas de

signo definido, diferentes la correspondiente al radio espectral.
Como consecuencia tenemos:

Corolario. 2.2.3 Sea ¢ una aplicacion medible de [0, 1] en si mismo con u{x : p(x) >
x} > 0. Entonces r(V,) > 0 es un autovalor al que corresponde una autofuncion pos-

itiva. Es mds, si ¢ es continua y @(x) > x para 0 < x < 1, entonces la autofuncion
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correspondiente al radio espectral es estrictamente positiva e.c.t. y no hay mds auto-

funciones generalizadas de signo definido.

El siguiente resultado aporta una cota inferior 6ptima para el radio espectral de

los operadores de tipo Volterra.

Proposicién. 2.2.4 Sea ¢ una aplicacién creciente de [0,1] en si mismo. Entonces,
r(Ve) = [l(p(@) — )" o

Respecto a las autofunciones de los operadores de tipo Volterra, podemos enunciar

los dos siguientes resultados que atanen a su multiplicidad y su soporte.

Lema. 2.2.5 Sea ¢ una aplicacion continua de [0,1] en si mismo, tal que p(x) > =
para 0 < x < 1. Si f es una funcién de L*[0,1] tal que Vof = Af para algin A # 0,
entonces f no puede ser ortogonal a las funciones constantes. Es mds, si 0 < a < 1
es un punto fijo de ¢ y maxjy ¢ < «, entonces o bien f(a) # 0 6 f se anula en
[0, a].

Un corolario directo del resultado anterior es:

Corolario. 2.2.6 Sea ¢ una aplicacion continua de [0, 1] en si mismo, tal que p(x) >

x para 0 < x < 1. Entonces los autovalores no nulos de V,, son simples.

El siguiente resultado establece bajo ciertas condiciones naturales, que las auto-
funciones de los operadores de tipo Volterra estdn soportadas en todo el intervalo
[0, 1].

Proposicién. 2.2.7 Sea ¢ una aplicacion continua de [0,1] en si mismo tal que
o(x) >z para 0 < x < 1 y no constante en ningun subintervalo. Entonces el soporte

de todas las autofunciones de V,, asociadas a autovalores no nulos es [0, 1].

El siguiente resultado descompone el espectro de un operador de tipo Volterra en la
unién de los espectros de varios operadores de tipo Volterra con simbolos mas simples.

Dada una aplicacién medible ¢ de [0, 1] en si mismo, consideramos el conjunto

Sy ={y €[0,1] : max ¢ < y}
[0,y]

y escribimos su frontera como 0S,. Entonces tenemos el siguiente resultado.

Teorema. 2.2.8 Sea ¢ una aplicacion medible de [0,1] en si mismo, tal que

1(95,) = 0.
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FEntonces

o(Vy) = |J o (V)

jeJ
donde los operadores Vg’j estan definidos como en (2.2.1).

Como ultimo tema dentro del primer capitulo, consideramos las posibles simetrias
o propiedades geométricas y de distribucién de los autovalores de los operadores de

tipo Volterra. En particular se tiene,

Teorema. 2.2.11 Sea ¢ una aplicacion creciente de [0,1] en si mismo. Entonces

todos los autovalores de V,, son reales y positivos. Es mds,

D dale) < p{z € [0,1] : p(x) > 2}) < L.
n=0

Las técnicas para obtener estos resultados se basan en la aproximacion de opera-
dores compactos por matrices de entradas reales especialmente elegidas. En particular
se utilizan las propiedades descritas en [32] para matrices con menores positivos. De

estos métodos se deduce automédticamente que,

Teorema. 2.2.15 Si ¢ es una aplicacion medible de [0,1] en si mismo, entonces el

espectro de Vi, es simétrico con respecto al eje real.
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R-2 Resumen del Capitulo 3.

Este capitulo estd dedicado a un estudio méas profundo del espectro de los operado-
res de tipo Volterra. En concreto, se construye una funcién analitica a partir de los
operadores de tipo Volterra con simbolos ligeramente regulares, y se establece que los
inversos de los ceros de estas funciones analiticas son los autovalores de los operadores
correspondientes.

Haciendo uso de los teoremas cldsicos para funciones enteras que relacionan creci-
miento y distribucion de ceros obtendremos, entre otras cosas, varias caracterizaciones
de la finitud del espectro de nuestros operadores y los exponentes de sumacion de las
sucesiones de autovalores. Para terminar el capitulo, estudiamos la transmisién de la
analiticidad del simbolo ¢ a las autofunciones del correspondiente operador.

En este capitulo se trabaja sobre los simbolos del conjunto siguiente,
A ={p:[0,1] — [0,1] continuas y tales que ¢(z) > = para 0 < x < 1},

que consideramos dotado de la topologia que hereda del espacio de Banach CJ[0, 1].
Ahora, para cada ¢ en A, consideremos el operador acotado

1

(Wof) () = / fyd,  fer?o,u].

o(z)
Si p(x) = x, simplemente escribimos W,, = W. Definimos la funcién F : A x [0, 1] x
C — C que a cada terna (¢, x, 2), le asigna
)
FP(x,z) =FfL(z2) = Z(fl)"ai‘;(x)z”, (R-2.1)
n=0
donde af (z) = 1y af(x) = (WW}'1)(z) para cada n > 1.

En esta seccién del capitulo, los resultados son esencialmente técnicos y se centran
en probar que la funcién F esté bien definida, es analitica y se dan ciertas propiedades
de monotonia sobre sus coeficientes y sobre su funcién moédulo maximo.

El siguiente resultado es fundamental para establecer la relacién entre los ceros de

F¥ y los autovalores de V.

Proposicién. 3.1.2 La funcion F estd bien definida, es diferenciable con respecto a
x, holomorfa con respecto a z y tanto (p,x) — F¥(x,-) como (p,x) — %(x, -) son

aplicaciones continuas de A x [0,1] en H(C). Es mds,

O (r,2) = 2 (g(2), 2),

F?(1,z) = 1.
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Ademds, tenemos la siguiente representacion en serie de Taylor

‘95(3;, 2) =Y (=1)"bu(z)2",
n=1

donde by(x) = (Vlf*ll)(l —x) conP(r) =1—p(1—x).

El siguiente resultado de existencia y unicidad de soluciones de un cierto tipo de

ecuacion diferencial, es el puente entre la funcién F¥ y el operador V.

Proposicién. 3.1.5 Sean a < o < b y sea ¢ una aplicacion continua de [a,b] en si
x
Q

Sean también T un operador acotado en un espacio real o complejo de Banach B, xg

en By G en C([a,b],B). Entonces, el problema de Cauchy

mismo, tal que

X

NN

p(z) <a, sia
<z

p(z)

NN

@;
b

NN

, sta<zx

{ H'(z) = TH(p(z)) + G(z),
H(a) =z

tiene una nica solucion H : [a,b] — B, que pertenece al espacio C'([a,b], B).

Ahora pasamos a establecer de forma explicita la relacién entre F¥ y el espectro
de Vi,.

Teorema. 3.1.7 Sea ¢ una aplicacion continua de [0, 1] en si mismo, tal que p(z) > =
para 0 < o < 1. Entonces, A # 0 es un cero de orden k de F§ si y sdlo si A1 es
un autovalor de multiplicidad algebraica k de V,,. Mds ain, en tal caso, una base del
espacio ker (V, — A"1I)F es
Ity
i(x) = ————(a,2 , ara 0<j<k—1
g]( ) 6.%'82‘7 ( )z:A D SRS

Gracias a este resultado se pueden probar entre otros resultados, que si el simbolo
¢ satisface que p(x) > x para 0 < x < 1, entonces V,, no tiene autovalores negativos.
Mas aun, este ultimo resultado nos permite aplicar la teoria de distribucion de ceros de
funciones enteras a la localizaciéon de nuestros autovalores y mediante algunos lemas

técnicos de acotacion, podemos concluir lo siguiente.

Corolario. 3.1.13 Sea ¢ una aplicacion continua de [0,1] en si mismo, tal que p(x) >
x para 0 < x < 1. Si el conjunto de los puntos para los que p(x) = z tiene medida de

Lebesgue cero, entonces Fy es de tipo exponencial 0 para 0 < z < 1.
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A continuacién, establecemos varias equivalencias con la finitud del espectro de
V. Es de destacar que la condicién max[ 4 ¢ < = para cada punto fijo z de ¢, es una
condiciéon menos restrictiva que la de creciente. En lo sucesivo, dada una aplicacion
¢ de [0, 1] en si mismo, denotamos por ¢g a la identidad y escribimos ¢, = ¢ 0 @1

para cada n entero positivo.

Teorema. 3.1.15 Sea ¢ una aplicacion de [0,1] en si mismo, tal que p(x) > = para
0 <z < 1, satisfaciendo sup{z : ¢(x) > 2} = 1 y maxjy, ¢ < y para cada punto fijo

y de p. Entonces las siguientes afirmaciones son equivalentes:
(i) El espectro o(V,,) es finito.
(ii) Eziste un entero positivo n tal que o (x) = 1.
(iii) La aplicacion ¢ =1 en un entorno de 1 y ¢(x) > x para 0 < z < 1.
(iv) Para algin entero positivo n, el operador V' es de rango finito.

(v) Si P es la proyeccion sobre las funciones constantes, entonces P — V, es nilpo-

tente.

Como corolario se obtiene la siguiente aplicacién a ciertos simbolos ligeramente

més adecuados.

Corolario. 3.1.16 Sea ¢ un aplicacion continua de [0,1] en st mismo, tal que p(z) >
x para 0 < z < 1 y satisfaciendo que max(g ¢ < y para cada punto fijo y de .

Entonces las siguientes afirmaciones son equivalentes:
(i) El espectro o(V,,) es finito.

(ii) O bien ¢ es la identidad, o bien existen 0 < f < o = sup{z : p(x) > z} de

manera que

Por supuesto, si el simbolo ¢ es continuo y permanece estrictamente sobre la
diagonal principal en todo el intervalo [0,1], i.e. @(z) > x para 0 < =z < 1, con
©(0) = 0 6 satisface que ¢~!(1) no contiene ningiin intervalo de la forma [1 — ¢, 1]
para algin € > 0, entonces el espectro V,, es infinito.

Como resultado de la asociacién entre funciones analiticas y operadores, podemos
estimar, y en algunos casos calcular, las sumas de los espectros de nuestros opera-

dores y sus exponentes de convergencia. Desde ahora, s(¢) = s({\(¢)}) denotard
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el exponente de convergencia de la sucesién de autovalores {\,}. Entre otros resul-
tados, obtenemos la siguiente férmula exacta para simbolos cuyos autovalores suman

absolutamente.

Teorema. 3.1.26 Sea ¢ una aplicacion continua de [0,1] en si mismo, con o(x) >
xz para 0 < = < 1 y asumamos que la sucesion {\,(p)} de autovalores de V,, es

absolutamente sumable. Entonces,
Y Aalp) = u{z € [0,1] : p(x) > a3).
n=0

Obtenemos ademsds la siguiente formula exacta para simbolos crecientes.

Corolario. 3.1.27 Sea ¢ una aplicacion continua y creciente de [0,1] en si mismo,

con p(x) = x para 0 < x < 1. Entonces

S M) = nlfe €0.1): () > a}).
n=0

Los siguientes resultados tratan la transmisién de la analiticidad entre el simbolo
¢ y las autofunciones del correspondiente operador V.
Una herramienta fundamental en esta parte de la memoria es la férmula de Fao

de Bruno [52, Chapter 3|, para la derivada enésima de una composicién de funciones.

Lema. 3.2.1 Sean f y g funciones en C"[u,v]. Entonces para cada u < x < v,

tenemos

(g0 /) (z) =n!

3 gttt (f (@)

kil k! (11)F1- - (nl)kn (f/(x))kl ) ’(f(n) (ZE))k"

ki+--+nkn,=n

Como consecuencia se obtiene la formula exacta para la siguiente suma.

Lema. 3.2.2 Para todo ¢ en C y todo n natural, tenemos

k14 -+ kp)!
) ( 1k+l - Z ln) chtthe = (e 1)L
ki+4-+nkp,=n 1 n

El principal resultado de esta seccién es el siguiente.

Teorema. 3.2.6 Sea ¢ una aplicacion continua de [0, 1] en si mismo, tal que p(z) > x
para 0 <z <1, y sea f una autofuncion generalizada de V,, asociada a un autovalor
no nulo. Si ¢ es analitica en [, 1] para algin 0 < a < 1 y ¢/'(1) # 1, entonces f es

analitica en [a, 1]. Lo mismo es cierto si a = 0, supuesto que p(0) > 0.

Para completar este resultado, se aporta un contraejemplo que muestra que las
condiciones impuestas sobre la derivada de ¢ en el punto 1 y sobre ¢ en el punto 0,
no se pueden eliminar. El ejemplo es la funcién o(z) = (2 — x)~!, que satisface todas

las condiciones del Teorema anterior para a = 0, excepto que ¢'(1) = 1.
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R-3 Resumen del Capitulo 4.

Como se verd mas adelante, los operadores de tipo Volterra para los que es interesante
estudiar la superciclicidad, son tan sélo los quasi-nilpotentes con simbolos continuos
y estrictamente crecientes. Por ello, en este capitulo, que es de caracter puramente
técnico, buscamos estimaciones de las normas de las potencias de V, y de las normas
de las orbitas {VJ} f}n>0, cuando V,, es superciclico. Los dos primeros resultados

relevantes de este capitulo son los siguientes.

Corolario. 4.1.4 Sea ¢ una aplicacion continua y estrictamente creciente de [0, 1] en
si mismo, tal que p(x) < x para 0 < x < 1y p(l) = 1. Entonces, si ¢ es diferenciable
en 0 yen 1,y ¢'(0) =0, tenemos que para todo 1 < p < 00,

1/7’L2 _ 1 .

: ¥'(1)

Si ¢ es diferenciable en 0 y ¢'(1) = oo, entonces

4 n
Jim [[VE]

: n TL2
Tim V[ = V/@'(0).

Corolario. 4.1.5 Sea ¢ una aplicacion continua y estrictamente creciente de [0, 1]
en st mismo, tal que p(x) < x para 0 < x < 1, p(1) =1 y ¢ es diferenciable en 0 y
en 1. Entonces, el conjunto de las funciones f de LP[0,1], 1 < p < oo, para las que

se satisface
. n 7L2
Tim V™ = 6(¢'(0), 1/ (1)

es denso en LP[0, 1], donde ¢(u,v) estd definida por

Inul
exp <nunv> siu> 00> 0y () # (1,1);

21In(uw)
¢(u,v) = Vu =], siu=0 ¢v=0;
1, st (u,v) = (1,1),

Dentro de este capitulo se dedica una seccién a las acotaciones superiores de las

érbitas de V,,. El principal resultado en este sentido es el siguiente.

Lema. 4.2.1 Sea ¢ una aplicacion continua y estrictamente creciente de [0,1] en si

mismo, tal que (x) <z para 0 <x <1, p(l)=1y
5t = 6t () = i T
Si ademds f en LP[0,1], 1 < p < 00, satisface que infsupp (f) > 0, tenemos que,

T 1/n2
Tim VISl <67
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En particular, si ¢ es diferenciable en 1, tenemos

T n n?
Tim V2SI < V11,

Otra seccién de este capitulo estudia las preimégenes iteradas del operador V. El

teorema principal de esta seccion es el siguiente.

Teorema. 4.3.1 Sea ¢ una aplicacion continua y estrictamente creciente de [0, 1] en
st mismo, tal que () < x para 0 < z < 1 y (1) = 1. Ademds, supongamos que
es analitica en 0 y ¢'(0) > 0. Entonces, para todo b > 1/¢'(0), el conjunto

b, = {f € V¢°°(C0[0, 1]) tales que lim va_an})é”Z < \/5}
es una variedad lineal densa en Col0,1], que satisface Vi (Fy) = Fy y V' (Fy) = Fy.

La ultima seccién del capitulo estd dedicada a las acotaciones inferiores de las

orbitas de V,,. El principal resultado de esta seccién es el siguiente.

Corolario. 4.4.2 Sea ¢ una aplicacion continua y estrictamente creciente de [0, 1]
en si mismo, tal que p(1) =1 y o(x) < x para 0 < xz < 1. Si ademds tenemos que ¢
es analitica en 1 y diferenciable en 0 con ¢'(0) = 0, entonces, para cada funcidn no

nula f en LP[0,1], 1 < p < oo, se tiene que
1
¢'(1)

. l/n2 _
Jim [[Ve £,
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R-4 Resumen del Capitulo 5.

En esta seccion se estudia la ciclicidad de los operadores de tipo Volterra. Recordemos
que un operador se dice ciclico si la envolvente lineal de alguna de sus 6rbitas es densa
en el espacio entero. En el caso de que sea suficiente la envolvente proyectiva de
alguna de sus o6rbitas para alcanzar la densidad en el espacio, el operador se llama
superciclico. Una de las nociones mas fuertes de ciclicidad es la hiperciclicidad, que
consiste en la existencia de una orbita que es densa en el espacio por si misma.

En la primera seccion del capitulo se encuentran operadores de tipo Volterra que
son ciclicos y cuyos simbolos permanecen bajo el de la identidad. Esto significa que el
operador de Volterra no es el caso limite, como si lo es para el espectro. El principal

resultado de la primera seccién es el siguiente.

Corolario. 5.1.3 Sea ¢ una aplicacion continua de [0, 1] en si mismo, tal que p(x) >
z para 0 < x < 1, ¢ es diferenciable en 0 y en 1 con 1 < ¢'(0) < 00 y ¢'(1) < 1.
Entonces la funcion constante 1 es ciclica para Vy, donde (x) =1 —¢(1 —x), siy

sélo si la envolvente lineal de las autofunciones de V,, es denso en L*[0,1].

En la siguiente seccion, que esta dedicada a la Teoria General de operadores, se
emplea el concepto de nicleo generalizado para probar la existencia de operadores
hiperciclicos.

Recordemos que el niicleo generalizado de un operador T es el espacio
(o, ¢]
ker* T = U ker T™.
n=1
Se tiene
Corolario. 5.2.3 SeaT" un operador acotado en un F-espacio separable X, de manera

que ker* T' es denso en X y T(ker T" 1) es denso en ker T™ para cada entero positivo

n. Entonces I +'T es hypercyclic.
El primer resultado general de superciclicidad es el siguiente.

Proposicion. 5.2.13 Sean X un F-espacio separable y T un operador acotado en
él. Si el nicleo generalizado de T es denso y T tiene rango denso, entonces T es

superciclico.

El siguiente resultado establece la existencia de gran cantidad de operadores hiper-

ciclicos, con adjunto hiperciclico.
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Corolario. 5.2.17 Sea Q el conjunto de los operadores compactos y quasi-nilpotentes
sobre un espacio de Hilbert separable e infinito dimensional. Se tiene que el subcon-
junto de los operadores T en I + Q, tales que T y T son hiperciclicos es un Gs denso

en I+ Q.

En la siguiente seccién del capitulo pasamos a estudiar la superciclicidad de los
operadores de tipo Volterra y la hiperciclicidad de los operadores de la forma I + V,,
tanto en los espacios LP[0,1], 1 < p < oo, como en el espacio Cy|0, 1] dotado con la
norma del supremo. Utilizando los resultados anteriores, probamos que para todo
simbolo ¢ continuo y estrictamente creciente, tal que p(x) < z para 0 < = < 1
(nétese que (1) < 1), él correspondiente operador V,, es superciclico y el operador
I + V, es hiperciclico. Esto aporta nuevos ejemplos de operadores hiperciclicos y
quasi-nilpotentes, que vienen a unirse a los ya existentes de Hilden y Wallen [21] por
una parte, y de Salas [49] por otra. Ademds, se prueba que existen simbolos continuos
y estrictamente crecientes, con ¢(x) < x para 0 < x < 1, de manera que tanto Vo
como V. son superciclicos y los operadores I + V,, e I + V] son hiperciclicos. Para
terminar se demuestra que para los simbolos ¢ continuos y estrictamente crecientes,
con p(r) < x para 0 < x < 1, (1) = 1 y analiticos en 0 y en 1, se tiene que si
¢'(0)¢'(1) > 1, entonces V, es superciclico, y si ¢'(0)¢’(1) < 1, entonces V, no es
ciclico. Debemos senalar que en algunos enunciados no se especifican los espacios en
los que los operadores cumplen una cierta propiedad ciclica. Esto se debe a que, gracias
a las caracteristicas especiales de los operadores de tipo Volterra, sus propiedades de

ciclicidad no dependen del espacio LP[0, 1], 1 < p < oo 0 ([0, 1] en el que actian.

Teorema. 5.3.10 Sea ¢ una aplicacion continua y estrictamente creciente de [0, 1]
en si mismo, tal que p(x) < x para 0 < x < 1. Entonces Vi, es superciclico y I +V,

es hiperciclico.

Corolario. 5.3.12 Sea ¢ una aplicacion continua y estrictamente creciente de [0, 1]
en si mismo, tal que p(x) < x para 0 < x < 1 y (1) = 1. Si ¢ es analitica en 0 y

diferenciable en 1 con ¢'(0)¢’(1) > 1, entonces V,, es superciclico.
El primer resultado de no-ciclicidad que presentamos es el siguiente.

Corolario. 5.3.14 Sea ¢ una aplicacion continua y estrictamente creciente de [0, 1]
en si mismo, tal que p(xr) < x para 0 < x < 1 y (1) = 1. Entonces, si ademds
asumimos que @ es analitica en 1 y diferenciable en 0 con ¢'(0)¢'(1) < 1, tenemos

que Vi, mo es ciclico.

Como consecuencia de los dos resultados anteriores, tenemos
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Corolario. 5.3.15 Sea ¢ una aplicacion continua y estrictamente creciente de [0, 1]
en st mismo, tal que p(x) < x para 0 <z <1 y (1) = 1. Asumamos también que

es analitica en 0 y en 1. Se tine que
(i) Si¢'(0)¢'(1) > 1, entonces V,, es superciclico.
(i) Si¢'(0)¢'(1) <1, entonces Vi, no es ciclico.

La siguiente definicién es necesaria para estudiar los conjuntos de operadores,

superciclicos e hiperciclicos, cuyos adjuntos también lo son. Consideremos el conjunto
Q= {p €(Cy[0,1] tales que 0 < p(x) <z para 0<z <1 y o escreciente}

dotado de la métrica

o0

d(%¢)=22‘"[3 max_ [~ .
n=1

—n1-3-n
Consideremos también el subconjunto de 2
Q={pe:px)<zxfor0<x<l1, (1) =1 y ¢ es estrictamente creciente}.
Entonces tenemos el siguiente resultado.

Teorema. 5.3.16 El conjunto de simbolos ¢ en §o para los que Vy, y VI son super-

ciclicos y tanto I + Vi, como I + V. son hiperciclicos es un G5 denso en .






Introduction

An operator is nothing else than a continuous linear transformation on a vector
space endowed with a norm, and the branch of mathematics that treats operators
is called Operator Theory. As in any other branch of mathematics, general results
usually come from the study of particular examples. The part of Operator Theory
that provides such study of examples is known as Concrete Operator Theory but many
times it has been written and said that there is a lack of objects in the theory that
limits its development. In this work we present and develop the spectral and cyclic
theory of a family of operators that we call composition Volterra operators. Namely,
given a Lebesgue measurable self-map ¢ of the interval [0, 1], the composition Volterra

operator is defined as

o(x)
(V@f)(x):/o f(t)de, feLP0,1], 1 <p<oo.

Results listed here provide understanding on how the behavior of these operators
depends on the geometry or the qualitative and quantitative properties of the symbol
. Therefore, composition Volterra operators might be useful to produce ad hoc
instances of operators for particular situations in the theory. To be precise, for a
class of natural symbols ¢, finiteness of the spectrum is characterized. An interesting
instance of finite spectrum occurs when it reduces to the singleton {0}. Operators with
such property are known as quasi-nilpotent operators and they are characterized in the
family of composition Volterra operators. When the spectrum is infinite, a formula for
the convergence exponent of eigenvalues is provided. We also treat the symmetry and
the positivity of the spectrum as well as the analyticity of the eigenfunctions. The text
is illustrated by some examples of symbols ¢ to which the theory can be applied and,
in particular, norms, eigenvalues and eigenfunctions are computed explicitly. Finally,
we show that the cyclic behavior of V,, is essentially determined by the behavior of the
symbol ¢ at 0 and at 1. In particular, this leads to new examples of quasi-nilpotent

supercyclic operators, which parallel previous ones of Héctor Salas on weighted shifts.

xxiii
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However, before we go into the technical part of the text, in these introductory
lines we would like to expose roughly the origins of Operator Theory and some of the
main difficulties that one encounters while studding it. We emphasize by means of

examples how far of being parallel are the finite and the infinite dimensional settings.

Operator Theory could very well be considered as a natural extension of the study
of finite matrices. As a mater of fact, operators were first treated in finite dimensional
spaces, where a huge effort was made by many mathematicians to construct a corpus
of results, known nowadays as linear algebra. Such accumulation of knowledge lets us
almost clearly understand the way in which a matrix transforms a finite dimensional
vector space. Among others, Jordan Canonical Forms and Schur triangular repre-
sentations, are tools aimed to exhibit the main properties of finite dimensional linear

transformations and to classify them up to isomorphisms.

For the sake of the exposition, we sacrifice the chronological order. Indeed, al-
though Jordan Canonical Forms are triangular matrices, surprisingly enough, it was
Marie Ennemond Camille Jordan (1838-1922) who first stated his result, and a little
later, Issai Schur (1875-1941) found triangular representations of matrices. The latter
representations are more intuitive and in some sense they could even be considered as
an intermediate step to reach Jordan’s result, which is more involved and complete.
Jordan’s work on Group Theory [22], Traité des substitutions et des équations alge-
braique, was published in 1870, when Schur was only 5 years old. There, along with
many other results that founded Group Theory, appears the Jordan Canonical Form,
not over the complex numbers, but over a finite field. It approximately says that
each square matriz is similar to a block-diagonal matriz which is triangular. Some
works in the same direction were first developed by Weierstrass, but it seems clear
that Jordan was not aware of these. It was not until 1909, that Schur [51] found his
result, each square matriz is similar to a triangular one. A triangular matrix at first
glance displays its eigenvalues, the diagonal elements, and their algebraic multiplic-
ities, the number of times that an eigenvalue is repeated, and as we next see, it is
more elementary to compute than the Jordan Canonical Form. In order to show the
existence of the triangular representation we follow a constructive method. Since we
work on the field of complex numbers, on finite dimensional spaces the unit ball is
compact and matrices are continuous transformations, we can ensure the existence
of a preferred direction in the space under the action of the matrix; i.e. there are a
vector ui, called eigenvector, and a complex number A1, called eigenvalue, such that
Auy = Muy. If we restrict the transformation A to the orthogonal complement of

uyp in V, in symbols V & uy, by the same argument as before, there exist an eigen-
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vector us and an eigenvalue Ag in V © uj. Of course, although in general us is not
an eigenvector of A acting on V', at most, Aus is a linear combination of u; and us.
Iterating this process, we clearly end up with an orthogonal basis {uq,...,u,} of V,
in which A has an upper triangular matrix. Moreover, that an n-square matrix A be
similar to a triangular matrix, is equivalent to the existence of a maximal chain of
invariant subspaces of A. That is, a chain of subspaces {0} = My C --- C M,, =V
with dim(M}y) = k and such that A(My) C M for 0 < k& < n. The collection of
all invariant subspaces of A is usually denoted by Lat(A). Observe that the same
orthonormal basis could have been obtained by taking orthogonal differences in the
chain {0} = My C --- C M,, = V. This reformulation provides a different approach,
that will be useful below, and points out the interest of knowing the lattice of in-
variant subspaces of a matrix. These subspaces provide a good understanding of the
transformation and let us construct nice representations for the matrix. Jordan’s
Theorem provides more information than Schur’s, and it naturally appears from a
detailed study of a particular example; the finite dimensional version of the linear
application known as backward shift, B say. This is the transformation that sends
the first element of the basis to the null vector and every other element of the basis
is sent to its predecessor: Beg = 0 and Be, = e for each k > 0, where obviously,
{ex : k=0,1,...,n} is a basis of the n-dimensional vector space. The only eigenvalue
of B is 0, thus its algebraic multiplicity is n, and the only eigenvector associated to
0 is eg. The geometric multiplicity of an eigenvalue is the dimension of the space of
its eigenvectors. Therefore, in the case of B, the geometric multiplicity of 0 is 1. The
main idea of the Jordan Canonical Form follows analyzing the orbits of B. Indeed,
B is the classical example of a nilpotent linear transformation. These are matrices
M for which there exists a natural number p, called index of nilpotency, such that
MP =0 but MP~! #£ 0. Obviously, for each nilpotent transformation of index p, one
can ensure the existence of at least one non-null vector, x say, such that MP~ 1z # 0.
In fact, geometrically one can think of a nilpotent matrix as a set of holes, or vectors
in its kernel, towards which the different invariant subspaces are shrunk while iterat-
ing the application. This rough idea points out the possibility of writing a nilpotent
linear transformation, in a canonical form, as the sum of several backward shifts, each
of them acting on an invariant subspace. Since at the end of the day, all this goes
about invariant subspaces, it is interesting and necessary to introduce here a particu-
lary nice kind of invariant subspaces; the so called reducing subspaces, that consist on
invariant subspaces with invariant orthogonal complement. The reducing subspaces

of a linear application reduce, or decompose, the application into a direct sum of two
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applications acting on the respective subspaces. The following result cited from [17]
belongs to the folklore of the theory and leads, via a finite induction process, to the

hinted canonical form for nilpotent matrices.

Theorem. If A is a nilpotent linear transformation of index q on a finite-dimensional
vector space V', and xo is a vector for which A9 xy # 0, then xg, Axg, ..., AT lzg
are linearly independent. If H is the subspace spanned by these vectors, then there
exists a subspace K such that H ® K is the whole space and such that the pair (H, K)

reduces A.

Obviously, since A was nilpotent on V, it is so on the reducing subspace K, and a
finite induction finishes the construction of the canonical form for nilpotent matrices.

Once the nilpotent matrices are understood, the same ideas may be adapted to
obtain the Jordan Canonical Form. The adaptation consists on observing that if a
matrix A has the eigenvalue A with algebraic multiplicity k, then ker(A — AI) is not
trivial. Therefore, there is a subspace of dimension k in which the matrix given by
A — )\ is nilpotent of order at most k. Such space is called the generalized eigenspace
of A associated to the eigenvalue A, and vectors in it are generalized eigenvectors.
Denote by Ay to the restriction of A to the generalized eigenspace associated to A.
We can write Ay = (Ax — M) + A, where the matrix in brackets is nilpotent of
order at most k& and therefore, using the above result, we can construct a basis of the
generalized eigenspace such that Ay — Al coincides with the direct sum of a number
of backward shifts, EA say. The number of backward shifts added in EA is precisely
the geometric multiplicity of A\, or what is the same, the dimension of ker(A — \I).
As a result of this, we have just ensured the existence of a basis in each generalized

eigenspace such that, for each eigenvalue A\, Ay = B AL

Al
0
Al
Ay ~ A0
Al
Al
0 A1

Now it is clear that, similarly to the nilpotent case, each generalized eigenspace is

shrunk upon its associated eigenspace, or what is the same, each generalized eigen-
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vector becomes an eigenvector under suitable iterations of the matrix. The latter
behavior will help in the last needed step. The only remaining task is to prove the
linear independence of the generalized eigenspaces but, as we show next, it reduces to
the linear independence of the eigenspaces, which we prove first. Indeed, let v be an
eigenvector corresponding to an eigenvalue A, which is linear combination of linearly

independent eigenvectors v; associated to eigenvalues A; all different from A, where ¢

vV = E QU5
%

Applying now the linear transformation on both sides we get,
AV = Z Oéi)\i’Ui.
i
Using the first equality to substitute v in the second we have

A g Qv = E i\ v;,
i i

runs over the needed index set.

or what is the same

> i\ = v =0,

a contradiction. Assume now that a non-nilpotent linear application A has eigenvalues
A; with corresponding algebraic multiplicities k;, where again ¢ runs over the needed
index set. Assume also that there is a null non-trivial linear combination of generalized

eigenvectors x;, corresponding to different eigenvalues. That is,
0= Z (a7
i

If k is the largest among the algebraic multiplicities, then we apply A to the last

equality to get
0="> a; A FHlak-lg,

i
From what has been discussed, we know that A% ~1z; must be an eigenvector for each
i, contradicting their linear independence. Observe here that since we have let A be
a non-quasinilpotent transformation, the tautology 0 = 0 is not possible in the last
display.

