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Contents

Resumen en Castellano r-7
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Resumen en Castellano

Para hacer más accesibles sus contenidos, se incluye en esta memoria de investigación

el presente caṕıtulo en castellano. En este caṕıtulo se da cuenta de los principales

resultados, enunciándolos en el orden en que aparecen y respetando su numeración en

el texto.

R-1 Resumen del Caṕıtulo 2.

El este caṕıtulo se definen los operadores sobre los que versa la presente memoria de

investigación y se establecen sus propiedades básicas. Dada una aplicación medible ϕ

del intervalo [0,1] en śı mismo, se define el operador de tipo Volterra Vϕ como

(Vϕf)(x) =
∫ ϕ(x)

0
f(t) dt con f ∈ Lp[0, 1], 1 6 p 6 ∞.

Obsérvese que cuando el śımbolo ϕ es la identidad, se obtiene el clásico operador

de Volterra, V . Estos operadores son compactos en todos los espacios Lp[0, 1], para

1 6 p 6 ∞ [5, p. 44], ya que podemos factorizarlos como Vϕ = CϕV , donde V es

compacto y Cϕ es acotado sobre el rango de V , que está contenido en L∞[0, 1].

Los trabajos previos sobre estos operadores son casi inexistentes, ya que se reducen

a tan sólo tres referencias: Lyubic [30], que se limita a enunciarlos y preguntar por su

quasi-nilpotencia, Whitley [56] y Tong [54]. Estos autores encontraron la caracteri-

zación de la quasi-nilpotencia de los operadores de tipo Volterra. Aqúı presentamos

una prueba más corta, la cual se deduce de una caracterización más general que

abarca a todos los operadores integrales con núcleo positivo en el espacio L2([0, 1]2).

Las pruebas se basan en la teoŕıa de operadores nucleares y Hilbert-Schmidt, y en

particular en un resultado de Lidskii [45]. El teorema principal es el siguiente.

Teorema. 2.1.1 Sea K ∈ L2([0, 1]2) no negativo. Entonces el operador integral con

núcleo K es quasi-nilpotente si y sólo si

K(t1, t2)K(t2, t3)· · ·K(tn−1, tn)K(tn, t1)

r-7



r-8 RESUMEN EN CASTELLANO

se anula e.c.t. [0, 1]n para cada n > 2.

Utilizando que los operadores de tipo Volterra se pueden escribir como operadores

integrales con núcleo

Kϕ(x, t) =

{
1, if t 6 ϕ(x);

0, if t > ϕ(x),

se obtiene la siguiente caracterización.

Corolario. 2.1.2 Sea ϕ una aplicación medible de [0, 1] en śı mismo. Entonces Vϕ
es quasi-nilpotente si y sólo si ϕ(x) 6 x e.c.t.

El resultado anterior junto con el Teorema 2.2.8 son la causa de que los śımbolos

para los que es más natural estudiar el espectro sean los que verifican la condición

ϕ(x) > x.

Otro resultado básico que presentamos es la fórmula para el operador adjunto a

un operador de tipo Volterra cuando el śımbolo ϕ es creciente. Si definimos

ϕ−1(x) =

{
sup{y : ϕ(y) < x}, if x > ϕ(0);

0, otherwise,

se tiene que

(V ?
ϕ f)(x) =

∫ 1

ϕ−1(x)
f(t) dt con f ∈ Lp[0, 1], 1 6 p <∞.

En este punto debemos recalcar que la involución isométrica (Uf)(x) = f(1 − x)

jugará un papel fundamental en el trabajo, ya que UV ?
ϕU = V

eϕ, donde ϕ̃(x) = 1 −
ϕ−1(1− x). Como consecuencia:

σ(V
eϕ) = σ(Vϕ).

Otra propiedad general de operadores es la inyectividad. En particular, es útil

conocer el núcleo de los operadores con los que se trabaja. Para enunciar el resultado

recordemos que el rango esencial de una aplicación medible ϕ en [0, 1] es

ess (ϕ) =
{
y ∈ R tales que µ{t : |y − ϕ(t)| < ε} > 0 para todo ε > 0

}
.

Se tiene:

Proposición. 2.1.3 Sea ϕ una aplicación medible de [0, 1] en śı mismo. Entonces

el kerVϕ es trivial si y sólo si el rango esencial de ϕ es [0, 1]. Es más, kerVϕ es de

dimensión finita si y sólo si kerVϕ 6= {0}.
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El siguiente resultado atañe a la acotación de las normas de los operadores de

tipo Volterra. En algunas situaciones, la norma se computa exactamente en el espacio

L2[0, 1].

Proposición. 2.1.5 Sean ϕ y ψ transformaciones medibles de [0, 1] en śı mismo.

Entonces

(i) ‖Vϕ − Vψ‖p 6
∥∥|ϕ− ψ|p−1

∥∥1/p

1
6 1 para 1 6 p <∞.

(ii) ‖Vϕ − Vψ‖∞ = ‖ϕ− ψ‖∞ para p = ∞.

Tomando ψ ≡ 0 en la proposición anterior, obtenemos el siguiente resultado.

Corolario. 2.1.6 Sea ϕ una aplicación medible de [0, 1] en śı mismo. Entonces

‖Vϕ‖p 6
∥∥ϕp−1

∥∥1/p

1
para 1 6 p < ∞ y ‖Vϕ‖∞ = ‖ϕ‖∞ para p = ∞. En particu-

lar, Vϕ siempre es una contracción.

Usando un método bien conocido para el cálculo de normas en espacios de Hilbert,

[15, p. 300], se puede computar la del operador de tipo Volterra con śımbolo ϕα(x) =

xα.

Ejemplo. 2.1.7 Sea ϕα(x) = xα con 0 < α < ∞. Entonces ‖Vϕα‖2 es igual a ráız

cuadrada del mayor zero de

J−(1+α)−1

(
2(1 + α)−1α1/2λ−1/2

)
,

donde J−(1+α)−1 es la función de Bessel de tipo uno y orden −(1 + α)−1.

Los siguientes dos resultados son ejemplos particulares de śımbolos para los que es

posible calcular las autofunciones y los autovalores de los correspondientes operadores

de tipo Volterra.

Teorema. 2.1.10 Sea ϕ(x) = xα con 0 < α < 1. Entonces los autovalores de Vϕ son

simples y σ(Vϕ) = {(1 − α)αn}n>0 ∪ {0}. Es más, para cada n > 0, la autofunción

correspondiente a (1− α)αn es fn(x) = xα/(1−α)pn(lnx), donde

pn(x) = xn +
n∑
j=1

n!(1− α)jα(j2−j)/2

(n− j)!

(
j∏
l=1

1
1− αl

)
xn−j .

En particular, las autofunciones {fn}n>0 tienen span lineal denso en L2[0, 1].

El segundo ejemplo de cálculo concreto es el siguiente.
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Teorema. 2.1.11 Sea ψ(x) = 1− (1−x)1/α con 0 < α < 1. Entonces los autovalores

de Vψ son simples y σ(Vψ) = {(1 − α)αn}n>0 ∪ {0}. Es más, para cada n > 0, la

autofunción de Vψ correspondiente a (1− α)αn, es

fn(x) =
∞∑
k=0

(−1)k(1− α)kαnk

(α−1 − 1)· · ·(α−k − 1)
(1− x)

α−k−1−α−1

α−1−1 .

En particular, las autofunciones de Vψ no tienen span lineal denso en L2[0, 1].

Un primer resultado respecto a la ciclicidad de los operadores de tipo Volterra, es

el siguiente.

Proposición. 2.1.13 Sea ϕ(x) = xα con α > 0. Entonces la función φ(x) = xβ con

β > −1/p es ćıclica para Vϕ acting on Lp[0, 1], 1 6 p <∞, si y sólo si 0 < α 6 1.

La demostración del resultado anterior es una aplicación del clásico Teorema de

Müntz-Szász.

Ahora prestaremos atención a la acotación del espectro y en particular al radio

espectral. Por el Teorema de Krĕın-Rutman sabemos que los operadores compactos y

positivos tienen siempre un autovalor simple en el valor del radio espectral, véase [26]

o [31, Theorem 4.1.4]. Este resultado nos permite obtener el teorema siguiente.

Teorema. 2.2.1 Sea K un núcleo no negativo en L2([0, 1]2). Si el radio espectral del

correspondiente operador integral con núcleo es positivo, tenemos que este mismo valor

es un autovalor del operador, al que corresponde una única autofunción no negativa.

Estableciendo una relación de acotación entre los operadores de tipo Volterra aqúı

definidos y los operadores integrales con núcleo, obtenemos la siguiente mejora del

Teorema 2.2.1.

Teorema. 2.2.2 Sea K un núcleo no negativo en L2([0, 1]2) y sea positivo el radio

espectral del operador integral asociado. Si hay una aplicación continua ψ de [0, 1]

en śı mismo, de manera que ψ(x) > x cuando 0 < x < 1 y K(x, t) > 0 e.c.t.

cuando 0 < t 6 ψ(x) 6 1, entonces la autofunción suministrada en el Theorem 2.2.1

es estrictamente positiva e.c.t. Es más, no hay más autofunciones generalizadas de

signo definido, diferentes la correspondiente al radio espectral.

Como consecuencia tenemos:

Corolario. 2.2.3 Sea ϕ una aplicación medible de [0, 1] en śı mismo con µ{x : ϕ(x) >

x} > 0. Entonces r(Vϕ) > 0 es un autovalor al que corresponde una autofunción pos-

itiva. Es más, si ϕ es continua y ϕ(x) > x para 0 < x < 1, entonces la autofunción
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correspondiente al radio espectral es estrictamente positiva e.c.t. y no hay más auto-

funciones generalizadas de signo definido.

El siguiente resultado aporta una cota inferior óptima para el radio espectral de

los operadores de tipo Volterra.

Proposición. 2.2.4 Sea ϕ una aplicación creciente de [0, 1] en śı mismo. Entonces,

r(Vϕ) > ‖(ϕ(x)− x)+‖∞.

Respecto a las autofunciones de los operadores de tipo Volterra, podemos enunciar

los dos siguientes resultados que atañen a su multiplicidad y su soporte.

Lema. 2.2.5 Sea ϕ una aplicación continua de [0, 1] en śı mismo, tal que ϕ(x) > x

para 0 6 x 6 1. Si f es una función de L2[0, 1] tal que Vϕf = λf para algún λ 6= 0,

entonces f no puede ser ortogonal a las funciones constantes. Es más, si 0 < α 6 1

es un punto fijo de ϕ y max[0,α] ϕ 6 α, entonces o bien f(α) 6= 0 ó f se anula en

[0, α].

Un corolario directo del resultado anterior es:

Corolario. 2.2.6 Sea ϕ una aplicación continua de [0, 1] en śı mismo, tal que ϕ(x) >

x para 0 6 x 6 1. Entonces los autovalores no nulos de Vϕ son simples.

El siguiente resultado establece bajo ciertas condiciones naturales, que las auto-

funciones de los operadores de tipo Volterra están soportadas en todo el intervalo

[0, 1].

Proposición. 2.2.7 Sea ϕ una aplicación continua de [0, 1] en śı mismo tal que

ϕ(x) > x para 0 < x < 1 y no constante en ningún subintervalo. Entonces el soporte

de todas las autofunciones de Vϕ asociadas a autovalores no nulos es [0, 1].

El siguiente resultado descompone el espectro de un operador de tipo Volterra en la

unión de los espectros de varios operadores de tipo Volterra con śımbolos más simples.

Dada una aplicación medible ϕ de [0, 1] en śı mismo, consideramos el conjunto

Sϕ = {y ∈ [0, 1] : max
[0,y]

ϕ 6 y}

y escribimos su frontera como ∂Sϕ. Entonces tenemos el siguiente resultado.

Teorema. 2.2.8 Sea ϕ una aplicación medible de [0, 1] en śı mismo, tal que

µ(∂Sϕ) = 0.
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Entonces

σ(Vϕ) =
⋃
j∈J

σ(V j,j
ϕ ),

donde los operadores V j,j
ϕ están definidos como en (2.2.1).

Como último tema dentro del primer caṕıtulo, consideramos las posibles simetŕıas

o propiedades geométricas y de distribución de los autovalores de los operadores de

tipo Volterra. En particular se tiene,

Teorema. 2.2.11 Sea ϕ una aplicación creciente de [0, 1] en śı mismo. Entonces

todos los autovalores de Vϕ son reales y positivos. Es más,

∞∑
n=0

λn(ϕ) 6 µ({x ∈ [0, 1] : ϕ(x) > x}) 6 1.

Las técnicas para obtener estos resultados se basan en la aproximación de opera-

dores compactos por matrices de entradas reales especialmente elegidas. En particular

se utilizan las propiedades descritas en [32] para matrices con menores positivos. De

estos métodos se deduce automáticamente que,

Teorema. 2.2.15 Si ϕ es una aplicación medible de [0, 1] en śı mismo, entonces el

espectro de Vϕ es simétrico con respecto al eje real.
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R-2 Resumen del Caṕıtulo 3.

Este caṕıtulo está dedicado a un estudio más profundo del espectro de los operado-

res de tipo Volterra. En concreto, se construye una función anaĺıtica a partir de los

operadores de tipo Volterra con śımbolos ligeramente regulares, y se establece que los

inversos de los ceros de estas funciones anaĺıticas son los autovalores de los operadores

correspondientes.

Haciendo uso de los teoremas clásicos para funciones enteras que relacionan creci-

miento y distribución de ceros obtendremos, entre otras cosas, varias caracterizaciones

de la finitud del espectro de nuestros operadores y los exponentes de sumación de las

sucesiones de autovalores. Para terminar el caṕıtulo, estudiamos la transmisión de la

analiticidad del śımbolo ϕ a las autofunciones del correspondiente operador.

En este caṕıtulo se trabaja sobre los śımbolos del conjunto siguiente,

Λ = {ϕ : [0, 1] → [0, 1] continuas y tales que ϕ(x) > x para 0 6 x 6 1},

que consideramos dotado de la topoloǵıa que hereda del espacio de Banach C[0, 1].

Ahora, para cada ϕ en Λ, consideremos el operador acotado

(Wϕf)(x) =
∫ 1

ϕ(x)
f(t) dt, f ∈ L2[0, 1].

Si ϕ(x) = x, simplemente escribimos Wϕ = W . Definimos la función F : Λ× [0, 1]×
C → C que a cada terna (ϕ, x, z), le asigna

Fϕ(x, z) = Fϕ
x (z) =

∞∑
n=0

(−1)naϕn(x)zn, (R-2.1)

donde aϕ0 (x) = 1 y aϕn(x) = (WWn−1
ϕ 1)(x) para cada n > 1.

En esta sección del caṕıtulo, los resultados son esencialmente técnicos y se centran

en probar que la función F está bien definida, es anaĺıtica y se dan ciertas propiedades

de monotońıa sobre sus coeficientes y sobre su función módulo máximo.

El siguiente resultado es fundamental para establecer la relación entre los ceros de

Fϕ y los autovalores de Vϕ.

Proposición. 3.1.2 La función F está bien definida, es diferenciable con respecto a

x, holomorfa con respecto a z y tanto (ϕ, x) 7→ Fϕ(x, ·) como (ϕ, x) 7→ ∂Fϕ

∂x (x, ·) son

aplicaciones continuas de Λ× [0, 1] en H(C). Es más,

∂Fϕ

∂x
(x, z) = zFϕ(ϕ(x), z),

Fϕ(1, z) = 1.
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Además, tenemos la siguiente representación en serie de Taylor

∂Fϕ

∂x
(x, z) =

∞∑
n=1

(−1)nbn(x)zn,

donde bn(x) = (V n−1
ψ 1)(1− x) con ψ(x) = 1− ϕ(1− x).

El siguiente resultado de existencia y unicidad de soluciones de un cierto tipo de

ecuación diferencial, es el puente entre la función Fϕ y el operador Vϕ.

Proposición. 3.1.5 Sean a 6 α 6 b y sea ϕ una aplicación continua de [a, b] en śı

mismo, tal que {
x 6 ϕ(x) 6 α, si a 6 x 6 α;

α 6 ϕ(x) 6 x, si α 6 x 6 b.

Sean también T un operador acotado en un espacio real o complejo de Banach B, x0

en B y G en C([a, b],B). Entonces, el problema de Cauchy{
H ′(x) = TH(ϕ(x)) +G(x),

H(α) = x0

tiene una única solución H : [a, b] → B, que pertenece al espacio C1([a, b],B).

Ahora pasamos a establecer de forma expĺıcita la relación entre Fϕ y el espectro

de Vϕ.

Teorema. 3.1.7 Sea ϕ una aplicación continua de [0, 1] en śı mismo, tal que ϕ(x) > x

para 0 6 x 6 1. Entonces, λ 6= 0 es un cero de orden k de Fϕ
0 si y sólo si λ−1 es

un autovalor de multiplicidad algebraica k de Vϕ. Más aún, en tal caso, una base del

espacio ker (Vϕ − λ−1I)k es

gj(x) =
∂j+1Fϕ

∂x∂zj
(x, z)

∣∣∣∣
z=λ

, para 0 6 j 6 k − 1.

Gracias a este resultado se pueden probar entre otros resultados, que si el śımbolo

ϕ satisface que ϕ(x) > x para 0 6 x 6 1, entonces Vϕ no tiene autovalores negativos.

Más aún, este último resultado nos permite aplicar la teoŕıa de distribución de ceros de

funciones enteras a la localización de nuestros autovalores y mediante algunos lemas

técnicos de acotación, podemos concluir lo siguiente.

Corolario. 3.1.13 Sea ϕ una aplicación continua de [0, 1] en śı mismo, tal que ϕ(x) >

x para 0 6 x 6 1. Si el conjunto de los puntos para los que ϕ(x) = x tiene medida de

Lebesgue cero, entonces Fϕ
x es de tipo exponencial 0 para 0 6 x 6 1.
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A continuación, establecemos varias equivalencias con la finitud del espectro de

Vϕ. Es de destacar que la condición max[0,x] ϕ 6 x para cada punto fijo x de ϕ, es una

condición menos restrictiva que la de creciente. En lo sucesivo, dada una aplicación

ϕ de [0, 1] en śı mismo, denotamos por ϕ0 a la identidad y escribimos ϕn = ϕ ◦ ϕn−1

para cada n entero positivo.

Teorema. 3.1.15 Sea ϕ una aplicación de [0, 1] en śı mismo, tal que ϕ(x) > x para

0 6 x 6 1, satisfaciendo sup{x : ϕ(x) > x} = 1 y max[0,y] ϕ 6 y para cada punto fijo

y de ϕ. Entonces las siguientes afirmaciones son equivalentes:

(i) El espectro σ(Vϕ) es finito.

(ii) Existe un entero positivo n tal que ϕn(x) ≡ 1.

(iii) La aplicación ϕ ≡ 1 en un entorno de 1 y ϕ(x) > x para 0 6 x < 1.

(iv) Para algún entero positivo n, el operador V n
ϕ es de rango finito.

(v) Si P es la proyección sobre las funciones constantes, entonces P − Vϕ es nilpo-

tente.

Como corolario se obtiene la siguiente aplicación a ciertos śımbolos ligeramente

más adecuados.

Corolario. 3.1.16 Sea ϕ un aplicación continua de [0, 1] en śı mismo, tal que ϕ(x) >

x para 0 6 x 6 1 y satisfaciendo que max[0,y] ϕ 6 y para cada punto fijo y de ϕ.

Entonces las siguientes afirmaciones son equivalentes:

(i) El espectro σ(Vϕ) es finito.

(ii) O bien ϕ es la identidad, o bien existen 0 < β < α = sup{x : ϕ(x) > x} de

manera que 
ϕ(x) > x, si 0 6 x < β;

ϕ(x) = α, si β 6 x 6 α;

ϕ(x) = x, si α < x 6 1.

Por supuesto, si el śımbolo ϕ es continuo y permanece estrictamente sobre la

diagonal principal en todo el intervalo [0, 1], i.e. ϕ(x) > x para 0 < x < 1, con

ϕ(0) = 0 ó satisface que ϕ−1(1) no contiene ningún intervalo de la forma [1 − ε, 1]

para algún ε > 0, entonces el espectro Vϕ es infinito.

Como resultado de la asociación entre funciones anaĺıticas y operadores, podemos

estimar, y en algunos casos calcular, las sumas de los espectros de nuestros opera-

dores y sus exponentes de convergencia. Desde ahora, s(ϕ) = s({λn(ϕ)}) denotará
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el exponente de convergencia de la sucesión de autovalores {λn}. Entre otros resul-

tados, obtenemos la siguiente fórmula exacta para śımbolos cuyos autovalores suman

absolutamente.

Teorema. 3.1.26 Sea ϕ una aplicación continua de [0, 1] en śı mismo, con ϕ(x) >

x para 0 6 x 6 1 y asumamos que la sucesión {λn(ϕ)} de autovalores de Vϕ es

absolutamente sumable. Entonces,
∞∑
n=0

λn(ϕ) = µ({x ∈ [0, 1] : ϕ(x) > x}).

Obtenemos además la siguiente fórmula exacta para śımbolos crecientes.

Corolario. 3.1.27 Sea ϕ una aplicación continua y creciente de [0, 1] en śı mismo,

con ϕ(x) > x para 0 6 x 6 1 . Entonces
∞∑
n=0

λn(ϕ) = µ({x ∈ [0, 1] : ϕ(x) > x}).

Los siguientes resultados tratan la transmisión de la analiticidad entre el śımbolo

ϕ y las autofunciones del correspondiente operador Vϕ.

Una herramienta fundamental en esta parte de la memoria es la fórmula de Fao

de Bruno [52, Chapter 3], para la derivada enésima de una composición de funciones.

Lema. 3.2.1 Sean f y g funciones en Cn[u, v]. Entonces para cada u 6 x 6 v,

tenemos

(g ◦ f)(n)(x) = n!
∑

k1+···+nkn=n

g(k1+···+kn)(f(x))
k1! · · · kn!(1!)k1 · · ·(n!)kn

(f ′(x))k1 · · ·(f (n)(x))kn .

Como consecuencia se obtiene la formula exacta para la siguiente suma.

Lema. 3.2.2 Para todo c en C y todo n natural, tenemos∑
k1+···+nkn=n

(k1 + · · ·+ kn)!
k1! · · · kn!

ck1+···+kn = c(c+ 1)n−1.

El principal resultado de esta sección es el siguiente.

Teorema. 3.2.6 Sea ϕ una aplicación continua de [0, 1] en śı mismo, tal que ϕ(x) > x

para 0 < x < 1, y sea f una autofunción generalizada de Vϕ asociada a un autovalor

no nulo. Si ϕ es anaĺıtica en [α, 1] para algún 0 < α < 1 y ϕ′(1) 6= 1, entonces f es

anaĺıtica en [α, 1]. Lo mismo es cierto si α = 0, supuesto que ϕ(0) > 0.

Para completar este resultado, se aporta un contraejemplo que muestra que las

condiciones impuestas sobre la derivada de ϕ en el punto 1 y sobre ϕ en el punto 0,

no se pueden eliminar. El ejemplo es la función ϕ(x) = (2− x)−1, que satisface todas

las condiciones del Teorema anterior para α = 0, excepto que ϕ′(1) = 1.
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R-3 Resumen del Caṕıtulo 4.

Como se verá más adelante, los operadores de tipo Volterra para los que es interesante

estudiar la superciclicidad, son tan sólo los quasi-nilpotentes con śımbolos continuos

y estrictamente crecientes. Por ello, en este caṕıtulo, que es de carácter puramente

técnico, buscamos estimaciones de las normas de las potencias de Vϕ y de las normas

de las órbitas {V n
ϕ f}n>0, cuando Vϕ es superćıclico. Los dos primeros resultados

relevantes de este caṕıtulo son los siguientes.

Corolario. 4.1.4 Sea ϕ una aplicación continua y estrictamente creciente de [0, 1] en

śı mismo, tal que ϕ(x) < x para 0 < x < 1 y ϕ(1) = 1. Entonces, si ϕ es diferenciable

en 0 y en 1,y ϕ′(0) = 0, tenemos que para todo 1 6 p 6 ∞,

lim
n→∞

‖V n
ϕ ‖1/n2

p =
1√
ϕ′(1)

.

Si ϕ es diferenciable en 0 y ϕ′(1) = ∞, entonces

lim
n→∞

‖V n
ϕ ‖1/n2

p =
√
ϕ′(0).

Corolario. 4.1.5 Sea ϕ una aplicación continua y estrictamente creciente de [0, 1]

en śı mismo, tal que ϕ(x) < x para 0 < x < 1, ϕ(1) = 1 y ϕ es diferenciable en 0 y

en 1. Entonces, el conjunto de las funciones f de Lp[0, 1], 1 6 p 6 ∞, para las que

se satisface

lim
n→∞

‖V n
ϕ f‖1/n2

p = φ(ϕ′(0), 1/ϕ′(1))

es denso en Lp[0, 1], donde φ(u, v) está definida por

φ(u, v) =


exp

(
lnu ln v
2 ln(uv)

)
, si u > 0, v > 0 y (u, v) 6= (1, 1);√

|u− v|, si u = 0 ó v = 0;

1, si (u, v) = (1, 1),

Dentro de este caṕıtulo se dedica una sección a las acotaciones superiores de las

órbitas de Vϕ. El principal resultado en este sentido es el siguiente.

Lema. 4.2.1 Sea ϕ una aplicación continua y estrictamente creciente de [0, 1] en śı

mismo, tal que ϕ(x) < x para 0 < x < 1, ϕ(1) = 1 y

δ+1 = δ+1 (ϕ) = lim
x→1

1− x

1− ϕ(x)
.

Si además f en Lp[0, 1], 1 6 p <∞, satisface que inf supp (f) > 0, tenemos que,

lim
n→∞

‖V n
ϕ f‖1/n2

p 6
√
δ+1 .
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En particular, si ϕ es diferenciable en 1, tenemos

lim
n→∞

‖V n
ϕ f‖1/n2

p 6
√

1/ϕ′(1).

Otra sección de este caṕıtulo estudia las preimágenes iteradas del operador Vϕ. El

teorema principal de esta sección es el siguiente.

Teorema. 4.3.1 Sea ϕ una aplicación continua y estrictamente creciente de [0, 1] en

śı mismo, tal que ϕ(x) < x para 0 < x < 1 y ϕ(1) = 1. Además, supongamos que ϕ

es anaĺıtica en 0 y ϕ′(0) > 0. Entonces, para todo b > 1/ϕ′(0), el conjunto

Fb =
{
f ∈ V∞

ϕ (C0[0, 1]) tales que lim
n→∞

‖V −n
ϕ f‖1/n2

∞ 6
√
b
}

es una variedad lineal densa en C0[0, 1], que satisface Vϕ(Fb) = Fb y V −1
ϕ (Fb) = Fb.

La última sección del caṕıtulo está dedicada a las acotaciones inferiores de las

órbitas de Vϕ. El principal resultado de esta sección es el siguiente.

Corolario. 4.4.2 Sea ϕ una aplicación continua y estrictamente creciente de [0, 1]

en śı mismo, tal que ϕ(1) = 1 y ϕ(x) < x para 0 < x < 1. Si además tenemos que ϕ

es anaĺıtica en 1 y diferenciable en 0 con ϕ′(0) = 0, entonces, para cada función no

nula f en Lp[0, 1], 1 6 p 6 ∞, se tiene que

lim
n→∞

‖Vϕf‖1/n2

p =
1√
ϕ′(1)

.
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R-4 Resumen del Caṕıtulo 5.

En esta sección se estudia la ciclicidad de los operadores de tipo Volterra. Recordemos

que un operador se dice ćıclico si la envolvente lineal de alguna de sus órbitas es densa

en el espacio entero. En el caso de que sea suficiente la envolvente proyectiva de

alguna de sus órbitas para alcanzar la densidad en el espacio, el operador se llama

superćıclico. Una de las nociones más fuertes de ciclicidad es la hiperciclicidad, que

consiste en la existencia de una órbita que es densa en el espacio por śı misma.

En la primera sección del caṕıtulo se encuentran operadores de tipo Volterra que

son ćıclicos y cuyos śımbolos permanecen bajo el de la identidad. Esto significa que el

operador de Volterra no es el caso ĺımite, como śı lo es para el espectro. El principal

resultado de la primera sección es el siguiente.