As a conclusion of the discussion about nilpotent operators and the construction
of the Jordan Canonical Form we can say that this representation provides a complete
description of the lattice of invariant subspaces of each matrix. If we turn our attention

to the infinite dimensional setting, it appears that this is one of the most important
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problems in Operator Theory. Does each operator acting on the separable Hilbert
space have a non-trivial invariant subspace? The first natural attempt to answer such
question is to look for an eigenvector for each operator, but, unfortunately, we can
provide a very easy counterexample. Namely, on the space £2(N) of squared modulus
summable sequences we define the so called forward shift S acting on a basis {e,}
by S(en) = eny1. This operator is clearly an isometry of £2(N) without eigenvectors,
what by the way shows that the unit ball of the separable infinite dimensional Hilbert
space is not compact. As a consequence of this we also get that the constructive
proof provided for the Schur triangular representation does not work anymore. Does
the result still hold? The answer is no, not each operator has a triangular matrix
representation on the separable infinite dimensional Hilbert space. In order to provide
a counterexample we move to the space of functions supported on [0, 1] with square
integrable modulus, L?[0,1]. Now, consider one of the oldest operators, the classical

Volterra operator V defined as,

(V)x)= /033 f(t)dt for each f € L*[0,1],

and recall the equivalent formulation of Schur’s result in terms of invariant subspaces.
It is clear, that the existence of a triangular matrix representation of the Volterra
operator should imply the existence of a chain in Lat(V') with one-dimensional jumps
from one space to the next. The lattice of V' has been computed through various

methods, for instances see [39] and references therein, and it is,
Lat(V) = {L%[a,1] : a € [0,1]}.

Since there are no one-dimensional jumps between its spaces, our claim is proved.
Even more, since the Volterra operator is compact, or what is the same, it is limit
of finite matrices, this counterexample makes somehow fruitless the task of finding
the class of operators to which Schur’s result extends. The best general result in
this direction is due to Halmos, and although it is a bit disappointing, in view of the
impossibility to provide triangular representations for general compact operators, it
is rather sharp. Every operator acting on a separable Hilbert space has a matriz finite
by columns indexed on N [15] . Here the expression finite by columns means that each
column has finitely many non-zero elements.

Particulary nice representations that will be useful below are those which are as
close as possible to be triangular. These are called triangular plus one, meaning that

the last non-zero element of each column is its first sub-diagonal element.
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Concerning Jordan’s Theorem, the lack of eigenvectors for many operators makes
impossible to find a satisfactory extension to the infinite dimensional setting. Nonethe-
less, things work when we keep our operators ‘close’ to finite dimensional ones, or we
impose very restrictive conditions. In fact, there are some good substitutes for par-
ticular classes of operators. For instance, functional calculus may be constructed
for self-adjoint and normal operators, and compact self-adjoint operators might be
represented as diagonal matrices.

Other differences between finite and infinite dimensional operators are due to the
existence of cyclic vectors. An operator A is called cyclic if there exists a cyclic vector
x, such that

span{A"x: n=0,1,2,...}

is dense in the space. If instead of the linear span of the orbit, it suffices to take its

projective span, in symbols,
{M"z: AeCandn=0,1,2,...}, (0.4.1)

then A is said to be supercyclic and x is a supercyclic vector. The strongest form of
cyclicity is called hypercyclicity, and it occurs when there is a hypercyclic vector x
such that the orbit

{A"x: n=0,1,2,...} (0.4.2)

is itself dense in the space. Observe that both in (0.4.1) and (0.4.2), finitely many
values of n can be omitted without any loss. Rolewicz [42] provided the first examples
of hypercyclic operators on a Hilbert space, precisely on ¢?. Such examples are scalar
multiples of the backward shift AB, with |A| > 1. By the way, this also provides
examples of supercyclic operators, but it was not noticed at that time. Such an
extremal behavior for a linear transformation of the space is difficult to imagine a
priory. Indeed, in a private communication, Rolewicz explained that he found his
examples while trying to establish the impossibility of hypercyclicity on separable
infinite dimensional Hilbert spaces. The last two forms of cyclicity, supercyclicity and
hypercyclicity, are characteristic of the infinite dimensional setting, being impossible
on finite dimensional spaces. Namely, the existence of at least an eigenvector and the
Angle Criterion, introduced by A. Montes-Rodriguez and H. Salas [34], will be enough
to accomplish the proof of the assertion. First observe that hypercyclic operators
are all supercyclic and that each scalar multiple of a supercyclic operator is itself
supercyclic. Therefore, without loose of generality we can assume the existence of

a supercyclic operator A, with norm 1/2, and supercyclic normalized vector x on a
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finite dimensional vector space. Now, let A be an eigenvalue of the adjoint matrix A*

with corresponding normalized eigenvector y. Then, we have
(A"z,y) = (v, A™y) = (x, A™"y) = X' (2, y).
Since |A| < 1/2, the above display has a geometrical meaning. The orbit
{A"z: n=1,2,...}

is bounded away from a cone around y, which is a contradiction. Notice that even if

Yz, y(= 0, the prove still works.



Chapter 1

Preliminaries

This expository chapter presents the spaces on which our results are established,
to expose some general properties of compact operators and to state several classical
and remarkable results that are used in the following chapters. We do not try to
give an exhaustive description of the respective theories, but just to enhance the self-

containment of the present work.

1.1 Function spaces

The only measure used all along the work is the Lebesgue measure. For instance,
measurable functions on the interval [0, 1] are always measurable with respect to the
Lebesgue measure, but it will not be mentioned in order to make the statements more
readable. Indeed, for 1 < p < oo, we denote by LP[0, 1] to the vector space of complex

valued measurable functions f supported on [0, 1] such that

[

is finite. For p = oo, the space L*°[0, 1] is the one of Lebesgue essentially bounded,
complex measurable functions on [0, 1]. These vector spaces are known to be Banach

when endowed with the corresponding norms

1
rf\ng FOPd for 1<p <,
0

and

£l = essensupyo,lf|  for p=oo.

This parametric family of spaces form a decreasing chain with respect to contention

and some of their more remarkable properties are the following: The only Hilbert space

1
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among them is L?[0, 1] and if as usual, we say that 1 < p < oo and ¢ are conjugated
when 1/p + 1/¢ = 1, then the dual space of LP[0,1], 1 < p < oo, is isometrically
isomorphic to L9[0,1]. The 1-oo pairing is the most singular in the family, since
L®[0,1] is not separable and its dual is bigger than L'[0,1]. The non-separability
of L*°[0,1] makes senseless to look for a cyclic operator acting on it. Hence, in the
last chapter, it will be substituted by the space of continuous functions that vanish at
zero, Col0, 1].

As an historical note, we may emphasize that soon after Lebesgue defined his
integral at the beginning of the XX century, first F. Riesz [40] and E. Fisher [7]
(1907) defined the space L?[0,1] and later F. Riesz [41] (1910) found the LP[0,1]

spaces.

1.2 The spectrum of a compact operator

If T is a bounded operator on a Banach space B, its spectrum, denoted by o(T),
is the set of complex numbers such that 7' — AI is not invertible and it is always a
non-empty compact set. The eigenvalues of T' are those complex numbers A for which
ker (T'—AX)={feB : (I'-Al)f =0} is not the null space and they clearly belong
to o(T). The dimension of ker (7" — AI) is called the geometric multiplicity of A and
each non-zero element in ker (7' — AI) is called an eigenvector (or an eigenfunction) of
T corresponding to the eigenvalue .

A compact operator on a reflexive Banach space is an operator that takes the unit
ball of the space to a pre-compact set. In Hilbert spaces, compact operators coincide
with the norm closure of finite rank operators. The set of compact operators is a
closed ideal of the Banach algebra of bounded linear operators on B. It is well known
that for a compact operator T', such as our V,,, acting on an infinite dimensional
Banach space, the spectrum consists of either a finite set of eigenvalues joint with {0}
or a sequence {\,(T")}n>0 of isolated eigenvalues that converges to zero together with
{0}, since ¢(T") is closed. In any case, the non-zero eigenvalues are of finite geometric
multiplicity. A detailed study of these facts is in [5].

The resolvent R(T) = (T — M)~! of a compact operator T is an operator-valued
analytic function that only has poles at the non-zero eigenvalues, that is, the non-
zero eigenvalues are always normal [12]. The order of the pole of R(T') at a non-zero
eigenvalue is called algebraic multiplicity. The algebraic multiplicity is always greater
than or equal to the geometric multiplicity. The sequence {\,(T')} of eigenvalues

of a compact operator T' is arranged in decreasing order of moduli and each non-
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zero element in the sequence is repeated as many times as warranted by algebraic
multiplicity. We also assume that if the spectrum of 7' is finite, then A\, (7)) = 0
for n greater than the sum of the algebraic multiplicities of all non-zero eigenvalues
of T. When dealing with composition Volterra operators we write \,(y) instead of

{A (V) }. Recall that the spectral radius of a bounded operator is

r(T) = lim ||T7|*™. (1.2.1)

The limit always exists and is max{|z| : z € o(T)}.

1.3 Traces of operators

The matrix trace of an n-square matrix is defined as the sum of its diagonal coefficients.
Indeed, this value is an invariant of the matrix, that is, it remains the same for the
whole similarity orbit of each given matrix. Moreover, the matrix trace equals the
spectral trace, or what is the same, the sum of its eigenvalues. Following the same lane
as we did in the introduction, a big effort was put to determine how far remains good
for operators this property of matrices. The first candidates are compact operators,
but once more, things are not so easy. For instance, the operator defined on the Hilbert
sequence space £2(N) by the diagonal matrix with diagonal coefficients {1/n},>0, is
compact, but obviously, its ‘trace’ is infinite. In relation with traces of operators
emerges the crucial concepts of nuclear operator and Hilbert-Schmidt operator. An
operator A on a Hilbert space is said to be Hilbert-Schmidt if the sum Y o7 ;|| Ae,||?
converges for each orthonormal basis {e,}, and it is said to be nuclear if the sum
tr(A) = > .7 o(Aen, e,) converges for each orthonormal basis {e,}. We denote the
sets of nuclear and Hilbert-Schmidt operators by A/ and H-S respectively. In any
case, the latter sums can be shown to be independent of the basis, and the value tr(A)

is usually called matrix trace of the operator A. Indeed, let {uy}n>0 and {e;,}n>0 be
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orthonormal bases of a Hilbert space. Then,

D (Aen,en) =) <A (Z<emuz’>w> : <€muj>“j>

n=0 0 =0 j=0

=> <Z<emui>Aui,Z<6m“j>W>
n 1=0 j=0

[e.o] [e.9]

(Aui,u) Y (en, i) (uj, en)

i,5=0 n=0

(]2 L

o0
= (Aui, ug) (ug, ug)
4,j=0

8

= (Aui, u1>
=0

A nice introduction to these topics may be found in [6, §18]. Among the main pro-
perties of Hilbert-Schmidt operators outstands that they constitute a sub-ideal of
the ideal of compact operators. Moreover, an operator is nuclear if and only of it
is the product of two Hilbert-Schmidt operators. Both nuclear and Hilbert-Schmidt
operators are complete Banach operator ideals when endowed with the appropriate
norms. In the case of nuclear operators, the matrix trace is also absolutely summable
and it is related to the spectral trace of the operator. The spectral trace of an operator
is the sum of its eigenvalues repeated according to their algebraic multiplicity. Among
the first calculated matrix traces we find those of integral operators with kernel. For

each function K in L?([0,1]?), the integral operator with kernel K is

(Jrf)( / K(x,t)f(t)dt for each f € L*[0,1].

Applying Fubini’s Theorem, it follows from the last definition that the iterate Jy of

an integral operator with kernel K, is again an integral operator Jxn» with kernel
K"(z,t) = / K(z,t1)K(t1,t2) - - K(tn—2,tn—1)K(tn-1,t)dty, - -dt,—1 (1.3.1)
[0,1]

for each n > 2. Integral operators with kernel are known to be Hilbert-Schmidt
operators, see for instance [16, pp. 18-19], what implies that J} are nuclear operators
for each kernel K in L2(]0,1]?) and each n > 2.

It was in 1909 that J. Mercer stated his classical Theorem, see for instance [57],

from which automatically outcomes the following.

Mercer’s Theorem 1.3.1. Let Jx be an integral operator with Hermitian positive
semi-definite kernel K in L?([0,1]?). Then,

1
tr(JK):/O K(x,z)dx
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The first results relating traces and spectra of nuclear operators were stated with

the extra condition of positivity. The full theorem is due to Lidskii.

Lidskii’s Theorem 1.3.2. If the operator A is nuclear, then its matrix trace coincides

with its spectral trace:
o
D (Aej,ej) =D Ni(A),
j=1 i

where {en}n>1 is an arbitrary orthonormal basis in H and \;(A) are the eigenvalues

of the operator A.

Lidskii’s Theorem is one of the tops of a lot of works involving variational estimates
of the spectrum of a compact operator and that is spotlighted by results of Hilbert,
H. Weyl, Horn, Grothendieck and some others, see [45].

In light of Lidskii’s Theorem, when dealing with nuclear operators we will not
distinguish matrix and spectral traces, that will be denoted the same, tr.

Now, since we could not find an appropriate reference for it, we prove an explicit
formula for the trace of a product of integral operators with kernel, that belongs to
the folklore of the theory. As we have said, such products are nuclear operators, what
will be essential in the proofs. Before we get to the general version of the result, we

need some lemmas.

Lemma 1.3.3. Let A be a nuclear operator acting on the infinite dimensional sepa-
rable Hilbert space H and let P, be an increasing sequence of orthogonal projections
such that | J P,(H) is dense in H. Then

tr(A) = lim tr(P,AP,).

n—oo

Proof. 1t is standard that putting together the orthonormal bases obtained from the
spaces P, (H) © P,_1(H), each of them denoted by {ef,... ey, }, we end up with a

basis of the whole space H. Now, since A is nuclear, the following limit exist and is

finite.
lim tr(P,AP,) = lim E g (Aek, el) = (Ael el) = tr(A).
n—od n—oo
I=1 k=1 I=1 k=1

Now we prove a formula for the trace of a nuclear integral operator with continuous

kernel.
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Lemma 1.3.4. Let K be in C([0,1]?) such that the associated integral operator Jx is

1
tr(JK):/O K(z,x)dx

Proof. In order to apply Lemma 1.3.3, for each natural entire n > 0 we take a regular

nuclear. Then

partition of the unit interval of diameter 27". Each of the segments generated by the
n'™® partition will be denoted by I, 1 <k <2" and e} will stand for the normalized
characteristic function 2"/ 2x® of the segment I}, where again k runs from 1 to 2".
Now, for each n, consider the space span{ef,...,e5.} and its associated orthogonal
projection P,. As it is well known, span{e} : n > 0 and k = 1,...,2"} is dense in

L?[0,1]. Therefore we can apply Lemma 1.3.3.

tr(JK) = lim tl“(PnJKPn)

on

= lim Z JKek,ek.>
n—oo -

~ im Z / / K(x, )} (t) dt () d
= lim 2"2/ K(z,t)dtdz.

Since K in continuous on the compact set [0, 1]2, it is uniformly continuous. Therefore,
for each natural n and each 1 < k < 2", we find at least a point (z7,t}) in I}} x I}!

such that

n n 2n n
711;110102 Z/ ey K(xz,t) dtdx—nlin;OQ 22 K(xy,t})

2TL
= lim 27" E K (zy, 7).

n—00
k=1

To finish, we know that by uniform continuity of the kernel K, it is possible to choose

points 77 in each I}' such that for a given € > 0 and each n big enough, we have that
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|K (2}, t}) — K(r}, )| < e. Putting all together we can compute de limit above.

27l
tr(Jr) = lim 27" > K(afty)
k=1

ig 2n
= lim (2” Z K(rg,rp)+27" Z K(z},t}) — K(rg, TZ))

n—oo
k=1 k=1
1
= / K(z,z)dx,
0
where in the last equality we have used the definition of the Riemann integral. O

A straightforward consequence of the last Lemma is,

Corollary 1.3.5. Given K1, ..., K, in C([0,1]?), n > 2, let Jx be the integral opera-
tor with kernel K, defined by Jx = Ji, -+ - Jk, . Then
tr(Ji) = Ki(z1,22)Ko(wo, x3) - - - K1 (-1, p) Kp(2p, 21) day - - - day,.

[0.1]"
(1.3.2)

Proof. Using formula (1.3.1), we get that

K(.’L‘, t) = / Kl (':Ua .TQ)KQ(I'Q, .%'3) o Kn_l(.’ﬂn_l, xn)Kn(xTLa t) dl’Q to d-xn,
[0’1]7171

is a continuous function in C[0, 1]2. Moreover, since an operator is nuclear if and only
if it is the product of two Hilbert-Schmidt operators, we know that Jg is nuclear. It

just rests to use Lemma 1.3.4. O

We need just one more lemma to prove the general formula for traces of integral

operators with kernel.

Lemma 1.3.6. For each n > 2, the functional that maps the n-tuple (K, ..., K,)

from (L2 [0, 1]2)n to the trace of Ji, - -+ Jk,, , is a bounded n-linear functional.

Proof. This proof consist in recalling some known facts. Observe that since n > 2,

the product operator Jk, ---Jk, is always a nuclear operator. Now, the following

three mappings are bounded when the respective spaces are endowed with the norms
that makes them complete. Namely, the trace norm in A and the Hilbert-Schmidt
norm in H-S. This can be found in [6] and partially in [16]. First, the mapping
that takes a function K in L2[0,1]? to the associated Hilbert-Schmidt operator Jg in
H-S is a linear isometry. Second, the mapping that takes an n-tuple (71,...,7,) in
(H-8)™ to its product Tj - -- T;, in N is an n-linear contraction. Finally, the mapping

denoted by tr, that takes each operator in N to its trace in C, is a continuous linear

functional. O
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We are ready to state and prove the formula for the trace of a product of integral

operators with kernels in L%(]0, 1]?).

Theorem 1.3.7. Given Ky, ..., K, in L*([0,1]?), n > 2, let Ji be the integral opera-
tor with kernel K, defined by Jx = Jk, --- Jk, . Then

tr(Jx) = o Ki(z1,22)Ko(x2,23) - - Kn—1(2n—1, 2n) Kn(2p, x1) dz1 - - - dpy.
0,1]
(1.3.3)

Proof. First, parallel arguments to those of formula (1.3.1) suffices to see that Jg is

well defined as an integral operator with kernel
K(z,t) = / Ki(x,z9)Ko(x9,23) - - Kpn_1(Xpn—1,Tn) Kn(xn,t) dxs - - - da,.
[0 1]n 1

Moreover, the kernel K evaluated on the diagonal elements of [0,1]? is absolutely
integrable, that is, K (z, ) is in L'[0, 1]. To see this, it suffices to show that given M
and N in L?[0,1], we have that

/1 M (z,s)N(s,t)ds
0

belongs to L?[0,1]2. Indeed,

/st (s,t)d

dx dt

/st st)ds

///|Mx3 ds/ |N(s,t)]* ds dx dt

_/[Omw(x 52 dsdx/ N (s, )2 ds dt

[0,1]?

= [IMINS.

Therefore, a finite induction is enough to prove that K (x,t) is in L?[0, 1], and Holder’s
inequality lays that K (z, ) is in L'[0, 1]. Thus we have that (1.3.3) defines a bounded

linear functional on (Lz[O, 1]2)n, that may be written

1
tr(JK):/O K(x,z)dx

By Corollary 1.3.5, the latter functional coincides with the trace functional on the
space (C[O, 1]2)n, which is dense in (L2[0, 1]2)n. Therefore, by Lemma 1.3.6 we
have that formula (1.3.3) is the only possible extension of the trace functional to
(L2[0,1]%)". O
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1.4 Zeros of analytic functions

In order to obtain several properties of the spectrum of composition Volterra operators,
we establish a relation between the zeros of an entire function and the named spectrum.
Once this is done, the more we can say about the growth, distribution or geometry
of the zeros of the entire function, the more we will know about the spectrum of our
operators. For this reason, we use several classical results that deal with the relation
between the growth of an entire function and the distribution of its zeros, all of them
cited in the first chapter of the book by B. Ja. Levin [29].
It is known that given an entire function f(z), the growth rate of

M(f,r) = max|f(z)]

|z[=r

exceeds the growth of all polynomials. Therefore, functions of the kind
rk .
e with k£ > 0

are used in order to have an scale of growth. Then, if an entire function satisfies
asymptotically the inequality
M(f,r)<e”

for a positive constant k, then we say that f is of finite order p(f). The most extended

definition of the order of an entire function f is

o(f) = Tim lnlnM(f,r).

r—oo Inr

Among the entire functions with the same order p, we discriminate their growth rate

by using the finer quantity,

() = Tm lnM(f,r).

r—o00 rP

The value 7(f) is called type of the entire function f. If 7 = 0 the function is said to
be of minimal type, if 0 < 7 < oo of normal type, and 7 = co of maximal type. If the
order p of an entire function is one, then its type is called exponential type.

One of the main aims of the study of entire functions is to understand the relation
between the order of growth of a given entire function and the distribution of its zeros.
The first milestone of such study is the Weierstrass representation of entire functions
as infinite products. Indeed, given n arbitrary points of the complex plane C, it is easy
to produce a monic polynomial of degree n, as a product of n monomials, with zeros

at the prescribed points. Following this idea, for each moduli increasing sequence of
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points {a,} in C, all different from zero and accumulating just at infinity, we can

construct the infinite product

n=1 n
in which
Glu;p) =1 —uw)e" Tzt 40, Gu;0)=1—u

and {p,} is an arbitrary sequence of distinct natural numbers. For instance p, = n,
n > 1.

Since these products depend on the choice of {p,,} they are not unique, but at least
they can be shown to define entire functions that just vanish at {a,}. Nonetheless,
the infinite product representation above may be improved just by imposing to the

sequence of zeros {a,} that the sum

Zlai\ (1.4.1)

converges with the help of the positive exponent s. In such a case, if we let p be the
smallest integer such that p 4+ 1 can replace s in the display above, then the so called

canonical product .
z
1n(z) =£G(an;p> ,
is well defined as an entire function, and p is call the genus of the canonical product.
Notice that each sequence of zeros {a,} satisfying the summability condition (1.4.1)
produces a unique genus and therefore a unique canonical product.

It has appeared at last a clear relation between the growth of a entire function
and the ‘density’ of its zeros. The product representation shows the importance of
measuring the ‘density’ of a sequence of points {a,} on C, all different from zero,
with no finite limit points. One of the measures of such density is the convergence
exponent of the sequence {a,}, in symbols s({a,}), and is defined as the infimum of

¢ > 0 for which

[e.9]

1

is finite. Observe that s({a,}) might be both zero or infinity. We must precise here
that when measuring the convergence exponent of a sequence of points converging to
zero, with no risk of confusion, we use the same definition but replacing the sum of
the inverses by the sum of the elements in the sequence.

The following theorem is due to Borel [29, p. 30] and it provides control on the

order of a canonical product, means the convergence exponent of its sequence of zeros.
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Borel’s Theorem 1.4.1. The order p of a canonical product
ad z
I1(z) ZEG <an;p>
does not exceeds the convergence exponent s of the sequence {ay}.

It is a standard result that both the type and the order of the product of two entire
functions are those of the factor with larger ones. The latter fact along with Borel’s

Theorem lays one of the most classical results in the theory of entire functions,

Hadamard’s Theorem 1.4.2. The entire function f(z) of finite order p can be

represented in the form

where ay, are the nonzero roots of f(z), p < p, P(2) is a polynomial whose degree q

does not exceed p, and m is the multiplicity of the zero at the origin.

Now we look for results providing control on the amount of zeros that a holomor-

phic function can have in a circle or radius r.

Jensen’s Theorem 1.4.3. Let f(z) be holomorphic in a circle of radius r with center
at the origin, and f(0) # 0. Them

[ npl®) 1 / " | f(rei®)|d — 1n | £(0)
0 0

t 2T

where ng(t) is the number of zeros of f(z) in the circle |z| < t.

Jensen’s Theorem provides control on the growth of the zero-counting function of
a holomorphic function. The following Lemma is, in words of Levin, an important

estimate for the number of zeros of f(z) in a circle. [29, p. 15].

Jensen’s Lemma 1.4.4. If f(z) is holomorphic in the circle
|z| <er

and |f(0)| =1, then
ny(r) <InMy(er).

As a straightforward consequence of Jensen’s Lemma, we have

Theorem 1.4.5. The convergence exponent of the zeros of an arbitrary entire function

does not exceed its order.



12 CHAPTER 1. PRELIMINARIES

The only tricky step of the proof is to realize that one may consider functions with

f(0) =1, just replacing f by

~Z —plyn f(Z)
f(z) =n! 7

where n is the order of the possible zero at zero. Notice that f keeps the same order
and convergence exponent for its zeros.

Remark. A direct consequence of Borel’s Theorem and Theorem 1.4.5 is that for
canonical products the convergence exponent of the zeros is equal to the order of the
function.

The maximum principle states that a function that is holomorphic in a domain and
continuous on its closure, attains the maximum value of its modulus at a boundary
point. This extremely useful result was extended by E. Phragmén and E. Lindelof
to holomorphic functions with controlled growth at some discontinuity points at the
boundary of the domain, and even to domains with infinity at its boundary. Next

theorem is a consequence of the Phragmén-Lindel6f Theorem, [29, Theorem 22, p. 50].

Theorem 1.4.6. Let the function f(z) be holomorphic inside an angle of opening

7/ and continuous on the boundary. Assume that on the sides of the angle
If(2)l <M

and that the order p of the function f(z) is less than «. Then
[f(2)] <M

throughout the angle.

Now, we are ready to begin the study of composition Volterra operators.



Chapter 2

Basic Theory of composition

Volterra operators

For each Lebesgue measurable self-map ¢ of the unit interval [0, 1], the composition

Volterra operator on LP[0,1], 1 < p < oo, is defined as

()
(Vo f)(x) = / 7 fity .

If ¢ is the identity map, the operator V,, becomes the classical Volterra operator,
which is simply denoted by V. There are several ways to see that V,, acts compactly
on LP[0,1] for 1 < p < oo. For instance, let C, denote the operator that to each
function f assigns the function fo¢. Clearly, V,, = C,V and, although in general C,
may be unbounded on LP[0,1], 1 < p < oo, it is always bounded from L*°[0,1] into
itself. Since V' from LP[0, 1] into L*°[0, 1] is compact, see [5, p. 44], it follows that V,,
acting on LP[0, 1] is compact.

The literature on composition Volterra operators is very scarce. Indeed, it reduces
to a few references, see the works by Whitley [56] and Tong [54], and the note by
Lyubic [30]. One of the reasons seems to be the lack of a satisfactory formula for
the iterates of these operators. As will be seen along this work, this problem may be
overcome in a suitable way.

In Section 2.1, we provide the most basic facts about composition Volterra oper-
ators. In particular, we present a shorter proof of the fact that V,, is quasi-nilpotent
if and only if ¢(x) < z a.e., that was independently proved in [56] and [54]. Thus the
most natural set of symbols, whose spectrum is other than the zero point, are those
for which ¢(x) > z. The quasi-nilpotency criterion will be derived from a character-

ization of the quasi-nilpotency of Volterra kernel operators in terms of their kernels,

13
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which is of an independent interest. The proof is based on Lidskii’s Theorem about
traces and the relation between the traces of the powers and the spectrum of a nuclear
operator. We also present some elementary results about the formula for the adjoint,
norms and the distance to quasi-nilpotent operators. In Subsection 2.1.5, to motivate
our study of the spectra of composition Volterra operators, we provide some examples
of symbols ¢ in which we can exhibit explicitly the eigenvalues and eigenfunctions of
Vo.

In Section 2.2, by means of Krein-Rutman’s Theorem we show that if ¢(x) > = on
a set of positive Lebesgue measure, then the spectral radius is a positive eigenvalue
and corresponding to it there is a non-negative eigenfunction. Sharp upper and lower
bounds are provided for the spectral radius. As a straightforward consequence, we
get a much simpler characterization of quasinilpotent composition Volterra operators
when the symbol ¢ is increasing. Using elements of the theory of totally positive
matrices, we show that if ¢ is increasing then all eigenvalues of V,, are real and non-

negative. For general symbols it is always symmetric with respect to the real line.

2.1 Characterization of Quasi-nilpotency and basic for-

mulas

In this section, we prove the most basic facts about the spectrum of composition
Volterra operators. We also present the formula for the adjoint, estimates of the norm

and of the distance of V, to quasi-nilpotent operators.

2.1.1 Quasi-nilpotent integral operators with positive kernel

An operator is quasi-nilpotent if o(T') = {0}, or equivalently, the spectral radius
r(T) = 0. Independently, Whitley [56] and Tong [54] proved that a composition
Volterra operator is quasi-nilpotent if and only if the set {x € [0,1] : o(z) > =z}
has zero Lebesgue measure. This theorem can be derived from our next result that
characterizes quasi-nilpotent integral operators with kernel. For each function K in

L?([0,1]?), the integral operator with kernel K is

1
(Jr f) (x):/o K(z,t)f(t)dt  for each f € L?[0,1].

The operator Jx is always a Hilbert—Schmidt operator, see [16, pp. 18-19], that
is, 00 o |l Jken|? is finite for each orthonormal basis {e,} of L?[0,1]. Composition

Volterra operators are integral operators with kernel. Indeed, if ¢ is a measurable
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self-map of [0, 1], then V,, = Jk_, where

1, ift < p(x);
0, ift > ¢(x).

K,(z,t) = {

Thus, in particular, V,, is always Hilbert-Schmidt. Observe that K, is non-negative.
Recall that a bounded operator on L?[0,1] is said to be nuclear if > o ((Tey,en)
converges for each orthonormal basis {e, }. For nuclear operators the latter sum does
not depend on the orthonormal basis {e, } and is called the trace of T which is denoted
by tr T, see 1.3 or [45]. Tong [54] also provided a characterization of quasi-nilpotent
integral operators in terms of the existence of certain measurable sets. The following

theorem provides a simpler characterization only in terms of the kernel.

Theorem 2.1.1. Let K € L?([0,1]?) be non-negative. Then the integral operator with
kernel K is quasi-nilpotent if and only if

K(t1,t2) K (ta, t3) - K (tn—1,tn) K (tn,t1) (2.1.1)
vanishes a.e. on [0,1]" for each n > 2.