Corolario. 5.1.3 Sea ϕ una aplicación continua de [0, 1] en śı mismo, tal que ϕ(x) >

x para 0 < x < 1, ϕ es diferenciable en 0 y en 1 con 1 < ϕ′(0) 6 ∞ y ϕ′(1) < 1.

Entonces la función constante 1 es ćıclica para Vψ, donde ψ(x) = 1 − ϕ(1 − x), si y

sólo si la envolvente lineal de las autofunciones de Vϕ es denso en L2[0, 1].

En la siguiente sección, que está dedicada a la Teoŕıa General de operadores, se

emplea el concepto de núcleo generalizado para probar la existencia de operadores

hiperćıclicos.

Recordemos que el núcleo generalizado de un operador T es el espacio

ker? T =
∞⋃
n=1

kerTn.

Se tiene

Corolario. 5.2.3 Sea T un operador acotado en un F-espacio separable X, de manera

que ker? T es denso en X y T (kerTn+1) es denso en kerTn para cada entero positivo

n. Entonces I + T es hypercyclic.

El primer resultado general de superciclicidad es el siguiente.

Proposición. 5.2.13 Sean X un F-espacio separable y T un operador acotado en

él. Si el núcleo generalizado de T es denso y T tiene rango denso, entonces T es

superćıclico.

El siguiente resultado establece la existencia de gran cantidad de operadores hiper-

ćıclicos, con adjunto hiperćıclico.
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Corolario. 5.2.17 Sea Q el conjunto de los operadores compactos y quasi-nilpotentes

sobre un espacio de Hilbert separable e infinito dimensional. Se tiene que el subcon-

junto de los operadores T en I +Q, tales que T y T ? son hiperćıclicos es un Gδ denso

en I +Q.

En la siguiente sección del caṕıtulo pasamos a estudiar la superciclicidad de los

operadores de tipo Volterra y la hiperciclicidad de los operadores de la forma I + Vϕ,

tanto en los espacios Lp[0, 1], 1 6 p < ∞, como en el espacio C0[0, 1] dotado con la

norma del supremo. Utilizando los resultados anteriores, probamos que para todo

śımbolo ϕ continuo y estrictamente creciente, tal que ϕ(x) < x para 0 < x 6 1

(nótese que ϕ(1) < 1), él correspondiente operador Vϕ es superćıclico y el operador

I + Vϕ es hiperćıclico. Esto aporta nuevos ejemplos de operadores hiperćıclicos y

quasi-nilpotentes, que vienen a unirse a los ya existentes de Hilden y Wallen [21] por

una parte, y de Salas [49] por otra. Además, se prueba que existen śımbolos continuos

y estrictamente crecientes, con ϕ(x) < x para 0 < x < 1, de manera que tanto Vϕ

como V ?
ϕ son superćıclicos y los operadores I + Vϕ e I + V ?

ϕ son hiperćıclicos. Para

terminar se demuestra que para los śımbolos ϕ continuos y estrictamente crecientes,

con ϕ(x) < x para 0 < x < 1, ϕ(1) = 1 y anaĺıticos en 0 y en 1, se tiene que si

ϕ′(0)ϕ′(1) > 1, entonces Vϕ es superćıclico, y si ϕ′(0)ϕ′(1) < 1, entonces Vϕ no es

ćıclico. Debemos señalar que en algunos enunciados no se especifican los espacios en

los que los operadores cumplen una cierta propiedad ćıclica. Esto se debe a que, gracias

a las caracteŕısticas especiales de los operadores de tipo Volterra, sus propiedades de

ciclicidad no dependen del espacio Lp[0, 1], 1 6 p <∞ o C0[0, 1] en el que actúan.

Teorema. 5.3.10 Sea ϕ una aplicación continua y estrictamente creciente de [0, 1]

en śı mismo, tal que ϕ(x) < x para 0 < x 6 1. Entonces Vϕ es superćıclico y I + Vϕ

es hiperćıclico.

Corolario. 5.3.12 Sea ϕ una aplicación continua y estrictamente creciente de [0, 1]

en śı mismo, tal que ϕ(x) < x para 0 < x < 1 y ϕ(1) = 1. Si ϕ es anaĺıtica en 0 y

diferenciable en 1 con ϕ′(0)ϕ′(1) > 1, entonces Vϕ es superćıclico.

El primer resultado de no-ciclicidad que presentamos es el siguiente.

Corolario. 5.3.14 Sea ϕ una aplicación continua y estrictamente creciente de [0, 1]

en śı mismo, tal que ϕ(x) < x para 0 < x < 1 y ϕ(1) = 1. Entonces, si además

asumimos que ϕ es anaĺıtica en 1 y diferenciable en 0 con ϕ′(0)ϕ′(1) < 1, tenemos

que Vϕ no es ćıclico.

Como consecuencia de los dos resultados anteriores, tenemos
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Corolario. 5.3.15 Sea ϕ una aplicación continua y estrictamente creciente de [0, 1]

en śı mismo, tal que ϕ(x) < x para 0 < x < 1 y ϕ(1) = 1. Asumamos también que ϕ

es anaĺıtica en 0 y en 1. Se tine que

(i) Si ϕ′(0)ϕ′(1) > 1, entonces Vϕ es superćıclico.

(ii) Si ϕ′(0)ϕ′(1) < 1, entonces Vϕ no es ćıclico.

La siguiente definición es necesaria para estudiar los conjuntos de operadores,

superćıclicos e hiperćıclicos, cuyos adjuntos también lo son. Consideremos el conjunto

Ω = {ϕ ∈ C0[0, 1] tales que 0 6 ϕ(x) 6 x para 0 6 x 6 1 y ϕ es creciente}

dotado de la métrica

d(ϕ,ψ) =
∞∑
n=1

2−n max
[3−n,1−3−n]

|ϕ− ψ|.

Consideremos también el subconjunto de Ω

Ω0 = {ϕ ∈ Ω : ϕ(x) < x for 0 < x < 1, ϕ(1) = 1 y ϕ es estrictamente creciente}.

Entonces tenemos el siguiente resultado.

Teorema. 5.3.16 El conjunto de śımbolos ϕ en Ω0 para los que Vϕ y V ?
ϕ son super-

ćıclicos y tanto I + Vϕ como I + V ?
ϕ son hiperćıclicos es un Gδ denso en Ω0.





Introduction

An operator is nothing else than a continuous linear transformation on a vector

space endowed with a norm, and the branch of mathematics that treats operators

is called Operator Theory. As in any other branch of mathematics, general results

usually come from the study of particular examples. The part of Operator Theory

that provides such study of examples is known as Concrete Operator Theory but many

times it has been written and said that there is a lack of objects in the theory that

limits its development. In this work we present and develop the spectral and cyclic

theory of a family of operators that we call composition Volterra operators. Namely,

given a Lebesgue measurable self-map ϕ of the interval [0, 1], the composition Volterra

operator is defined as

(Vϕf)(x) =
∫ ϕ(x)

0
f(t) dt, f ∈ Lp[0, 1], 1 6 p 6 ∞.

Results listed here provide understanding on how the behavior of these operators

depends on the geometry or the qualitative and quantitative properties of the symbol

ϕ. Therefore, composition Volterra operators might be useful to produce ad hoc

instances of operators for particular situations in the theory. To be precise, for a

class of natural symbols ϕ, finiteness of the spectrum is characterized. An interesting

instance of finite spectrum occurs when it reduces to the singleton {0}. Operators with

such property are known as quasi-nilpotent operators and they are characterized in the

family of composition Volterra operators. When the spectrum is infinite, a formula for

the convergence exponent of eigenvalues is provided. We also treat the symmetry and

the positivity of the spectrum as well as the analyticity of the eigenfunctions. The text

is illustrated by some examples of symbols ϕ to which the theory can be applied and,

in particular, norms, eigenvalues and eigenfunctions are computed explicitly. Finally,

we show that the cyclic behavior of Vϕ is essentially determined by the behavior of the

symbol ϕ at 0 and at 1. In particular, this leads to new examples of quasi-nilpotent

supercyclic operators, which parallel previous ones of Héctor Salas on weighted shifts.

xxiii
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However, before we go into the technical part of the text, in these introductory

lines we would like to expose roughly the origins of Operator Theory and some of the

main difficulties that one encounters while studding it. We emphasize by means of

examples how far of being parallel are the finite and the infinite dimensional settings.

Operator Theory could very well be considered as a natural extension of the study

of finite matrices. As a mater of fact, operators were first treated in finite dimensional

spaces, where a huge effort was made by many mathematicians to construct a corpus

of results, known nowadays as linear algebra. Such accumulation of knowledge lets us

almost clearly understand the way in which a matrix transforms a finite dimensional

vector space. Among others, Jordan Canonical Forms and Schur triangular repre-

sentations, are tools aimed to exhibit the main properties of finite dimensional linear

transformations and to classify them up to isomorphisms.

For the sake of the exposition, we sacrifice the chronological order. Indeed, al-

though Jordan Canonical Forms are triangular matrices, surprisingly enough, it was

Marie Ennemond Camille Jordan (1838-1922) who first stated his result, and a little

later, Issai Schur (1875-1941) found triangular representations of matrices. The latter

representations are more intuitive and in some sense they could even be considered as

an intermediate step to reach Jordan’s result, which is more involved and complete.

Jordan’s work on Group Theory [22], Traité des substitutions et des équations alge-

braique, was published in 1870, when Schur was only 5 years old. There, along with

many other results that founded Group Theory, appears the Jordan Canonical Form,

not over the complex numbers, but over a finite field. It approximately says that

each square matrix is similar to a block-diagonal matrix which is triangular. Some

works in the same direction were first developed by Weierstrass, but it seems clear

that Jordan was not aware of these. It was not until 1909, that Schur [51] found his

result, each square matrix is similar to a triangular one. A triangular matrix at first

glance displays its eigenvalues, the diagonal elements, and their algebraic multiplic-

ities, the number of times that an eigenvalue is repeated, and as we next see, it is

more elementary to compute than the Jordan Canonical Form. In order to show the

existence of the triangular representation we follow a constructive method. Since we

work on the field of complex numbers, on finite dimensional spaces the unit ball is

compact and matrices are continuous transformations, we can ensure the existence

of a preferred direction in the space under the action of the matrix; i.e. there are a

vector u1, called eigenvector, and a complex number λ1, called eigenvalue, such that

Au1 = λ1u1. If we restrict the transformation A to the orthogonal complement of

u1 in V , in symbols V 	 u1, by the same argument as before, there exist an eigen-
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vector u2 and an eigenvalue λ2 in V 	 u1. Of course, although in general u2 is not

an eigenvector of A acting on V , at most, Au2 is a linear combination of u1 and u2.

Iterating this process, we clearly end up with an orthogonal basis {u1, . . . , un} of V ,

in which A has an upper triangular matrix. Moreover, that an n-square matrix A be

similar to a triangular matrix, is equivalent to the existence of a maximal chain of

invariant subspaces of A. That is, a chain of subspaces {0} = M0 ⊂ · · · ⊂ Mn = V

with dim(Mk) = k and such that A(Mk) ⊂ Mk for 0 6 k 6 n. The collection of

all invariant subspaces of A is usually denoted by Lat(A). Observe that the same

orthonormal basis could have been obtained by taking orthogonal differences in the

chain {0} = M0 ⊂ · · · ⊂ Mn = V . This reformulation provides a different approach,

that will be useful below, and points out the interest of knowing the lattice of in-

variant subspaces of a matrix. These subspaces provide a good understanding of the

transformation and let us construct nice representations for the matrix. Jordan’s

Theorem provides more information than Schur’s, and it naturally appears from a

detailed study of a particular example; the finite dimensional version of the linear

application known as backward shift, B say. This is the transformation that sends

the first element of the basis to the null vector and every other element of the basis

is sent to its predecessor: Be0 = 0 and Bek = ek−1 for each k > 0, where obviously,

{ek : k = 0, 1, . . . , n} is a basis of the n-dimensional vector space. The only eigenvalue

of B is 0, thus its algebraic multiplicity is n, and the only eigenvector associated to

0 is e0. The geometric multiplicity of an eigenvalue is the dimension of the space of

its eigenvectors. Therefore, in the case of B, the geometric multiplicity of 0 is 1. The

main idea of the Jordan Canonical Form follows analyzing the orbits of B. Indeed,

B is the classical example of a nilpotent linear transformation. These are matrices

M for which there exists a natural number p, called index of nilpotency, such that

Mp = 0 but Mp−1 6= 0. Obviously, for each nilpotent transformation of index p, one

can ensure the existence of at least one non-null vector, x say, such that Mp−1x 6= 0.

In fact, geometrically one can think of a nilpotent matrix as a set of holes, or vectors

in its kernel, towards which the different invariant subspaces are shrunk while iterat-

ing the application. This rough idea points out the possibility of writing a nilpotent

linear transformation, in a canonical form, as the sum of several backward shifts, each

of them acting on an invariant subspace. Since at the end of the day, all this goes

about invariant subspaces, it is interesting and necessary to introduce here a particu-

lary nice kind of invariant subspaces; the so called reducing subspaces, that consist on

invariant subspaces with invariant orthogonal complement. The reducing subspaces

of a linear application reduce, or decompose, the application into a direct sum of two
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applications acting on the respective subspaces. The following result cited from [17]

belongs to the folklore of the theory and leads, via a finite induction process, to the

hinted canonical form for nilpotent matrices.

Theorem. If A is a nilpotent linear transformation of index q on a finite-dimensional

vector space V , and x0 is a vector for which Aq−1x0 6= 0, then x0, Ax0, . . . , A
q−1x0

are linearly independent. If H is the subspace spanned by these vectors, then there

exists a subspace K such that H ⊕K is the whole space and such that the pair (H,K)

reduces A.

Obviously, since A was nilpotent on V , it is so on the reducing subspace K, and a

finite induction finishes the construction of the canonical form for nilpotent matrices.

Once the nilpotent matrices are understood, the same ideas may be adapted to

obtain the Jordan Canonical Form. The adaptation consists on observing that if a

matrix A has the eigenvalue λ with algebraic multiplicity k, then ker(A − λI) is not

trivial. Therefore, there is a subspace of dimension k in which the matrix given by

A−λI is nilpotent of order at most k. Such space is called the generalized eigenspace

of A associated to the eigenvalue λ, and vectors in it are generalized eigenvectors.

Denote by Aλ to the restriction of A to the generalized eigenspace associated to λ.

We can write Aλ = (Aλ − λI) + λI, where the matrix in brackets is nilpotent of

order at most k and therefore, using the above result, we can construct a basis of the

generalized eigenspace such that Aλ − λI coincides with the direct sum of a number

of backward shifts, B̃λ say. The number of backward shifts added in B̃λ is precisely

the geometric multiplicity of λ, or what is the same, the dimension of ker(A − λI).

As a result of this, we have just ensured the existence of a basis in each generalized

eigenspace such that, for each eigenvalue λ, Aλ = B̃λ + λI.

Aλ ≈



λ 1
. . . . . . 0

λ 1

λ 0

λ 1

λ 1

0 λ 1

λ


Now it is clear that, similarly to the nilpotent case, each generalized eigenspace is

shrunk upon its associated eigenspace, or what is the same, each generalized eigen-
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vector becomes an eigenvector under suitable iterations of the matrix. The latter

behavior will help in the last needed step. The only remaining task is to prove the

linear independence of the generalized eigenspaces but, as we show next, it reduces to

the linear independence of the eigenspaces, which we prove first. Indeed, let v be an

eigenvector corresponding to an eigenvalue λ, which is linear combination of linearly

independent eigenvectors vi associated to eigenvalues λi all different from λ, where i

runs over the needed index set.

v =
∑
i

αivi.

Applying now the linear transformation on both sides we get,

λv =
∑
i

αiλivi.

Using the first equality to substitute v in the second we have

λ
∑
i

αivi =
∑
i

αiλivi,

or what is the same ∑
i

αi(λi − λ)vi = 0,

a contradiction. Assume now that a non-nilpotent linear application A has eigenvalues

λi with corresponding algebraic multiplicities ki, where again i runs over the needed

index set. Assume also that there is a null non-trivial linear combination of generalized

eigenvectors xi, corresponding to different eigenvalues. That is,

0 =
∑
i

αixi.

If k is the largest among the algebraic multiplicities, then we apply Ak to the last

equality to get

0 =
∑
i

αiλ
k−ki+1
i Aki−1xi.

From what has been discussed, we know that Aki−1xi must be an eigenvector for each

i, contradicting their linear independence. Observe here that since we have let A be

a non-quasinilpotent transformation, the tautology 0 = 0 is not possible in the last

display.

As a conclusion of the discussion about nilpotent operators and the construction

of the Jordan Canonical Form we can say that this representation provides a complete

description of the lattice of invariant subspaces of each matrix. If we turn our attention

to the infinite dimensional setting, it appears that this is one of the most important
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problems in Operator Theory. Does each operator acting on the separable Hilbert

space have a non-trivial invariant subspace? The first natural attempt to answer such

question is to look for an eigenvector for each operator, but, unfortunately, we can

provide a very easy counterexample. Namely, on the space `2(N) of squared modulus

summable sequences we define the so called forward shift S acting on a basis {en}
by S(en) = en+1. This operator is clearly an isometry of `2(N) without eigenvectors,

what by the way shows that the unit ball of the separable infinite dimensional Hilbert

space is not compact. As a consequence of this we also get that the constructive

proof provided for the Schur triangular representation does not work anymore. Does

the result still hold? The answer is no, not each operator has a triangular matrix

representation on the separable infinite dimensional Hilbert space. In order to provide

a counterexample we move to the space of functions supported on [0, 1] with square

integrable modulus, L2[0, 1]. Now, consider one of the oldest operators, the classical

Volterra operator V defined as,

(V f)(x) =
∫ x

0
f(t) dt for each f ∈ L2[0, 1],

and recall the equivalent formulation of Schur’s result in terms of invariant subspaces.

It is clear, that the existence of a triangular matrix representation of the Volterra

operator should imply the existence of a chain in Lat(V ) with one-dimensional jumps

from one space to the next. The lattice of V has been computed through various

methods, for instances see [39] and references therein, and it is,

Lat(V ) = {L2[a, 1] : a ∈ [0, 1]}.

Since there are no one-dimensional jumps between its spaces, our claim is proved.

Even more, since the Volterra operator is compact, or what is the same, it is limit

of finite matrices, this counterexample makes somehow fruitless the task of finding

the class of operators to which Schur’s result extends. The best general result in

this direction is due to Halmos, and although it is a bit disappointing, in view of the

impossibility to provide triangular representations for general compact operators, it

is rather sharp. Every operator acting on a separable Hilbert space has a matrix finite

by columns indexed on N [15] . Here the expression finite by columns means that each

column has finitely many non-zero elements.

Particulary nice representations that will be useful below are those which are as

close as possible to be triangular. These are called triangular plus one, meaning that

the last non-zero element of each column is its first sub-diagonal element.
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Concerning Jordan’s Theorem, the lack of eigenvectors for many operators makes

impossible to find a satisfactory extension to the infinite dimensional setting. Nonethe-

less, things work when we keep our operators ‘close’ to finite dimensional ones, or we

impose very restrictive conditions. In fact, there are some good substitutes for par-

ticular classes of operators. For instance, functional calculus may be constructed

for self-adjoint and normal operators, and compact self-adjoint operators might be

represented as diagonal matrices.

Other differences between finite and infinite dimensional operators are due to the

existence of cyclic vectors. An operator A is called cyclic if there exists a cyclic vector

x, such that

span{Anx : n = 0, 1, 2, . . . }

is dense in the space. If instead of the linear span of the orbit, it suffices to take its

projective span, in symbols,

{λAnx : λ ∈ C and n = 0, 1, 2, . . . }, (0.4.1)

then A is said to be supercyclic and x is a supercyclic vector. The strongest form of

cyclicity is called hypercyclicity, and it occurs when there is a hypercyclic vector x

such that the orbit

{Anx : n = 0, 1, 2, . . . } (0.4.2)

is itself dense in the space. Observe that both in (0.4.1) and (0.4.2), finitely many

values of n can be omitted without any loss. Rolewicz [42] provided the first examples

of hypercyclic operators on a Hilbert space, precisely on `2. Such examples are scalar

multiples of the backward shift λB, with |λ| > 1. By the way, this also provides

examples of supercyclic operators, but it was not noticed at that time. Such an

extremal behavior for a linear transformation of the space is difficult to imagine a

priory. Indeed, in a private communication, Rolewicz explained that he found his

examples while trying to establish the impossibility of hypercyclicity on separable

infinite dimensional Hilbert spaces. The last two forms of cyclicity, supercyclicity and

hypercyclicity, are characteristic of the infinite dimensional setting, being impossible

on finite dimensional spaces. Namely, the existence of at least an eigenvector and the

Angle Criterion, introduced by A. Montes-Rodŕıguez and H. Salas [34], will be enough

to accomplish the proof of the assertion. First observe that hypercyclic operators

are all supercyclic and that each scalar multiple of a supercyclic operator is itself

supercyclic. Therefore, without loose of generality we can assume the existence of

a supercyclic operator A, with norm 1/2, and supercyclic normalized vector x on a
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finite dimensional vector space. Now, let λ be an eigenvalue of the adjoint matrix A?

with corresponding normalized eigenvector y. Then, we have

〈Anx, y〉 = 〈x,An?y〉 = 〈x,A?ny〉 = λ
n〈x, y〉.

Since |λ| 6 1/2, the above display has a geometrical meaning. The orbit

{Anx : n = 1, 2, . . . }

is bounded away from a cone around y, which is a contradiction. Notice that even if

〉x, y〈= 0, the prove still works.



Chapter 1

Preliminaries

This expository chapter presents the spaces on which our results are established,

to expose some general properties of compact operators and to state several classical

and remarkable results that are used in the following chapters. We do not try to

give an exhaustive description of the respective theories, but just to enhance the self-

containment of the present work.

1.1 Function spaces

The only measure used all along the work is the Lebesgue measure. For instance,

measurable functions on the interval [0, 1] are always measurable with respect to the

Lebesgue measure, but it will not be mentioned in order to make the statements more

readable. Indeed, for 1 6 p <∞, we denote by Lp[0, 1] to the vector space of complex

valued measurable functions f supported on [0, 1] such that∫ 1

0
|f(t)|p dt

is finite. For p = ∞, the space L∞[0, 1] is the one of Lebesgue essentially bounded,

complex measurable functions on [0, 1]. These vector spaces are known to be Banach

when endowed with the corresponding norms

‖f‖pp =
∫ 1

0
|f(t)|p dt for 1 6 p <∞,

and

‖f‖∞ = essensup[0,1]|f | for p = ∞.

This parametric family of spaces form a decreasing chain with respect to contention

and some of their more remarkable properties are the following: The only Hilbert space

1
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among them is L2[0, 1] and if as usual, we say that 1 6 p < ∞ and q are conjugated

when 1/p + 1/q = 1, then the dual space of Lp[0, 1], 1 6 p < ∞, is isometrically

isomorphic to Lq[0, 1]. The 1-∞ pairing is the most singular in the family, since

L∞[0, 1] is not separable and its dual is bigger than L1[0, 1]. The non-separability

of L∞[0, 1] makes senseless to look for a cyclic operator acting on it. Hence, in the

last chapter, it will be substituted by the space of continuous functions that vanish at

zero, C0[0, 1].

As an historical note, we may emphasize that soon after Lebesgue defined his

integral at the beginning of the XXth century, first F. Riesz [40] and E. Fisher [7]

(1907) defined the space L2[0, 1] and later F. Riesz [41] (1910) found the Lp[0, 1]

spaces.

1.2 The spectrum of a compact operator

If T is a bounded operator on a Banach space B, its spectrum, denoted by σ(T ),

is the set of complex numbers such that T − λI is not invertible and it is always a

non-empty compact set. The eigenvalues of T are those complex numbers λ for which

ker (T −λI) = {f ∈ B : (T −λI)f = 0} is not the null space and they clearly belong

to σ(T ). The dimension of ker (T − λI) is called the geometric multiplicity of λ and

each non-zero element in ker (T −λI) is called an eigenvector (or an eigenfunction) of

T corresponding to the eigenvalue λ.

A compact operator on a reflexive Banach space is an operator that takes the unit

ball of the space to a pre-compact set. In Hilbert spaces, compact operators coincide

with the norm closure of finite rank operators. The set of compact operators is a

closed ideal of the Banach algebra of bounded linear operators on B. It is well known

that for a compact operator T , such as our Vϕ, acting on an infinite dimensional

Banach space, the spectrum consists of either a finite set of eigenvalues joint with {0}
or a sequence {λn(T )}n>0 of isolated eigenvalues that converges to zero together with

{0}, since σ(T ) is closed. In any case, the non-zero eigenvalues are of finite geometric

multiplicity. A detailed study of these facts is in [5].

The resolvent R(T ) = (T − λI)−1 of a compact operator T is an operator-valued

analytic function that only has poles at the non-zero eigenvalues, that is, the non-

zero eigenvalues are always normal [12]. The order of the pole of R(T ) at a non-zero

eigenvalue is called algebraic multiplicity. The algebraic multiplicity is always greater

than or equal to the geometric multiplicity. The sequence {λn(T )} of eigenvalues

of a compact operator T is arranged in decreasing order of moduli and each non-
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zero element in the sequence is repeated as many times as warranted by algebraic

multiplicity. We also assume that if the spectrum of T is finite, then λn(T ) = 0

for n greater than the sum of the algebraic multiplicities of all non-zero eigenvalues

of T . When dealing with composition Volterra operators we write λn(ϕ) instead of

{λn(Vϕ)}. Recall that the spectral radius of a bounded operator is

r(T ) = lim
n→∞

‖Tn‖1/n. (1.2.1)

The limit always exists and is max{|z| : z ∈ σ(T )}.

1.3 Traces of operators

The matrix trace of an n-square matrix is defined as the sum of its diagonal coefficients.

Indeed, this value is an invariant of the matrix, that is, it remains the same for the

whole similarity orbit of each given matrix. Moreover, the matrix trace equals the

spectral trace, or what is the same, the sum of its eigenvalues. Following the same lane

as we did in the introduction, a big effort was put to determine how far remains good

for operators this property of matrices. The first candidates are compact operators,

but once more, things are not so easy. For instance, the operator defined on the Hilbert

sequence space `2(N) by the diagonal matrix with diagonal coefficients {1/n}n>0, is

compact, but obviously, its ‘trace’ is infinite. In relation with traces of operators

emerges the crucial concepts of nuclear operator and Hilbert-Schmidt operator. An

operator A on a Hilbert space is said to be Hilbert-Schmidt if the sum
∑∞

n=0 ‖Aen‖2

converges for each orthonormal basis {en}, and it is said to be nuclear if the sum

tr(A) =
∑∞

n=0〈Aen, en〉 converges for each orthonormal basis {en}. We denote the

sets of nuclear and Hilbert-Schmidt operators by N and H-S respectively. In any

case, the latter sums can be shown to be independent of the basis, and the value tr(A)

is usually called matrix trace of the operator A. Indeed, let {un}n>0 and {en}n>0 be
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orthonormal bases of a Hilbert space. Then,
∞∑
n=0

〈Aen, en〉 =
∞∑
n=0

〈
A

( ∞∑
i=0

〈en, ui〉ui

)
,

∞∑
j=0

〈en, uj〉uj

〉

=
∞∑
n=0

〈 ∞∑
i=0

〈en, ui〉Aui,
∞∑
j=0

〈en, uj〉uj

〉

=
∞∑

i,j=0

〈Aui, uj〉
∞∑
n=0

〈en, ui〉〈uj , en〉

=
∞∑

i,j=0

〈Aui, uj〉 〈uj , ui〉

=
∞∑
i=0

〈Aui, ui〉

A nice introduction to these topics may be found in [6, §18]. Among the main pro-

perties of Hilbert-Schmidt operators outstands that they constitute a sub-ideal of

the ideal of compact operators. Moreover, an operator is nuclear if and only of it

is the product of two Hilbert-Schmidt operators. Both nuclear and Hilbert-Schmidt

operators are complete Banach operator ideals when endowed with the appropriate

norms. In the case of nuclear operators, the matrix trace is also absolutely summable

and it is related to the spectral trace of the operator. The spectral trace of an operator

is the sum of its eigenvalues repeated according to their algebraic multiplicity. Among

the first calculated matrix traces we find those of integral operators with kernel. For

each function K in L2([0, 1]2), the integral operator with kernel K is

(JKf) (x) =
∫ 1

0
K(x, t)f(t) dt for each f ∈ L2[0, 1].

Applying Fubini’s Theorem, it follows from the last definition that the iterate JnK of

an integral operator with kernel K, is again an integral operator JKn with kernel

Kn(x, t) =
∫

[0,1]n−1

K(x, t1)K(t1, t2)· · ·K(tn−2, tn−1)K(tn−1, t) dt1, · · ·dtn−1 (1.3.1)

for each n > 2. Integral operators with kernel are known to be Hilbert-Schmidt

operators, see for instance [16, pp. 18–19], what implies that JnK are nuclear operators

for each kernel K in L2([0, 1]2) and each n > 2.