Proof. Since the corresponding integral operator Jg is Hilbert-Schmidt, we find that
Jx is nuclear for each n > 2. As a consequence of Theorem 1.3.7 we have,
tr J}L( = K(tl, tQ)K(tQ, L‘3)' . 'K(tnfl, tn)K(tn, tl) dtl, B -dtn for each n 2 2.
[0,1)"
Since K is non-negative, it follows that tr Ji = 0 if and only if the integrand in the
above display vanishes a.e. on [0, 1]”. By Lidskii’s Theorem, see 1.3.2 or [45, p. 331],

for instance,
[o.¢]

tr Jp = Z A (Jr))™, for each n > 2.
m=0
If there is n > 2 such that the function in (2.1.1) does not vanish a.e. on [0,1],
then tr Jz # 0 and, therefore, the above display implies that Jx must have non-zero
eigenvalues, or what is the same, Jx is not quasi-nilpotent.
Conversely, if for each n > 2 the function in (2.1.1) vanish a.e., then tr Ji: = 0 for
each n > 2. It is well known that the eigenvalues of a nuclear operator on a Hilbert

space are uniquely determined by the traces of the powers of the operator. Thus
o(J%) = {0} and, therefore, the spectrum o (Jx) = {0}. O

In what follows, the Lebesgue measure is denoted by u.

Corollary 2.1.2. Let ¢ be a measurable self-map of [0,1]. Then V,, is quasi-nilpotent
if and only if p(x) < x a.e.
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Proof. First, assume that ¢(x) < x a.e. on [0,1]. Without loss of generality we may
assume that ¢(z) < z for 0 < z < 1. In such a case, the function in (2.1.1) for
K = K, vanishes at each point in [0,1]" with pairwise different components and
therefore vanishes a.e. By Theorem 2.1.1, V,, is quasi-nilpotent.

Conversely, assume that ¢(z) > x holds on a set of positive measure. Take ¢ > 0
such that A = {x € (0,1) : ¢(z) > = +¢} has positive measure and let zo be a density
point of A. Tt is easy to see that (wo,zo) is a density point of {(t1,t2) € [0,1]? :
K,(t1,t2)K(t2,t1) = 1}. Hence, upon applying Theorem 2.1.1, for K = K, and

n = 2, we see that V, is not quasi-nilpotent. ]

Remark. Prof. P. Ahern provided a proof of Corollary 2.1.2 which is different of
those in Whitley [56], Tong [54] and the one above. The proof for the sufficiency
provided by Prof. P. Ahern, is essentially the same as in Whitley [56], but his proof
of the necessity consists on an elegant reduction to Gronwall’s inequality. Namely,
assume the conditions of Corollary 2.1.2 and let A be a non-null complex number and

f be a non-trivial function in L?[0,1] satisfying the equation
(Vo) (@) = Af(z).

Then we have,

1

!f(ﬂ?)IZW

o(x)
/ £(t) dt
0

Now let the function g be defined as

1 X
< IM/o £(8)] dt. (2.1.2)

o(z) = /0 " 1F) dt

and observe that from (2.1.2), we deduce

, 1
g'(x) - Wg(w) <0

Let us now define the function h(z) = e~*/Pg(z), which satisfies: h(0) = g(0) = 0,
h(z) = 0 and A/(z) < 0. Therefore h = 0, hence ¢ = 0 and f = 0, what is a
contradiction.

Corollary 2.1.2 along with the decomposition theorem 2.2.8 is the reason why the
symbols satisfying ¢(z) > z are the most interesting ones in connection with the

spectrum.
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2.1.2 The adjoint of V,, and the kernels of V,, and V

If ¢ is increasing, the adjoint of V, is unitarily similar to a composition Volterra

operator. Indeed, for an increasing self-map ¢ of [0, 1], we may define

) osup{yrp(y) <z}, if 2> p(0);
p-1(z) = ,
0, otherwise.

Clearly, ¢_1 is also increasing and for f in LP[0,1], 1 < p < oo, and g in L9]0,1],
where 1/p+1/g = 1, we have

/Ol(V (x)g(z)dx —/ / x)dtdr = /01 /Sol_l(t) F(t)g(x) dz dt.

Hence, the adjoint of V,, is

Vi@ = [ s (2.13)

v-1(z)
Now, consider the involutive isometry defined by (U f)(x) = f(1 —z). Then UVJU =
Vz, where ¢(x) =1 —¢_1(1 — z). Thus

o(Vz) =a(Vy).

Note also that since the set of real valued functions is invariant with respect to
any composition Volterra operator, formula (2.1.3) for the Banach space adjoint of V,,
gives for p = 2 the Hilbert space adjoint as well.

Remark 1. Although for continuous increasing ¢ the function ¢ may fail to be
continuous, for a continuous strictly increasing ¢ with ¢(0) = 0 and ¢(1) = 1, the
map ¢_1 is the inverse of ¢ and ¢ is again continuous and strictly increasing with
¢(0) =0 and (1) = 1.

Remark 2. For decreasing ¢ it is possible to define ¢_1(z) = sup{y : p(y) > =z} if

x < ¢(0) and 0 otherwise. Now, the adjoint is a composition Volterra operator

o-1(x)
(V2H)(@) = (Vo f)(@) = /O F(t) dt.

Next proposition characterizes when ker V, is trivial. Recall that the essential

range of a measurable self-map ¢ of [0,1] is
ess (¢) = {y € R such that p{t: |y — p(t)| <e} > 0 for each € > 0}.

Proposition 2.1.3. Let ¢ be a measurable self-map of [0,1]. Then ker V,, is the null
space if and only if the essential range of ¢ is [0,1]. Furthermore, ker V,, is infinite

dimensional if and only if ker V, # {0}.
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Proof. 1t is clear that f belongs to ker V,, if and only if

Fz) = /0 "t

vanishes on ess (). If ess (¢) = [0, 1], it follows that F' vanishes on the whole interval
[0,1] and, therefore, so does f. Conversely, assume that ess (¢) # [0, 1]. Since ess (¢)
is closed, the complement [0, 1]\ ess (¢) contains an interval (a, b). It is straightforward

to see that if f belongs to L0, 1], then supp (f) is contained in [a, b] and

[ rwa=o

then V,, f is the null function. It follows that ker V,, is infinite dimensional as soon as

ess (o) is not the whole interval [0, 1]. The result is proved. O

Corollary 2.1.4. Let ¢ be a continuous self-map of [0,1]. Then ker V,, is the null

space if and only if ¢ is onto.

2.1.3 Norms

The norm of composition Volterra operators can be easily estimated. In many situa-

tions the norm in L2[0, 1] can be computed exactly. First, we prove
Proposition 2.1.5. Let ¢ and 1) be measurable self-maps of [0,1]. Then
() 1V = Vollp < le =97 <1 for 1<p <0

(i) Ve = Viplloo = llo = Yoo for p=oc.

Proof. For p = 1 the formula is trivial. For f in LP[0,1], 1 < p < oo, we set 1/q =

1 o(x)
dr < / / 1dt
0 P(z)

1 —1/p and apply Holder’s inequality:

o(x) P
/ F(t) dt
v(@)

p/q

o(x)
/ FOP dt da.

1
ww—www=/
0 U(x)

Hence,

1
|uw—wwfwguﬂ@Arﬂm—wWW7wm—wmmw—wpwy

For f in L]0, 1], we have

1 (Ve = Vi) flloo = sup

0<z<1

< [ flloolle = #lloo-

w(z)
/ f(t)dt
Y(z)

On the other hand, for the constant function 1, the last quantity above is attained.

The result is proved. O
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Taking 1) = 0 in Proposition 2.1.5, we obtain,

Corollary 2.1.6. Let ¢ be a measurable self-map of [0,1]. Then [|[V,]|, < ||cpp*1“1/p
for 1 < p < oo and [|[Vylleo = ||¢llec for p = oo. In particular, V, is always a

contraction.

For p = 2, one may proceed as for the Volterra operator, see [15, p. 300]. Indeed,
VJV@ is compact, self-adjoint and positive. In particular, its eigenvalues are non-
negative and the norm of V,, coincides with the square root of the greatest eigenvalue
of VJV,,. It is also possible to consider V,,V} that shares with V'V, its eigenvalues.
The latter makes simpler the computations in some of the examples below.

Suppose that ¢ in C2[0,1] is strictly increasing with ¢(0) = 0 and (1) = 1. To
find the eigenvalues, one has to solve the integral equation

1

(2)
Vvznm = [ [ s = s

Differentiating twice the above display, one arrives to a second order differential equa-

tion for the eigenfunctions

A (@) " () = A" (@) f' () + (¢ (2))* f(z) = 0, (2.1.4)

which is to be solved with the boundary conditions f(0) = 0 and f/(1) = 0. If one
considers V2V, it is enough to replace ¢ by ¢_; in the above equation. The boundary
conditions are then f(1) =0 and f/(0) = 0.

The norm of the Volterra operator, which is 2/7, is a special case of the example

below.

Example 2.1.7. Assume that @o(x) = 2@ with 0 < a < co. Then ||V, |2 is equal to

the square root of the greatest positive zero of
T (1 <2(1 X a)—1a1/2)\—1/2> :
where J_(14q4)-1 is the Bessel function of the first kind and of order —(1 + a)~ L.
Proof. In the present case, equation (2.1.4) becomes
Az L (x) + Mo — o)z 2 f (z) + 22?2 f(z) = 0. (2.1.5)
Upon setting

9(8) = (@ + 1)/ Nat/2) =/ U+ £((o + 1)/ at/2)2/ (1+e)),
t=2va/Na+ 1)zl
and v =a/(a+1),
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we obtain, after some elementary computations, that g satisfies Bessel’s differential
equation
29" (t) +tg'(t) + (£ — v*) g(t) = 0.

Since 0 < v < 1, a linear independent system of solutions of the above equation is
{J,(t), J_,(t)}, where J,, denotes the Bessel function of the first kind and of order v,
see [55, pp. 38-44], for instance. Therefore, the general solution of (2.1.5) is co fr0 +

c1fa1, where ¢g and ¢; are constants and

(a+1)/2
_ /2 ) ar s
Fri(@) = 2T e (2\/: T > ; Jj=0,1.

While fyo vanishes at 0, the function fy; does not, here fy1(0) is defined as the
limit at 0. Thus the boundary condition f(0) = 0 implies that the eigenfunctions are
fr = fro. Using that the Bessel functions satisfy xJ),(x) + vJ,(z) = zJ,—1(x), see
[55, p. 45], it is elementary to check that

(@) = VoA a T g1 (20 + D)7 a el D)

Thus imposing the boundary condition f’(1) = 0, we obtain the eigenvalue equation

and the desired result follows. O

Remark. Parallel arguments apply to a strictly decreasing self-map ¢ of [0,1]. For
instance, if ¢ belongs to C2[0, 1] with ¢(0) = 1 and (1) = 0, the differential equation
for the eigenvalues is (2.1.4) with the plus sign in the last term replaced by the
minus sign. In the computation of the norms, it is convenient to keep in mind that

[Vio_yll2 = [[Vpl|2 for decreasing ¢ and [|Vi|l2 = [|[Vi—y_, (1—s)ll2 for increasing .

2.1.4 The distance to the quasi-nilpotent operators

Let Q, denote the class of quasi-nilpotent operators in the class of bounded operators

on LP[0,1], 1 < p < oo. The distance from T to the quasi-nilpotent operators is
dist,, (7T, = inf ||T — .
o(T.,) = jnt T -l

Now, Herrero [19] proved that disto(7', Q2) < r(7')/2 for any compact operator 7.
Since for a composition Volterra operator, the spectral radius does not depend on the
underlying space, r = r(T') < [|V,|lp, 1 < p < oo, from Corollary 2.1.6, we have the
upper estimate

. —1n1
inf "1 }/”.

1
dists (V, < —
ista(Vp, Q) 2 1<p<oo

1
B Kl;léoo ||V<pHp X



2.1. CHARACTERIZATION OF QUASI-NILPOTENCY 21
Below there is another estimate in terms of the part of the graph of ¢ which is over
the graph of the identity. As usual ¢™ = max{¢, 0} and ¢~ = min{¢, 0}.
Proposition 2.1.8. Let ¢ be a measurable self-map of [0,1]. Then, for 1 < p < oo,
we have
Y
disty(V,y, Qp) < H DA
and distoo (Vi, Qo) < H +H < 1.

Proof. Since ¢(x) = (p(z) —z)~ < 0, it follows that ¢(z) = ¢(z) + = < z. By
Corollary 2.1.2, the operator Vy, is quasi-nilpotent. Therefore,

disty(V, Qp) < IV = Visllp-
Assume now that 1 < p < oo. By Proposition 2.1.5 (i), we have
1 e
Ve = Voll, < llle = w717 = || (o) — )| " <o,

where the last inequality follows from the elementary estimate (¢(z) —z)* < 1 — .

For p = oo, the result follows by applying Proposition 2.1.5 (ii). O

2.1.5 The eigenfunctions of V,. Examples

Before going into a deeper study of the spectrum of V,,, we present some examples of
symbols for which we can provide the eigenvalues and the eigenfunctions exactly.

We start by introducing the concept of generalized eigenvector. Let T be a bounded
operator acting on a Banach space B. Recall that X is a normal eigenvalue of algebraic
multiplicity & of T'if and only if B is the direct sum of T-invariant subspaces B} and B}
such that dim B} = k, the restriction of (T'— AI) to B; is nilpotent and the restriction
of (' — M) to B} is invertible. The spaces B) and Bj are uniquely determined by T
and A. Indeed,

By = G ker (T—X)™ = ker (T—=A\)* and B} = ﬁ (T—XI)™(B) = (T—\I)*(B).
m=1 m=1

The elements in B(/)\ are called generalized eigenvectors corresponding to the normal
eigenvalue A. From the Jordan decomposition theorem, it follows that if A is a normal
eigenvalue of T' of algebraic multiplicity & and geometric multiplicity 1, then there is
f € B for which (T — X)*f = 0 and (T — M)*~1'f # 0 and for such f the space of

generalized eigenvectors corresponding to A is

span {f, (T — AI)f,...,(T — XI)F71f}.
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Remark. It is clear that if f in L[0,1] is a generalized eigenfunction of V,,, with ¢ a
measurable self-map of [0, 1], then f is automatically in L>°[0, 1] and, therefore, in all
the spaces LP[0,1], 1 < p < oo. Thus, the spectrum o(V,,) as well as the generalized
eigenspaces corresponding to non-zero eigenvalues do not depend on the underlying
space. Consequently, all the statements concerning the spectra will be done in the
friendly confines of the Hilbert space L?[0,1]. Observe also that if ¢ is a self-map of
[0,1] of class C* for some non-negative integer k, then the non-zero eigenvalues and
the corresponding generalized eigenvectors of V,, acting on L?[0,1] coincide with those
of V,, acting on C*[0, 1].

The next lemma provides a useful tool that guarantees we will have found all the

eigenvalues and eigenfunctions in our examples.

Lemma 2.1.9. Let T be a compact operator acting on an infinite dimensional Ba-
nach space. If a sequence of generalized eigenvectors of T corresponding to non-zero
eigenvalues has dense span, then this span contains all generalized eigenvectors of T

that correspond to non-zero eigenvalues.

Proof. Let {\;} be the finite or infinite sequence of all non-zero eigenvalues of 7" and
my, be the multiplicity of A\p. Here we assume that A\ # A, for & # n. Recall that Fred-
holm’s Alternative Theorem [5, 44] asserts that dim ker (7' — \;)™ = dim ker (T* —
i)™ for each k, (f,g) = 0 for f in ker (T — A\;)™* and ¢ in ker (T* — \,)"™" with
k # n and the functionals in ker (T* — A\;)"*, separate points of ker (7" — A\g)"".

Let L denote the dense span of a sequence of eigenvectors of 1" corresponding
to certain non-zero eigenvalues of 7. Suppose that there is a non-negative integer
k such that ker (" — A\;)™* is not contained in L. Consequently, there is y # 0 in
ker (T* — \)™* that vanishes on ker (T'— A\ )™ N L and, of course, on ker (T'—\,, )™ NL
for all n # k. Since

L=@P (ker (T - Ay)™ N L),
n
we find that g vanishes on L, which contradicts the density of L. O

In the following result we compute eigenfunctions and eigenvalues of V,, for p(x) =

x4, 0<a<l.

Theorem 2.1.10. Assume that p(x) = 2% with 0 < o < 1. Then the eigenvalues of
Vi, have algebraic multiplicity 1 and o(V,) = {(1 — a)a™ >0 U {0}. Furthermore, for

each n > 0, the eigenfunction corresponding to (1 —a)a™ is fn(z) = 2*/=%p, (Inz),
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where

Moreover, the eigenfunctions { fn}n>0 span L*[0,1].

Proof. If we denote a, ; the j-th coefficient of p,, then a, , = 1 for every n and a,, ;
satisfy
an (o) —a") = (1 —a)a" ' (j+1Dap 1 for 0<j<n—1.

From the above display, one sees that
polat) = app(t) + (1 — a)a" 1pl (1) (2.1.6)
Using (2.1.6) in the second equality below, we have

¢ (@) fulp(@)) =aa®=D/=Vp, (aInz)
—q(2e~D/(1-a) (a"pn(Inz) + (1 — @)a" 'pl, (Inx))

—(1 - a)a" f(a).

Set f,(0) = 0. Since f,, is absolutely continuous on [0, 1], we may integrate in the
above display from 0 to x to obtain V,,f, = (1 — a)a” f,, which means that each f, is
an eigenfunction of V,, corresponding to the eigenvalue (1 — a))a™.

Now we prove that span { f,, : n > 0} is dense. Since the operator of multiplication
by 2®/(1=®) has dense range, it is enough to prove that {p,(Inx)},>o spans L?[0,1].
The change of variables t = —Inz shows that this is equivalent to the fact that
{pn(—t)e~t}n>0 spans L?[0,00), which follows by a standard argument.

Finally, Lemma 2.1.9 shows that span{f, : n > 0} coincides with the span of
all generalized eigenfunctions of V, corresponding to non-zero eigenvalues. Hence, it
follows that o(V,,) = {(1—a)a™ },>0U{0} and the eigenvalues (1 —oa)a™ have algebraic
multiplicity 1. The result is proved. O

Theorem 2.1.11. Let ¢p(z) = 1 — (1 — )/ with 0 < a < 1. Then the eigenvalues
of Vi have algebraic multiplicity 1 and o(Vy) = {(1 — a)a”}p>0 U {0}. Furthermore,
for each n = 0, the eigenfunction of Vi corresponding to (1 — a)a”, is

k ok a—k—1_,—1

k=0

In particular, the eigenfunctions of Vy do not span L?[0,1].
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Proof. Since Vy, is similar to V5, where p(z) =z, by Theorem 2.1.10, we find that
o(Vy) =a(V3) =0a(Vy) = {(1 - a)a"}po U{0}

and the eigenfunctions have algebraic multiplicity 1. To obtain the eigenfunctions we

begin with &« = 1/m, where m is an integer m > 2. Set

Flz) = /O "y ar

and suppose that F' is analytic on a neighborhood of 1. Then

Thus if X is an eigenvalue, then F(¢(x)) = AF’(z) implies that

Zan(l — )" = —)\Znan(l —x)" =)\ Z(n + Dap1(1 — )™,
n=0 n=1

n=0

Taking agp = 1, one finds that (2.1.7) is true for « = 1/m. For a # 1/m, it consists on
a computation to check directly that the function f, also satisfies the eigenfunction
equation.

To prove that the eigenfunctions do not span L?[0, 1] observe that
a—k=1_,—1
span{f, :n >0} C span {(1 —x) o1 k> O} .

Since the sum of the inverses of the exponents in the monomials above is finite, by the
Miintz-Szasz Theorem, see [43], it follows that the right-hand side above is different
from L2[0,1]. The proof is complete. O

Remark. Observe that in Theorem 3.2, or in Theorem 3.3, the ‘trace’ of V, equals

to 1, independently of «, which will be just a trivial application of Theorem 3.1.26.

It is worth noting that Vi, acting on L?[0, 1] can be self-adjoint, which holds if and
only if {(x,t) € [0,1]? : t < p(x)} is symmetric with respect to y = = up to a set
of plane Lebesgue measure zero. For instance, it follows that for ¢ increasing, the
operator V,, is self-adjoint just only in two cases: when ¢ = 0, in which case V,, is the
zero operator, and when ¢ = 1, in which case V|, is the orthogonal projection onto
the space of constant functions.

The class of decreasing ¢’s for which V,, is self-adjoint is much richer. This class

contains, for instance, the strictly decreasing and onto self-maps ¢ of [0, 1] such that
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¢ = p_1. The simplest example is p(x) = 1 — 2. We shall compute explicitly the
eigenvalues and eigenfunctions of V,. Unlike the previous examples, there are infinitely

many negative eigenvalues.

Example 2.1.12. Assume that p(z) = 1 —x for 0 < = < 1. Then o(V,) =
{2(=1)"/(m(2n + 1)) }n>0 U {0}. Furthermore, the eigenvalues have algebraic multi-

plicity 1 and the corresponding sequence of eigenfunctions is {cos((2n+ 1)wx/2)}n>0.

Proof. The eigenvalue equation is easily checked. On the other hand, in [15, pb. 18§],
Halmos proved that the sequence {v/2 cos((2n + 1)7z/2)},>0 is an orthonormal basis
in L2 [0,1]. Thus, the eigenvalues have algebraic multiplicity 1 and there are no other

eigenvalues. O

Observe that the norm of V,, in example above coincides with that of the Volterra

operator, see Example 2.1.7.

2.1.6 Cyclicity

Now, we will see examples of cyclic composition Volterra operators. Recall that an
operator T on a Banach space B is cyclic if there is f in B such that span {T"f : n > 0}

is dense in B.

Proposition 2.1.13. Assume that o(z) = 2 with o > 0. Then ¢(x) = 2P with
B > —1/p is cyclic for Vi, acting on LP[0,1], 1 < p < oo, if and only if 0 < o < 1.

Proof. An elementary computation shows that
n, a—a™tl
(Vo) (x) = e T for each n >0,
where ¢ # 0 depends only on n, o and (3. Thus, the result follows from the Miintz-

Szasz Theorem. O

Observe that the statement of Proposition 2.1.13 above is still true if for p = oo
we consider the space Cp[0, 1] of continuous functions on [0, 1] vanishing at 0, endowed
with the supremum norm.

From Proposition 2.1.13 the constant function is not cyclic for V,, when ¢(z) = ¢
with a > 1. In contrast, the cyclicity of the constant function 1 for V,, is also possible
when ¢(z) < x for 0 < = < 1. Indeed, in Section 5.1, it will be shown that the
eigenfunctions of V, span L?[0,1] if and only if 1 is a cyclic vector for Vi, where
Y(z) =1— (1 —z), see Theorem 5.1.1. Thus as corollaries of Theorems 2.1.10 and
2.1.11 and Proposition 2.1.13, we have
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Corollary 2.1.14. Assume that o > 1. Then the constant function 1 is cyclic for
Vi, where ¢(x) = 1 — (1 — )Y/ and is not cyclic for V,,, where p(x) = z°.

2.2 Fundamental facts on the eigenfunctions of V,,

In this section, we begin the study of the eigenfunctions of V,, when ¢(z) > = on a

set of positive measure.

2.2.1 The spectral radius as an eigenvalue

Krein-Rutman’s Theorem asserts that if a compact operator preserves the cone of
positive functions, then the spectral radius is an eigenvalue to which corresponds a
non-negative eigenfunction, see [26] or [31, Theorem 4.1.4]. Integral operators with
kernel is one of the most natural settings where Krein-Rutman’s Theorem applies. As

its immediate corollary, we have

Theorem 2.2.1. Assume that K in L*([0,1]?) is non-negative. If the spectral radius
r(Ji) is positive, then it is an eigenvalue of Jx for which there is a non-negative

eigenfunction f in L?[0,1].

The next result asserts that under suitable hypotheses the eigenfunction furnished
by Theorem 2.2.1 is strictly positive and all generalized eigenfunctions corresponding

to any other eigenvalue change their sign.

Theorem 2.2.2. Assume that K in L*([0,1]?) is non-negative and the spectral radius
r = r(Jxg) > 0. Assume also that there is a continuous self-map ¥ of [0,1] with
Y(x) > x for 0 <z <1 and K(z,t) > 0 a.e. whenever 0 <t < ¢(x) < 1. Then the
etgenfunction provided by Theorem 2.2.1 is strictly positive a.e. Furthermore, there are
no non-negative non-zero generalized eigenfunctions corresponding to an eigenvalue of

Ji different from the spectral radius.

Proof. Without loss of generality, we may assume that 1 is strictly increasing and
¥(0) = 0. Let f be the eigenfunction provided by Theorem 2.2.1. Since f is different
from zero, we see that v = minsupp (f) < 1. Since K(z,t) > 0 for ¢ < ¢ (z), using

Fubini’s Theorem we have
1 1t
f(z) = ;(JKf)(x) = K(x,t)f(t)dt >0 a.e., whenever ¢¥_;(a) <z < 1.
0

Thus 9_1(a) > « and, therefore, a < 1 is a fixed point of ¢). Hence, @ = 0 and the
above display implies that f(z) > 0 a.e.
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To prove the second statement of the theorem, first observe that under the in-
volutive isometry (Uf)(xz) = f(1 — x) the operator Jj is similar to Jgz, where
K(t,z) = K(1 —t,1 — ). In particular, Jg and J have the same spectral ra-
dius and K as well as J(m) =1—1_1(1 — z) satisfy the same hypotheses as K and
1. Therefore, according to what is already proved, there is a positive a.e. function
h in L?[0,1] such that Jzh = rh. Thus Jjf = rf, where f(z) = h(1 —z) > 0 a.e.
Suppose now that a non-negative generalized eigenfunction g in L?[0,1] corresponds
to an eigenvalue A # r of Jx. Then (Jx — AI)"g = 0 for some positive integer n.

Therefore,
0= (r— A>—”<<JK — I+ (r ~NI)"g, f)

) + Z g, (T — 1) f).

Since Jj f = rf, we have (g, f) = 0. Since f(z) > 0 a.e. and g(z) > 0, it follows that

g is the null function, which is a contradiction. The proof is complete. O

The next corollary follows applying the previous theorem to Jk, and Corol-
lary 2.1.2.

Corollary 2.2.3. Let ¢ be a measurable self-map of [0, 1] with u{x : ¢(z) > x} > 0.
Then r(V,) > 0 is an eigenvalue for which there is a non-negative eigenfunction.
Furthermore, if ¢ is continuous and p(x) > = for 0 < x < 1, then the eigenfunction
corresponding to the spectral radius is strictly positive and there are no non-negative
non-zero generalized generalized eigenfunctions corresponding to an eigenvalue differ-

ent from the spectral radius.

2.2.2 Estimates on the spectral radius

The next proposition provides a lower estimate on the spectral radius of V.

Proposition 2.2.4. Let ¢ be an increasing self-map of [0,1]. Then,

(V) 2 ll(e(@) = 2) " [loo-

Proof. If p(x) < x, then by Corollary 2.1.2, we have 7(V,,) = 0 and there is nothing
to prove. Thus assume that there is 0 < zyp < 1 for which ¢(xp) > z¢. Then set
(z) = @(T0)X[zy,1(7) and observe that ¢(x) > ¢(x) for 0 < x < 1. Therefore, for
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positive f, we have V'f > Vg f = 0 for each positive integer n. Since, by Krein-
Rutman’s Theorem, the spectral radius is determined by the positive functions, we
see that (V) > r(Vy). As p(xg) — xo is an eigenvalue of the rank one operator Vj,
we find that (V) = ¢(x9) — ¢ and the result follows by just taking supremum of
e(x) —xon{z €0,1]: p(z) > x}. O

2.2.3 The dimension of ker (V,, — A\I)

Lemma 2.2.5. Let ¢ be a continuous self-map of [0,1] with p(z) > x for 0 <z < 1.
Assume also that f in L?[0,1] satisfies that Vof = Af for some A # 0. Then f cannot
be orthogonal to the constant functions. Furthermore, if 0 < a < 1 is a fized point of

¢ and maxp o) ¢ < «, then either f(a) # 0 or f vanishes on [0, a].

Proof. The first statement of the lemma follows easily from the second one by just

taking o = 1. Indeed, if f is orthogonal to the constant functions, then

1
=5 [ foa=o

and, therefore, f is the null function.
To show the second statement of the lemma, observe that f must be continuous.
Now, suppose that N
fo)=5 [ rwa-o.
Let 3 be the minimum of ¢ € [0, «] for which f vanishes on [¢t,«a]. If § = 0, there is
nothing to prove. Thus we may assume that 0 < 8 < a.

Case p() = B. Since f(f) = 0 and f does not vanish on [ —¢,3] for 0 < e < 3,
there is a strictly increasing sequence {3, } in (0, 3) such that 3, tend to 3 as n tends

to oo and | f(8,)| = maxg, g |f| # 0. Since p(B) = B and () = 0, we have

8
/0 F(t) dt = Af(8) = 0.
Hence,

B
_ / F(£) dt| < 18 = o(B))|£(Bn)]-
CP(Bn)

Thus, |A| < |8 — ¢(Bn)] for each positive integer n. Since ¢(f5,) tends to ¢(3) = 3,

(B = ‘ /0 i ar

we have A = 0, which is a contradiction.
Case 3 < p(). Since ¢ is continuous and ([0, «]) C [0, a], there is 6 > 0 such that
B < o(x) <afor f—06 <z <P Since f vanishes on [, a], we have

1

o() ¢(B)
fa =5 [T s0a=5 [T r0d= 1o =0, forzelp-s
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which contradicts the minimality of 8. The result is proved.
O]

Corollary 2.2.6. Let ¢ be a continuous self-map of [0, 1] with ¢(x) > x for0 < z < 1.

Then each non-zero eigenvalue of Vi, has geometric multiplicity 1.

Proof. Let f and g be linearly independent eigenfunctions corresponding to a non-
zero eigenvalue. Then, by Lemma 2.2.5, we have f(1) # 0 and g(1) # 0. Thus
h(z) =g(1)f(x) — f(1)g(x) is an eigenfunction with h(1) = 0 that corresponds to the

same eigenvalue. Thus A is null by Lemma 2.2.5, which is a contradiction. O

Remark. It is worth mentioning that for increasing self-maps ¢ of [0, 1] we have
Vo+ Vo, =P,

where P is the orthogonal projection on the space of constant functions. For instance,
it can be used to prove the first statement of Lemma 2.2.5 for increasing self-maps ¢
of [0,1] with p(z) > =.

In what follows, for any self-map ¢ of [0, 1] we denote by ¢g the identity map and

©n = @ o pn_1 for each positive integer n.

Proposition 2.2.7. Let ¢ be a continuous self-map of [0, 1] with p(x) > x for 0 <
x < 1 and non-constant on any subinterval. Then the support of each eigenfunction

of Vi, corresponding to a non-zero eigenvalue is [0,1].

Proof. Let f be different from zero such that V,f = Af for a complex number A # 0.
Suppose that f vanishes on [a,b] with 0 < a < b < 1. The eigenvalue equation implies
that

Pla) = /0 "y dr

vanishes on ¢([a, b]) and, therefore, so does f = F’, since the interval ¢([a, b]) is non-
trivial. Upon iterating this argument, we find that f vanishes on ¢,([a,b]), which
contains the interval [min{yy(a), ¢, (b)}, max{yn(a), ¢, (b)}] for every positive n. In

particular, for each positive integer n we have

‘Pn(b)
/0 F(8)dt = Af(pn1(5)) = 0.

Since p(x) > x for 0 < o < 1, the sequence {¢,(b)} tends to 1. Thus the display above
implies that f is orthogonal to the constant functions, which contradicts Lemma 2.2.5

and the result follows. O
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Remark. Using Proposition 2.2.7, it is not difficult to produce an example in which
0 < a < 1is a fixed point of ¢ and maxy,) ¢ is not contained in [0, ], then the

conclusion in Lemma 2.2.5 is not true.

We shall express o(V,,) in terms of the spectra of simpler composition Volterra
operators defined on subintervals of [0,1]. For a measurable self-map ¢ of [0, 1], we
can consider

Sy ={y €[0,1] : maxp < y}
[0,9]

and denote its boundary by 05,. If 05, has zero Lebesgue measure, then it induces an
orthogonal decomposition of L?[0,1] in the obvious way. Indeed, since 08, is closed,

we have

0.1\ 08, = J I

JjeJ

where I; are pairwise disjoint open intervals and .J is countable. We clearly have

L’0,1] = @ £*(1y).

Jj€J

Upon writing I; = (aj,b;), j € J, we see that {a; : j € J} as well as {b; : j € J} are
subsets of 95,. The key point here is that V,, has a block lower triangular matrix with
respect to the decomposition above whenever J is ordered in the obvious way, that is,
i < jif b; < aj. Indeed, let P; be the orthogonal projections that correspond to the
above orthogonal decomposition and let Vé’j = PV, P;, then it is easy to show that
Vé’j is equal to zero whenever ¢ < j. To compute the spectrum of V,, it is enough to

compute the spectrum of each Vg’j . We have

Theorem 2.2.8. Let ¢ be a measurable self-map of [0,1] with 1(0S,) = 0. Then
o(Vp) = | J o (V7). (2.2.1)
Jj€J
Proof. First, observe that the operators involved are compact and thus zero is in both
sides of (2.2.1). Now, suppose that J is finite. In this case, the left-right inclusion is
well-known, see [15, Problem 72], for instance. The right-left inclusion is elementary
and follows by induction because all the elements in the spectra are eigenvalues.

Finally, suppose that J is infinite. Then for each positive integer, consider
x), ifzxel;and b; —a; > 1/n;
on(z) = p(x) J. J J /
0, otherwise.

Note that this time the subscript n does not mean the sequence of iterates. Clearly, V,,,

has a finite number of non-zero blocks with respect to the orthogonal decomposition
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induced by ¢. In addition, the non-zero diagonal blocks of V,, coincide with the
corresponding ones of V,,. Since ||V, — V.|| tends to zero as n tends to co and V,
has totally disconnected spectrum, we find that {o(V,,)} converges to the spectrum

of V,, in the Hausdorff metric, see [37, Theorem 3]. The proof is complete. O

The next proposition follows easily from the fact that HVSg’j | < bj —a; for each

j € J and we omit its proof.

Proposition 2.2.9. Let ¢ be a measurable self-map of [0,1] with (0S,) = 0. Then
for each non-zero eigenvalue X of V,, the set {j € J: X € J(Vg’j)} 18 finite.

Thus, for each non-zero eigenvalue A of V,, we may consider
jA) =max{jeJ: e O‘(Vé’j)}. (2.2.2)
The next corollary improves Lemma 2.2.5.

Corollary 2.2.10. Let ¢ be a continuous self-map of [0, 1] with p(x) > = for 0 < x <
1 and maxy ¢ < y for a fived point y of ¢ with u(0S,) = 0. If f is an eigenfunction
of Vi, corresponding to an eigenvalue X # 0, then supp (f) C [a;n), 1] and f(y) # 0

whenever a;yy < y.

Proof. Since A belongs to U(Vé(’\)’jo‘)), by Theorem 2.2.8 and (2.2.2), there is a cor-
responding non-zero eigenfunction f of V,, whose support is contained in [aj( A)s 1]. In
addition, Lemma 2.2.5 ensures that f(b;(\)) # 0. Let ¢ be the restriction of ¢ to
[bj(x), 1]. Theorem 2.2.8, along with (2.2.2) shows that A is not o(V3). Thus Vz — A is

invertible. Now, a straightforward computation shows that

0, if 0 < @ < ajon;
g9(x) = f(2), if ajiy <@ < bj;
A (VE = A)7HD) (), if by <2 <1
is an eigenfunction of V, corresponding to the eigenvalue A. Since the hypotheses of
Corollary 2.2.6 are satisfied, we find that A has geometric multiplicity 1 and therefore
g = cf for some constant c. Since f(b;(n)) = g(bj(n)) # 0, we have f = g, which proves

the first statement. The second one is just an application of Lemma 2.2.5. O

2.2.4 Positivity of the eigenvalues

In this section we show that eigenvalues of V,, are non-negative provided ¢ is increas-

ing. We also estimate the sum of eigenvalues.
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Theorem 2.2.11. Let ¢ be an increasing self-map of [0,1]. Then all eigenvalues of

Vi, are real and non-negative. Furthermore,

}:A p({z €0,1] : p(z) > z}) < 1. (2.2.3)

The key to prove Theorem 2.2.11 is the concept of totally positive matrix. Given
an n-square matrix (a;x), we will be considering m-square submatrices (a;, x,), where
1<ji<<jm<nand 1<k < - < kp <n. A square matrix with real entries is
totally positive when all its square submatrices have non-negative determinant. The
following theorem, whose proof can be found in [32], furnishes the main spectral

property of totally positive matrices.
Theorem P. The eigenvalues of a totally positive matrix are real and non-negative.

We need to consider matrices with 0—1 entries, which are totally positive. Let M

denote the set of n-square matrices (a;) defined by

{Qiﬁémm .
ajp = ) for each choice 0 <my < --- < my, < n.
1, otherwise,

It is easy to check that det A > 0 for A in M. Indeed, if m, = n, then the last
column of A is zero and, therefore, det A = 0. If there is k such that mj; = my1,
then the k-th and (k + 1)-th columns of A coincide and det A = 0 again. Finally, if
0=my <---< my <n, then A is lower triangular with 1 on each entry of the main
diagonal and det A = 1. Consequently, since each square submatrix of a matrix in M
is clearly in M again, each matrix in M is totally positive. Thus as a consequence of

Theorem P, we have
Proposition 2.2.12. The eigenvalues of each matrix in M are real and non-negative.
Now, we can prove Theorem 2.2.11.

Proof of Theorem 2.2.11. Let [r] denote the integer part of the real number r. For
each positive integer n, consider the self-map of [0, 1] defined by
[ne([nz]/n)]

() = TELELL

where again the subscript 7 does not mean iterate. Clearly, ||¢ — ¢p|l1 tends to 0 as

n tends to oo and, therefore, by Proposition 2.1.5,

Vi, — | =0 asn — oo. (2.2.4)

Vel
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Now, for 1 < j < n, consider the characteristic functions x;, = X((j=1)/n.j/n)" Since
¢p is constant on each interval ((j —1)/n, j/n) and takes values in {j/n : 0 < j < n},
the range of V,,, is contained in span {x;», : 1 < j < n}. Thus, non-zero eigenvalues
and the corresponding generalized eigenfunctions of Vi, are those of itself acting on
its reducing subspace span{x;n : 1 < j < n}. Let 4, = (agk) be the corresponding
matrix with respect to the basis {x;» : 1 < j < n}. Using that ¢ is increasing, one

can check that

nat { 0, if p((j = 1)/n) < k/n; 225)

1, otherwise.

Thus nA, is in M. By Lemma 2.2.12, the eigenvalues of nA,, and, therefore, of A,
are real and non-negative. Since o(V,,,) = o(A,) U {0}, it follows from (2.2.4) that
all eigenvalues of V,, are also real and non-negative.

It remains to prove (2.2.3). From (2.2.5), we have na;; = 1 if and only if

p((J=1)/n) = j/n,

which implies that ¢(x) > z for (j—1)/n < z < j/n. Thus, the trace of nA,, does not
exceed the number of j’s in {1,...,n} for which p(z) >z for (j —1)/n <z < j/n. It
follows that

trV,, =trd, = % tr (nAy,) < p({z € [0,1] : p(x) > z}).

Since the eigenvalues of V,, are all real and non-negative, for each positive integer k&

we have
k
Z Am(pn) < trV, < p({x € 0,1] : p(x) > z}), for 1<k<n.
m=0

Now, for fixed k, the map that to each operator T assigns anzo Am(T') is operator
norm continuous on the space of compact operators. Thus we can make n tend to oo

in the above display to obtain that

k
Z Am(p) < p({z € [0,1] : p(x) > x}), for each positive integer k.

m=0

Passing to the limit as k tends to co, we obtain the inequality (2.2.3). O
From the proof of Theorem 2.2.11 we have

Example 2.2.13. Consider the piecewise constant function on(z) = ([nz] + 1)/n.
Then range of Vi, is span{x;n : 1 < j < n}, as in the proof of Theorem 2.2.11. In
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this case, the only non-zero eigenvalue of Vi, is 1/n and the Jordan form of A, is
just one block. It follows that eigenvalues of a composition Volterra operator can have

any algebraic multiplicity.

Remark. Observe that Proposition 2.2.4 and Theorem 2.2.11 provide upper and lower
sharp bounds for the spectral radius and the ‘trace’ of composition Volterra operators
with increasing symbols. Indeed, if ¢ = bx|4), for 0 < a < b < 1, the spectrum of
V,, is a one-point set and the inequalities in Proposition 2.2.4 and Theorem 2.2.11
become equalities. Moreover, in Theorem 3.1.26 we will see that if ¢ is continuous
and ¢(z) > x for each 0 < x < 1, then the upper bound found for the ‘trace’ in
Theorem 2.2.11 is always achieved. Also, from Proposition 2.2.4 and Theorem 2.2.11,
one immediately deduces the characterization of quasi-nilpotent of V,, for increasing
symbols.

We close by observing that the spectrum of each V,, is symmetric with respect to

the real axis.

Proposition 2.2.14. Let T be a bounded linear operator on L?*[0,1] such that the
space L?([0,1],R) is invariant under T. Then the spectrum of T is symmetric with

respect to the real axis.

Proof. Since L?([0,1],R) is invariant under T', we have that Tf = T'f for each f in
L?[0,1]. Tt follows that the Hilbert space adjoint T* of T' coincides with the Banach
space adjoint 1™, being the adjoint with respect to the dual pairing

1
(f,9) = /0 f(t)g(t) dt.

The equalities o(T™*) = o(T') and o(T*) = o(T"), which are true for any bounded linear

operator on L?[0, 1], imply that o(T*) = o(T). O

Corollary 2.2.15. Let ¢ be a measurable self-map of [0,1]. Then the spectrum of V,,

18 symmetric with respect to the real axis.



Chapter 3

Spectrum of V, and analyticity

of its eigenfunctions

In Section 3.1, we go into a deeper analysis of the spectrum of V,, for those symbols
satisfying ¢(x) > = for 0 < x < 1. As usual in the Fredholm determinants Theory,
specially appropriate when dealing with integral operators, there is an entire func-
tion F¥ associated to V,,. Solving a differential equation, we prove not only that the
inverses of the zeros of ¥ correspond to the eigenvalues of V,,, but also that their mul-
tiplicities coincide. Once this is done, analyzing the growth of F*¥, we provide several
characterizations of the finiteness of the spectrum of V,,. Under suitable hypotheses,
the exponent of convergence of the sequence of eigenvalues of V, is computed. For
increasing, continuous symbols with the graph over the main diagonal we show that
the sequence of eigenvalues is absolutely summable, which reflects that V, behaves like
a nuclear operator, although it is not. In such cases, we provide an explicit formula
for the ‘trace’ of V,.

In Section 3.2, we turn our attention to the analyticity of the eigenfunctions of V,
being ¢ analytic. The analyticity of the symbol ¢ is inherited by the eigenfunctions
provided that p(z) > x for 0 < x < 1 and ¢/(1) < 1. Here, the Fao de Bruno formula
for the derivative of compositions will play a key role. If ¢/(1) = 1, then we can

provide examples in which the eigenfunctions are non-analytic although ¢ is.

3.1 Spectral properties of V,

The main result in this section is that the eigenvalues of V, are the inverses of the

zeros of an entire function. Furthermore, the multiplicity of each zero of the entire

35
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function is the same as the algebraic multiplicity of the corresponding eigenvalue.
Using this, we shall characterize the finiteness of the spectrum of V.. In view of the
characterization of quasi-nilpotent composition Volterra operators and Theorem 2.2.8

about decomposition of the spectrum, we will focus on the following set of symbols
A = {p:]0,1] — [0,1] continuous and such that p(z) > x for 0 < = < 1},

that we consider endowed with the topology inherited from the Banach space C[0, 1].

3.1.1 The map F

For each ¢ in A, consider the bounded operator

1

(Wef)(z) = ( )f(t) dt, feL*o,1].

For p(x) = z, we just write W, = W. Now, we may define 7 : A x [0,1] x C — C
that to each element (¢, z, z) assigns

[e.o]

FP(x,z) =FF(2) = Z(—l)"aﬁ(az)z”, (3.1.1)

n=0
where af () = 1 and af(x) = (WW2'1)(z) for each n > 1.
In order to prove that F is well defined, some properties of aj; are needed. All
the properties listed in proposition below follow immediately from the definition of aj,

and, thus, their proofs are omitted.
Proposition 3.1.1. For each ¢ in A, the functions af; satisfy the following properties.
(i) af(1) =1 and af(1) =0 forn > 1.
(ii) For each n > 0 the function af, belongs to C1[0,1] and
(ag)' =0 and (af)(x) = —an-1(p(x)) = =(W™'1)(z) forn>1.

(iii) For each n >0, the map o — af; is continuous from A into C*[0,1].

(iv) For eachm >0 and 0 < x < 1, we have

(1—a)"
o and 0< —(aiﬂ)’(:v) <
(v) For each n >0, the function a;, is decreasing.

(vi) If i is in A and o(z) < p(x) for 0 < z < 1, then af(z) > al(z) for n >0 and
0<z <1l
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In what follows, H(C) stands for the space of entire functions endowed with the
topology of uniform convergence on compact sets. As it was recalled in 1.4, for F' in
H(C) the maximum modulus function

M(F.R) = max|F(z). <R <o
zl=
is well defined and increasing.

The next proposition records some of the fundamental properties of F. The differ-

ential equation satisfied by F¥ already suggests that F¥ is intimately related to the

eigenvalue equation for V.

Proposition 3.1.2. The function F is well defined, differentiable with respect to x,

holomorphic with respect to z and (p,x) — F¥#(x,-) as well as (p, ) — %(m, -) are

continuous mappings from A x [0, 1] into H(C). Furthermore,

C();Z(x,z) = 2F%(p(x), 2), (3.1.2)
‘F@(Lz) =1 (313)

In addition, we have the Taylor series representation

8;: (2,2) = Y _(=1)"bn(2)2", (3.1.4)

n=1

where by () = (Vd?fll)(l —x) with Y(z) =1—p(1 —z).

Proof. Clearly, Proposition 3.1.1 (iv) implies uniform convergence and uniform bound-
edness of the sums of the series in (3.1.1) and the series

oo

> (=D"(af) ()"

n=0
on A x [0,1] x Dg for each R > 0, where Dr = {z € C : |z| < R}. Therefore, F
is well defined, differentiable with respect to x, holomorphic with respect to z and

v 81‘ :L”

are continuous mappings from A x [0,1] into H(C). Since (af)’ =0, it is clear that

%(;ﬂ, 2) =Y _(—1)"(af) (z)2". (3.1.5)

n=1

Hence, by Proposition 3.1.1 (ii), we have

%]f(% 2) = (-1)"af_(p(x)2" =2 Y (1) ag(p(x))z" = 2F?(p(x), 2),

n=1 n=0
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which is equality (3.1.2). From Proposition 3.1.1 (i), we also have the initial value
(3.1.3).

Finally, consider the involutive isometry (U f)(x) = f(1 — z) and compare (3.1.4)
with (3.1.5). It follows from Proposition 3.1.1 (ii) that

bu(z) = —(af)'(z) = (W5 ™'1)(2).
On the other hand, W, = UV,,U. Therefore,
bo(x) = (UV~'UT) = (Vp '1)(1 - 2)
and (3.1.4) is also proved. The proof finished. O
The next proposition provides some basic monotonic properties of F.

Proposition 3.1.3. Let ¢ be in A and ¢ > 0. We have,

(a) If0<z<y<1, thenl < F?(y,—c) < FP(x,—c) < ec(1—2)

(b) If |z| < ¢, then |F?(x,2)| < F¥(x,—c) for 0 < x < 1.

(c) If 1 is in A with o(x) < ¥(z) for 0 < x < 1, then FP(x,—c) > F¥(x, —c) for
0<xr <1,

Proof. The inequality F¥#(z, —c) < e“(!=) follows from (3.1.1) and Proposition 3.1.1
(iv). The rest of the inequalities in (a) and (b) follow from (3.1.1) and Proposition 3.1.1
(v). Finally, (c) also follows from (3.1.1) and Proposition 3.1.1 (i) and (vi). O

Some monotonic properties of F extend to the maximum modulus.

Corollary 3.1.4. Let ¢ be in A and R > 0. Then the function M (F7, R) is decreasing

with respect to x and
M(F?, R) = F?(z,—R) < ®1-7) for 0<x <1,
In addition, for ¢ in A with p(z) < ¥(z) for 0 < z < 1, we have
M(F?,R) > M(FY,R),  for0<z<lL.

Proof. The first statement follows from Proposition 3.1.3 (a) and (b). The second
statement follows from Proposition 3.1.3 (b) and (c). O
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3.1.2 Existence and uniqueness of solution of a differential equation

We need an existence and uniqueness theorem of solution of certain differential equa-
tions. For a Banach space B, the space C([a,b], B) is the one of continuous functions

from [a, b] into B endowed with the supremum norm.

Proposition 3.1.5. Assume that a < a < b and let ¢ be a continuous self-map of
la,b] such that

Assume also that T is a bounded operator on a (real or complex) Banach space B, xg

belongs to B and G belongs to C([a,b], B). Then the Cauchy problem

{ H'(z) = TH(p(z)) + G(x), (3.1.6)

H(a) =z
has a unique solution H : [a,b] — B, which belongs to C*(|a, b, B).

Proof. Consider the bounded operator @) acting on C([a, b], B) defined by

QF) (x) = / o) dt.

One easily checks that

T
n!

Q" <

, where ¢ = max{a —a,b — a}.

Thus @ is quasi-nilpotent and, therefore, I + @ is invertible. Upon integrating the
equation in (3.1.6), we see that Cauchy problem (3.1.6) is equivalent to

H+ QH =R, where R(x) = zg —/ G(t) dt.

Thus H = (I + Q)™ R is the unique solution of (3.1.6). It is also obvious that H is in
C([a,b], B). O

As an immediate application of Proposition 3.1.5, we have the following lemma,

which will be used later.

Lemma 3.1.6. Let ¢ be a continuous self-map of [0,1] with (x) >z for 0 <z <1
and max|y o ¢ < « for a fized point o of . If F¥(a, ) = 0 for some X in C, then
FP(x,\) =0 for0 <z < a.
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Proof. Consider the functions f, g : [0,1] — C defined by

Fe(xz,A), ifa<
0, if0<z

f(x)=F?x,A\) and g(z)= {

Clearly, by Proposition 3.1.2, f as well as g are solutions of the Cauchy problem

H'(z) = AH (¢(2)),
H(1) = 1.

Therefore, by Proposition 3.1.5, we find f = g and the result follows. O

3.1.3 The zeros of F; and the eigenvalues of V,

Theorem below not only states that the eigenvalues of V,, are the inverses of the zeros
of F¥, but also there is a correspondence between the multiplicity of the zeros and

the algebraic multiplicity of the eigenvalues.

Theorem 3.1.7. Let ¢ be a continuous self-map of [0, 1] with o(x) > x for 0 < z < 1.
Then X # 0 is a zero of order k of F{ if and only if \™1 is an eigenvalue of algebraic
multiplicity k of V. Furthermore, in such a case, a basis for ker (V, — ANk s

formed by
il e

) for 0<j<k—-1.
z=A

Proof. First, suppose that 7§ (\) # 0 with A # 0 and there is a non-zero f in L?[0, 1]
such that V. f = A~1f. By Lemma 2.2.5, we may assume that

1
/ ft)dt =1.
0

Flz) = /0 "y dt

belongs to C1[0, 1] with F(0) = 0 and F(1) = 1 and is a solution of the Cauchy problem

{ H'(z) = AH(p(x)),

In particular,

H(1) = 1.

On the other hand, from (3.1.2) and (3.1.3), we know that F¥(-, \) is also a solution
of the above Cauchy problem. Thus, by Proposition 3.1.5, we have F' = F¥(-, \) and,
therefore,

0% FL(N) = F?(0,\) = F(0) =0,

a contradiction. Hence A~1 is not an eigenvalue of V.
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Conversely, suppose that A # 0 is a zero of order k > 1 of F§ and consider

B HF#(z,2)

Gj(x) 5|,

) for 7> 0.

Clearly, G; are in C'[0,1] and, therefore, g;(z) = G;(:v) are in C|[0, 1] for j > 0. Since

A is a zero of order k of Ff, we have
Gj(0)=0, for0<j<k—-1 and Gr(0) # 0. (3.1.7)
In particular, we have
Gj(z) = /090 gj(t)dt for 0<j<k—-1 (3.1.8)

Upon differentiating successively with respect to z on both sides of (3.1.2), and taking

into account that F¥(1,z) = 1, we obtain
Go(x) = AGo(p(x)) and  Gj(x) = AGj(p(x)) +jGj-1(p(x)), for j>1. (3.1.9)
The last display along with (3.1.8) implies that
(I =AVyo)go=0 and (I —AV,)g; =jV,gj-1, for 1<j<k-—1.(3.1.10)

Now, an induction argument along with (3.1.10) shows that

7j—1 ' .'
(I-AV,)g =3 (- L g for 1<j<k—1 (3.1.11)

mIN—m
m=0

Since, by Corollary 2.2.6, dim ker (I /A—V,,) < 1, it follows from (3.1.10) that ker (1 /A—
V) is one-dimensional and is spanned by go. In addition, from (3.1.11), it follows,
for 1 < j <k, that ker (/XA — V,,)? has dimension j and is spanned by go, ..., gj—1.
Thus A~! is an eigenvalue of algebraic multiplicity at least k. To show that it is
precisely k, it suffices to prove that gj_; is not in the range of (I/A — V). But if
gk—1 is in the range of (I/X — V,,), then by (3.1.10), there is g in L?[0,1] such that
(I —AV,)g = kV,gx—1. Therefore,

Hi(z) = G(z) — G(1)Go(z), where G(z) = /O:E g(t)dt

is a solution of the Cauchy problem

H'(z) = AH (p(2)) + kGy-1(2),
H(1) = 0.
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Since G}, is also a solution of the above Cauchy problem, Proposition 3.1.5 implies
that H; = G}.. Hence

G(0) = H1(0) = G(0) — G(1)Go(0) = 0,

which contradicts (3.1.7). Thus A~! has algebraic multiplicity k. The proof is com-
plete. O

Corollary 3.1.8. Let ¢ be a continuous self-map of [0, 1] with ¢(x) = x for0 < z < 1.

Then V,, has no real negative eigenvalues.

Proof. By Proposition 3.1.3, we have FJ(—t) > 1 for each ¢ > 0. Thus FJ has no

negative zeros and the result follows from Theorem 3.1.7. O

Remark. Example 2.1.12 shows that the hypothesis p(z) > = for 0 < z < 1 in
Corollary 3.1.8 cannot be omitted.

3.1.4 Finiteness of o(V,)

Next we proceed to characterize when o(V,,) is finite. In order to do this, we need to

estimate the growth of the entire function FJ. We begin with the following lemma.

Lemma 3.1.9. Let ¢ be a continuous self-map of [0, 1] with p(x) >z for 0 <z < 1.
If 0 < a< B <1, then, for each R > 0, we have

(1+(B—a)R)F?(n,—R) < F?(a,—R) < (1 + (8 — @)R)F?(y,—R), (3.1.12)

where

~v = min{[, {nlﬁl} ¢} and n= I[n%}]( ®. (3.1.13)

Proof. Using (3.1.2) in the second equality below, we have

B oFe

f@(a’_R) = pr(/Bu _R) - al‘

(x,—R)dx

B
_ F9(3,—R)+ R / F(o(x), — R) da.

Since F¥(x, —R) is decreasing with respect to x, see Proposition 3.1.3 (a), and v <

p(x) < nfor a <x < G, we find that
F(n,—R) < F¥(p(x), —R) < F¥(v, —R),

which along with the above display implies (3.1.12). The result is proved. O
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The next two lemmas establish that under suitable hypotheses the function F#(-, — R)

cannot grow arbitrarily.

Lemma 3.1.10. Let ¢ be a continuous self-map of [0, 1] with p(z) = = for 0 < z < 1.
Assume also that p(x) > x for u < z < v for certain 0 < u < v < 1. Then there

~
exists a sequence {Vn }nez, with v, = 0, such that

Z’Ynzv_u

neZ

and
“+o0o
F(u,~R) < F?(v,—R) [[ 1+mR), for each R > 0. (3.1.14)
n=—00
Proof. Since ¢ is continuous and ¢(z) > z for u < z < v, we may choose a bilateral
sequence {ay,} satisfying v < o, < apq1 < v for each n in Z with «a;, tending to u
as n tends to —oo and «,, tending to v as n tends to +oco, and in such a way that

o(x) = apy1 for ay, < x < apyr. Setting vy, = apy1 — o = 0, we have
S v,
ne”

Moreover, Lemma 3.1.9 implies that
FP(an, —R) < F(ant1, —R)(1 + mR), for each n € Z and each R > 0.

Therefore, the required inequality (3.1.14) follows by iterating inequality above and

that F#(z, z) is continuous with respect to x. The result is proved. O

Lemma 3.1.11. Let ¢ be a continuous self-map of [0, 1] with p(z) = = for 0 < z < 1.
Assume also that p(x) > x for u < x < v for certain 0 < u < v < 1. If either
o(u) = u or p(r) < v for u < x < v, then there exists a sequence {Vn}n>0, with

Yn > 0, such that
(o)
Z Yn SUV—U
n=0

and

F?(u,—R) = F?(v,—R) H(l +mR), for each R > 0. (3.1.15)
n=0

Proof. If p(u) = u, we take a strictly decreasing sequence {a,},>0 with v < a, < v
and satisfying that {a,} tends to u as n tends to co and p(a,+1) < a,, for each non-

negative integer n. If p(z) < v for u < x < v, we take a strictly increasing sequence
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{an} with u < a,, < v satisfying that {a,} tends to v as n tends to co and such that
¢(ap) < ap41 for each non-negative integer n. Thus, in any case there is a sequence
of pairwise disjoint intervals (ay,, d,) contained in (u,v) such that ¢(ay,) < 6§, for each
non-negative integer n. Now, we take (3, in (o, d,) such that max(q,, g,] ¢ < 0n and
set v, = Bn — ap. Clearly, v, > 0 and since the (ay,d,) are pairwise disjoint and

contained in (u,v), we also have

oo
Z% <U—u.
n=0

Hence Lemma 3.1.9 implies that

FP(an,—R) = F?(0p, —R)(1 + mR), for each n > 0 and each R > 0.
Since F¥(x, —R) is decreasing with respect to z, see Proposition 3.1.3 (a), and (a,, dy,)
are disjoint, we have

. Z HFM"’ > [ +wR).
n=0

which proves (3.1.15). The result is proved. O

Recall from 1.4 that the exponential type of an entire function F' is

In M(F,R)
L
For a measurable self-map ¢ of [0,1] we set E(p) = {z € [0,1] : ¢(z) = z} and

T(F) = hm

T = p(E(p)Nz, 1]) where, as usual, p is the Lebesgue measure. The next proposition
shows that 7, is precisely the exponential type of Fy .

In the reminder we make use of the widely extended Landau’s asymptotic notation
to compare functions. Given f and g, functions defined on the real line, satisfying

that there exists M > 0 such that for all large enough = we have
[f (@) < M|g(x)],
we say that f is big-O of g as x goes to +o0, in symbols
f(x) =0O(g(x)), as r — +00.
If on the other hand, for each M > 0 and all large enough = we have
|f(2)] < Mlg(x)|,
then we say that f is small-o of g as x goes to +0o0, in symbols

f(x) =o(g(x)),  asz— oo
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Proposition 3.1.12. Let ¢ be a continuous self-map of [0,1] with ¢(z) > =z for
0 <z < 1. Then for each 0 < x < 1, there exists a sequence {Vn}n>0, with v, = 0,

such that
oo
Z Yn=1—2—14
n=0
and
[o¢]
e < M(FE,R) <™ [[(1+mR for each R > 0. (3.1.16)
n=0

In particular, 7(Ff) =15 for 0 <z < 1.

Proof. For x = 1 the result is trivial. Thus suppose that 0 < z < 1 and R > 0.
Propositions 3.1.2 and 3.1.3 imply that F¥(-, —R) is continuously differentiable, de-
creasing and F¥(t,—R) > F¥(1,—R) = 1 for 0 < t < 1. Thus we may consider
f(t) = In(F¥(t, —R)) which is clearly non-negative, decreasing and f(1) = 0. There-
fore, by (3.1.2), we have

1 1 _
_ / f'(t)dt =R ]:;Efzg)_’ RJ)R) dt.

Since F?(p(t), —R) < F?(t,—R) for p(t) >t and ¢(t) =t for t in E(p), and the last
set is closed, we find that [x,1] \ E(p) is a union of disjoint open intervals (u;,v;),
j = 1, where there are possibly finitely many non-empty (uj,v;). Therefore, we may

split the last integral in the above display so that

/Ewm[w,u = E(e)n[a,1] H;(f (uj) = f(v;))

where the last series may have finitely many terms different from zero. Hence,

(U',—R)
R < f(x )—TxR—i-Zl m.

j=1

(3.1.17)

Since ¢(t) > t for u; < t < v; for each j > 1, we may apply Lemma 3.1.10 and,
therefore, there is a sequence {v; : j > 1 and k € Z} of non-negative real numbers,
such that

S

> F?(u;j, —R) .
> vik=vi—u; and m < [[ @ +mxR),  foreach j>1.

k=—o00 k=—00

(3.1.18)

Upon rearranging {v;} in just one sequence {7y, }n>0, we see that

(o]
Zvnzl—x—rx.
n=0
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It also follows from (3.1.17) and (3.1.18) that
el L ef@) = FP(x, —R) < ™l H(l +WmR),
n=0

from which (3.1.16) follows.
Finally, for each ¢ > 0, we take a positive integer m such that 7> v, < e. Then

In [T +%R)=> In(1l+%R)<R> < Re.

k=m k=m k=m

The above inequality along with (3.1.16) shows that
e < M(F?,R) = O(R™e™+9)R) a5 R — .

Therefore, 7, < 7(F5) < 7, + €. Since € was arbitrary, we conclude 7(F7) = 7,. The

result is proved O
The most important case is the one for which pu(E(¢)) = 0. We have

Corollary 3.1.13. Let ¢ be a continuous self-map of [0, 1] with p(x) > = for 0 < z <
1. Assume also that the set of points for which ¢(x) = x has zero Lebesque measure.

Then F¥ is of exponential type O for each 0 < z < 1.

As mentioned in 1.4, the order of an entire function f is defined as

o(f) = Tm lnlnM(f,R)'

R—o0 InR

It should be noted that if 0 < 7(f) < oo, then p(f) = 1 and if 7(f) = 0, then p(f) < 1.
It is well known that if F in H(C) has finitely many zeros, then F(z) = p(2)e9(®), where

p is a polynomial and g € H(C). We need a more precise result.

Lemma 3.1.14. Let F be an entire function with finitely many zeros and of finite

exponential type. Then F(z) = p(z)e**, where p is a polynomial and |a| = 7(F).

Proof. Since F' is of finite exponential type, we have p(F) < 1. Thus Hadamard’s
Theorem, see 1.4.2 or [29, p. 24], implies that

F(Z) — Zmeszrc H (1 o )\Z> ez/)\;97
k

k=1

where m > 0, b and ¢ belongs to C and A\;, 1 < k < n, are the zeros of F' repeated
p

az

according to their multiplicities. Therefore, F'(z) = p(z)e®?, where p is a polynomial

and a belongs to C. It is also clear that |a| = 7(F). O
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The next theorem provides several equivalent conditions for (V) to be finite.
Observe that the assumption maxjy ;)¢ < x for each fixed point z of ¢ is a weaker

assumption than increasing. Recall that ¢, denotes the n-th iterate of .