It was in 1909 that J. Mercer stated his classical Theorem, see for instance [57],

from which automatically outcomes the following.

Mercer’s Theorem 1.3.1. Let JK be an integral operator with Hermitian positive

semi-definite kernel K in L2([0, 1]2). Then,

tr(JK) =
∫ 1

0
K(x, x) dx.
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The first results relating traces and spectra of nuclear operators were stated with

the extra condition of positivity. The full theorem is due to Lidskii.

Lidskii’s Theorem 1.3.2. If the operator A is nuclear, then its matrix trace coincides

with its spectral trace:
∞∑
j=1

〈Aej , ej〉 =
∑
i

λi(A),

where {en}n>1 is an arbitrary orthonormal basis in H and λi(A) are the eigenvalues

of the operator A.

Lidskii’s Theorem is one of the tops of a lot of works involving variational estimates

of the spectrum of a compact operator and that is spotlighted by results of Hilbert,

H. Weyl, Horn, Grothendieck and some others, see [45].

In light of Lidskii’s Theorem, when dealing with nuclear operators we will not

distinguish matrix and spectral traces, that will be denoted the same, tr.

Now, since we could not find an appropriate reference for it, we prove an explicit

formula for the trace of a product of integral operators with kernel, that belongs to

the folklore of the theory. As we have said, such products are nuclear operators, what

will be essential in the proofs. Before we get to the general version of the result, we

need some lemmas.

Lemma 1.3.3. Let A be a nuclear operator acting on the infinite dimensional sepa-

rable Hilbert space H and let Pn be an increasing sequence of orthogonal projections

such that
⋃
Pn(H) is dense in H. Then

tr(A) = lim
n→∞

tr(PnAPn).

Proof. It is standard that putting together the orthonormal bases obtained from the

spaces Pn(H) 	 Pn−1(H), each of them denoted by {en1 , . . . , enmn
}, we end up with a

basis of the whole space H. Now, since A is nuclear, the following limit exist and is

finite.

lim
n→∞

tr(PnAPn) = lim
n→∞

n∑
l=1

mn∑
k=1

〈Aelk, elk〉 =
∞∑
l=1

mn∑
k=1

〈Aelk, elk〉 = tr(A).

Now we prove a formula for the trace of a nuclear integral operator with continuous

kernel.
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Lemma 1.3.4. Let K be in C([0, 1]2) such that the associated integral operator JK is

nuclear. Then

tr(JK) =
∫ 1

0
K(x, x) dx.

Proof. In order to apply Lemma 1.3.3, for each natural entire n > 0 we take a regular

partition of the unit interval of diameter 2−n. Each of the segments generated by the

nth partition will be denoted by Ink , 1 6 k 6 2n, and enk will stand for the normalized

characteristic function 2n/2χnk of the segment Ink , where again k runs from 1 to 2n.

Now, for each n, consider the space span{en1 , . . . , en2n} and its associated orthogonal

projection Pn. As it is well known, span{enk : n > 0 and k = 1, . . . , 2n} is dense in

L2[0, 1]. Therefore we can apply Lemma 1.3.3.

tr(JK) = lim
n→∞

tr(PnJKPn)

= lim
n→∞

2n∑
k=1

〈JKenk , enk〉

= lim
n→∞

2n∑
k=1

∫ 1

0

∫ 1

0
K(x, t)enk(t) dt e

n
k(x) dx

= lim
n→∞

2n
2n∑
k=1

∫
In
k×I

n
k

K(x, t) dt dx.

Since K in continuous on the compact set [0, 1]2, it is uniformly continuous. Therefore,

for each natural n and each 1 6 k 6 2n, we find at least a point (xnk , t
n
k) in Ink × Ink

such that

lim
n→∞

2n
2n∑
k=1

∫
In
k×I

n
k

K(x, t) dt dx = lim
n→∞

2n
2n∑
k=1

2−2nK(xnk , t
n
k)

= lim
n→∞

2−n
2n∑
k=1

K(xnk , t
n
k).

To finish, we know that by uniform continuity of the kernel K, it is possible to choose

points rnk in each Ink such that for a given ε > 0 and each n big enough, we have that
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|K(xnk , t
n
k)−K(rnk , r

n
k )| < ε. Putting all together we can compute de limit above.

tr(JK) = lim
n→∞

2−n
2n∑
k=1

K(xnk , t
n
k)

= lim
n→∞

(
2−n

2n∑
k=1

K(rnk , r
n
k ) + 2−n

2n∑
k=1

K(xnk , t
n
k)−K(rnk , r

n
k )

)

=
∫ 1

0
K(x, x) dx,

where in the last equality we have used the definition of the Riemann integral.

A straightforward consequence of the last Lemma is,

Corollary 1.3.5. Given K1, . . . ,Kn in C([0, 1]2), n > 2, let JK be the integral opera-

tor with kernel K, defined by JK ≡ JK1 · · ·JKn. Then

tr(JK) =
∫

[0,1]n
K1(x1, x2)K2(x2, x3) · · ·Kn−1(xn−1, xn)Kn(xn, x1) dx1 · · · dxn.

(1.3.2)

Proof. Using formula (1.3.1), we get that

K(x, t) =
∫

[0,1]n−1

K1(x, x2)K2(x2, x3) · · ·Kn−1(xn−1, xn)Kn(xn, t) dx2 · · · dxn,

is a continuous function in C[0, 1]2. Moreover, since an operator is nuclear if and only

if it is the product of two Hilbert-Schmidt operators, we know that JK is nuclear. It

just rests to use Lemma 1.3.4.

We need just one more lemma to prove the general formula for traces of integral

operators with kernel.

Lemma 1.3.6. For each n > 2, the functional that maps the n-tuple (K1, . . . ,Kn)

from
(
L2[0, 1]2

)n to the trace of JK1 · · ·JKn, is a bounded n-linear functional.

Proof. This proof consist in recalling some known facts. Observe that since n > 2,

the product operator JK1 · · ·JKn is always a nuclear operator. Now, the following

three mappings are bounded when the respective spaces are endowed with the norms

that makes them complete. Namely, the trace norm in N and the Hilbert-Schmidt

norm in H-S. This can be found in [6] and partially in [16]. First, the mapping

that takes a function K in L2[0, 1]2 to the associated Hilbert-Schmidt operator JK in

H-S is a linear isometry. Second, the mapping that takes an n-tuple (T1, . . . , Tn) in

(H-S)n to its product T1 · · ·Tn in N is an n-linear contraction. Finally, the mapping

denoted by tr, that takes each operator in N to its trace in C, is a continuous linear

functional.
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We are ready to state and prove the formula for the trace of a product of integral

operators with kernels in L2([0, 1]2).

Theorem 1.3.7. Given K1, . . . ,Kn in L2([0, 1]2), n > 2, let JK be the integral opera-

tor with kernel K, defined by JK ≡ JK1 · · ·JKn. Then

tr(JK) =
∫

[0,1]n
K1(x1, x2)K2(x2, x3) · · ·Kn−1(xn−1, xn)Kn(xn, x1) dx1 · · · dxn.

(1.3.3)

Proof. First, parallel arguments to those of formula (1.3.1) suffices to see that JK is

well defined as an integral operator with kernel

K(x, t) =
∫

[0,1]n−1

K1(x, x2)K2(x2, x3) · · ·Kn−1(xn−1, xn)Kn(xn, t) dx2 · · · dxn.

Moreover, the kernel K evaluated on the diagonal elements of [0, 1]2 is absolutely

integrable, that is, K(x, x) is in L1[0, 1]. To see this, it suffices to show that given M

and N in L2[0, 1], we have that ∫ 1

0
M(x, s)N(s, t) ds

belongs to L2[0, 1]2. Indeed,∥∥∥∥∫ 1

0
M(x, s)N(s, t) ds

∥∥∥∥2

2

=
∫ 1

0

∫ 1

0

∣∣∣∣∫ 1

0
M(x, s)N(s, t) ds

∣∣∣∣2 dx dt
6
∫ 1

0

∫ 1

0

∫ 1

0
|M(x, s)|2 ds

∫ 1

0
|N(s, t)|2 ds dx dt

=
∫

[0,1]2
|M(x, s)|2 ds dx

∫
[0,1]2

|N(s, t)|2 ds dt

= ‖M‖2
2‖N‖2

2.

Therefore, a finite induction is enough to prove thatK(x, t) is in L2[0, 1]2, and Hölder’s

inequality lays that K(x, x) is in L1[0, 1]. Thus we have that (1.3.3) defines a bounded

linear functional on
(
L2[0, 1]2

)n, that may be written

tr(JK) =
∫ 1

0
K(x, x) dx.

By Corollary 1.3.5, the latter functional coincides with the trace functional on the

space
(
C[0, 1]2

)n, which is dense in
(
L2[0, 1]2

)n. Therefore, by Lemma 1.3.6 we

have that formula (1.3.3) is the only possible extension of the trace functional to(
L2[0, 1]2

)n.
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1.4 Zeros of analytic functions

In order to obtain several properties of the spectrum of composition Volterra operators,

we establish a relation between the zeros of an entire function and the named spectrum.

Once this is done, the more we can say about the growth, distribution or geometry

of the zeros of the entire function, the more we will know about the spectrum of our

operators. For this reason, we use several classical results that deal with the relation

between the growth of an entire function and the distribution of its zeros, all of them

cited in the first chapter of the book by B. Ja. Levin [29].

It is known that given an entire function f(z), the growth rate of

M(f, r) = max
|z|=r

|f(z)|

exceeds the growth of all polynomials. Therefore, functions of the kind

er
k

with k > 0

are used in order to have an scale of growth. Then, if an entire function satisfies

asymptotically the inequality

M(f, r) < er
k

for a positive constant k, then we say that f is of finite order ρ(f). The most extended

definition of the order of an entire function f is

ρ(f) = lim
r→∞

ln lnM(f, r)
ln r

.

Among the entire functions with the same order ρ, we discriminate their growth rate

by using the finer quantity,

τ(f) = lim
r→∞

lnM(f, r)
rρ

.

The value τ(f) is called type of the entire function f . If τ = 0 the function is said to

be of minimal type, if 0 < τ <∞ of normal type, and τ = ∞ of maximal type. If the

order ρ of an entire function is one, then its type is called exponential type.

One of the main aims of the study of entire functions is to understand the relation

between the order of growth of a given entire function and the distribution of its zeros.

The first milestone of such study is the Weierstrass representation of entire functions

as infinite products. Indeed, given n arbitrary points of the complex plane C, it is easy

to produce a monic polynomial of degree n, as a product of n monomials, with zeros

at the prescribed points. Following this idea, for each moduli increasing sequence of
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points {an} in C, all different from zero and accumulating just at infinity, we can

construct the infinite product

Π(z) =
∞∏
n=1

G

(
z

an
; pn

)
,

in which

G(u ; p) = (1− u)eu+
u2

2
+···+up

p , G(u ; 0) = 1− u

and {pn} is an arbitrary sequence of distinct natural numbers. For instance pn = n,

n > 1.

Since these products depend on the choice of {pn} they are not unique, but at least

they can be shown to define entire functions that just vanish at {an}. Nonetheless,

the infinite product representation above may be improved just by imposing to the

sequence of zeros {an} that the sum

∑ 1
|an|s

(1.4.1)

converges with the help of the positive exponent s. In such a case, if we let p be the

smallest integer such that p+ 1 can replace s in the display above, then the so called

canonical product

Π(z) =
∞∏
n=1

G

(
z

an
; p
)
,

is well defined as an entire function, and p is call the genus of the canonical product.

Notice that each sequence of zeros {an} satisfying the summability condition (1.4.1)

produces a unique genus and therefore a unique canonical product.

It has appeared at last a clear relation between the growth of a entire function

and the ‘density’ of its zeros. The product representation shows the importance of

measuring the ‘density’ of a sequence of points {an} on C, all different from zero,

with no finite limit points. One of the measures of such density is the convergence

exponent of the sequence {an}, in symbols s({an}), and is defined as the infimum of

c > 0 for which
∞∑
n=0

1
|an|c

is finite. Observe that s({an}) might be both zero or infinity. We must precise here

that when measuring the convergence exponent of a sequence of points converging to

zero, with no risk of confusion, we use the same definition but replacing the sum of

the inverses by the sum of the elements in the sequence.

The following theorem is due to Borel [29, p. 30] and it provides control on the

order of a canonical product, means the convergence exponent of its sequence of zeros.
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Borel’s Theorem 1.4.1. The order ρ of a canonical product

Π(z) =
∞∏
n=1

G

(
z

an
; p
)

does not exceeds the convergence exponent s of the sequence {an}.

It is a standard result that both the type and the order of the product of two entire

functions are those of the factor with larger ones. The latter fact along with Borel’s

Theorem lays one of the most classical results in the theory of entire functions,

Hadamard’s Theorem 1.4.2. The entire function f(z) of finite order ρ can be

represented in the form

f(z) = zmeP (z)
ω∏
n=1

G

(
z

an
; p
)

ω 6 ∞,

where an are the nonzero roots of f(z), p 6 ρ, P (z) is a polynomial whose degree q

does not exceed ρ, and m is the multiplicity of the zero at the origin.

Now we look for results providing control on the amount of zeros that a holomor-

phic function can have in a circle or radius r.

Jensen’s Theorem 1.4.3. Let f(z) be holomorphic in a circle of radius r with center

at the origin, and f(0) 6= 0. Them∫ r

0

nf (t)
t

dt =
1
2π

∫ 2π

0
ln |f(reiθ)| dθ − ln |f(0)|

where nf (t) is the number of zeros of f(z) in the circle |z| < t.

Jensen’s Theorem provides control on the growth of the zero-counting function of

a holomorphic function. The following Lemma is, in words of Levin, an important

estimate for the number of zeros of f(z) in a circle. [29, p. 15].

Jensen’s Lemma 1.4.4. If f(z) is holomorphic in the circle

|z| 6 er

and |f(0)| = 1, then

nf (r) 6 lnMf (er).

As a straightforward consequence of Jensen’s Lemma, we have

Theorem 1.4.5. The convergence exponent of the zeros of an arbitrary entire function

does not exceed its order.
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The only tricky step of the proof is to realize that one may consider functions with

f(0) = 1, just replacing f by

f̃(z) = n!z−n
f(z)
f (n)(0)

,

where n is the order of the possible zero at zero. Notice that f̃ keeps the same order

and convergence exponent for its zeros.

Remark. A direct consequence of Borel’s Theorem and Theorem 1.4.5 is that for

canonical products the convergence exponent of the zeros is equal to the order of the

function.

The maximum principle states that a function that is holomorphic in a domain and

continuous on its closure, attains the maximum value of its modulus at a boundary

point. This extremely useful result was extended by E. Phragmén and E. Lindelöf

to holomorphic functions with controlled growth at some discontinuity points at the

boundary of the domain, and even to domains with infinity at its boundary. Next

theorem is a consequence of the Phragmén-Lindelöf Theorem, [29, Theorem 22, p. 50].

Theorem 1.4.6. Let the function f(z) be holomorphic inside an angle of opening

π/α and continuous on the boundary. Assume that on the sides of the angle

|f(z)| 6 M

and that the order ρ of the function f(z) is less than α. Then

|f(z)| 6 M

throughout the angle.

Now, we are ready to begin the study of composition Volterra operators.



Chapter 2

Basic Theory of composition

Volterra operators

For each Lebesgue measurable self-map ϕ of the unit interval [0, 1], the composition

Volterra operator on Lp[0, 1], 1 6 p 6 ∞, is defined as

(Vϕf)(x) =
∫ ϕ(x)

0
f(t) dt.

If ϕ is the identity map, the operator Vϕ becomes the classical Volterra operator,

which is simply denoted by V . There are several ways to see that Vϕ acts compactly

on Lp[0, 1] for 1 6 p 6 ∞. For instance, let Cϕ denote the operator that to each

function f assigns the function f ◦ϕ. Clearly, Vϕ = CϕV and, although in general Cϕ
may be unbounded on Lp[0, 1], 1 6 p < ∞, it is always bounded from L∞[0, 1] into

itself. Since V from Lp[0, 1] into L∞[0, 1] is compact, see [5, p. 44], it follows that Vϕ
acting on Lp[0, 1] is compact.

The literature on composition Volterra operators is very scarce. Indeed, it reduces

to a few references, see the works by Whitley [56] and Tong [54], and the note by

Lyubic [30]. One of the reasons seems to be the lack of a satisfactory formula for

the iterates of these operators. As will be seen along this work, this problem may be

overcome in a suitable way.

In Section 2.1, we provide the most basic facts about composition Volterra oper-

ators. In particular, we present a shorter proof of the fact that Vϕ is quasi-nilpotent

if and only if ϕ(x) 6 x a.e., that was independently proved in [56] and [54]. Thus the

most natural set of symbols, whose spectrum is other than the zero point, are those

for which ϕ(x) > x. The quasi-nilpotency criterion will be derived from a character-

ization of the quasi-nilpotency of Volterra kernel operators in terms of their kernels,

13
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which is of an independent interest. The proof is based on Lidskii’s Theorem about

traces and the relation between the traces of the powers and the spectrum of a nuclear

operator. We also present some elementary results about the formula for the adjoint,

norms and the distance to quasi-nilpotent operators. In Subsection 2.1.5, to motivate

our study of the spectra of composition Volterra operators, we provide some examples

of symbols ϕ in which we can exhibit explicitly the eigenvalues and eigenfunctions of

Vϕ.

In Section 2.2, by means of Krĕın-Rutman’s Theorem we show that if ϕ(x) > x on

a set of positive Lebesgue measure, then the spectral radius is a positive eigenvalue

and corresponding to it there is a non-negative eigenfunction. Sharp upper and lower

bounds are provided for the spectral radius. As a straightforward consequence, we

get a much simpler characterization of quasinilpotent composition Volterra operators

when the symbol ϕ is increasing. Using elements of the theory of totally positive

matrices, we show that if ϕ is increasing then all eigenvalues of Vϕ are real and non-

negative. For general symbols it is always symmetric with respect to the real line.

2.1 Characterization of Quasi-nilpotency and basic for-

mulas

In this section, we prove the most basic facts about the spectrum of composition

Volterra operators. We also present the formula for the adjoint, estimates of the norm

and of the distance of Vϕ to quasi-nilpotent operators.

2.1.1 Quasi-nilpotent integral operators with positive kernel

An operator is quasi-nilpotent if σ(T ) = {0}, or equivalently, the spectral radius

r(T ) = 0. Independently, Whitley [56] and Tong [54] proved that a composition

Volterra operator is quasi-nilpotent if and only if the set {x ∈ [0, 1] : ϕ(x) > x}
has zero Lebesgue measure. This theorem can be derived from our next result that

characterizes quasi-nilpotent integral operators with kernel. For each function K in

L2([0, 1]2), the integral operator with kernel K is

(JKf) (x) =
∫ 1

0
K(x, t)f(t) dt for each f ∈ L2[0, 1].

The operator JK is always a Hilbert–Schmidt operator, see [16, pp. 18–19], that

is,
∑∞

n=0 ‖JKen‖2 is finite for each orthonormal basis {en} of L2[0, 1]. Composition

Volterra operators are integral operators with kernel. Indeed, if ϕ is a measurable
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self-map of [0, 1], then Vϕ = JKϕ where

Kϕ(x, t) =

{
1, if t 6 ϕ(x);

0, if t > ϕ(x).

Thus, in particular, Vϕ is always Hilbert-Schmidt. Observe that Kϕ is non-negative.

Recall that a bounded operator on L2[0, 1] is said to be nuclear if
∑∞

n=0〈Ten, en〉
converges for each orthonormal basis {en}. For nuclear operators the latter sum does

not depend on the orthonormal basis {en} and is called the trace of T which is denoted

by trT , see 1.3 or [45]. Tong [54] also provided a characterization of quasi-nilpotent

integral operators in terms of the existence of certain measurable sets. The following

theorem provides a simpler characterization only in terms of the kernel.

Theorem 2.1.1. Let K ∈ L2([0, 1]2) be non-negative. Then the integral operator with

kernel K is quasi-nilpotent if and only if

K(t1, t2)K(t2, t3)· · ·K(tn−1, tn)K(tn, t1) (2.1.1)

vanishes a.e. on [0, 1]n for each n > 2.

Proof. Since the corresponding integral operator JK is Hilbert-Schmidt, we find that

JnK is nuclear for each n > 2. As a consequence of Theorem 1.3.7 we have,

trJnK =
∫

[0,1]n
K(t1, t2)K(t2, t3)· · ·K(tn−1, tn)K(tn, t1) dt1, · · ·dtn for each n > 2.

Since K is non-negative, it follows that tr JnK = 0 if and only if the integrand in the

above display vanishes a.e. on [0, 1]n. By Lidskii’s Theorem, see 1.3.2 or [45, p. 331],

for instance,

trJnK =
∞∑
m=0

(λm(JK))n, for each n > 2.

If there is n > 2 such that the function in (2.1.1) does not vanish a.e. on [0, 1],

then trJnK 6= 0 and, therefore, the above display implies that JK must have non-zero

eigenvalues, or what is the same, JK is not quasi-nilpotent.

Conversely, if for each n > 2 the function in (2.1.1) vanish a.e., then trJnK = 0 for

each n > 2. It is well known that the eigenvalues of a nuclear operator on a Hilbert

space are uniquely determined by the traces of the powers of the operator. Thus

σ(J2
K) = {0} and, therefore, the spectrum σ(JK) = {0}.

In what follows, the Lebesgue measure is denoted by µ.

Corollary 2.1.2. Let ϕ be a measurable self-map of [0, 1]. Then Vϕ is quasi-nilpotent

if and only if ϕ(x) 6 x a.e.
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Proof. First, assume that ϕ(x) 6 x a.e. on [0,1]. Without loss of generality we may

assume that ϕ(x) 6 x for 0 6 x 6 1. In such a case, the function in (2.1.1) for

K = Kϕ vanishes at each point in [0, 1]n with pairwise different components and

therefore vanishes a.e. By Theorem 2.1.1, Vϕ is quasi-nilpotent.

Conversely, assume that ϕ(x) > x holds on a set of positive measure. Take ε > 0

such that A = {x ∈ (0, 1) : ϕ(x) > x+ ε} has positive measure and let x0 be a density

point of A. It is easy to see that (x0, x0) is a density point of {(t1, t2) ∈ [0, 1]2 :

Kϕ(t1, t2)Kϕ(t2, t1) = 1}. Hence, upon applying Theorem 2.1.1, for K = Kϕ and

n = 2, we see that Vϕ is not quasi-nilpotent.

Remark. Prof. P. Ahern provided a proof of Corollary 2.1.2 which is different of

those in Whitley [56], Tong [54] and the one above. The proof for the sufficiency

provided by Prof. P. Ahern, is essentially the same as in Whitley [56], but his proof

of the necessity consists on an elegant reduction to Gronwall’s inequality. Namely,

assume the conditions of Corollary 2.1.2 and let λ be a non-null complex number and

f be a non-trivial function in L2[0, 1] satisfying the equation

(Vϕf)(x) = λf(x).

Then we have,

|f(x)| = 1
|λ|

∣∣∣∣∣
∫ ϕ(x)

0
f(t) dt

∣∣∣∣∣ 6 1
|λ|

∫ x

0
|f(t)| dt. (2.1.2)

Now let the function g be defined as

g(x) =
∫ x

0
|f(t)| dt

and observe that from (2.1.2), we deduce

g′(x)− 1
|λ|
g(x) 6 0.

Let us now define the function h(x) = e−x/|λ|g(x), which satisfies: h(0) = g(0) = 0,

h(x) > 0 and h′(x) 6 0. Therefore h ≡ 0, hence g ≡ 0 and f ≡ 0, what is a

contradiction.

Corollary 2.1.2 along with the decomposition theorem 2.2.8 is the reason why the

symbols satisfying ϕ(x) > x are the most interesting ones in connection with the

spectrum.



2.1. CHARACTERIZATION OF QUASI-NILPOTENCY 17

2.1.2 The adjoint of Vϕ and the kernels of Vϕ and V ?
ϕ

If ϕ is increasing, the adjoint of Vϕ is unitarily similar to a composition Volterra

operator. Indeed, for an increasing self-map ϕ of [0, 1], we may define

ϕ−1(x) =

{
sup{y : ϕ(y) < x}, if x > ϕ(0);

0, otherwise.

Clearly, ϕ−1 is also increasing and for f in Lp[0, 1], 1 6 p < ∞, and g in Lq[0, 1],

where 1/p+ 1/q = 1, we have∫ 1

0
(Vϕf)(x)g(x) dx =

∫ 1

0

∫ ϕ(x)

0
f(t)g(x) dt dx =

∫ 1

0

∫ 1

ϕ−1(t)
f(t)g(x) dx dt.

Hence, the adjoint of Vϕ is

(V ?
ϕ f)(x) =

∫ 1

ϕ−1(x)
f(t) dt. (2.1.3)

Now, consider the involutive isometry defined by (Uf)(x) = f(1− x). Then UV ?
ϕU =

V
eϕ, where ϕ̃(x) = 1− ϕ−1(1− x). Thus

σ(V
eϕ) = σ(Vϕ).

Note also that since the set of real valued functions is invariant with respect to

any composition Volterra operator, formula (2.1.3) for the Banach space adjoint of Vϕ
gives for p = 2 the Hilbert space adjoint as well.

Remark 1. Although for continuous increasing ϕ the function ϕ̃ may fail to be

continuous, for a continuous strictly increasing ϕ with ϕ(0) = 0 and ϕ(1) = 1, the

map ϕ−1 is the inverse of ϕ and ϕ̃ is again continuous and strictly increasing with

ϕ̃(0) = 0 and ϕ̃(1) = 1.

Remark 2. For decreasing ϕ it is possible to define ϕ−1(x) = sup{y : ϕ(y) > x} if

x < ϕ(0) and 0 otherwise. Now, the adjoint is a composition Volterra operator

(V ?
ϕ f)(x) = (Vϕ−1f)(x) =

∫ ϕ−1(x)

0
f(t) dt.

Next proposition characterizes when kerVϕ is trivial. Recall that the essential

range of a measurable self-map ϕ of [0, 1] is

ess (ϕ) =
{
y ∈ R such that µ{t : |y − ϕ(t)| < ε} > 0 for each ε > 0

}
.

Proposition 2.1.3. Let ϕ be a measurable self-map of [0, 1]. Then kerVϕ is the null

space if and only if the essential range of ϕ is [0, 1]. Furthermore, kerVϕ is infinite

dimensional if and only if kerVϕ 6= {0}.
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Proof. It is clear that f belongs to kerVϕ if and only if

F (x) =
∫ x

0
f(t)dt

vanishes on ess (ϕ). If ess (ϕ) = [0, 1], it follows that F vanishes on the whole interval

[0, 1] and, therefore, so does f . Conversely, assume that ess (ϕ) 6= [0, 1]. Since ess (ϕ)

is closed, the complement [0, 1]\ess (ϕ) contains an interval (a, b). It is straightforward

to see that if f belongs to Lp[0, 1], then supp (f) is contained in [a, b] and∫ b

a
f(t) dt = 0,

then Vϕf is the null function. It follows that kerVϕ is infinite dimensional as soon as

ess (ϕ) is not the whole interval [0, 1]. The result is proved.

Corollary 2.1.4. Let ϕ be a continuous self-map of [0, 1]. Then kerVϕ is the null

space if and only if ϕ is onto.