Theorem 3.1.15. Let ¢ be a continuous self-map of [0, 1] with p(z) >z for0 < x < 1
satisfying sup{z : p(z) > x} =1 and max|y,) p <y for each fived point y of p. Then

the following are equivalent.
(i) The spectrum (V) is finite.
(ii) There exists a positive integer n such that @, (x) =1 for each 0 < z < 1.
(iii) The map ¢ is identically 1 on a neighborhood of 1 and p(x) > x for 0 <z < 1.
(iv) For some positive integer n, the operator Vg has finite rank.

(v) If P is the orthogonal projection onto the constant functions, then P — V, is

nilpotent.

Proof. Tt is elementary to verify that (ii) is equivalent to (iii).
Now we shall prove that (ii) is equivalent to (v). First, it is easy to see that

(P — V)™ is the integral operator Jk, with kernel

Kn(yo,yn)z/[] 1Xn(y(hyla”-aynflyyn)dyl"’dynflv
0,17~

where X, is the characteristic function of
S, = {y €[0,1)]"*" such that y; > p(y;—1), for1<j<n+1}.

Clearly, (P — V)" = 0 if and only if K,, = 0 a.e. By Fubini’s Theorem, this is
equivalent to the fact that S, has zero Lebesgue measure. Now, it is easy to check
that S, has zero Lebesgue measure if and only if ¢, is identically 1. For instance, if
on(z) =1 for 0 < = < 1, then S, is contained in {y € [0,1]""! such that y, = 1}.
Thus, (ii) is equivalent to (v).

Since P is a rank one operator, we have that (v) implies (iv). Obviously (iv)
implies (i).

Thus the proof will be finished once we have shown that (i) implies (ii). To this
end, suppose that o(V},) is finite and ¢ does not satisfy (ii). We will distinguish two
cases.

Case 1. There is 0 < w < 1 such that ¢(w) = w. The hypotheses on ¢ allow us to
choose fixed points u and v of ¢ such that p(z) > = for u < z < v. Proposition 3.1.12
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implies that 7 and F;7 have the same exponential type

7= p(E(p) N v, 1]).

The hypotheses imply that ¢(z) < v if 2 < u and p(z) < v if © < v. Therefore from
Lemma 3.1.6 and Theorem 3.1.7, it follows that if A # 0 is a zero of F¢ Fy, then A~!
is an eigenvalue of V,. Since V,, has finitely many eigenvalues, we find that F; and
F? have finitely many zeros. Consequently, by Lemma 3.1.14, there are polynomials
p and ¢ and @ and b in C such that |a| = |b| = 7 and F{ = p(2)e®* and F{ = q(z)e®.
In addition, by Proposition 3.1.3, we have

M(F¢,R) = Ff(—R) and M(F? R)=Ff(—R), for R>0.

Therefore a = b = —7. Hence Fi(z) = p(z)e” " and F(z) = q(z)e”"*. Thus there

exists a positive integer m such that
F?(u,—R) = O(R™F?(v,—R)), as R — oo. (3.1.19)

On the other hand, since ¢(x) > x for u < z < v and ¢(u) = u, by Lemma 3.1.11,

there is a sequence of positive numbers {7 }r>0 such that

o0

F?(u,—R) > F?(v,—R) [[(1 + wR).
k=0

which contradicts (3.1.19).

Case 2. p(x) > x for 0 < x < 1. By Corollary 3.1.13 and Theorem 3.1.7, we find that
F¢ has zero exponential type and finitely many zeros. Therefore, by Lemma 3.1.14,
we have that FJ is a polynomial. In particular, there is a positive integer n such
that M(FY,R) = O(R™) as R tends to co and thus, by Proposition 3.1.3, we have
M(F?,R) = O(R"™) for each 0 < z < 1. Hence, F¥ is a polynomial of degree at
most n for each 0 < z < 1 and, therefore, af, = 0 for m > n + 1. Upon applying
successively Proposition 3.1.1 (ii), we see that a,—j+1(pj(x)) =0 for 1 < j < n and
0 < z < 1. Since ¢, is not identically 1, we find that ¢, ([0,1]) is equal to [«, 1] for
some 0 < a < 1. We conclude that all aj; for n > 1 vanish identically on [ar, 1]. Thus,
according to (3.1.1), we find that F¥(z, 2) is identically 1 on [«, 1] and 2z in C, which
contradicts equation (3.1.2). The proof is complete. O

Remark. If ¢ is a continuous self-map of [0, 1] with ¢(x) > = for 0 < = < 1 and
a =sup{z : p(x) > x} < 1, then the spectra of V,, acting on L?[0, 1] and V,, acting on
L2%[0, o] coincide. Moreover, each generalized eigenfunction of V,, acting on L?[0, ] is
the restriction of a generalized eigenfunction of V,, acting on L?[0,1]. Therefore, from

Theorem 3.1.15, we have
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Corollary 3.1.16. Let ¢ be a continuous self-map of [0, 1] with p(x) > = for 0 < x <
1 and maxp ¢ < y for each fized point y of ¢. Then the following are equivalent.

(i) The spectrum of Vi, is finite.

(ii) Either ¢ is the identity or there exist 0 < f < a = sup{z : () > x} such that

p(x) >z, f0<a<p
o) =a, iff<z<o
o)==z, ifa<z<l

The following corollary is an immediate consequence of Theorem 3.1.15.

Corollary 3.1.17. Let ¢ be a continuous self-map of [0, 1] with p(x) > = for0 < z <
1. If (0) = 0 or ¢ 1(1) does not contain an interval of the form [1 —e,1] for some

€ > 0, then the spectrum of V,, is infinite.

3.1.5 Exponent of convergence of the eigenvalues of V,,

Recall that the sequence of non-zero eigenvalues of V,, is denoted by {\,(¢)}, arranged
in decreasing order of moduli and such that each eigenvalue appears as many times as
its multiplicity indicates. Recall also from 1.4 that the convergence exponent s({\,})

of a sequence {\,}n>0 is the infimum of ¢ > 0 for which

Dol
n=0

is finite. For the sake of brevity we write s(¢) = s({An(¢)}).

Let ¢ be a continuous increasing self-map of [0, 1] with ¢(x) > 2 for 0 < < 1 and
©(y) < ¢(x) whenever y < z and ¢(y) < 1, which means that ¢ is strictly increasing
on p_1([0,1]), where ¢_1 is as in subsection 2.1.2. In the present case, p_; is clearly
continuous on [0, 1]. Thus we can extend the notation ¢, for the iterates of ¢ in the
obvious way to all the integers Z. Observe that if ¢(0) = 0 and ¢ ~*(1) = {1}, then ¢
is invertible and ¢_1 is just the inverse of .

The next proposition records some of the properties of the iterates ¢,, which
are very easy to check. Throughout the remainder of this subsection, we denote by

{7 (o, )} the sequence of differences of {¢,(c)}, that is, v, (v, ) = vn(c) — pn—1(c).

Proposition 3.1.18. Let ¢ be a continuous increasing self-map of [0, 1] with () > x
for 0 <z < 1 and ¢(y) < ¢(x) whenever y < x and p(y) < 1. Assume also that
0<c<1. Then
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(i) For each n in Z, the interval o([pn—1(c), on(c)]) is contained [pn(c), ont+1(c)].

(i1) The sequence {¢n(c)}nez is increasing.

(i)
lim ¢,(c) =0 and lim ¢p(c) =1.

n——oo n—-4o00o

(iv) If ¢(0) =0, then o(pn(c)) = @nyi(c) for each n in Z. If in addition, p(x) =1

only for x = 1, then {¢n(c)}nez is strictly increasing.

(v) The sequence of differences {yn(p, ¢)tnez satisfies

[e.9]

Z ’}/n(@,C) =1

n=—oo

We observe that ¢, (c) > 0 for each n € Z if and only if ¢(0) = 0. Also, p,(c) <1
for each n € Z if and only if p(z) = 1 only for z = 1.

Proposition 3.1.19. Let ¢ be a continuous self-map of [0,1] with p(x) > x for
0<z<1andp(y) < p(x) whenever y < x and p(y) < 1. Then for each 0 < ¢ < 1
and R > 0, we have

II @ +92nle.0)R) <F2(0,-R) < ] (1+m(e.0)R). (3.1.20)
Proof. We set v, = y(p,c). Upon taking [, 5] = [¢n(c), pn+1(c)] in Lemma 3.1.9,

we have
(1Y R)F? (pnt2(c),—R) < F7(pn(c),—R) < (1+vn+1 R) F¥ (¢nt1(c),—R). (3.1.21)

Since F¥#(x,—R) is continuous, decreasing with respect to z and F¥(1,—R) = 1, see
Propositions 3.1.2 and 3.1.3, the second inequality in (3.1.20) follows by applying the
second one in (3.1.21) for each n in Z and taking limits. Similarly, the first inequality
in (3.1.20) follows from the first one in (3.1.21), but considering only odd integers.
The result is proved. O

The following lemma must be known to the experts. Since we have not found a

precise reference, we include a proof.

Lemma 3.1.20. Let F' be an entire function of exponential type 0. Let {\,}n>0 be
the sequence of non-null zeros of F repeated accordingly to their multiplicity. Then

the exponent of convergence s({\;'}) is equal to the order of F.
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Proof. First, for any entire function we have that s({\;1}) < p(F), see 1.4.5 or [29,
Theorem 2, p. 18]. If p(F') < 1, the statement is just that of Theorem 1 in [29, p. 31]
or the remark after 1.4.5.

Now, proceeding by contradiction, assume that s({\;!}) < p(F) = 1, then by
Hadamard’s Theorem [29, p. 26] we have F(z) = 2™e%***G(z), where a and b are

complex numbers, m is a non-negative integer and

G(z):ﬁ(l—i).

n=0

Moreover, by Borel’s Theorem, see 1.4.1 or [29, p. 30, p(G) = s(G) = s({\;'}) < 1.
Hence a # 0, otherwise p(F) = p(G) < 1. But then one checks that 7(F') = |a| # 0,

which is a contradiction. O

The following Theorem provides estimates on the exponent of convergence of the

eigenvalues of V.

Theorem 3.1.21. Let ¢ be a continuous self-map of [0,1] with ¢(z) >z for 0 < x <
1. Set

pe = prlie) = e { iy AL =), g 1Pl )

r—0 Inz Q.| ln(l — gj)
1 — 1 _
and — p- = p-(p) =max | lim nlp@) = 2) -y, Inlele) =) ]
z—0 Inzx 1 ln(l _ :I))
Then we have
- -1 -1
£ <s(p) < (3.1.22)
pP— P+

Proof. We begin by observing that 1 < p_ < p4 < oo. By Theorem 3.1.7, we know
that s(¢) is equal to the exponent of convergence of the inverse of the zeros of Fy .
Since by Corollary 3.1.13, we have 7(FJ) = 0, Lemma 3.1.20 implies 0 < s(p) < 1.
Therefore, if p4 = oo, the right inequality in (3.1.22) is trivially satisfied. If p; < oo,
then we can take r > 0 such that (r+1)/r > p4. Clearly, we can choose a continuous,

strictly increasing self-map ¢ of [0, 1] with ¢(0) = 0 and ¥(z) > z for 0 < z < 1

satisfying
P(z) < p(z) for 0 <o <1,
P(x) = ﬁ on a neighborhood of 0,
1—
and P(x)=1-— ’ on a neighborhood of 1.

1+ 1 =)t/
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Now, take 0 < ¢ < 1 and set v, = ¥, (¥, ¢) = Vp41(c) — ¥n(c) for each n in Z. Plainly,

for large enough a > 0, we have
Yv((1+a)")=a" and ¢(l-a")=1-(a+1)".

Hence, there is a positive integer ng and real numbers a4 and a_ such that ¢, (c) =

1—(n+ay)™" for n > ng and ¥, (c) = (|n| + a-)~" for n < —ng. Therefore,

—r—1

Tn ~ TN as |n| — 0.

On the other hand, by Corollary 3.1.4 and Proposition 3.1.19, for each R > 0, we have

o0

M(F§,R) < M(FS,R) <[] (1 +mR) = M(G,R)
where .
G(z)= [] (1+ma).

By Lemma 3.1.20, we have s(p) = p(F) < p(G) = s(G). Finally, since the asymp-
totic formula for -y, shows that s(G) = (r +1)7!, we find that
p+ — 1

1 r+1
<inf{—— : r>0 and —— > == -
s(p) < in {r—i—l r an " p+} =

which is the right inequality in (3.1.22).

The left inequality in (3.1.22) is trivial if p_ = 1. If p_ > 1, we can take r > 0 such
that (r +1)/r < p—. By definition of p_, there is a continuous increasing self-map v
of [0,1] with ¢(z) > x for 0 < z < 1 and ¥(y) < ¥(z) if y < = whenever ¢(y) < 1
and satisfying

U(x) = () for 0<x<1
and either (z) = S — on a neighborhood of 0
(1 _ xl/r)r
1—2x .
or Y(x)=1- on a neighborhood of 1.

(L+ (L —a)t/r)r

Again take 0 < ¢ < 1 and set v, = 7,(¢,¢). As in the proof of the right inequality,

r—1

there is a positive ng such that either v, ~ rn~""! as n tends to +o0 or 7, ~ r|n|~"!

as n tends to —oo. Again, by Corollary 3.1.4 and Proposition 3.1.19, for any R > 0,

we have
o0

M(F$ Ry > M(FY,R) > [[ (1+72mR)=M(G,R),

n=—oo
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where
o0

where G(z) = H (14 y2n2).

The asymptotic behavior of 7, shows that s(G) > (r +1)~L. Since s(¢) = p(F) >
p(G) = s(G), we obtain

1 1 -1
s(go)}sup{mzr>0 and Tj: <p_}:p :

which is the left inequality in (3.1.22). The proof is complete. O

The next corollaries follow immediately from Corollary 3.1.13, Lemma 3.1.20 and
Theorems 3.1.7 and 3.1.21.

Corollary 3.1.22. Let ¢ be a continuous self-map of [0, 1] with p(x) >z for 0 < z <

1 and such that there exist

 In(p(n) — 2) (el - @)
— lim 2P T g = lim P T D)
Po =210 Inx e pr=2m In(1 —z)
Then
-1
s(¢) = p(F) = ”7

where p = max{po, p1}.

Corollary 3.1.23. Let ¢ be a continuous self map of [0, 1] with p(x) > z for0 < z < 1
and satisfying

i (@) —2) . In(e(z) —2)

= =1.
x—0 Inx r—1 ln(l — .f)

Then s(p) = p(FY) = 0. In particular, this holds whenever ¢ is differentiable at 0
and 1 with 1 < ¢'(0) < 00 and ¢'(1) < 1.

Now we deal with the summability of |A,(¢)|. We begin with a lemma that

guarantees the summability of the inverses of the zeros of an entire function.

Lemma 3.1.24. Let {\, },>0 be the sequence of zeros of an entire function F repeated
accordingly to their multiplicity and where F(0) = 1. Assume also that there is a
sequence {Vn}n>0 in (0,1) such that

(1+%R) for each R > 0. (3.1.23)

8

Z’yk(l—l—|ln’yk\)<oo and M(F,R) <

k=0 k=0

Then
o0
>
n=0 |>\n|
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Proof. Let N(R) be the number of the zeros of F' in the disk |z| < R. By a corollary

of Jensen’s Theorem, see 1.4.4 or Lemma 4 in [29, p. 15], we have
N(R) <InM(F,eR), for each R > 0.

Using the above estimate in the last inequality below we find that

1 00
DRRCES
[An|>e—2 k=0

ek—2 k=0 k=0

The second inequality in (3.1.23) implies that the last display is less than

o0 oo o0
GQZekahl(l + ;€f 622
k=0  j=0

Jj=0

e FlIn(1 + ;eb).

Mg

i

0

Since f(t) = e *In(1 4 v;€’) is decreasing on [0, +00) for each j > 0, we obtain

o

_ ® In(1 + ~;e®
Ze kln(1+’yjek)<7j+/ (em%)d:c
k=0 0

=75 = Iy 4+ (1 4+75) In(1 4 ;)
< 3y;(1+ [ ).

Upon putting everything together, we have

o 1 [e.e]
Z . Z (1+ [In~;|)
n=0 =0

and the required result follows.

1 oo o0
Z o < 262_kN(6k_1) < é? Ze_klnM(F, er).
[An|<eb—1 7"

O

Unlike Theorem 2.2.11 next Theorem does not require the symbol to be increasing

for the sequence of eigenvalues to be absolutely summable.

Theorem 3.1.25. Let ¢ be a continuous self-map of [0, 1] with p(z) > = for0 < x < 1

and

max (hm Infln(plz) = )] g, InfInle(z) _x)|> <1 (3.1.24)

z—0 |1n:z:] z—1 |ln(1 —.T)|

Then the sequence of eigenvalues of Vi, is absolutely summable.
Proof. The hypothesis (3.1.24) implies that there is r > 1 such that

cp(x) z = oz I4+1/ro—x 1/7“)’ as r — 0

and  (r) —x = ((1 — x)lH/Te_(l_’”)_l/r) : as x — 1.

(3.1.25)
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Consider
() 0, if £ =0;
alx) = _r
(m(efl” - 1)) . if0o<z <1
1— (e 1 1)) o<z <1
nd B — (1ne +1) , f0<a<y;
1 ifz=1.

One may check that a and  are continuous, strictly increasing and

g Ur
1—|—1/1"e x ’

alz) —x~ rx as x — 0,

3.1.26
and B(z)—a~ r(l—az)t/re==a)"ag 21 ( )

Furthermore, for a > e, we have
a((ln(a+1))™") =(Ina)™ and [B(1—(Ina)™")=1—-(In(a+1))"". (3.1.27)

Now, from (3.1.25) and (3.1.26), it follows that there is a continuous, increasing

self-map ¢ of [0, 1] with ¢(0) = 0 and ¥ (z) > x for 0 < x < 1 satisfying

P(x) < o(x) for 0 <o <1,
P(x) = a(x) on a neighborhood of 0
and  Y(z) = p(z) on a neighborhood of 1.

Now, take 0 < ¢ < 1 and set v, = ¥, (c) — ¥,_1(c) for each integer n in Z. Since 1)
is invertible in [0, 1], we have ¥ (1, (c)) = ¥p+1(c) for each n in Z. From the behavior
of 1 near 0 and 1 and (3.1.27), it follows that there are real numbers a_ and a4 such
that ¥,(c) =1 — (In(n + ay))™" and Y_,(c) = (In(|n| + a—))~" for n large enough.
Therefore, an elementary computation shows that

r

Vi ™~ 7|n|(ln POR= as |n| — +oo.

Hence,
(e.]

Z (1 + | Invy,]) < oo.

n=—oo

Since ¥ (z) < ¢(x), Corollary 3.1.4 and Proposition 3.1.19 show that

M(F§,R) < M(Fy, R) < [T (1 +R).
nezZ
Finally, let {1/\,} be the sequence of the non-null zeros of . The above display
along with Lemma 3.1.24 shows that {)\,}, which is the sequence of eigenvalues of V,

is absolutely summable. O
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Theorem above shows that for a wide class of symbols ¢ the sequence of eigenvalues
is absolutely summable. This means that V,, behaves like a nuclear operator, although
it is not. The ‘trace’ of V,, is exactly the upper bound found in Theorem 2.2.11 for
increasing maps. This clarifies why the sum of the eigenvalues of Vya or Vi_(3_;y1/a

is equal to 1, see Theorems 2.1.10 and 2.1.11.

Theorem 3.1.26. Let ¢ be a continuous self map of [0, 1] with p(z) > = for0 <z < 1
and assume that the sequence {\,(p)} of eigenvalues of V,, is absolutely summable.
Then,

Z)\ p({z €[0,1] : o(z) > z}). (3.1.28)

Proof. We assume that 0 < ¢ = p({z € [0,1] : ¢(x) = x}) < 1, otherwise there is
nothing to prove. Since {\,} = {A\n(¢)} is absolutely summable, we find that

[e.9]

G(z) =[]0 = xn2)

n=0

defines an entire function of exponential type zero. On the other hand, by Theo-
rem 3.1.7, we have that FJ and G share the same zeros with the same order. Since,
by Proposition 3.1.12, the entire function F§ is of exponential type ¢, it follows that
H(z) = FJ(2)/G(z) is an entire function of exponential type ¢ with no zeros. Thus,
Lemma 3.1.14 implies that H(z) = ae®?, where a and b belong to C and [b| = c.
Since G(0) = FJ(0) = 1, it follows that @ = 1. By Corollary 3.1.4, we know that
M(F§, R) = F{(—R). In addition, F§(2) = G(2)H(z) = G(z)e*”* and G has expo-
nential type zero. It follows that b is real and negative and, therefore, b = —c¢ and
Fi(2) = G(z)e “*. Hence,

(F$)'(0) = G'(0) — eG(0 :_C_ZA

On the other hand, the Taylor series expansion of FJ furnished by Proposition 3.1.2
implies that (F§)’(0) = —1, which along with the above display implies (3.1.28). The

proof is complete. O
From Theorems 2.2.11 and 3.1.26 we obtain

Corollary 3.1.27. Let ¢ be a continuous increasing self-map of [0, 1] with p(x) > x
for0 <x < 1. Then

Z)\ p({z €0,1] : o(z) > x}).



3.1. SPECTRAL PROPERTIES OF 'V, o7

The following example provides another family of symbols for which the spectrum
of the corresponding composition Volterra operators can be found explicitly. It shows
that the eigenvalues A, (p) of V,, for a continuous self-map ¢ of [0,1] with ¢(z) > «
may be non-real. Moreover, in these examples, the sequence of eigenvalues is not
absolutely summable. It is also worth noting that all the eigenvalues, except the

corresponding one to the spectral radius, are non-real.

Example 3.1.28. Assume that 0 < a < b <1 and let @, be the continuous self-map
of [0,1] defined by

; (3.1.29)

Then

b—a
Vo) = 010 o = e )

Furthermore, the eigenvalues A\, have algebraic multiplicity 1 and the corresponding

etgenfunctions are

—a —a )

<zx<a
e(x_l)/)‘", ifa<z <1,

— n a b—1—-2=22)/x\, . .
fn(a:)Z{ A A T e I R R

Proof. First, we will find an explicit expression for F#at. Set g(z) = F¥ab(x,z) for
each z in C. By (3.1.2) and (3.1.3), we have

{ §(@) = 2g(pap(®),  for0<z <1, (3.1.30)
g(1) =1
From (3.1.29) and (3.1.30), we see that

g (x)=z2g9(z) for a<xz <1 (3.1.31)

One checks that a solution of the Cauchy problem given by (3.1.31) and g(1) =1 is

g(x) =D for a<a<1. (3.1.32)

From (3.1.29) and (3.1.30) and the above display, we have

J(x) = 22 (017520) g 0K 2 < a,
gla) = e,
Solving the above Cauchy problem, we obtain

o) = b ata1) _ bLez(bflJ’?T“x) for 0<z<a.
—a —a



o8 CHAPTER 3. SPECTRUM OFV,

Thus from (3.1.32) and the above display, we see that

b ( —1) __a z b*l*bjTagg . .
Feab(z,z) = 5o " b—a® ( )» it 0 <z <a; (3.1.33)
7=, ifa<ax<l1.
In particular,
b a -
$a, 1 . ,
Fo(e) = g etV — et = (e — ae™).

It is elementary to see that the zeros of ]-"ff “* are 1/\,, n in Z, and they are sim-
ple. Thus the formulae for the eigenvalues and the eigenfunctions follow from Theo-
rem 3.1.7. 0

3.2  Analyticity of eigenfunctions of V,

This section is devoted to showing that under suitable hypotheses on the symbols,
the eigenfunctions of composition Volterra operators are analytic. An example is
provided in which while the symbol is analytic, the eigenfunctions are not. Recall
that a function f defined on a real interval [u,v] is said to be analytic if it admits a
holomorphic extension to an open set U of C that contains [u,v]. This is equivalent
to the fact that f coincides with the sum of its Taylor series on a neighborhood of
each point on [u,v]. We will use of a well-known criterion of analyticity. Let f be in
C*®[u,v] and

Mo(f) = — max | 7).

- nl [u,v]

Then f is analytic on [u,v] if and only if

lim (M, (f))/™ < co. (3.2.1)

n—od
The formula for the n-th derivative of the composition provided by the next lemma
is known as the Fao de Bruno formula, see [52, Chapter 3]. In the expressions below,

each kj, 1 < j < n, is a non-negative integer.

Lemma 3.2.1. Let f and g be in C"[u,v]. Then for each u < x < v, we have

(k1+--+4Fkn) T
(g o f)(n)(l,) —nl Z g (f( )) = (f/(x))kl . (f(n)($))kn (3‘2.2)

l... 1(1Nk1. . .(n)
P kql- - kpl(A)Fre - - (nl)
The next lemma is an application of Lemma 3.2.1. It will be needed later.
Lemma 3.2.2. For any c in C and any positive integer n, we have

S SR,

k14 +nkn=n
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Proof. Just consider f(z) = (2 —2)~! and g(z) = (c+ 1 — cx)~'. Since f¥(z) =
k(2 —2)7F 1 and ¢ (2) = Fk!(c + 1 — cz)#~1, we see that (3.2.2) implies

|
o m=n Y iR, (3.2:3)

ki4-+nkp=n
On the other hand, we have (go f)(z) = (c+ 1) ' (1 +¢((c+2) — (c+ 1)$U)71) and,
therefore, (g o f)™(1) = nle(c + 1)* !, which along with (3.2.3) implies the required
equality. O

Proposition 3.2.3. Let ¢ be a continuous self-map of [0,1] with ¢(x) > x for 0 <

x < 1. Assume in addition that ¢ is analytic on [a, 1] for a certain 0 < a < 1 and

sup |¢'| < 1. (3.2.4)
[e,1]

If g is analytic on [a,1] and X\ belongs to C, then each f in Clla,1] with f'(z) =
M(p(x)) + g(x) for a <z < 1, is analytic on [a, 1].

Proof. We suppose that A # 0, otherwise the result is trivial. Clearly, f belongs to
C>®|a, 1], since ¢([ev, 1]) is contained in [«, 1] and ¢ as well as ¢ are analytic on [a, 1].
To prove that f is analytic, it is enough to show that the sequence {M,(f)}, relative
to the interval [o, 1], satisfies (3.2.1).

Let r = sup, |¢']. We may assume that r > 0, otherwise the result is trivial.

We set 1/(n1)
R =sup (Mn((’p)> ,

n>2 r

which is finite, since ¢ is analytic on [« 1]. We clearly have
M,(p) < TR, forn > 1. (3.2.5)

On the other hand, since ¢ is analytic on [«, 1] there are positive numbers A and B
such that
M,(g) < AB™"1, for n > 0. (3.2.6)

Set C' = max{B, R/(1 —r)} and take a positive integer ¢ such that
2r|]Al < Cg+1). (3.2.7)

Let L > 2A be a constant such that M, (f) < LC™ for 1 < n < ¢. It suffices to verify
that
M,(f) < LC", for each n > 1. (3.2.8)
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Let m > g be a positive integer. It is enough to show that if (3.2.8) holds for 1 < n <
m, then so does for n = m~+1. Upon differentiating m times on f'(x) = A f(p(z))+g(x)

and using Lemma 3.2.1 we obtain

I\ Fert k) (oo
fr @) = g™ @)+ Y7 /-q!.'.k.fkm!(u)’ﬂ--(-((iv(z!i’)“m(Sol(x))klm(@(m)(m))km'

ki1+---+mkm=m
Therefore,

’)‘|(k1 + - +km)
(m + 1)ky! - !

M1 (f) <M+ 3 Mi st (D ()M (M)

ki1+--+mkyn=m

The induction hypotheses along with (3.2.6) shows that

M1 (f) < AB™H +

L‘)\’Rm Z (kl + +k'm)' <T’C>k1+"'+km

l... |
m+l = kilka! \R

Hence, by Lemma 3.2.2; we have

LrC|\|

L 2
(rC+R)™ < AB™! 4 L(rc + Rt < Lo,
m—+1 2

M1 (f) < AB™H 4+

where we have used (3.2.7) in the second inequality above and the fact that B < C,
rC+ R < C and 2A < L in the third. Thus (3.2.8) is satisfied for each positive integer
n. The result is proved. O

As usual, a function f is said to be analytic on (u,v], if it is on [s,v] for each

u<s <.

Lemma 3.2.4. Let ¢ be a continuous self-map of [0, 1] with p(z) > x fora <z <1
for some 0 < a < 1. Assume also that ¢ is analytic on (a,1] and ¢'(1) # 1. If
g is analytic on (a,1] and X belongs to C, then each f in Cl(a,1] with f'(z) =
M (p(x)) + g(x), is analytic on (o, 1].

Proof. We may assume that A # 0. Now, observe that ¢/(1) < 1. Thus we may choose
a < v < 1 such that supy, 1) |¢'| < 1. By Proposition 3.2.3, we find that f is analytic
on [v,1]. Set

u=inf{s € (a,1) : f is analytic on [s,1]}
and assume that u > a. Then there is € > 0 such that [u — e, u+ €] is contained (a, 1)

and ¢([u—¢e,u+¢]) is contained in (u, 1]. Since f'(z) = Af(¢(x)) + g(x), we find that

f is analytic on [u — €, 1], which is a contradiction. O
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Lemma 3.2.5. Let ¢ be a continuous self-map of [0,1] with p(x) > x for some
a <z <1. Assume also that ¢ is analytic on [«, 1] and ¢'(1) # 1. If g is analytic on
[, 1] and X\ belongs to C, then each f in Ct[a, 1], with f'(z) = Mf(p(z)) + g(x) for

a <z <1, is analytic on [a, 1].

Proof. Set a = minf,1;¢. The hypotheses on ¢ imply that a > a. According to
Lemma 3.2.4, we find that f is analytic on («,1]. Since ¢([o,1]) = [a,1] and a > a,
we obtain that f is analytic on [«, 1] because f'(z) = Af(¢(z)) + g(z). The result is
proved. O

Now, we can prove our main theorem in this section.

Theorem 3.2.6. Let ¢ be a continuous self-map of [0, 1] with p(z) >z for 0 <z <1
and f be a generalized eigenfunction of V,, corresponding to a non-zero eigenvalue. If
¢ is analytic on [a, 1] for some 0 < a < 1 and ¢'(1) # 1, then f is analytic on [a, 1].
The same is true for o = 0, provided that p(0) > 0.

Proof. Since f is a generalized eigenfunction of V,, corresponding to a non-zero eigen-
value A, there are functions fo, f1,..., fx = f in L2[0,1] such that and (Vi,—AI)fo =0
and (V, — M) f; = fj—1 for 1 < j < k. Consequently, each f; is continuous and thus

B = [ Hod  o<i<k
0
belongs to C1[0, 1]. We also have
Fy(z) = A\ Fo(p(z))  and - Fj(z) = A Fj(p(@) + Fj_y(z),  for1<j <k

and applying successively Lemma 3.2.5, we see that each F} for 1 < j <k, is analytic

on [o, 1] and, therefore, so is each fj, 0 < j < k. The result is proved. O

Remark. Observe that Theorem 3.2.6 holds for o« = 0 provided that ¢(0) > 0, but
it fails to be true if p(0) = 0. Indeed, if p(0) = 0, it follows that all the derivatives of
each generalized eigenfunction f of V, vanish at 0. Thus either f is identically zero or
[ is not analytic on [0,1]. The next example shows that ¢/(1) # 1 in Theorem 3.2.6

is also essential.