2.1.3 Norms

The norm of composition Volterra operators can be easily estimated. In many situa-

tions the norm in L2[0, 1] can be computed exactly. First, we prove

Proposition 2.1.5. Let ϕ and ψ be measurable self-maps of [0, 1]. Then

(i) ‖Vϕ − Vψ‖p 6
∥∥|ϕ− ψ|p−1

∥∥1/p

1
6 1 for 1 6 p <∞.

(ii) ‖Vϕ − Vψ‖∞ = ‖ϕ− ψ‖∞ for p = ∞.

Proof. For p = 1 the formula is trivial. For f in Lp[0, 1], 1 < p < ∞, we set 1/q =

1− 1/p and apply Hölder’s inequality:

‖ (Vϕ − Vψ) f‖pp =
∫ 1

0

∣∣∣∣∣
∫ ϕ(x)

ψ(x)
f(t) dt

∣∣∣∣∣
p

dx 6
∫ 1

0

∣∣∣∣∣
∫ ϕ(x)

ψ(x)
|f(t)|p dt

∣∣∣∣∣
∣∣∣∣∣
∫ ϕ(x)

ψ(x)
1 dt

∣∣∣∣∣
p/q

dx.

Hence,

‖ (Vϕ − Vψ) f‖pp 6 ‖f‖pp
∫ 1

0
|ϕ(x)− ψ(x)|p−1dx = ‖f‖pp

∥∥|ϕ− ψ|p−1
∥∥

1
.

For f in L∞[0, 1], we have

‖ (Vϕ − Vψ) f‖∞ = sup
06x61

∣∣∣∣∣
∫ ϕ(x)

ψ(x)
f(t) dt

∣∣∣∣∣ 6 ‖f‖∞‖ϕ− ψ‖∞.

On the other hand, for the constant function 1, the last quantity above is attained.

The result is proved.
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Taking ψ = 0 in Proposition 2.1.5, we obtain,

Corollary 2.1.6. Let ϕ be a measurable self-map of [0, 1]. Then ‖Vϕ‖p 6
∥∥ϕp−1

∥∥1/p

1

for 1 6 p < ∞ and ‖Vϕ‖∞ = ‖ϕ‖∞ for p = ∞. In particular, Vϕ is always a

contraction.

For p = 2, one may proceed as for the Volterra operator, see [15, p. 300]. Indeed,

V ?
ϕVϕ is compact, self-adjoint and positive. In particular, its eigenvalues are non-

negative and the norm of Vϕ coincides with the square root of the greatest eigenvalue

of V ?
ϕVϕ. It is also possible to consider VϕV ?

ϕ that shares with V ?
ϕVϕ its eigenvalues.

The latter makes simpler the computations in some of the examples below.

Suppose that ϕ in C2[0, 1] is strictly increasing with ϕ(0) = 0 and ϕ(1) = 1. To

find the eigenvalues, one has to solve the integral equation

(VϕV ?
ϕ f)(x) =

∫ ϕ(x)

0

∫ 1

ϕ−1(t)
f(s) ds dt = λf(x).

Differentiating twice the above display, one arrives to a second order differential equa-

tion for the eigenfunctions

λϕ′(x)f ′′(x)− λϕ′′(x)f ′(x) + (ϕ′(x))2f(x) = 0, (2.1.4)

which is to be solved with the boundary conditions f(0) = 0 and f ′(1) = 0. If one

considers V ?
ϕVϕ, it is enough to replace ϕ by ϕ−1 in the above equation. The boundary

conditions are then f(1) = 0 and f ′(0) = 0.

The norm of the Volterra operator, which is 2/π, is a special case of the example

below.

Example 2.1.7. Assume that ϕα(x) = xα with 0 < α <∞. Then ‖Vϕα‖2 is equal to

the square root of the greatest positive zero of

J−(1+α)−1

(
2(1 + α)−1α1/2λ−1/2

)
,

where J−(1+α)−1 is the Bessel function of the first kind and of order −(1 + α)−1.

Proof. In the present case, equation (2.1.4) becomes

λαxα−1f ′′(x) + λ(α− α2)xα−2f ′(x) + α2x2α−2f(x) = 0. (2.1.5)

Upon setting

g(t) = ((α+ 1)
√
λ/α t/2)−α/(1+α)f((α+ 1)

√
λ/α t/2)2/(1+α)),

t = 2
√
α/λ(α+ 1)−1x(α+1)/2

and ν = α/(α+ 1),
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we obtain, after some elementary computations, that g satisfies Bessel’s differential

equation

t2g′′(t) + tg′(t) +
(
t2 − ν2

)
g(t) = 0.

Since 0 < ν < 1, a linear independent system of solutions of the above equation is

{Jν(t), J−ν(t)}, where Jν denotes the Bessel function of the first kind and of order ν,

see [55, pp. 38–44], for instance. Therefore, the general solution of (2.1.5) is c0fλ,0 +

c1fλ,1, where c0 and c1 are constants and

fλ,j(x) = xα/2J(−1)jα/(α+1)

(
2
√
α

λ

x(α+1)/2

α+ 1

)
, j = 0, 1.

While fλ,0 vanishes at 0, the function fλ,1 does not, here fλ,1(0) is defined as the

limit at 0. Thus the boundary condition f(0) = 0 implies that the eigenfunctions are

fλ = fλ,0. Using that the Bessel functions satisfy xJ ′ν(x) + νJν(x) = xJν−1(x), see

[55, p. 45], it is elementary to check that

f ′λ(x) =
√
α/λxα−1/2J−(α+1)−1

(
2(α+ 1)−1

√
α/λx(α+1)/2

)
.

Thus imposing the boundary condition f ′(1) = 0, we obtain the eigenvalue equation

and the desired result follows.

Remark. Parallel arguments apply to a strictly decreasing self-map ϕ of [0, 1]. For

instance, if ϕ belongs to C2[0, 1] with ϕ(0) = 1 and ϕ(1) = 0, the differential equation

for the eigenvalues is (2.1.4) with the plus sign in the last term replaced by the

minus sign. In the computation of the norms, it is convenient to keep in mind that

‖Vϕ−1‖2 = ‖Vϕ‖2 for decreasing ϕ and ‖Vϕ‖2 = ‖V1−ϕ−1(1−x)‖2 for increasing ϕ.

2.1.4 The distance to the quasi-nilpotent operators

Let Qp denote the class of quasi-nilpotent operators in the class of bounded operators

on Lp[0, 1], 1 6 p 6 ∞. The distance from T to the quasi-nilpotent operators is

distp(T,Qp) = inf
Q∈Qp

‖T −Q‖p.

Now, Herrero [19] proved that dist2(T,Q2) 6 r(T )/2 for any compact operator T .

Since for a composition Volterra operator, the spectral radius does not depend on the

underlying space, r = r(T ) 6 ‖Vϕ‖p, 1 6 p 6 ∞, from Corollary 2.1.6, we have the

upper estimate

dist2(Vϕ,Q2) 6
1
2

inf
16p6∞

‖Vϕ‖p 6
1
2

inf
1<p<∞

‖ϕp−1‖1/p
1 .
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Below there is another estimate in terms of the part of the graph of ϕ which is over

the graph of the identity. As usual φ+ = max{φ, 0} and φ− = min{φ, 0}.

Proposition 2.1.8. Let ϕ be a measurable self-map of [0, 1]. Then, for 1 6 p < ∞,

we have

distp(Vϕ,Qp) 6
∥∥∥((ϕ(x)− x)+

)p−1
∥∥∥1/p

1
6 p−1/p

and dist∞ (Vϕ,Q∞) 6
∥∥(ϕ(x)− x)+

∥∥
∞ 6 1.

Proof. Since φ(x) = (ϕ(x) − x)− 6 0, it follows that ψ(x) = φ(x) + x 6 x. By

Corollary 2.1.2, the operator Vψ is quasi-nilpotent. Therefore,

distp(Vϕ,Qp) 6 ‖Vϕ − Vψ‖p.

Assume now that 1 6 p <∞. By Proposition 2.1.5 (i), we have

‖Vϕ − Vψ‖p 6
∥∥|ϕ− ψ|p−1

∥∥1/p

1
=
∥∥∥((ϕ(x)− x)+

)p−1
∥∥∥1/p

1
6 p−1/p,

where the last inequality follows from the elementary estimate (ϕ(x) − x)+ 6 1 − x.

For p = ∞, the result follows by applying Proposition 2.1.5 (ii).

2.1.5 The eigenfunctions of Vϕ. Examples

Before going into a deeper study of the spectrum of Vϕ, we present some examples of

symbols for which we can provide the eigenvalues and the eigenfunctions exactly.

We start by introducing the concept of generalized eigenvector. Let T be a bounded

operator acting on a Banach space B. Recall that λ is a normal eigenvalue of algebraic

multiplicity k of T if and only if B is the direct sum of T -invariant subspaces Bλ0 and Bλ1
such that dimBλ0 = k, the restriction of (T −λI) to Bλ0 is nilpotent and the restriction

of (T − λI) to Bλ1 is invertible. The spaces Bλ0 and Bλ1 are uniquely determined by T

and λ. Indeed,

Bλ0 =
∞⋃
m=1

ker (T−λI)m = ker (T−λI)k and Bλ1 =
∞⋂
m=1

(T−λI)m(B) = (T−λI)k(B).

The elements in Bλ0 are called generalized eigenvectors corresponding to the normal

eigenvalue λ. From the Jordan decomposition theorem, it follows that if λ is a normal

eigenvalue of T of algebraic multiplicity k and geometric multiplicity 1, then there is

f ∈ B for which (T − λI)kf = 0 and (T − λI)k−1f 6= 0 and for such f the space of

generalized eigenvectors corresponding to λ is

span {f, (T − λI)f, . . ., (T − λI)k−1f}.
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Remark. It is clear that if f in L1[0, 1] is a generalized eigenfunction of Vϕ, with ϕ a

measurable self-map of [0, 1], then f is automatically in L∞[0, 1] and, therefore, in all

the spaces Lp[0, 1], 1 6 p 6 ∞. Thus, the spectrum σ(Vϕ) as well as the generalized

eigenspaces corresponding to non-zero eigenvalues do not depend on the underlying

space. Consequently, all the statements concerning the spectra will be done in the

friendly confines of the Hilbert space L2[0, 1]. Observe also that if ϕ is a self-map of

[0, 1] of class Ck for some non-negative integer k, then the non-zero eigenvalues and

the corresponding generalized eigenvectors of Vϕ acting on L2[0, 1] coincide with those

of Vϕ acting on Ck[0, 1].

The next lemma provides a useful tool that guarantees we will have found all the

eigenvalues and eigenfunctions in our examples.

Lemma 2.1.9. Let T be a compact operator acting on an infinite dimensional Ba-

nach space. If a sequence of generalized eigenvectors of T corresponding to non-zero

eigenvalues has dense span, then this span contains all generalized eigenvectors of T

that correspond to non-zero eigenvalues.

Proof. Let {λk} be the finite or infinite sequence of all non-zero eigenvalues of T and

mk be the multiplicity of λk. Here we assume that λk 6= λn for k 6= n. Recall that Fred-

holm’s Alternative Theorem [5, 44] asserts that dim ker (T − λk)mk = dim ker (T ? −
λk)mk for each k, 〈f, g〉 = 0 for f in ker (T − λk)mk and g in ker (T ? − λn)mn with

k 6= n and the functionals in ker (T ? − λk)mk , separate points of ker (T − λk)mk .

Let L denote the dense span of a sequence of eigenvectors of T corresponding

to certain non-zero eigenvalues of T . Suppose that there is a non-negative integer

k such that ker (T − λk)mk is not contained in L. Consequently, there is y 6= 0 in

ker (T ?−λk)mk that vanishes on ker (T−λk)mk∩L and, of course, on ker (T−λn)mn∩L
for all n 6= k. Since

L =
⊕
n

(ker (T − λn)mn ∩ L) ,

we find that g vanishes on L, which contradicts the density of L.

In the following result we compute eigenfunctions and eigenvalues of Vϕ for ϕ(x) =

xα, 0 < α < 1.

Theorem 2.1.10. Assume that ϕ(x) = xα with 0 < α < 1. Then the eigenvalues of

Vϕ have algebraic multiplicity 1 and σ(Vϕ) = {(1− α)αn}n>0 ∪ {0}. Furthermore, for

each n > 0, the eigenfunction corresponding to (1−α)αn is fn(x) = xα/(1−α)pn(lnx),
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where

pn(x) = xn +
n∑
j=1

n!(1− α)jα(j2−j)/2

(n− j)!

(
j∏
l=1

1
1− αl

)
xn−j .

Moreover, the eigenfunctions {fn}n>0 span L2[0, 1].

Proof. If we denote an,j the j-th coefficient of pn, then an,n = 1 for every n and an,j

satisfy

an,j(αj − αn) = (1− α)αn−1(j + 1)an,j+1 for 0 6 j 6 n− 1.

From the above display, one sees that

pn(αt) = αnpn(t) + (1− α)αn−1p′n(t). (2.1.6)

Using (2.1.6) in the second equality below, we have

ϕ′(x)fn(ϕ(x)) =αx(2α−1)/(1−α)pn(α lnx)

=αx(2α−1)/(1−α)
(
αnpn(lnx) + (1− α)αn−1p′n(lnx)

)
=(1− α)αnf ′n(x).

Set fn(0) = 0. Since fn is absolutely continuous on [0, 1], we may integrate in the

above display from 0 to x to obtain Vϕfn = (1−α)αnfn, which means that each fn is

an eigenfunction of Vϕ corresponding to the eigenvalue (1− α)αn.

Now we prove that span {fn : n > 0} is dense. Since the operator of multiplication

by xα/(1−α) has dense range, it is enough to prove that {pn(lnx)}n>0 spans L2[0, 1].

The change of variables t = − lnx shows that this is equivalent to the fact that

{pn(−t)e−t}n>0 spans L2[0,∞), which follows by a standard argument.

Finally, Lemma 2.1.9 shows that span {fn : n > 0} coincides with the span of

all generalized eigenfunctions of Vϕ corresponding to non-zero eigenvalues. Hence, it

follows that σ(Vϕ) = {(1−α)αn}n>0∪{0} and the eigenvalues (1−α)αn have algebraic

multiplicity 1. The result is proved.