Example 3.2.7. The map p(x) = (2 — x)~! satisfies all the hypotheses of Theo-
rem 3.2.6 with o = 0, except that ¢'(1) = 1. In addition, by Corollary 2.2.3, the
spectral radius v = r(Vy,) > 0 is an eigenvalue. On the other hand, f(z) = F'(z),
where F(x) = F¥(x,1/r), satisfies, by Theorem 3.1.7, that V,f = rf, but f is not
analytic on [0, 1].
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Proof. If f is analytic on [0,1], then so is F'. Since F’(z) = r "1 F(p(x)), by Lemma 3.2.1,

we have

ol (K1t tkn)
FD(1) = 7' Z eyl - Fk; (1) F.l()nu)kn (¢ (1)) (1))
[pm—"—— T '

Substituting the value ©(™ (1) = n! for n > 0, we obtain

! Fkit+kn) (1
FD (1) = n Z k;llﬂ()’ (3.2.9)
Ly i
which implies that F (")(1) > 0 for all n > 0. For each constant C' > 0, we may choose

a positive integer ¢ such that
(C+1)" 1 >C"(n+1), for each n > q. (3.2.10)

Since F(”)(l) > 0, there is A > 0 such that F(")(l) > AC™n! for 0 < n < g. Suppose
that n > ¢ and we have already proved that F("™) (1) > A
(3.2.9), we have

C™m! for each m < n. From

A(n +1)! (k14 -+ kp)!
Fotlqy > 22 T 27 kit
1) r(n+1 Z kil kp! ¢

k1+--+nkn=n
Hence, by Lemma 3.2.2 and using 3.2.10 in the second inequality below, we obtain

n—1
(C+Dmt

(1) (1) > n+1 \oe~H
FOED) > AC 4 DS >

AC™ (n + 1)

Thus for each C' > 0, there is A > 0 such that F(™(1) > AC™n! for each n > 0.

Therefore, F' is not analytic on [0, 1], as required. O



Chapter 4

Asymptotic behavior of orbits of

quasi-nilpotent V,’s

In this Chapter, we deal with the asymptotic behavior of the norms of powers of V,
and norms of orbits {V; fn>0 for quasi-nilpotent composition Volterra operators. In
particular, it will be shown that for the most interesting class of symbols, the sequence
{||V$H1/ "’} has a positive limit strictly less than one, that depends only on ¢'(0) and
¢'(1). These estimates will be particulary useful in Chapter 5 to prove and disprove
supercyclicity and cyclicity respectively.

It is worth mentioning, see for instance [36], that for each bounded operator T'

acting on a Banach space B we have that
lim |7 f||'/" = r(T)
n—oo

for f in a dense subset of B and
lim |77 f||'/" = (T)
n—oo

for f in a dense G set in B. Thus, if T is not quasi-nilpotent, that is, the spectral
radius 7(7T") > 0, the asymptotic behavior of the orbits is to some extend determined
by the value of 7(T). If #(T) = 0, we know only that ||7"||"/" tends to 0 and, therefore,
|77 f||*/™ tends to 0 for each f in B. If ¢ is the identity map, that is, Vi, =V is the
Volterra operator, the asymptotic behavior of the orbits of V,, are known. Namely,
Shkarin in [53] has proved, for each f in LP[0, 1], that

Tim (V" fllp) "

does exist and equals 1 — inf supp (f). We shall see that if p(z) < x for 0 < x < 1,
the orbits of V, tend to zero much faster than that.
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4.1 The asymptotic behavior of [|[V||

We will be mainly concerned with continuous strictly increasing symbols, since it is
necessary for cyclicity of composition Volterra operators, see Section 5.3. However,
most of the proofs in this section still work for non-increasing self-maps.

Let ¢ be a continuous strictly increasing self-map of [0,1] with ¢(z) < x for

0<z<1and (1) =1. Let Q1(¢) = [0,1] and for each n > 2 consider

Qo) ={z €[0,1]" : 21 < p(x2), 22 < (x3),...,2n—1 < ©(xp)}. (4.1.1)

The next lemma relates the values of ||[V'|| to those of v, () = un(Qn(p)), where pu,

is the n-dimensional Lebesgue measure.

Lemma 4.1.1. Let ¢ be a continuous strictly increasing self-map of [0, 1] with ¢(x) <
z for 0 <z <1 and (1) =1. Then vpi1(p) < [V lp < vn—1(p) for each n > 2 and

I1<p< oo
Proof. Let 1 denote the function identically 1 on [0, 1]. It is clear that
IVELoo = VE ™M1l = (VED(L) = val(p)
for each positive integer n. Hence,
Ve llp = IVl = VL = vnsa(e).
We also have ||V flloo < [[VI ool flloo = vn(9)|| flloo for each f € L[0,1]. Hence

Ve fllp < 1IVE ™ Ve fllso < va1(@)IViof oo < vn-1(0)l1flp
for each n > 2. Thus, vp41(p) < [|[V2p < vn-1(p) for any n > 2. O

Before stating our main result, we need one more lemma. Let ¢ be a continuous
strictly increasing self-map of [0, 1] with ¢(x) <  for 0 < 2 < 1. For each positive

integer n and each 0 < a < 1, we set

Q) ={z € Qlp):xn<al and Q% (p) = {2z € Qu(p): 21 > a}.
(4.1.2)

Lemma 4.1.2. Let ¢ be a continuous strictly increasing self-map of [0, 1] with p(z) <
x for0<xz<1andp(l)=1 and

- _ _ 1 —
56“:Iim go(x)j 50_:liim@, 5leim7x, 0; = lim x .
=0 T 20 T z—11—p(z) o—1 1 —p(z)
(4.1.3)
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Then for each 0 < a < 1, we have

T (ua( @)Y <AOF, lm (@) =g, (414
Tm (1 (2 ()™ <4 foF, lm (ua(QSN (@)Y > \/6r. (4.15)

In particular, if @ is differentiable at 0 and at 1, the derivative at 1 is allowed to be

infinite, then

Jim (@)™ = VR (0) and - lim (1 (25 (2))V = V1 (1),
(4.1.6)

Proof. If §§ = 1, the first inequality in (4.1.4) becomes trivial. Indeed, if we denote

u the identity function, we have

1

Mn(QgL’O(QD)) < /Ln(Qn(SO)) < Mn(ﬂn(u)) = (n + 1)!'

(4.1.7)

Thus assume that 55{ < 1. We take an arbitrary (55{ < b < 1. Clearly, there is
0 < 0 < 1 and a strictly increasing continuous self-map v of [0, 1] such that ¢ (z) < z
for 0 <z < 1, ¥(x) = br for 0 < z < § and ¥(x) > () for 0 < = < 1. Since
Y(z) < x for 0 < z < 1, we find that there is a positive integer k such that iy (a) < 6,
where 1, denotes the k-th iterate of 1. It immediately follows that

1 (Q20(1)) < (220, (1))

for n > k. Since ¢ (z) = bx for 0 < z < ¢, we have

1 bz brs bxo 5jbj(j71)/2
e R R R R T R
0 0 0 0

i (4.1.8)

for each positive integer j. Since 1y (5 (0)) < pn (Q20(1)) for each positive integer
n, from the last two displays it follows that

i (12 (25°()))/™ < V.

n—oo

Since 8§ < b < 1 was arbitrary, the first inequality in (4.1.4) follows.

If §; = 0, the second inequality in (4.1.4) is trivial. Thus assume that §; > 0.
We take an arbitrary 0 < b < ¢, . Clearly, there is 0 < ¢ < a and a strictly increasing
continuous self-map v of [0,1] such that ¢(z) < z for 0 < z < 1, ¥(z) = bz for
0<z<6dand ¥(x) < ¢(x) for 0 < x < 1. Since

Mn(Qg{O(‘P)) = Mn(Qg{O(w)) > /in(Q(rsf()(w))
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for each positive integer n, from (4.1.8) we obtain

lim (41, (220 (0) )V = Vb

n—oo

Since 0 < b < ¢, was arbitrary, the second inequality in (4.1.4) also follows.
Finally, since ¢ satisfies (4.1.5) if and only if ¢(z) = 1 —¢~1(1—x) satisfies (4.1.4),

the proof of the statement of the lemma is complete. O

In order to state the main result of this section, we define

Inulnv
_— if 1,1);
<21n(uv)>’ if u>0,v>0and (u,v) # (1,1);

P(u,v) = \/m, ifu=0orv=0;

1, if (u,v) =(1,1),
which is clearly continuous on [0,1]% and takes values in [0, 1].

Theorem 4.1.3. Let ¢ be a continuous strictly increasing self-map of [0,1] with
p(x) <z for0<x<1andp(l)=1 and &;, &, 61, 07 be as in (4.1.3). Then, for

1 < p < oo, we have

. 2 —_ 2
p- < lim [V < T V1™ < pss

where p_ = ¢(8;,0;) and py = ¢(65,67). In particular, if ¢ is differentiable at 0
and at 1, then

i [V = 6(¢/(0),1/¢ (1),

Proof. According to Lemma 4.1.1, it is enough to show that

p— < lim (v (0)™ < T (va ()™ < py. (4.1.9)

n—00 n—oo

If p; = 1, the last inequality in (4.1.9) follows from the second one in (4.1.7). Thus
assume that p; < 1. Hence, we must have 6§ < 1 and §;” < 1. We take §; < by < 1
and 51+ < by < 1. By Lemma 4.1.2, there is ¢ > 0 such that

I (QY20()) < b2 and QY (p)) < b (4.1.10)

for each positive integer n. Clearly,

k=0
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where Ay = Q}/Z’O(go), A, = 9711/2,1«0) and Ay = Q;/_Q]’Co(gp) X Qi/Q’l(QO) for 0 <k < n.

Hence,

©) <Y pn(Ap) = Zun (0200 (@ ().
k=0

Using (4.1.10), we obtain

o) < &3t
k=0

A(n+1) max b(n B)? /Zka/2
0<k<n
2

<AE(n+1) (maxb(() /2 2/2>

)

The last maximum is attained for x = In by/In(bpb; ) and equals to ¢(bg, b1). Therefore,

T (v, ()™ < (b1, b2).

n—oo

Since (53 < by <1 and 5;“ < by < 1 were arbitrary, we see that the last inequality in
(4.1.9) is satisfied.

If p— = 0, the first inequality in (4.1.9) is trivial. Thus assume that p_ > 0.
Hence, we must have , > 0 and d; > 0. We take 0 < by < ¢, and 0 < by < d;. Let
a > 0 be small enough to ensure that a < ¢(1 — a). By Lemma 4.1.2, there is ¢ > 0
such that

un(Q20(0)) = b and  pn(QL Y (g)) > cbl 2 (4.1.11)

for each positive integer n. Choose a sequence {ky }n>1 of positive integers such that

k., < n for each n and ky/n tends to Inb;/In(b1b2) as n tends to oo. Clearly,
Qulp) D A=Q20, (p) x Q" (y).

Hence,
Va(9) = pn(A) = e, (20 (9, (. ()

Using (4.1.11), we obtain

n2/2
Vn(go) > CZbgn*kn)z/2b§:721/2 — CQ (b[()lf(kn/n))zbgkn/n)2) / .

Since ky/n tends to Inby/In(bpb1), we see that

im b/ g by).

n—oo
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From the last two displays, we obtain

lim (v,(9))™ = é(bo, b1).

n—oo

Since 0 < by < J; and 0 < by < d; were arbitrary, we see that the first inequality in
(4.1.9) is also satisfied. The proof is complete. O

Corollary 4.1.4. Let ¢ be a continuous strictly increasing self-map of [0,1] with
plx) <z for0 <z <1 and p(1) = 1. If ¢ is differentiable at 0 and 1 and ¢'(0) =0,

then, for 1 < p < oo, we have

1/n2 o ].
? ¢ (1)

If ¢ is differentiable at 0 and ¢'(1) = oo, then

s n
Jim [V

: n TL2
Tim VY™ = V/0).

Miiller [36] proved that for any bounded operator 7' on Banach space B and for

each sequence {ay }n>0 of positive numbers with

oo
3" alf? < oo
n=0

there is a dense subset E of B such that for each = in E, we have ||T"z| > a,|T"||

for n large enough. From the latter result and Theorem 4.1.3, we have

Corollary 4.1.5. Let ¢ be a continuous strictly increasing self-map of [0,1] with
p(x) <z for 0 <z <1 and ¢(1) = 1. Assume also that ¢ is differentiable at 0 and
at 1. Then the set of f in LP[0,1], 1 < p < oo, for which

Tim [[VEFI™ = 6((0), 1/ (1))

is dense in LP[0,1].

4.2 Orbits of V,. Upper estimate

The next lemma will be very useful to determine the cyclic properties of V,,.

Lemma 4.2.1. Let ¢ be a continuous strictly increasing self-map of [0, 1] with ¢(x) <
x for0<z <1, p(l)=1 and
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Assume also that f in LP[0,1], 1 < p < oo, satisfies inf supp (f) > 0. Then,

T n p1/n? < /8T

In particular, if ¢ is differentiable at 1, we have
N 2
Tim VL™ < V1)

Proof. Let € > 0 be such that f vanishes on [0,e]. Since V,,f is continuous and also
vanishes [0, €], there is ¢ > 0 for which [(V,,f)(z)| < cx[e,1j(z) for each 0 < x < 1,

where x| 1) is the characteristic function of [g, 1]. Hence,

IVEFllp < IVE fllse < ellVEXenlloo = e(VExEe ) (D) = el Vi Xyl (4.2.1)

Let Q5 () be as in (4.1.2). Then (Vaxe) (1) = 1 (51 () for each positive integer

n. Therefore, by Lemma 4.1.2, we have
I 1 2 T 2
Tm V2 xe ™ = Em (un (@5 (o))" < \fat

The required result follows immediately from the last two displays. O

4.3 The backward orbits of V,,

In this section, we consider the asymptotic behavior of certain backward orbits of V.
In the next Chapter, we shall apply these results to determine the cyclic behavior of
composition Volterra operators.

We begin by observing that if S is a linear, not necessarily bounded, operator

acting on a linear space X, then
oo
S2(X) = (1) §™(X)
n=0

is a subspace of X invariant under S. Moreover, it is clear that S(S*°(X)) = S*(X).
Thus the restriction of S to S°°(X) is always onto. In addition, if ker S = {0}, then
the restriction of S to S°°(X) is bijective. In such a case, since S is one-to-one from
S°(X) onto itself, the backward orbits of any x in S° are well defined. This is in
particular our case for ker V, = {0}.

Recall that Cy[0, 1] is the subspace of C[0, 1] of functions vanishing at 0, endowed

with the supremum norm.
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Theorem 4.3.1. Let ¢ be a continuous strictly increasing self-map of [0,1] with
o) < x for 0 < xz < 1 and (1) = 1. Assume also that ¢ is analytic at 0 and
¢©'(0) > 0. Then for each b > 1/¢'(0), the set

F, = {f € Vo (Co[0, 1]) such that Tim ||V, " fIIL" < \/B}
is a dense linear manifold of Co[0,1] satisfying V,(Fy) = V; 1 (Fy) = Fy.

The remainder of this section is devoted to proving the above theorem. As in

Section 3.2, for f € C*[a, b], we set

1 n
Mn(f) = — max £

We also need the space F|a, b] being

{fec®a,b]: f™M(a)=f"™(b)=0 for each n >0 and Iim (M, (f))l/”2 <1}

n—oo
By means of Leibnitz’s formula one can check that if f is in F[a, b] and ¢ in C*|[a, b]
satisfies mnﬂoo(Mn(g))l/”2 < 1, then fg belongs to Fla,b]. In particular, the space
Fla,b] is an algebra with respect to the pointwise multiplication and is invariant under

multiplication by analytic functions.

Lemma 4.3.2. Assume that —0o < a < b < co. Then

h(z) =

1 1
717G7E’ 1 < < b’
{ ‘ ifa<z (4.3.1)

0, if xt=aor =25
belongs to Fla,b].

Proof. Clearly, h is in C*[a, b] with h(™ (a) = h("(b) = 0 for each non-negative integer

n. Thus we need only prove that

Tim (M, (k)" < 1. (4.3.2)

n—oo

“1/% for > 0 and g(0) = 0. By

To this end, we estimate M,(g), where g(z) = e
induction, one easily sees that ¢(™ (z) = p,(1/2)g(x) for z # 0, where
po =1 and p,11(t) = t>p,(t) — t*pl,(t), for each n > 1. (4.3.3)

Clearly, p,(t) = ijno an,jt/, where the coefficients a, ; are real. Therefore,

1
'sup|g ‘Z|an]|supx Je1 'Z|anj\supx3
n: z>0

Mn(g) =
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Since sup,~qz’e™® = (j/e)?, we have

1 2n ] j (2n)2n 2n
Mn(g) < ol ZO ‘an,j‘ <6> < nle2n On, Where op = ZO |an,j|‘
J= J=

Using (4.3.3), we see that 0,41 < (2n + 1)o, and, therefore, o, < (2n)!/(2"n!).
Upon putting everything together and using Stirling’s formula one sees that M, (g) <
(2n/e)?.

Since h(z) = g(x — a)g(b — x), applying Leibnitz’s formula, we see that

0 () = 3D 09 g
h (x)ik:o k!(n—k)!g (b—x)g (x —a), fora<az<b.
Therefore, using that My, (g) < (2k/e)?* in the second inequality below, we have

- n! n 2k 2n—2k 2n
< R — < —
Mpu(h) < ,; T — k)!Mk(g)Mn,k(g) <2 o?;?é(n@k) (2n — 2k) < (2n)*,

from which (4.3.2) follows and the result is proved. O

The following lemma can also be derived from the Denjoy—Carleman Theorem, see
[43, p. 380]. Here, we provide an elementary proof. We denote by Cyo[a, b] the Banach
space of complex continuous functions on [a,b] that vanish at a and b endowed with

the supremum norm.

Lemma 4.3.3. Assume that a < b are real. Then Fla,b] is dense in Copla,b] and
Ftla,b) = {f € Fla,b] such that f(z) >0 for each x € [a,b]}

s dense in
Ciola, b = {f € Coola, b] such that f(z) >0 for each z € [a,b]}.

Proof. Let h be the function in (4.3.1), that is,

h(z) = eiﬁ*ﬁ, if a<x<b;
0, if z=aor xz =0

By Lemma 4.3.2, we know that & is in FJa, b]. Since h is in Cy[a, b] and h(z) > 0 for
a < x < b, we see that

W = {ph such that p is a polynomial}
is dense in Cyo[a, b]. Also,
W+ = {g € W such that g(x) > 0 on [a,b]}

is dense in Cgyla,b]. Now, the result follows because Fla, b] is stable with respect to
multiplication by polynomials and therefore W C Fla,b] and W C F*]a, b). O
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Now, we proceed to define an operator closely related to the ‘inverse’ of V,. For

0<a<l, weset
&, ={f €C>[0,1] such that supp f C [0,a] and f™(0)=0 for n>0}. (4.3.4)

For an analytic function ¢ : [0,a] — [0, 1] such that ¥ (a) > a and ¢(0) = 0 consider
the operator Ty, : £, — &, defined as

fl(¢(x))7 ifze [O7a]§

(4.3.5)
0, if x € (a,1].

(T f)(z) = {

The requirements ¢ (a) > a and (0) = 0 implies that T}, acts from &, into itself. As

usual, for each pair n and I of non-negative integers, we write
(n);=1, if I=0 and (n);=Mm+1)---(n+1), if [ >0.

Lemma 4.3.4. Let v be an analytic function from [0, a] into [0, 1], where 0 < a < 1,
with ¥(0) = 0 and Y (a) > a. Let {cp}n>0 be such that ¢, > 1 with lim,_,« /" =1
and let { fn}n>0 be in &, satisfying

On = supMn(fk)c,;”_l < oo, foreach n>0 and lim ﬁ,l/"2 <1
k>0 n—o00

Then
E— 2
T | Tl < VA

Proof. The proof is split into three steps.
Step 1. Let {En}n}(] be a sequence such that {371/”} is increasing. Assume also that
¢ > 0 and [ is a non-negative integer. Then for f in &, satisfying My (f) < c(n)lﬁn

for each n > 0, we have

. R "
My(Ty f) < e(n)ig1y" Prsa (1 + Al/(nJrl)) ) for each n =0,
Y n+1
where 1n-1)
R = sup <an(¢)> . (4.3.6)
n>2 Y

Proof of Step 1. Since v is analytic on [0,a], by (3.2.1), we see that R is finite.
Clearly,
1T flloo < 11Floc = Mi(f) < e(1iBr = e(0)14151-

Thus the result is true for n = 0. Since

M, () < yR" 1, for n>1, (4.3.7)
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using Lemma 3.2.1, for each 0 < z < a with 0 < ¥(z) < a and for each positive

integer n, we have

(ki thn+1) () (1
Tup) @)= (For)@)=n! T @) )

n=ki+-+nky

From (4.3.5), we have (T f)™(z) = 0 for f in &, and ¥(z) > a and, therefore, we

may write

ki+-+ky+ 1)
s Y BESEEER e a (D@ (ML)
n=ki+--+nkn ’ n
fep e k)]
<(n+1) Z ( 11;;...: ! ) Mpey g1 (F) (M1 ()P (M (30)) 7.
n==ki+...+nkn n

From (4.3.7) and the fact that M (f) < c(k)lﬁk, we have

Z (k14 4+ ko)l 5

Mi(Tf) < el T Phisetb ™ (VR (R

Since {ﬂk } is increasing, it follows that 3 < (5m)k/ ™ for 1 < k < m. Therefore,

11\ Rt
n31/(nt1 kit +ka)! (75,
M (Tyf) < e ()i R GG > ( kil k! ) < Jfr?l ) .
n=ky +tnkn N

Applying Lemma 3.2.2, we have

751/n+1 -1
n— n+1 n
My(Tyf) < e (mia R 1@/&”( S )

n—1
TLA R
= ¢ (Mir17" Pn (1 + 737{/(%1))

n/\ R "
< c(n)i+17" Brs1 (1 + W) .

The proof of Step 1 is complete.
Step 2. Under the hypotheses of the lemma we have

/gn = sup M, (Tdek)C];ni
k>0

1s finite for each n > 0 and

im BV < 1.
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Proof of Step 2. Let 6 > 1 be fixed. Since mn_m@l/# < 1, we may choose C > 0
such that 3, < C 6™ for each n > 0. For each n > 0, we set /ﬂ\n = cZé”Q, where
¢ = Ccg. Then, for each k > 0, we have M,,(fr) < cﬁn. By step 1, we have

_ R "
My (Ty f) < c(n+ 1)y Brsa (1 + ,\1/(n+1)> , foreachn > 0.

n+1

Upon substituting the values of ¢ and B,Hl, we obtain

n+2_ns(n+1)? R "
M (Ty fr) <C (n+1)c™"y"0 (1 - ,yck5n+1>

R n
<C (n+ 1)cp 2yttt (1 3 5n+1> .

Therefore,

~ nc(nt1)2 R \"

- ~ 2
In particular, limn_,ooﬁ,%/ " < 6. Since § > 1 was arbitrary, the proof of Step 2 is

complete.

Step 3. The conclusion of the lemma holds.

Proof of Step 3. Let § > 1 be fixed. Since 1(0) = 0 and ¥ (a) > a, we see that
v = ||¢'|loc = 1. Thus using that ¢; > 1, we may take a positive integer ! such that

1+ <0, or each m > [ and n,5 > 0. 3.8
52 ) (5}? 73 o fi h ! and 4
y(y0) Mot e

Indeed, it is enough to take [ with &' > R/(v/§ —1). As in the proof of Step 2, there
is C' > 0 such that for 0 < k <[, we have

M (T f;) < CHEH16RA (), (70) R B=D/Dgn /4 for each m,j > 0. (4.3.9)

We will prove that (4.3.9) also holds for each k > [ + 1. Suppose that (4.3.9) is true

for an integer k = m > I. For k = m, we can rewrite (4.3.9) as
Mn(quan) < C(n)mb\m

where ¢ = Cc;”+15m/4(’y5)m(m*1)/2 and Bn = c?('yd)mnénzﬂ. Applying Step 1, we

have

m ng R ’
M(Ty 1 ) < e ()17 Bast (1 * Al/(n+1)) ’
n+1
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which is equal to

m+n+1¢(m+1)/4 m(m—1)/2. . n mn+m sn?/4 ¢n/2 R "
ccl ) (n)m41(79) 7" (70) () <1+'ycj(75)m5(”+1)/4> )

Since m > [, we may use (4.3.8) to obtain

M, (T$+1 f) < C«C;n+n+16(m+1)/4 (n)erl (,yé)m(m—l)/Q,yn (,y(;)mn+m5n2/45n
_ CC?+m+l(5(m+1)/4 (n)m—i-l (,y(s)mn+m(mfl)/2+n+m5n2/4

_ C(S(m+1)/4(n)m+1 (,Yé)(m+1)(n+(m/2))5712/47

which is (4.3.9) for k = m + 1. Thus (4.3.9) holds for all non-negative integers k, n
and j. For n =0 and j = k, we find that (4.3.9) implies that

T filloo < Cf L oM 4R (y8)HE—1/2,
Since c,lc/ ¥ tends to 1, we obtain
T |76 £ < /7.
k—o0
Since § > 1 was arbitrary, it follows
i || 75 fillF < VA
k—o0

which is the required result. The proof of Step 3 and that of the statement of the

Lemma is complete. O

Observe that the formula for the adjoint of V,, is
1
ViD= [ s
p-1(z)
that, as an operator, has sense on LP[0, 1] for 1 < p < oo. Indeed, the adjoint of vy
acting on L1[0,1] is V,, acting on L>°[0, 1]. The next lemma, which will be very useful,

describes the behavior of the supports of the iterates {V} f} and {V " f}. The proof,

which is straightforward, is omitted.

Lemma 4.3.5. Let ¢ be a continuous strictly increasing self-map of [0, 1] with p(z) <
x and (1) = 1. Assume also that f is in L'[0,1]. Then we have

(a) infsupp (V,f) = 1 (infsupp (f)).
(b) supsupp (V,,f) € {1, o—1(supsupp (f))}.

(c) infsupp (V7 f) € {0, (inf supp (g))}.
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(d) supsupp (Vg) = ¢ (supsupp (g)).

(e) supsupp (V] f) tends to 1 and inf supp (V;"g) tends to 0 as n tends to cc.

When dealing with supercyclicity of V,, in Section 5.3, we will need special dense

subsets of Cp[0,1]. For each 0 < a < 1, we set
Co = {f € Cp[0,1] such that supsupp (f) < a}.
We have,

Lemma 4.3.6. Let ¢ be a continuous strictly increasing self-map of [0, 1] with p(z) <
x for 0 <x <1 and (1) =1. Assume that 0 < a < 1. Then

Z = span (U Vg(C@)

n=0

is dense in Co[0, 1].

Proof. It is enough to prove that Z is dense in L2[0,1]. Indeed, once this is proved,
the result follows because Vi, acting from L?[0, 1] into Co[0,1] is bounded with dense
range and the image of a dense set under an operator with dense range is itself dense
and Z is invariant under V.

Thus assume that Z is not dense in L?[0,1]. Then there is a non-zero g in L2[0, 1]
such that (V) f,g) = (f,V;"g) = 0 for each f in C, and for each non-negative integer
n. This means that infsupp (V;"g) > a for each non-negative integer n, which is
impossible, since by Lemma 4.3.5, we have inf supp (V;"g) tends to 0 as n tend to oo,

which proves the result. O

For 0 < a < 1, we shall write

Fa={f € & such that lim (M, (f)Y" < 1}, (4.3.10)

n—oo

where &, is the one defined in (4.3.4). That is, f belongs to F, if and only if f belongs
to C*°[0, 1], supp (f) C [0, a] and the restriction of f to [0, a] belongs to F[0, a].

Lemma 4.3.7. Let 1) be analytic from [0, a] into [0,1], where 0 < a < 1, with (0) =0
and (a) = a. Let Ty be the operator on &, defined in (4.3.5) and Cy, be the operator
on &, defined as
f(x)), if x€[0,a];
(Cyf)(z) = .
0, if z € (a,l].

Then F, is invariant under Cy as well as under Ty,.
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Proof. Let v > 1 be fixed. If f is in F,, then there is ¢ > 1 such that M, (f) < 6”7”2

for each positive integer n. Since 9 is analytic, by (3.2.1), we see that the value R

1/(n—-1)
R = sup (Mn(w)>

n>2 v

is finite. Now, from Lemma 3.2.1, it follows that

byt k)
Mn(Cof) < ), ( 11;;...: u : My i (F) (M1 ()7 - (M (9)) 7
n=ki+--+nkn ’ n

Using that M, (¢) < yR™ ' and My(f) < F+**, we obtain

Bt ) -
Mo (Cpf) < ) u P bty btk b (y Ry (y R o

l... |
n=ki+--+nkn kl' kn
<R Y (k1 - 4 k) [ cym L\ Rt
) k- k! R .
n=ki+-+nkn
Upon applying Lemma 3.2.2, we obtain
n+1

n+1
M,(Cyf) < R" (1 +

n—1
< n+1 n
7 7 ) S(R+e"T)

Therefore, it follows that

i (M, (Cy f))V™ < .

n
Since v > 1 was arbitrary, we see that

fim (M, (Cy )™ <1

n—oo

and, therefore, Cy f belongs to F,. Finally, it is clear that F, is also invariant under

the derivative operator Df = f’. Since Ty, = Cy D, the result follows. Ul

The next lemma is needed not only to prove Theorem 4.3.1, but also to show the

non-cyclicity of certain composition Volterra operators in Section 5.3.

Lemma 4.3.8. Let ¢ be a continuous strictly increasing self-map of [0, 1] with p(z) <
z for 0 <z <1 and p(1) = 1. Assume also that ¢ is analytic on [0,p_1(a)], where
0<a<1, with¢'(x) >0 for 0 <z < p-1(a). Then F, is contained in V.3°(Col0, 1])
and

lim HX/;;”fH}XC"2 <7 for each f € Fq,

where v = maxpg ,-1(q)) 1/
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Proof. We set 1» = ¢_ for the inverse of . Clearly, ¢ is analytic on [0,a] and
max[ 4 [¢)'| = 7. It is easy to check that

PO e
(5H@) =4 Py T (43.11)
0, otherwise

acts from &, into &, and that V,Sf = f for each f in &,. Therefore, it follows that
Fo C& C V;O(CO[O7 1])

and the operator S defined in (4.3.11) coincides with the restriction to &, of Vw_l
acting on V.2°(Col0, 1]).

Now consider the operator Ty, acting on &, as defined in (4.3.5). One easily sees
that CySf = TyCy f for each f in &,, where Cy is defined as (Cy f)(x) = f(¥(x)).
Hence CyS"f =T, ng f for each f in &, and each non-negative integer n. Thus

Ve " flloo = 115" flloo = 1C4S™ flloe = [T Cy flloo  for f € & and n > 0. (4.3.12)
Now, if f belongs to F,, then, by Lemma 4.3.7, we have Cy, f belongs to F,. Hence
fim (M, (Cy )™ < 1.
n—od

Applying Lemma 4.3.4 with ¢, = 1 and f, = Cyf for each n > 0, we obtain

hmn_wOHT”Cd,le/n < /7. Therefore, using (4.3.12), we have
Tm VA1 < VA
which is the required conclusion. ]

Now, we have all necessary tools to prove Theorem 4.3.1.

Proof of Theorem 4.3.1. One easily checks that Fj is linear and that V,(F3) and
V,1(Fy) are contained in Fy, which implies that V,(F) = F, = V;'(F}). Thus
we need only prove that Fj is dense in Cp[0, 1].

Set ¢ = p_1 for the inverse of ¢. Since b > 1/¢'(0), we may choose 0 < a < 1
such that ¢ is analytic on [0, p_1(a)] and ¢'(x) > 0 for each 0 < z < ¢_1(a) and

1
T R Tl R <

By Lemma 4.3.8, we have 7, C V,2°(Co[0, 1]) and

hm HV"le/" V7 < Vb, for each f e F,.
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Thus we find that F, C Fj. Since Fj, is invariant under V,,, we have

span (D v;(fa)> C F

n=0

By Lemma 4.3.3, we know that F, is dense in the subspace C, of functions in Cp[0, 1]
that vanish on [a, 1]. Therefore, since V,, is bounded, it follows from the above display
that

o0 —

Span <U Vg(Ca)> C Fy,

n=0
where the closures are taken in Cy[0, 1]. We may conclude from Lemma 4.3.6 that the
left hand side in the above display coincides with Cy[0, 1] and, therefore, F}, is dense
in Cy[0, 1]. The proof is complete. O

4.4 Orbits of V,. Lower estimate

The following theorem provides a lower estimate for orbits of V,, under certain regu-

larity hypotheses on .

Theorem 4.4.1. Let ¢ be a continuous strictly increasing self-map of [0,1] with
p(r) < x for 0 <z <1 and analytic at 1 with p(1) = 1. Then, for each non-zero f
in L'[0,1], we have
tim V2SI > (141)
n—00 (1)
Proof. Recall from Section 2.1 that the adjoint V} that acts on L>°[0, 1] is V. = UVU,
where U is the involutive isometry defined by (Ug)(z) = ¢g(1 — z) and ¢(z) = 1 —
@_1(1 — ). Since ¢ is analytic at 1, then so is ¢ = ¢~ at 0. We take v > 9/(0) > 1.
Next, we take 0 < a < 1 such that ¢ is analytic on [0, a] and
sup ' < .
[0,a]

By Lemma 4.3.5, we have sup supp (V?ﬂf g) tends to 1 as k tends to oo for each non-
zero g in L'[0, 1]. Therefore, for each non-zero g in L0, 1], we have sup supp (Vfg) >
1 — a for all k large enough. Observe also that for any positive integer k and for any
non-zero g in L'[0,1] the inequality in (4.4.1) is satisfied for f = g if and only if it is
satisfied for f = st g. Since the range of V,, is contained in Cy[0, 1], we see that it is
enough to show the inequality in (4.4.1) for each f in Cp[0, 1] with sup supp (f) > 1—a.

Thus assume that f in Cy[0, 1] has supsupp (f) > 1—a. We may take 1 —a < b < 1
and 6 > 0 such that 1 —a < b—3d < b+ < 1 and f(b) # 0. By Lemma 4.3.3,
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FF[1—b—6,1—b+0d]is dense in Cfy[l —b— 6,1 — b+ 4. In particular, there is g1 in
F[1 —b—06,1—0b+ 6] such that g1(x) >0 foreach 1 —b—0<ax<1—b+¢ and

1-b+46
/ g1(z)de = 1.
1

—b—4
We may think of g; as defined on the whole real line, by just making ¢; equal to 0
outside of [1 —b— 6,1 — b+ d]. Now, consider g,(x) = ngi(nz — (1 —b)(n — 1)) for
n > 1. In this way, {gn}n>1 is a positive summability kernel at 0, see [25, pp. 9-10].
Since supp (gn) C [1—b—06/n,1—b+d/n] C [0, a], we may regard {g,} as a sequence
in &,. Now, set f,(z) = gn(¢(z)) and consider

M, 1/(n—1)
R =sup <(¢)> ,
n>2 Y
where
1 (n)
M, () = —sup [¢:™)].
" 10,a]

By Lemma 3.2.1, we find that

k — kn ! cen
( 1/.:;...;:”! )Mk1+~--+kn(91)(M1(¢))k1~~-(Mn(q/;))knkk1+ k.

Mu(fr) <k Y

n=k1+--+nkn

Since M, < YR, setting a,, = max M;(g1), we have
oy<n J

n ki 4+ kp)! kry ki4--+kn
n=ki1+---+nkn L n

. (ki + -+ kn)! [ky T thn
<kR'an ) kil k! \R '
n=ki1+-+nkn

Applying Lemma 3.2.2, we obtain

k n—1
M, (fr) < apk*R™! (1 + Ig) = k2 (R + k)" ! < an(R+ ky)" L.

Since g1 belongs to Fy(,), we have mnﬁooa}/’ﬁ < 1 and, therefore, all the hypotheses

of Lemma 4.3.4 with ¢ = R + k+y are fulfilled. Thus

J— 2
Tim T3l < VA (4.4.2)
where Ty, is as in (4.3.5). Since

Vol f = CeTyCyl f = CyTyCy f, for each f € &,
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we find that ¢, = V$C¢T wCpgn = V(;’C¢T » fn. Using that U is involutive and
Vs; = UV,U, we see that Ug,, = V;”UCd,Tgfn. Therefore,
(Vo L UCST fa)l K VEPUCSTR fadl |(f, Ugn)l

V2l = - > _ — '
v [UCST frlloo [UCST frlloo 173 falloo

Since {g,} is a positive summability kernel at 1 — b, then so is {Ug,} at b. Therefore,
|{f,Ugn)| converges to |f(b)| # 0. Thus,

Va3 fll = M(l +0(1)), as n — co.

1T frlloo

The above display along with (4.4.2) implies that

: n n2 1
lim V2 £

> —.
p /\ﬁ

Since v > 9/(0) = ¢/(1) was arbitrary, the result follows. O
From Theorem 4.4.1 and Corollary 4.1.4, we immediately have

Corollary 4.4.2. Let ¢ be a continuous strictly increasing self-map of [0,1] with
o(l) =1 and ¢(x) < x for 0 < z < 1. Assume also that ¢ is analytic at 1 and
differentiable at 0 with ¢’'(0) = 0. Then for each non-zero f in LP[0,1], 1 < p < oo,

we have
1

o'(1)

. Tl2
Tim [V £l =






Chapter 5

Cyclicity of composition Volterra

operators

In this Chapter we begin to study cyclicity of composition Volterra operators. In the
first section of the chapter, Section 5.1, we prove that the constant function 1 is cyclic
for V,, if and only if the eigenfunctions of the adjoint VJ' span L?[0,1]. Tt follows that
there are symbols ¢ with ¢(z) < 2 for 0 < « < 1 for which V,, has the constant
function 1 as a cyclic vector. This, in relation with Theorem 2.1.13, shows that the

classical Volterra operator is not a limit case with respect to cyclicity.

In Section 5.2, in order to obtain, in the following section, positive results on
supercyclicity of V,, as well as on hypercyclicity of I + V,,, we need to extend Salas’s
Theorem on hypercyclicity of perturbations of the identity by backward weighted
shifts, which has been crucial to solve some old open problems in hypercyclicity,
see [48]. We prove a new criterion for an operator acting on a Fréchet space to be
hypercyclic and another criterion that guarantees that in a given class of operators
the set of hypercyclic ones is residual. The latter will be applied to several classes of

operators.

In Section 5.3, we deal with supercyclicity and hypercyclicity of composition
Volterra operators. Salas in [49] asked wether the classical Volterra operator is su-
percyclic or not, which was answered in the negative in [9]. Indeed, the Volterra
operator is not even weakly supercyclic [35]. Thus the fact that there are symbols
below the main diagonal that supply supercyclic composition Volterra operators is
striking. Indeed, using the results of the previous two sections, we show that for every
strictly increasing continuous ¢ with ¢(z) < z for 0 < = < 1 (note that ¢(1) < 1),
the operator V,, is supercyclic and the operator I + V,, is hypercyclic. Essentially, the

83



84 CHAPTER 5. CYCLICITY

only known examples of supercyclic quasi-nilpotent operators were quasi-nilpotent
weighted shifts, for unilateral ones due to Hilden and Wallen [21] and for bilateral
ones due to Salas, see [49]. It is also shown that there exists a continuous strictly
increasing ¢ with ¢(z) < x for 0 < 2 < 1 such that both V,, and V' are supercyclic
and both I + V,, and I + VI are hypercyclic. The class of operators for which 7" and
T™ are hypercyclic is very narrow; until now the only known examples, due to Salas
[46] and [48], were bilateral weighted shifts, which are not quasinilpotent compact
perturbations of the identity. Very recently, Salas [47] has also provided examples of
quasinilpotent compact perturbations of the identity which are hypercyclic. In addi-
tion, it is also proved that even for certain symbols with ¢(1) = 1, supercyclicity is
possible. Namely, for continuous strictly increasing ¢ with p(z) < x for 0 < x < 1,
©(1) = 1 and analytic at 0 and at 1, it is shown that if ¢'(0)¢’(1) > 1, then V,, is
supercyclic and if ¢/(0)¢’(1) < 1, then V,, is not even cyclic. The proofs essentially
depend on the results in Chapter 4, that allow us to control the behavior of the orbits
of Vi,.

5.1 The span of the eigenfunctions of V,,

The next theorem establishes when the eigenvectors of Vi, span L?[0, 1] in the case that
F¥ has order less than 1/2. It turns out that the density of the span of generalized
eigenfunctions of V,, is equivalent to the cyclicity of the constant function 1 for V,
where ¥(x) =1 — (1 —z) for 0 <z < 1.
Let HY /2 (C) denote the space of entire functions of order strictly less than 1/2 or

of order 1/2 and type 0. In other words F' belongs to H?/Q (C) if and only if

lim In M(F,R)

% VR

Theorem 5.1.1. Let ¢ be a continuous self-map of [0, 1] with p(z) > x for0 < x <1

=0.

and set Y(x) =1 — (1 —x). If the span of the generalized eigenvectors of V,, is dense
in L%[0,1], then the constant function 1 is cyclic for V. The converse is also true,
provided that F§ belongs to H?/Q(C).

Proof. Recall from Proposition 3.1.2 that the map z — F is continuous from [0, 1]

into the space of entire functions. Hence, for each non-null k in L?[0,1], we find that

1
G"(z) = (F?(¢(),2),h) = / F?(p(x), z)h(z) dz, ze€C
0
is an entire function. By Proposition 3.1.2, the Taylor coefficients of G are given by

Gh = (~1)""N UV h) = (1) NV, Uh), (5.1.1)
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where (Uf)(z) = f(1 — z).

Proceeding by contradiction, suppose now that the constant function 1 is not cyclic

for Viy. Then there is a non-zero h in L?[0, 1] such that (Vy1,Uh) =0 for each n > 0
and, therefore, G" = 0. Thus, since from (3.1.2) we know that

OF%

W(UC?Z) = 2F%(p(z),2),

it follows that 1y
¥a%
—_— h(z)dz = 0.
| % G
Upon differentiating in the above display with respect to z, we obtain

Loktlpe
0 W(x’z)h(x)dl‘ =0, for each k > 0.

Since, by Theorem 3.1.7, the generalized eigenfunctions of V,, belong to

8k+1f‘9
span {W(x,z) k= 0,1,...}7

it follows that h is orthogonal to each generalized eigenfunction of V, and, therefore,
the span of the generalized eigenfunctions is not dense in L?[0, 1], a contradiction.
Suppose now that FJ belongs to H(I) /Q(C) and the constant function 1 is cyclic for
Vy. If the span of the generalized eigenfunctions of Vi, is not dense in L?[0, 1], then
there is a non-null function A in L2[0,1] such that h is orthogonal to each generalized
eigenfunction of V,,. In particular, by Theorem 3.1.7, we have that each zero of F§ is
also a zero of G" of, at least, the same multiplicity. Hence, H(z) = G"(2)/F{(z) is

an entire function. On the other hand, Corollary 3.1.4 implies
1 1
MG R) < [ M(FL,) Bib@)|de < [ M@ R)he)| do = MFS B)h]).
0 0

Therefore, G" is in H(l)/z((C), and so is H. Again, by Corollary 3.1.4 for each R > 0,

we have

G"(=R)| < M(G", R) < M(F§, R)|hll = 7§ (= R)| Al

Hence, |H(z)| < ||h|1 for each z real and negative. Since H is in Hg/z(C), Theorem
1.4.6, which is a consequence of the Phragmén-Lindelf Theorem, see [29, Theorem 22,
p. 50], implies that H is bounded on C, and thus it must be constant. Hence G" = 0.7-"80 ,
where c is a constant.

Now, for 0 < = < 1 set ¢(x) = inf{t € [0,1] : ¢(t) = p(z)}. Since p(x) = ¢(z) >0
for 0 < x < 1, we may apply Lemma 3.1.9, for « = 0 and § = ¢(x) for each 0 < x < 1,

to obtain

F?0,-R) = (1 + ¢(z)R)F?(o(x), —R), foreach R>0 and 0 <ax < 1.
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The last display along with cféo = G" implies, for each R > 0, that

1
e|F#(0,~R) < /0 Fo (), — R)|h(x)| d

L Fe(0,-R)
o 1+ é(2)R

1 " 1/2
< F2(0,~R)|[H]l: ( /0 <1+§<x> R)Z) .

|h(x)] d

Therefore,

|c] /1 dx
< —_ for each R > 0.
IalZ: = Jo (L4 ¢(z)R)?

Since the integral above tends to 0 as R tends to co, we see that ¢ = 0. Thus G
is identically zero and so are its Taylor coefficients. Consequently, from (5.1.1), we
find that (V;'1,Uh) = 0 for each n > 0. Since Uh is different from zero, the constant

function 1 cannot be cyclic for V;;,, which is a contradiction. The proof is complete. [J

As an immediate consequence of Theorem 5.1.1 and Corollary 3.1.22, we have

Corollary 5.1.2. Let ¢ be a continuous self-map of [0, 1] with p(z) > x for0 <z <1

and assume that

() —x) e In(e(e) — o)

2.
z—0 Inx rz—1 ln(l — .’E) <

Then the constant function 1 is cyclic for Vi, where ¢¥(x) =1 — (1 — ), if and only

if the span of the generalized eigenfunctions of V,, is dense in L?[0,1].

1/2

In particular, the above corollary applies to ¢(z) = 1 — (1 — x)"/*, as mentioned

in subsection 2.1.5. Using Theorem 3.1.23, we also have

Corollary 5.1.3. Let ¢ be a continuous self-map of [0, 1] with ¢(x) > x for0 < z < 1.
Assume also that ¢ is differentiable at 0 and at 1 with 1 < ¢'(0) < oo and ¢'(1) < 1.
Then the constant function 1 is cyclic for Vi, where i(x) =1 — ¢(1 — ), if and only
if the span of the eigenfunctions of Vi, is dense in L?[0,1].

5.2 Dense generalized kernels

In the next section, we will prove that if ¢ is continuous, strictly increasing and
satisfies ¢(x) < x for 0 < = < 1, then V,, is supercyclic and I + V,, is hypercyclic when
V., acts on LP[0,1], 1 < p < oo, or on Cp[0,1]. To do this, we will adopt a general
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point of view. We will show that if T" is a continuous operator on a separable complete

metrizable topological vector space X such that the linear manifold defined by

oo
Ker(T) = span (U (T™(X) N ker T”))
n=1

is dense in X, then the operator I + T is hypercyclic. We will also show that T is
supercyclic. Actually, a little better results are obtained: the operator I+17 is strongly
hereditarily hypercyclic and T is strongly hereditarily supercyclic. This general point
of view causes a minimal extra effort and avoids the repetition of some arguments.
The methods we use allow us to conclude, under certain hypotheses, that an operator
acting on a Fréchet space is hypercyclic and that the set of hypercyclic operators, in
a given class of operators, is residual. The latter will be applied to several classes of
operators.

Although all vector spaces in this section are supposed to be over C, all the proofs
equally work for real vector spaces. Recall that an F-space is a complete metrizable

topological vector space. The space of continuous operators on a topological vector
space X will be denoted by £(X).

Recall that a continuous operator 71" acting on a topological vector space X is said
to be hypercyclic if there is z in X such that the orbit of x under T, that is, {T"x},>0
is dense in X and it is said to be supercyclic if there is x in X such that the projective

orbit
{A\T"™ such that A\ € C, n=0,1,...}

is dense in X. We say that T is hereditarily hypercyclic if there is a subsequence {ny},
such that for each subsequence {ng,} of {ny}, there is z such that {T"*z} is dense
in X. If the sequence {n;} is the sequence of all positive integers, we say that T is
strongly hereditarily hypercyclic. Similarly, one can define hereditarily and strongly
hereditarily supercyclic. We remark here that in [1] strongly hereditarily hypercyclic
are simply called hereditarily hypercyclic. Here, we use the terminology as in [11, 13]

A bounded operator T acting on a locally convex topological vector space is called
weakly hypercyclic or weakly supercyclic if it is hypercyclic or supercyclic with respect
to the weak topology. Observe that by Mazur’s Theorem the norm closure and the
weak closure of convex sets coincide, weakly supercyclic operators are cyclic. One of
the advantages with respect to cyclic operators is that each positive power of a weakly
supercyclic operator on a Banach space is again weakly supercyclic and thus cyclic,

which is not always the case of just cyclic operators. Hypercyclic and supercyclic
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operators have been intensely studied during the last few decades, see surveys [14, 34]
and references therein.

Let /P, 1 < p < oo, denote the Banach space of complex sequences that have
p-summable modulus. Let {e,}n>0 be the canonical basis of £, 1 < p < co. Given
a bounded sequence {wy}n>1 of non-zero complex numbers the backward weighted
shift with weight sequence {w,,} is defined by Tey = 0 and Te,, = wpe,—1 forn >1 .

The next theorem, due to Salas [48], is very likely the most interesting result on

hypercyclicity of a fixed operator.

Theorem 5.2.1. Salas’ Theorem. Let T be a backward weighted shift on €. Then
the operator I + T is hypercyclic.

The next Theorem extends Salas’ Theorem in several directions.

Theorem 5.2.2. Let T be a continuous operator on a separable F-space X such that

ker! T' = span (U (T™(X) N ker T”))
n=1

is dense in X. Then I 4+ T is (strongly hereditarily) hypercyclic.

Remark. Recall that a continuous map 1" on a topological vector space X is called
mizing if for each pair of non-empty open sets U,V C X, we have T"(U) NV # () for
all n large enough. In [13], it is proved, in the context of Banach spaces, that T is
mixing if and only if T is strongly hereditarily hypercyclic. Indeed, the same proof
works as well for F-spaces. Thus the conclusion of Theorem 5.2.2 is equivalent to the
operator 1" to be mixing.

Recall that the generalized kernel of an operator T is the space

oo
ker* T = U ker T".
n=1
Spectral properties of operators with dense generalized kernel can be found in [4]. It
is worth mentioning that the space ker! T" is contained in T'(X) as well as in ker* T.
Thus, any operator with dense ker! T has dense range and dense generalized kernel.
Obviously, if T is a (unilateral) backward weighted shift on ¢, then ker* T' = ker! T'
is the space of sequences with finite support, which is dense in ¢, 1 < p < co. Hence
Theorem 5.2.2 implies Salas’ Theorem. It is also worth noting that if T'(ker T"*1) is
dense in ker T for each positive integer n, then ker! T' is dense in ker* T. Thus, we

have,
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Corollary 5.2.3. Let T be a continuous operator on a separable F-space X such that
ker* T is dense in X and T(ker T"*1) is dense in ker T™ for each positive integer n.

Then I + T is (strongly hereditarily) hypercyclic.

The advantage of corollary above is that it is much easier to check that T'(ker 7™ *1)
is dense in ker 7.

A generalized backward shift is a continuous operator T on a topological vector
space X such that kerT is one-dimensional and ker* T is dense in X. A dimension
argument shows immediately that if 7' is a generalized backward shift then kerT™
is n-dimensional and T'(ker T"*1) = ker T™ for each positive integer n. Indeed, since
dim(ker T') = 1, for each n-dimensional vector space U we have that n > dim(7T'(U)) >
n — 1. In particular, since ker* T" is dense in X, dim(7T'(ker7™)) = n — 1. The latter
fact along with dim(ker T') = 1 implies that dim(ker 7") = n for each positive integer

n. From Corollary 5.2.3, we clearly have,

Corollary 5.2.4. Let X be a separable F-space and T in L(X) be a generalized
backward shift. Then I + T is (strongly hereditarily) hypercyclic.

Remark. The fact that I + T is hypercyclic for a generalized backward shift T" on
a separable F-space also follows from Salas’s Theorem by means of a quasisimilarity
argument, as already observed by several authors, see, for instance, [13].

Before proving Theorem 5.2.2, we need some preparation.

5.2.1 A density criterion.

René-Louis Baire (1874-1932) developed what now a dais is known as Category The-
ory. This Theory consists on an attempt to classify sets by its topological size, and
it is widely used to prove existence. Baire defined three categories of sets in a topo-
logical space: a set is called nowhere dense if its closure has empty interior, if a set
is a countable union of nowhere dense sets, it is said to be a first category and its
complement is called residual. All the sets that are not of the first category sets are
called second category sets. Recall now that a topological space X is called a Baire
space if for each first category set A C X its complement X \ A is dense in X. The
classical Baire theorem, provides a very wide class of Baire spaces that includes the

most natural and common ones. In particular, complete metric spaces are Baire.

Baire’s Theorem 5.2.5. Both complete metric spaces and locally compact spaces are

Baire spaces.
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We need the following proposition, in which appears the concept of second count-
able space. In topology, a second countable space is a topological space with a countable

basis.

Proposition 5.2.6. Let X and Y be Baire topological spaces, where Y is second
countable. Let {Ty,}n>0 be a sequence of continuous maps from X to Y. Let ¥ be the
set of (z,y) € X XY for which there exists a sequence {xy}n>0 in X such that x,, — x
and Typxn, — y. If ¥ is dense in X x Y, then for any subsequence {nj}i>o, there is x

such that {T,,, x}r>0 is dense in X.

Proof. Since ¥ is dense in X x Y, it is enough to apply Theorem 1 in [14, p. 348]. O

5.2.2 Invertible Matrices

To prove Theorem 5.2.2, we need to show that certain matrices are invertible. For

each pair of positive integers n and k, consider the n-square matrix

My — ( (k+n-—10)! )
(ktn—1+7—=D 1 ciicn

Lemma 5.2.7. For each pair n and k of positive integers, we have

(n — D)kI(k + 1)!
(k+n— 1)k +n)!

det Mn,k = det M,,_1 K2 (5.2.1)

Proof. Tt is clear that (5.2.1) holds for n = 2. Thus suppose that n > 3. Subtracting

to each column of M, j, except the first, the previous one, we see that

1 0 ... O

(k+n—1)!
(k+n)!

det M,, j, = det
Nn,k

(k+r‘L71)!
(k+2n—2)!

N _<.(k+n—l—1)!>
N o I A

Thus det M,, ,, = det Ny, ;.. Now, dividing each j-th row of IV, ; by j and multiplying
each [-th column by (k+n—1+4+1)!/(k+n —1—1)!, we obtain M,_; j12. Hence

where

detMnk = det M,,_ 1,k42 H
Jj=1

1=

jk+n—1-1)! (n — 1)k (k +1)!
Gktn—1+0)  (ktn—Dk+n)

det My, 1 g2

-

The result is proved. O
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Consider now the n-square matrix

1
4, = <> .
" (j+Fk—=1)! 1<,k<n
Lemma 5.2.8. For each positive integer, A, is invertible. Furthermore, det A1 =1,
det Ap = —1/12 and

(_1)(,1,1)”/2 2n—4 ! 2n—3 -
detAn:W H VA H 7] y fO?" 7’L>3
7=1 j=n

The key lemma in the proof of Salas’s Theorem is Lemma 3.1 in [48] that asserts
that A, is invertible for n = 2¥ with k a positive integer. The latter is also used in [28]
to prove that the operators in Salas’s Theorem do satisfy Kitai’s Criterion. Actually,

A, is invertible for each positive integer n. Indeed, det A,, can be computed explicitly.

Proof. Let B, be the matrix obtained from A, by reversing the order of the columns
of A,. Clearly, det A,, = (—1)(»~Y"/2det B,,. Multiplying the j-th column of B,, by
(n—j+1)! for 1 <j < n, we obtain M, ;. Hence,

det A, = (1) 2det My [T (D)

j=1

for each positive integer n. Now, the result follows by applying n — 1 times (5.2.1)
and then simplifying. O

Finally, for each pair of positive integers m and n with m > 2n, we consider the

m
B = . )
- <<k+3—1>>1<g‘,k<n

m m!
(o) = 5 —r

Lemma 5.2.9. For each pair of positive integers m and n with m > 2n, we have that

n-square matrix

where

By, is invertible. Furthermore,

n
det By, , = det 4, H (m + j)”"j'.
j=-n
Proof. By multiplying the j-th column of B,,, by (m —j)!/m! for 1 < j < n, we
obtain P, ,, whose entries are p; ;, = 1/k!, 1 <k < n, and
(m —k)!
k+j—D!(m—k—7+1)

Pk = ( for j > 2.
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Now consider @ » obtained from P, , by replacing the j-th row Py by

j=1 ,.
j—1
> ( I ) Pl+)-
1=0
Clearly, det P, , = det Q. . In addition, one can check that the entries of @y, are
Q1 =1/k!,1<k<n,and

(m+j—1)!
Tk =

SR U VLB S )
mik+j -0 o7

Multiplying the j-th row of Q. by m!/(m + j — 1)! for 2 < j < n, we arrive to A,,.
Upon putting everything together, we obtain

o om! e (m+j—1)!
det Brn = | T[ "5 ) (T] 2D ) et 4,
’ — |
i (m —j)! i m!
Simplifying, the required formula for det B,, ,, follows. O

5.2.3 Proof of Theorem 5.2.2

Now, we begin to prove Theorem 5.2.2. For z in C", n > 1, we denote by z; its j-th

coordinate.

Lemma 5.2.10. Let S in L(C**), n > 1, be defined on the canonical basis {e; : 1 <
i < 2n} by Se; = e€;—1, 2 <i < 2n and Se; = 0. Then for each m > 2n and each u

and v in C", there exists a unique x = x(m) in C*" such that
(a) z;(m) = uj, for1<j<n;
(b) ((I+ S)mx(m))j =wv;, for1<j<n.
Furthermore,
|Znsj(m)| = O(m™) asm — oo for 1 <j < ny (5.2.2)
(I 4 8)™2(m))ntj| = O(m™) asm — oo for 1 < j < n. (5.2.3)
Proof. For y in C*" and z in C", set
7= Ynsts - Y2m) €C" and Z=(z1,...,2,,0,...,0) € C"

and let w(m) in C" be defined by

wj(m) = Un—j+1 — ((I + S)mﬂ)n_jH for ] = 1, ooy n.
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One sees that there is a unique x(m) satisfying (a) and (b) if and only if the equation
By nT = w(m), (5.2.4)

where B, is the matrix defined in the previous subsection, has a unique solution.
Thus the first statement of the lemma follows from Lemma 5.2.9.

It remains to show that (5.2.2) and (5.2.3) also hold. To this end, first observe
that

j—1
m .
wi(m) = vp_jy1 — Z ( l ) Up—jr141 for 1< j<n.
1=0
Thus
wit = o(m’=1), asm — oo for 1 < j < n. (5.2.5)

Now consider the n-diagonal matrix D, , with entries mjfl, 1 <j<n-—1,in the

main diagonal. A computation shows that
ABnLn::7n[LmnCLmnI%mna

where Cpn . = {75k }1<j k<n has entries

j+k—2
1 J

7,1 =1 and ;1 = Grk—1)! H (1 — 752) for (5,k) # (1,1).

=1

Since By, as well as D, ,, are invertible, so is Cy, , and (5.2.4) implies that

" =B L wim)=mtD;1 C-1 D~ w(m).

m,n m,n~mmn~"mmn

From (5.2.5), the sequence {D;.! w(m)}m>on is bounded in C". On the other hand,
the sequence of invertible matrices {C, 1, }m>2n converges to the matrix A,, defined in
the previous subsection, which is invertible by Lemma 5.2.8. Hence, C’T;}n converges
to A,! as m tends to oo and therefore, the sequence {C,}, DL w™} >0, is bounded

in C™. Hence,

Tnyj(m) =7;(m) =m Y(D,L,Col DL w™);

m,n~mmn"~"mmn
satisfy (5.2.2) for 1 < j < n. Finally, since
n—

m m .
(L +8)" 2 = Y, (7] ) Satsalm) for 1< <n,
l

<.

Il
=)

the estimates in (5.2.3) follow from (5.2.2) and the result is proved. O

Lemma 5.2.10 allows us to prove the following
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Lemma 5.2.11. Let T be a continuous operator on a topological vector space X.
Assume that x belongs to T™(X) Nker T, where m is a positive integer. Then there

exist sequences {ug tr>0 and {vg}r>o in X such that
up — 0, (I+T)up —z, vy — x and (I +T) v, — 0 asn —oo. (5.2.6)

Proof. If x = 0, it is enough to take ux = vy = 0. Thus, assume that x # 0. We will
show that the proof reduces to the operator S = T defined in Lemma 5.2.10. Let n be
the smallest positive integer for which 7"x = 0. In particular, n < m, which implies

that = belongs to T™(X). Thus we may choose w in X such that T"w = z. We set
hj = T2y for 1<j<2n and Y =span{hi,..., hop}.

In particular, we have Th; = h;_1, 2 < j < 2n, and Thy = T?"hy, = T™z = 0. Thus
clearly, Y is invariant under 7. Since hy = T?" lhy, = T" 'z = 0, it follows that
dimY > 2n and, therefore, {h1,...,ha,} is a basis of Y. Let J be the operator from
C?" onto Y defined by Je, = hy, 1 < k < 2n. Clearly, T acting on Y is similar
under J to S acting on C?”, where S is the operator defined on Lemma 5.2.10. Now,
J™lz = e,. Thus taking, v = (0,...,0,1) in C"* and v = (0,...,0), we find that
there is a sequence {gx }x>o in C?" such that gx — e, and (I + S)Yegr — 0 as k — oo.
Applying Lemma 5.2.10 with v = (0,...,0,0) and v = (0,...,0,1), we find that there
is a sequence {fx}r>o in C?" such that fi — 0 and (I + S)r fr. — em as k — oo. The
result follows because any topological vector spaces of the same finite dimension are

homeomorphic under any algebraic isomorphism. O

Lemma 5.2.12. Let T be a continuous operator on a topological vector space X.
Assume that © and y belong to ker! T. Then there exists a sequence {x} in X such

that x, — x and (I +T)zxy — y as k — oo.

Proof. Let ¥ be the set of (z,y) in X x X for which there is a sequence {x,} in X
such that z,, tends to x and (I 4+ T)"x,, tends to y. By Lemma 5.2.11, we have

ker T"NT"(X) x {0} c ¥ and {0} xkerT"NT"(X)C X for each n > 1.

On the other hand, it is clear that ¥ is a subspace of X x X. From the above display,
one immediately obtains that ker! T'x ker’ T C ¥, which is what had to be shown. [

Now we are ready to prove Theorem 5.2.2.
Proof of Theorem 5.2.2. Let ¥ be the set of (z,y) € X x X for which there is {z,}
in X such that z, — x and (I + T)"z,, — y. By Lemma 5.2.12, it follows that ¥
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contains ker! T' x ker! T'. Since ker! T is dense in X, we obtain that ¥ is dense in
X x X. According to Theorem 5.2.6, for each subsequence {ny} there is  in X such
that {(I 4+ 7)™z} is dense in X, that is, I + T is strongly hereditarily hypercyclic.
The proof of Theorem 5.2.2 is complete. O

5.2.4 Supercyclicity

For the sake of completeness, we shall prove a proposition that extends another result
by Salas [49].

Proposition 5.2.13. Let X be a separable F-space and T in L(X). Assume also
that T has dense range and dense generalized kernel. Then T is (strongly hereditarily)

supercyclic.

The advantage of Proposition 5.2.13 over Corollary 2.8 in [49] is that we avoid the
existence of the local inverse.

The next criterion for an operator to be strongly hereditarily supercyclic, is anal-
ogous to one of the forms of the Supercyclicity Criterion, see [34]. Its proof is a

straightforward modification of the proof of Theorem 2.2 in [10] and it is omitted.

Theorem 5.2.14. Let T be a continuous operator on a F-space X and {\,}r>o0 be
a sequence of non-zero complexr numbers. Assume also that there exist dense subsets
E and F of X and mappings Sy, : F — X such that T*Sy — y and )\lzlSky — 0
for each y € F and \yT*z — 0 for each x € E as k — oco. Then T is hereditarily

supercyclic.

Theorem 5.2.14 is all what we need to prove Proposition 5.2.13.

Proof of Proposition 5.2.13. Let d be a metric that induces the topology of X. Let F
be a dense countable subset of X. Since 7" has dense range, we find that 7%(X) is dense
in X for each k& > 0. Hence, we may choose Sy : F' — X such that d(y, T*Sry) < 27
for each y in F and each k > 0. Clearly, T%Syy — v for each y in F. Since F is
countable and X is metrizable, there is a sequence {\, }>0 of positive numbers such
that A\-1S,y — 0 as n — oo for each y in F. Finally, E = ker* T is dense in X and
for each y in F we have T™y = 0 for all n large enough and, therefore, A,7"y — 0 as
n — 00. Thus all the hypotheses of Theorem 5.2.14 are fulfilled and we conclude that
T is (strongly hereditarily) supercyclic. O
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5.2.5 Residual sets of hypercyclic operators

The next proposition allows us to show that the set of hypercyclic operators in certain

subsets of £(X) is residual in the Baire Category sense.

Proposition 5.2.15. Let X be a separable metrizable topological vector space and M
a subset of L(X) endowed with a topology satisfying

(i) M x X is Baire.

(ii) For each m > 0, the map ®, : M x X — X defined by ®,(T,z) = T"x is

continuous.
(i) The set {(T,z,T"x) such that T € M,z € X,n > 0} is dense in M x X x X.
Then the set of hypercyclic operators T in M is a dense Gs-set in the Baire space M.

Proof. Let 'H be the set of hypercyclic operators 7" in M. Let {U,},>0 be a basis of
open sets of the topology of X. We set

Apzm ={T € M such that T"z € U,,}.

Using that the set of hypercyclic vectors of each hypercyclic operator is dense, one

can check that

H = ﬁ Wim, where Wy, = U GAn,x,m

k,m=0 2€U, n=0
From (i), we see that each A, ; , is open in M and, therefore, so is each W}, ,,,. Hence,
‘H is a G-set in M. It remains to verify that H is dense in M.

From (i) through (iii), it follows that (T, z, ®,(T,x)) is dense in M x X x X. By
Theorem 1 in [14], there is a G5 dense @ C M x X for which {®,,(T, ) },>0 is dense in
X. Since the latter density means that T' is hypercyclic, we have that the projection
from M x X onto M takes ) onto H, it follows that H is dense in M. O

Remark. Since in the previous proposition X is second countable, we find that (i) is

equivalent to the fact that both M and X are Baire, see [38].

In order to see the previous proposition in action, we present the following theorem,
which provides an alternative proof, involving biorthogonal sequences, of the existence
of hypercyclic bounded operators on any separable infinite dimensional Banach space.
A biorthogonal sequence in a pair (X, X*), where X is a Banach space and X* is its
dual space, is a couple of sequences {fx} in X and {gx} in X*, with (f;, gx) = ;i
For a detailed study of biorthogonal sequences see [45, Chap. 4].
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Theorem 5.2.16. Let B be a separable infinite dimensional Banach space. Let N be
the operator norm closure of the finite rank nilpotent operators on B. Then the set of

hypercyclic operators T in I + N is a dense Gg-set in I + N

Proof. Set M =1+ N. Let ¢ > 0 and (Tp, u,v) in M x B x B. Since Ty is in M,
there is a finite rank nilpotent operator S on B such that ||I +S —Tp|| < /2. Since S
has finite rank, there are subspaces By and By of B, with dim By < co and u,v € By,
such that B = By & Bj, the operator S vanishes on B; and By is invariant under S.
Let n be a positive integer with S™u = S™v = 0. Since B; is infinite dimensional and
B = By @ By, there is a biorthogonal set {(x1, f1),. .., (z2n, fon)} in B x B* such that
xj belongs to By and f; vanishes on By. Now, for each ¢ > 0 consider the operator S;

acting on B defined by

Six =Sz +tfi(x)u+tfo(z)v+ Y t(fj(@)zj—1 + foti(@)Tnrj—1)-

Jj=2

Clearly, each S; is of finite rank and nilpotent, and ||S — S¢|| tends to 0 as t tends
to 0. We take tg > 0 with ||S — Sy, || < €/2. Since S; on By coincides with S and

Siay = t"u and Sy xa, = t"v for each t > 0, we have
u,v € Sy BNkerS; C ker' Sy, .

By Lemma 5.2.12, there is x in B and a positive integer m such that ||u —z| < ¢ and
lv—(L+ Si)™z|| < e. Since |1+ Sy, —To|| < €, each neighborhood of (Tp, u, v) meets
the set

{(T,z,T™z) such that T e M, x € B, m=1,2,...},

which means that (iii) in Proposition 5.2.15 holds. Since conditions (i) and (ii) in
Proposition 5.2.15 are trivially satisfied, we find that the set of hypercyclic operators
in M is a dense Gs-set in M. O

As shown by Salas [46] with bilateral weighted shifts, there is a hypercyclic operator
on a separable Hilbert space, whose adjoint is also hypercyclic. From Theorem 5.2.16,
it follows that many operators of the form I 47T, where T is a compact quasi-nilpotent
operator on a separable Hilbert space, have the required behavior. The existence
of such hypercyclic ‘small’ perturbations of the identity with hypercyclic adjoint has
been also shown by Salas in [47]. In particular a hypercyclic operator with hypercyclic
adjoint can have one-point spectrum, as it is also the case of the example provided by

Salas [47, Remark 3.2].
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Corollary 5.2.17. Let Q be the set of compact quasi-nilpotent operators on a separable
infinite dimensional Hilbert space. Then the set of T in I 4+ Q such that T and T* are
hypercyclic is a dense Gg-set in I + Q.

Proof. Since any compact quasi-nilpotent operator in Q is the limit in the operator
norm of finite rank nilpotent operators [19], we see that Q coincides with the closure
N of the finite rank nilpotent operators, which implies that the set H of hypercyclic T'
in I + N is a dense Gg-set in I + Q. Since the map that to each operator T assigns its
adjoint T™ is an isometric isomorphism from I + Q into itself, we see that the set H*
of T in I + @ for which T™* is hypercyclic, is also a dense Gg-set in I + Q. Therefore,
H N H* is also a dense Gs-set and the result follows. O

Finally, as far as we know there are no known examples of compact bilateral
weighted shifts 7" such that I + T is hypercyclic on £2(Z). The problem here is that it
is quite difficult to control the orbits. The next proposition shows that there are many
compact bilateral weighted shifts 7" on ¢2(Z) such that 47T and I+7* are hypercyclic.
Recall that a bilateral weighted shift T,, where w = {wy, }»ez is a bounded sequence
in C, acts on the canonical basis {e, }nez as Te, = wpe,—1 for each n in Z. Observe
that

1Tl = e

Proposition 5.2.18. The set of w in co(Z) for which I+T,, and I+T}; are hypercyclic
on (*(Z) is a dense Gs-set in co(Z).

Proof. Consider M = {I + T, such that w € ¢o(Z)}, endowed with the distance
d(I + Tw, I 4+ Tw) = |Tw — Twll 22(e2(z))-

Since the map ® defined as ®(w) = I + T}, is an isometry from cy(Z) onto M, we see
that M is complete with respect to d.

Let ¢ > 0 and (I + Ty, u,v) in M x (*(Z) x £2(Z). Since the space coo(Z) of
sequences with finite support is dense in ¢?(Z), we may take x = {z;} and y = {yz}
in coo(Z) such that |ju—z| < €/2 and ||[v—y|| < £/2. Let m be a positive integer such
that z =y = 0 for |k| > m. We can take n > m and w’ in ¢o(Z) such that

wy, #0, for k> —n,

/
- < d
o= wlloo < an {w}C =0, fork< —n.

Since wj, # 0 for k > —n, we find that z and y belong to T, (coo(Z)) for each positive
integer k and Tj,x = Tlﬁ,y =0 for k > m + n+ 1. Therefore, z and y are in ker! 7).
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By Lemma 5.2.12, there are ' in #?(Z) and a positive integer I such that
|z —2'|| <e/2 and |y — I+ Tw)a'|| <e/2.

Upon putting everything together, we have z’ in £2(Z), a positive integer k and I +T,,
in M for which

[T +Tpw—T+T)|=|w—-ue <&, |u—2<e and |Jv— I+ Tw)'2|| <e.
Therefore, every neighborhood of (I + Ty, u, v) meets
{(I + Ty ,z,(I +Ty)¥z) such that I + T € M, z € (3(Z), k=1,2,...},

which means that (iii) in Proposition 5.2.15 holds. Since (i) and (ii) are trivially
satisfied, Proposition 5.2.15 implies that the set of hypercyclic operators I + T;, with
w in ¢o(Z) is a dense Gs-set in M.

Now consider the unitary operator U on £?(Z) defined on its canonical basis by
Ue, = e_,, for each n in Z. Clearly, the map that to each operator T assigns U*T*U
is an isometry from M onto itself. Since hypercyclicity is invariant under similarity,
the set of T'in M for which T™* is hypercyclic is a dense Ggs-set in M. Thus the set
of T in M such that T and T™ are hypercyclic is a dense Gg-set in M. The result
follows from the fact that ®(w) = I + T}, is an isometry from c(Z) onto M. O

For sake of completeness, we end this section by providing an analog of Proposi-
tion 5.2.15 for supercyclicity. The proof is a slight modification of the one of Propo-

sition 5.2.15 and is omitted.

Proposition 5.2.19. Let B be a separable Banach space and let S = {x € B : ||z| =
1}. Assume that a subset M in L(B) is endowed with a topology satisfying (i) through
(iii) of Proposition 5.2.15 and

(iv) The set {(T,x,T"z/||T"z||) : T e M, x € S, T"x #0,n =0,1,...} is dense in
MxSxS.

Then the set of supercyclic operators T in M is a dense Gg-set in the Baire space M.

5.3 Supercyclicity of V,, and hypercyclicity / + V,

In this section we shall study the supercyclicity of V, as well as the hypercyclicity
of I +V,, acting on the spaces LP[0, 1], 1 < p < oo, and the space Cy[0, 1] of continuous
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functions that vanish at 0 endowed with the supremum norm. Observe that since V,,
is a contraction on LP[0,1], 1 < p < oo, or Cp[0, 1], it cannot be weakly hypercyclic.
The following proposition states that if V,, is weakly supercyclic, then ¢(z) <

a.e.

Proposition 5.3.1. Let ¢ is a measurable self-map of [0, 1] with o(x) > z on a set
of positive Lebesgue measure, then V,, acting on LP[0,1], 1 < p < oo, is not weakly

supercyclic.

Proof. Since any supercyclic compact operator acting on a Banach space must be
quasi-nilpotent, see [20], and the same is true for weakly supercyclic operators (the
same argument works). By Corollary 2.2, V,, is not quasi-nilpotent and the result
follows. O

In what follows, we will be considering only continuous symbols. The following
lemmas describe the closure of the range of V,,. We will denote Tan, V, the closure of
the range of V,, acting on LP[0, 1]. If it acts on C[0, 1] or Co[0, 1] it will be denoted by

ranV,, and rang V,,, respectively.

Lemma 5.3.2. Let ¢ be a continuous self-map of [0,1]. Assume that V,, acts on
C[0,1]. If ¢ is not strictly monotone, then the codimension of TanV,, is infinite. If ¢
is strictly monotone and p(0) # 0, p(1) # 0, then TanV, = C[0,1]. If ¢ is strictly
monotone and p(0) = 0, then TanV, = {f € C[0,1] : f(0) = 0}. Finally, if ¢ is
strictly monotone and p(1) =0, thenTanV, = {f € C[0,1] : f(1) = 0}.

Proof. If ¢ is not strictly monotone, then
A={(t,s) €[0,1]*>:t <s and p(t) = ¢(s)}
is infinite. Since
ranV, C {f € C[0,1] : f(t) = f(s) foreach (t,s) € A}

and the last space has infinite codimension, we see that ran V,, has infinite codimension
in C[0,1].

The description of Tan V,, in the case when ¢ is strictly monotone follows from
the decomposition V,, = C,V, where V is the Volterra operator, (Cy, f)(x) = f(¢(z))
and the fact that the closure of the range of the Volterra operator acting on C[0, 1]
is Cpl0,1] = {f € C[0,1] : f(0) = 0}. Indeed, if p(0) # 0, p(1) # 0, then
Cy(Co[0,1]) = C[0, 1], if ©(0) = 0, then C,(Cy[0,1]) = Co[0, 1] and finally if ¢(1) = 0,
then C(Co[0,1]) = {f € C[0,1] : f(1) = 0}. O
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Lemma 5.3.3. Let ¢ be a continuous self-map of [0,1]. Assume that V, acts on
LP[0,1] with 1 < p < oo. If ¢ is not strictly monotone, then Tan,V, has infinite

codimension. If ¢ is strictly monotone, then Tan, V, = L”[0,1].

Proof. As in the previous lemma, let Tan Vi, be the closure of V,,(C[0, 1]) in C[0,1]. In
order to show that Tan, Vi, NC[0, 1] = tan V,,, first observe that both sides in the latter
equality are closed subspaces in C[0,1] and TanV,, C tan, V,, N C[0,1]. On the other
hand, C[0, 1] is dense in the space LP[0, 1] and V,, is bounded from L?[0, 1] into C]0, 1].

Indeed, given a function f in LP|0, 1], we have

e(x)
/ (1) dt
0

Hence, ranV,, is dense in ran, V,, in the space C[0, 1] endowed with the supremum

1
1V Flloo = sup < /0 £ dt < £l (53.1)

norm. Therefore, there is not a bounded functional over C[0, 1], such that vanishes on
ran V,, and does not vanish on ran, V,,, what finishes the proof of the needed equality.
Now, the result follows immediately from the previous lemma and the fact that both
Co[0,1] and {f € C[0,1] : f(1) = 0} are dense in LP[0,1]. O

The following lemma is an immediate consequence of Lemma 5.3.2.

Lemma 5.3.4. Let ¢ be a continuous self-map of [0,1] satisfying ¢(0) = 0. Assume
that Vi, acts on Col0,1]. If ¢ is not strictly increasing, then TangV, has infinite

codimension. If ¢ is strictly increasing, then Tang Vy, = Col0, 1].

Now, we can use the previous lemmas to show that the cyclicity of V,, is a severe

restriction on the inducing symbol.

Proposition 5.3.5. Let ¢ be a continuous self-map of [0, 1]. Assume that V, acting on
LP[0,1], 1 < p < o0 or on C[0,1] is cyclic. Then ¢ is strictly monotone. In addition,
if ¢(0) =0 and V,, is cyclic when acting on Cy[0,1], then ¢ is strictly increasing.

Proof. 1t is well known and easy to see that if an operator is cyclic, then the codimen-
sion of the closure of its range is at most 1. Thus it remains to apply Lemmas 5.3.2,
5.3.3 and 5.3.4. O

Since weakly supercyclic operators are cyclic, as another immediate consequence

of Propositions 5.3.1 and 5.3.5, we have

Corollary 5.3.6. Let ¢ be a continuous self-map of [0,1]. If V, acting on LP[0, 1],
1 < p < oo oron Cyl0,1], is weakly supercyclic, then ¢ is strictly increasing and

o(z) <z for0 <z < 1.
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The cyclic properties that we will be considering are cyclic, weakly supercyclic,
weakly hypercyclic, supercyclic and hypercyclic. Actually, the real core of the ques-
tion, wether a Volterra type operator satisfies any of these properties or not, is in the
friendly Hilbert space setting L?[0,1]. A basic tool in the study of the cyclic properties

of an operator is the Comparison Principle, for instances see [8] or [49].

Comparison Principle 5.3.7. Suppose that X is a linear metric space and Y is a
dense subspace that is itself a linear metric space with a stronger topology. Suppose
that T is a continuous linear transformation on X that also maps the smaller space
Y into itself, and is continuous in the topology of this space. If T is cyclic on'Y, then
it is also cyclic on X and has an X -cyclic vector that belongs to Y. Furthermore, the

same is true for supercyclic and hypercyclic operators.

Proposition 5.3.8. Let ¢ be a continuous self-map of [0, 1] with ¢(0) > 0 and p(1) >
0. Then V, acting on L?[0,1] has a given cyclic property if and only if V, acting on
LP[0,1], 1 < p < 00, or on C[0,1] has the same cyclic property.

Proof. Let 1 < p < co. First, observe that C[0, 1] is densely and continuously embed-
ded into LP[0, 1] and LP[0, 1] is densely and continuously embedded into L'[0,1]. The
same holds true if all the spaces carry their weak topologies. Thus by the Comparison
Principle, see 5.3.7, it suffices to show that if V,, acting on L'[0,1] has a given cyclic
property, then V,, acting on C[0, 1] has it.

Suppose that V, acting on L'[0,1] has a given cyclic property. By Proposi-
tion 5.3.5, ¢ is strictly monotone. By Lemma 5.3.2, V,, acting on C[0,1] has dense
range. Indeed, from 5.3.1 we have that V,, is a bounded linear operator from L'[0, 1]
into C[0, 1] with dense range. It follows that whenever f in L'[0, 1] provides a given
cyclic property for V,, acting on L[0,1], then V. f provides the same property for V,,
acting on C[0, 1]. O

Proposition 5.3.9. Let ¢ be a continuous self-map of [0,1] with ¢(0) = 0. Then
V,, acting on L?[0,1] has a given cyclic property if and only if V,, acting on LP[0,1],
1 < p < oo, or on Cyl0,1] has the same cyclic property.

Proof. Exactly as in the proof of the above proposition, it suffices to show that if V,,
acting on L1[0,1] has a given cyclic property, then V,, acting on Co[0, 1] has it.
Suppose that Vi, acting on L'[0,1] has a given cyclic property. By Proposi-
tion 5.3.5, ¢ is strictly increasing and by Lemma 5.3.4, V,, acting on Cy[0, 1] has
dense range. Hence, as in the proof of the previous Proposition, V, is a bounded

linear operator from L![0,1] into Cy[0, 1] with dense range, and again it follows that
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whenever f in L'[0,1] provides a given cyclic property for V,, acting on L'[0, 1], then
Vo f provides the same property for V,, acting on Co0, 1]. O]

In view of propositions 5.3.8 and 5.3.9, there is no interest in studding the cyclic
properties of composition Volterra operators acting on different spaces. Therefore,
in the reminder, the statements concerning cyclicity will not mention the underlying
spaces where the operators act. These will be understood to be the LP[0,1] spaces,

for 1 < p < oo and either C[0, 1] or Cy[0, 1], depending on the value of ¢ at 0.

5.3.1 Supercyclicity of V,, and hypercyclicity of I +V,. Case ¢(1) <1

Although V,, acting on L?[0,1] cannot be weakly hypercyclic, it may happen that
I + 'V, is hypercyclic. We have,

Theorem 5.3.10. Let ¢ be a continuous strictly increasing self-map of [0, 1] such that
p(x) <z for 0 <z < 1. Then V, is supercyclic and I + V,, is hypercyclic.

Proof. We just need to verify that conditions of Proposition 5.2.13 and Corollary 5.2.3
are satisfied.
Clearly, the sequence {¢,(1)} is strictly decreasing and tends to zero as n tends

to co. The right-left inclusion in the equality
ker V) = {f such that infsupp (f) > ¢n(1)}

is clear if we observe that (a) in Lemma 4.3.5 still holds under the assumptions of the
statement. The left-right inclusion is proved by induction. Let n = 1 and f be such
that 0 = V,,f = C,V f. Since the classical Volterra operator V is injective, we have
that Vfl[o,wu)] = 0 implies that f|[0,eo(1)
is just a repetition, with the only observation that a function f is in ker Vg“ if and

only if Vi, f belongs to ker V]I

= 0. The second part of the induction process

Since the canonical injection from Cy[0, 1] to LP[0,1], 1 < p < oo, is continuous
and has dense range, we restrict the rest of the proof to the space Cy[0, 1] without lose
of generality. As above, write V,, = C,V. We have that V' maps densely ker Vg“ into
itself and C, is a bijective isometry from ker Vg“ to ker V' for each positive integer
n.

The last condition to be checked is that ker* V, is dense in Cp[0, 1], but this is
straightforward since {¢,,(1)} tends to 0. O
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From Corollary 5.3.6, it follows that if V, is weakly supercyclic, then ¢ cannot fail
to be strictly increasing or to have the graph below the identity function. However,

(1) < 1 is a different issue.

5.3.2 Supercyclicity of V,. Case ¢(1) =1

Although the Volterra operator is not weakly supercyclic, see [35], there are super-
cyclic composition Volterra operators whose symbols are below the diagonal and take

the value 1 at 1. In this subsection we will prove

Theorem 5.3.11. Let ¢ be a continuous strictly increasing self-map of [0,1] with
o(x) <z for0 <z <1 and p(1) = 1. Assume that ¢ is analytic at 0 and ¢'(0) > 67,

where

Then V, is supercyclic.
As an immediate corollary of Theorem 5.3.11, we have

Corollary 5.3.12. Let ¢ be a continuous strictly increasing self-map of [0,1] with
o) <z for0 <z <1andyp(l)=1. Assume that ¢ is analytic at 0 and differentiable
at 1 with ¢'(0)¢'(1) > 1. Then V,, is supercyclic.

Proof of Theorem 5.3.11. By Proposition 5.3.9, it is enough to show that V,, is super-
cyclic on Cy|0, 1].
We take b > 0 with 1/¢/(0) < b < 1/, and consider the dense subspace of Cy|0, 1]
defined by
E ={f € (Cy[0,1] : inf supp (f) > 0}.

According to Lemma 4.2.1, we have
T [[VEAIL™ < (/o) for each f € E. (5.3.2)
On the other hand, by Theorem 4.3.1,
F={f €V(Colo, 1)) such that Tm [V, 1" < v}

is a dense linear subspace of Cy|0, 1] satisfying V,,(F) = F' = Vs;l(F ). Let S be the
restriction of Vw—1 to F. Clearly, V,,Sf = f for each f in F' and

lim HS”fH}X/)"2 < Vb foreach feF. (5.3.3)
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Finally, take b < ¢ < 1/6] and let \,, = ¢™*/2 for n > 0. The above display along with
(5.3.2) imply that A VZ [ tends to 0 as n tends to oo for each f in E and ALsnf
tends to 0 for each f in F'. Upon applying Theorem 5.2.14 with T' =V, and S, = Sk,

we conclude that V,, acting on Cy[0, 1] is supercyclic. O

5.3.3 Non-cyclicity
The next theorem complements Theorem 5.3.11.

Theorem 5.3.13. Let ¢ be a continuous strictly increasing self-map of [0,1] with
o(x) <z for0 <z <1andp(l) =1. Assume that ¢ is analytic at 1 with ¢'(1)6§ < 1,
where

p(x)

53253(@):9@)7-

Then V, is not cyclic.
As an immediate corollary, we have

Corollary 5.3.14. Let ¢ be a continuous strictly increasing self-map of [0,1] with
p(r) <z for0<z<1andp(l)=1. Assume that ¢ is analytic at 1 and differentiable
at 0 with ¢'(0)¢'(1) < 1. Then V,, is not cyclic.

From Corollaries 5.3.12 and 5.3.14, we immediately obtain

Corollary 5.3.15. Let ¢ be a continuous strictly increasing self-map of [0, 1] with
p(r) <z for 0 <x <1 and o(1) =1. Assume that ¢ is analytic at 0 and at 1.

(i) If ' (0)¢ (1) > 1, then Vi, is supercyclic.
(i) If ¢'(0)¢'(1) < 1, then V, is not cyclic.

Proof of Theorem 5.53.13. By Proposition 5.3.9, it is enough to prove that V,, is not
cyclic on L?[0,1].

Clearly, ¢(x) = 1 — ¢_1(1 — x) is continuous, strictly increasing, analytic at 0,
plr)<zfor0<z<1,¢(1)=1,¢(0)=1/¢(1) and

In addition, the fact that ¢/(1)5 (¢) < 1 implies that ¢/(0) > 67 (¢). Thus we may
choose 1 < 1/¢'(0) < b < 1/6{ (¢). Since ¢ is analytic at zero, there is 0 < a < 1 such
that ¢ is analytic on [0,¢ (a)] and
max l <
06~ @] ¢
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For each n in Z, we set a,, = ¢_p,(a). We choose a_1 < ¢ < ag and set ¢, = ¢_,(c)
for each n in Z. Clearly, {a,} and {c,} converge to 1 as n tends to +oo and to 0
as n tends to —oo. Moreover, ¢, < a, < cp41 for each n in Z. By Lemma 4.3.3,
there are non-zero functions fy in Flcg, ap] and fi in Fla_1, co] that we extend to the
whole interval [0, 1] by defining them as zero outside their intervals of definition. By
Lemma 4.3.8, we find that fy as well as f; are in V(;’O(CO[O, 1]), which we defined in
Section 4.3, and

Tm [V, £l < Vb for j=0,1. (5.3.4)

On the other hand, Lemma 4.2.1 implies that

I TL2 .
Tm VRSl < \/8f(9) forj=0,1. (5.3.5)
Now, take real numbers b < a < 3 < 1/§7(¢) and set

Q=12 if p < 0;
Zn =
prrnt/2 i > 0.

From (5.3.4) and (5.3.5), and the choice of a and  in the definition of the sequence

Zn, it follows that

_ 1/n?
T (2lV;"fil2) < Vba<1 forj=0,1

and

I TL2 .
T (2a[V3 £l) " < \/80F(9) <1 for j=0,1.

n=—o00
defines a bounded operator from ¢%(Z) @ ¢?(Z) into L?[0, 1].

We need to show that J* has dense range. To this end, it is enough to check that
J is one-to-one. Let = and y be in ¢?(Z) and suppose that

J(z@®y)=0.

By Lemma 4.3.5, it follows that inf supp (Vd? fo) = ¢, and inf supp (V(;1 f1) = anp—1 for
each n in Z and sup supp (V(z?fo) = a, and sup supp (V(Z?fl) = ¢, for n < 0. Thus, for
each n < 0, we find that Vg fo is different from zero and supported on ¢y, ay] and for
each m # n, we have that 7% fj vanishes on [¢p, ay]. Similarly for each n < 0, we find
that Vi f1 is different from zero and supported in [a,_1,c,] and for each m # n, we

have that V(;”fj vanishes on [an_1, ¢,]. It follows that 2, =y, =0forn < 0. lf x Dy
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is different from zero, let n be the minimal positive integer for which |z,| + |y,| > 0.
Since all Vq?l fj vanish on [a,_1, ¢,], except for m = n and j = 1, it follows that y,, = 0.
Similarly, x,, = 0, a contradiction. Therefore, J is one-to-one and J* has dense range.

Let {ey, }nez denote the canonical basis of £2(Z) and consider the (forward) weighted

shift Se, = wpy1en41, With weight sequence

We have
Vg =J(S®S5),

what clearly implies both
Vid =J(S" & S™) forn > 1,
and
JVy = (5@ 5%)J"
From subsection 2.1.2, we know that V is unitarily similar under (U f)(z) = f(1—x)

to Vi,. Thus assuming that V;, is cyclic, then so is V. Let f in L?[0,1] be cyclic for
Vq;‘ . Then according to the last display we have

span {(S™ @ S™)(J*f) : n > 0} = J*(span {V;" f : n > 0}).

Since J* has dense range, it follows that J* f is cyclic for S*@®S*. Now, the operator R
on ¢%(Z) defined by Re,, = (a/3)""*+DI/2¢_, n in Z, is bounded because a < 3. The
operator R is clearly injective and self-adjoint, and one may check that SR = RS™.
Hence,

(I®R)(S*®S*)=(S*"®S)(I®R).

Therefore,
span {(S* @ S)"(I® R)(J*f):n >0} = (I ® R)(span {(S* & S*)*(J*f) : n = 0}).

Taking into account that J* f is cyclic for S*@® S* and that since R is self-adjoint and
injective, I @ R has dense range, we see that S* @ S is cyclic. Let x @y in £2(Z) ©(%(Z)
be cyclic for S* @& S and consider the dual pairing
(u,v) = Zunvn, u,v € 13(Z).
nez

Since x @ y must be different from zero, the functional

O(udv) = (u,y) — (v,x)
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on (%(Z) ® ¢*(Z) is non-zero. However, for each non-negative integer n, we have
(5" @ 8)"(x@y)) = (5w, y) — (S"y,2) =0,

which contradicts that = @ y is cyclic for S* @ S. The proof is complete. O

5.3.4 Residual sets of hypercyclic I + V,, and supercyclic V,

Consider the set
Q= {p € Cy[0,1] such that 0 < p(z) <z for 0 <z <1 and g is increasing}

endowed with the metric

d(%w)zzT”[ max o — |-
n=1

3-7,1-3-7]

It is clear that d(pn,¢) tends to 0 if and only if ¢, converges to ¢ uniformly on
[e,1—¢] for each 0 < € < 1/2. 1t is also straightforward to see that (2, d) is complete.

Now, consider
Qo={pe:px)<zfor0<z<l1, ¢(1)=1 and ¢ is strictly increasing}.

Clearly, Q is a dense in (€2, d). We shall see that g is also a G set in (€2, d). Indeed,
we have Q\ Qy = AU BUC, where

A = {p € Q such that ¢(1) < 1},
B = {p € Q such that ¢ is not strictly increasing},
C = {p € Q such that there is 0 < a < 1 for which ¢(a) = a}.

On the other hand,

o0 oo
A=|JA,, B= |J Biy and C=|]C,,
n=0 0<ab<1b<1 n=1

a,be

where

Ay, = {p € Q such that [[¢|lcc <1—-27"},
Bap = {¢ € Q such that ¢ is constant on [a,b]} and
Cy, = {p € Q such that there is 37" < a <1 —3"" for which ¢(a) = a}.

One can check that A,, B, and C,, are all closed and with empty interior in (€2, d)
and, therefore, they all are F, sets. Thus, 2y is a dense Gg-set in €.
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Theorem 5.3.16. The set of ¢ in g for which Vy, and VS are supercyclic and I+ Vy,
and I + V7 are both hypercyclic is a dense G-set in §)o.

Proof. First, let M7 be the set of ¢ in {2 such that V,, is supercyclic and I 4V, is
hypercyclic. Since ||V, — Vi|l2 < [[¢ — 9|1 and convergence with respect to d on
implies L'-convergence, we see that ¢ +— V, from  into £(L?[0,1]) is continuous.
Since the sets of hypercyclic and supercyclic operators are Gg-sets with respect to the
operator norm topology, we have that M is a Gs-set in 2 as the pre-image of a Gs-set

with respect to a continuous map. On the other hand,
{¢ € Q such that p(z) <z for 0 <z <1, (1) <1 and y is strictly increasing}

is clearly dense in §2 and is contained in M; by Theorem 5.3.10. Thus, M; is a
dense Gg-set in 2. Since €y is a dense Gg-set in (2, Baire’s Theorem implies that
Mo = M1N Qg is a dense Gs-set in Q.

Now, the map ® from Qg onto itself defined as ®(¢)(z) =1 — p_1(1 — z) is one-
to-one. One can easily see that ® is also a continuous involution. Since, as already
mentioned many times, V. is similar to V;, where 1) = ®(p), we see that ®(May) is
exactly the set of ¢ in 29 for which VS is supercyclic and I + V] is hypercyclic. Since
® is an homeomorphism from €y onto itself, ®(Ms) is a dense Gs-set in Qy. Hence,
M = My P(My) is a dense Gs-set in €y and the result follows. O
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