Theorem 2.1.11. Let ψ(x) = 1 − (1 − x)1/α with 0 < α < 1. Then the eigenvalues

of Vψ have algebraic multiplicity 1 and σ(Vψ) = {(1− α)αn}n>0 ∪ {0}. Furthermore,

for each n > 0, the eigenfunction of Vψ corresponding to (1− α)αn, is

fn(x) =
∞∑
k=0

(−1)k(1− α)kαnk

(α−1 − 1)· · ·(α−k − 1)
(1− x)

α−k−1−α−1

α−1−1 . (2.1.7)

In particular, the eigenfunctions of Vψ do not span L2[0, 1].
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Proof. Since Vψ is similar to V ?
ϕ , where ϕ(x) = xα, by Theorem 2.1.10, we find that

σ(Vψ) = σ(V ?
ϕ ) = σ(Vϕ) = {(1− α)αn}n>0 ∪ {0}

and the eigenfunctions have algebraic multiplicity 1. To obtain the eigenfunctions we

begin with α = 1/m, where m is an integer m > 2. Set

F (x) =
∫ x

0
f(t) dt

and suppose that F is analytic on a neighborhood of 1. Then

F (x) =
∞∑
n=0

an(1− x)n.

Thus if λ is an eigenvalue, then F (ψ(x)) = λF ′(x) implies that

∞∑
n=0

an(1− x)nm = −λ
∞∑
n=1

nan(1− x)n−1 = −λ
∞∑
n=0

(n+ 1)an+1(1− x)n.

Taking a0 = 1, one finds that (2.1.7) is true for α = 1/m. For α 6= 1/m, it consists on

a computation to check directly that the function fn also satisfies the eigenfunction

equation.

To prove that the eigenfunctions do not span L2[0, 1] observe that

span {fn : n > 0} ⊂ span
{

(1− x)
α−k−1−α−1

α−1−1 : k > 0
}
.

Since the sum of the inverses of the exponents in the monomials above is finite, by the

Müntz-Szász Theorem, see [43], it follows that the right-hand side above is different

from L2[0, 1]. The proof is complete.

Remark. Observe that in Theorem 3.2, or in Theorem 3.3, the ‘trace’ of Vϕ equals

to 1, independently of α, which will be just a trivial application of Theorem 3.1.26.

It is worth noting that Vϕ acting on L2[0, 1] can be self-adjoint, which holds if and

only if {(x, t) ∈ [0, 1]2 : t 6 ϕ(x)} is symmetric with respect to y = x up to a set

of plane Lebesgue measure zero. For instance, it follows that for ϕ increasing, the

operator Vϕ is self-adjoint just only in two cases: when ϕ ≡ 0, in which case Vϕ is the

zero operator, and when ϕ ≡ 1, in which case Vϕ is the orthogonal projection onto

the space of constant functions.

The class of decreasing ϕ’s for which Vϕ is self-adjoint is much richer. This class

contains, for instance, the strictly decreasing and onto self-maps ϕ of [0, 1] such that
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ϕ = ϕ−1. The simplest example is ϕ(x) = 1 − x. We shall compute explicitly the

eigenvalues and eigenfunctions of Vϕ. Unlike the previous examples, there are infinitely

many negative eigenvalues.

Example 2.1.12. Assume that ϕ(x) = 1 − x for 0 6 x 6 1. Then σ(Vϕ) =

{2(−1)n/(π(2n + 1))}n>0 ∪ {0}. Furthermore, the eigenvalues have algebraic multi-

plicity 1 and the corresponding sequence of eigenfunctions is {cos((2n+ 1)πx/2)}n>0.

Proof. The eigenvalue equation is easily checked. On the other hand, in [15, pb. 188],

Halmos proved that the sequence {
√

2 cos((2n+ 1)πx/2)}n>0 is an orthonormal basis

in L2[0, 1]. Thus, the eigenvalues have algebraic multiplicity 1 and there are no other

eigenvalues.

Observe that the norm of Vϕ in example above coincides with that of the Volterra

operator, see Example 2.1.7.

2.1.6 Cyclicity

Now, we will see examples of cyclic composition Volterra operators. Recall that an

operator T on a Banach space B is cyclic if there is f in B such that span {Tnf : n > 0}
is dense in B.

Proposition 2.1.13. Assume that ϕ(x) = xα with α > 0. Then φ(x) = xβ with

β > −1/p is cyclic for Vϕ acting on Lp[0, 1], 1 6 p <∞, if and only if 0 < α 6 1.

Proof. An elementary computation shows that

(V n
ϕ φ)(x) = cxβα

n+α−αn+1

1−α , for each n > 0,

where c 6= 0 depends only on n, α and β. Thus, the result follows from the Müntz-

Szász Theorem.

Observe that the statement of Proposition 2.1.13 above is still true if for p = ∞
we consider the space C0[0, 1] of continuous functions on [0, 1] vanishing at 0, endowed

with the supremum norm.

From Proposition 2.1.13 the constant function is not cyclic for Vϕ when ϕ(x) = xα

with α > 1. In contrast, the cyclicity of the constant function 1 for Vϕ is also possible

when ϕ(x) < x for 0 < x < 1. Indeed, in Section 5.1, it will be shown that the

eigenfunctions of Vϕ span L2[0, 1] if and only if 1 is a cyclic vector for Vψ, where

ψ(x) = 1 − ϕ(1 − x), see Theorem 5.1.1. Thus as corollaries of Theorems 2.1.10 and

2.1.11 and Proposition 2.1.13, we have



26 CHAPTER 2. BASIC THEORY

Corollary 2.1.14. Assume that α > 1. Then the constant function 1 is cyclic for

Vψ, where ψ(x) = 1− (1− x)1/α and is not cyclic for Vϕ, where ϕ(x) = xα.

2.2 Fundamental facts on the eigenfunctions of Vϕ

In this section, we begin the study of the eigenfunctions of Vϕ when ϕ(x) > x on a

set of positive measure.

2.2.1 The spectral radius as an eigenvalue

Krĕın-Rutman’s Theorem asserts that if a compact operator preserves the cone of

positive functions, then the spectral radius is an eigenvalue to which corresponds a

non-negative eigenfunction, see [26] or [31, Theorem 4.1.4]. Integral operators with

kernel is one of the most natural settings where Krĕın-Rutman’s Theorem applies. As

its immediate corollary, we have

Theorem 2.2.1. Assume that K in L2([0, 1]2) is non-negative. If the spectral radius

r(JK) is positive, then it is an eigenvalue of JK for which there is a non-negative

eigenfunction f in L2[0, 1].

The next result asserts that under suitable hypotheses the eigenfunction furnished

by Theorem 2.2.1 is strictly positive and all generalized eigenfunctions corresponding

to any other eigenvalue change their sign.

Theorem 2.2.2. Assume that K in L2([0, 1]2) is non-negative and the spectral radius

r = r(JK) > 0. Assume also that there is a continuous self-map ψ of [0, 1] with

ψ(x) > x for 0 < x < 1 and K(x, t) > 0 a.e. whenever 0 < t 6 ψ(x) 6 1. Then the

eigenfunction provided by Theorem 2.2.1 is strictly positive a.e. Furthermore, there are

no non-negative non-zero generalized eigenfunctions corresponding to an eigenvalue of

JK different from the spectral radius.

Proof. Without loss of generality, we may assume that ψ is strictly increasing and

ψ(0) = 0. Let f be the eigenfunction provided by Theorem 2.2.1. Since f is different

from zero, we see that α = min supp (f) < 1. Since K(x, t) > 0 for t 6 ψ(x), using

Fubini’s Theorem we have

f(x) =
1
r
(JKf)(x) =

1
r

∫ 1

0
K(x, t)f(t) dt > 0 a.e., whenever ψ−1(α) 6 x 6 1.

Thus ψ−1(α) > α and, therefore, α < 1 is a fixed point of ψ. Hence, α = 0 and the

above display implies that f(x) > 0 a.e.
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To prove the second statement of the theorem, first observe that under the in-

volutive isometry (Uf)(x) = f(1 − x) the operator J?K is similar to J
eK
, where

K̃(t, x) = K(1 − t, 1 − x). In particular, JK and J
eK

have the same spectral ra-

dius and K̃ as well as ψ̃(x) = 1 − ψ−1(1 − x) satisfy the same hypotheses as K and

ψ. Therefore, according to what is already proved, there is a positive a.e. function

h in L2[0, 1] such that J
eK
h = rh. Thus J?Kf = rf , where f(x) = h(1 − x) > 0 a.e.

Suppose now that a non-negative generalized eigenfunction g in L2[0, 1] corresponds

to an eigenvalue λ 6= r of JK . Then (JK − λI)ng = 0 for some positive integer n.

Therefore,

0 = (r − λ)−n〈(JK − rI + (r − λ)I)ng, f〉

= 〈g, f〉+
n∑
k=1

(r − λ)−kn!
k!(n− k)!

〈(JK − rI)kg, f〉

= 〈g, f〉+
n∑
k=1

(r − λ)−kn!
k!(n− k)!

〈g, (JK − rI)?kf〉.

Since J?Kf = rf , we have 〈g, f〉 = 0. Since f(x) > 0 a.e. and g(x) > 0, it follows that

g is the null function, which is a contradiction. The proof is complete.

The next corollary follows applying the previous theorem to JKϕ and Corol-

lary 2.1.2.

Corollary 2.2.3. Let ϕ be a measurable self-map of [0, 1] with µ{x : ϕ(x) > x} > 0.

Then r(Vϕ) > 0 is an eigenvalue for which there is a non-negative eigenfunction.

Furthermore, if ϕ is continuous and ϕ(x) > x for 0 < x < 1, then the eigenfunction

corresponding to the spectral radius is strictly positive and there are no non-negative

non-zero generalized generalized eigenfunctions corresponding to an eigenvalue differ-

ent from the spectral radius.

2.2.2 Estimates on the spectral radius

The next proposition provides a lower estimate on the spectral radius of Vϕ.

Proposition 2.2.4. Let ϕ be an increasing self-map of [0, 1]. Then,

r(Vϕ) > ‖(ϕ(x)− x)+‖∞.

Proof. If ϕ(x) 6 x, then by Corollary 2.1.2, we have r(Vϕ) = 0 and there is nothing

to prove. Thus assume that there is 0 6 x0 < 1 for which ϕ(x0) > x0. Then set

φ(x) = ϕ(x0)χ[x0,1](x) and observe that ϕ(x) > φ(x) for 0 6 x 6 1. Therefore, for
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positive f , we have V n
ϕ f > V n

φ f > 0 for each positive integer n. Since, by Krĕın-

Rutman’s Theorem, the spectral radius is determined by the positive functions, we

see that r(Vϕ) > r(Vφ). As ϕ(x0) − x0 is an eigenvalue of the rank one operator Vφ,

we find that r(Vφ) = ϕ(x0) − x0 and the result follows by just taking supremum of

ϕ(x)− x on {x ∈ [0, 1] : ϕ(x) > x}.

2.2.3 The dimension of ker (Vϕ − λI)

Lemma 2.2.5. Let ϕ be a continuous self-map of [0, 1] with ϕ(x) > x for 0 6 x 6 1.

Assume also that f in L2[0, 1] satisfies that Vϕf = λf for some λ 6= 0. Then f cannot

be orthogonal to the constant functions. Furthermore, if 0 < α 6 1 is a fixed point of

ϕ and max[0,α] ϕ 6 α, then either f(α) 6= 0 or f vanishes on [0, α].

Proof. The first statement of the lemma follows easily from the second one by just

taking α = 1. Indeed, if f is orthogonal to the constant functions, then

f(1) =
1
λ

∫ 1

0
f(t) dt = 0

and, therefore, f is the null function.

To show the second statement of the lemma, observe that f must be continuous.

Now, suppose that

f(α) =
1
λ

∫ α

0
f(t) dt = 0.

Let β be the minimum of t ∈ [0, α] for which f vanishes on [t, α]. If β = 0, there is

nothing to prove. Thus we may assume that 0 < β 6 α.

Case ϕ(β) = β. Since f(β) = 0 and f does not vanish on [β − ε, β] for 0 < ε < β,

there is a strictly increasing sequence {βn} in (0, β) such that βn tend to β as n tends

to ∞ and |f(βn)| = max[βn,β] |f | 6= 0. Since ϕ(β) = β and f(β) = 0, we have∫ β

0
f(t) dt = λf(β) = 0.

Hence,

|λ||f(βn)| =

∣∣∣∣∣
∫ ϕ(βn)

0
f(t) dt

∣∣∣∣∣ =
∣∣∣∣∣
∫ β

ϕ(βn)
f(t) dt

∣∣∣∣∣ 6 |β − ϕ(βn))|f(βn)|.

Thus, |λ| 6 |β − ϕ(βn)| for each positive integer n. Since ϕ(βn) tends to ϕ(β) = β,

we have λ = 0, which is a contradiction.

Case β < ϕ(β). Since ϕ is continuous and ϕ([0, α]) ⊆ [0, α], there is δ > 0 such that

β 6 ϕ(x) 6 α for β − δ 6 x 6 β. Since f vanishes on [β, α], we have

f(x) =
1
λ

∫ ϕ(x)

0
f(t) dt =

1
λ

∫ ϕ(β)

0
f(t) dt = f(β) = 0, for x ∈ [β − δ, β],
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which contradicts the minimality of β. The result is proved.

Corollary 2.2.6. Let ϕ be a continuous self-map of [0, 1] with ϕ(x) > x for 0 6 x 6 1.

Then each non-zero eigenvalue of Vϕ has geometric multiplicity 1.

Proof. Let f and g be linearly independent eigenfunctions corresponding to a non-

zero eigenvalue. Then, by Lemma 2.2.5, we have f(1) 6= 0 and g(1) 6= 0. Thus

h(x) = g(1)f(x)− f(1)g(x) is an eigenfunction with h(1) = 0 that corresponds to the

same eigenvalue. Thus h is null by Lemma 2.2.5, which is a contradiction.

Remark. It is worth mentioning that for increasing self-maps ϕ of [0, 1] we have

Vϕ + V ?
ϕ−1

= P,

where P is the orthogonal projection on the space of constant functions. For instance,

it can be used to prove the first statement of Lemma 2.2.5 for increasing self-maps ϕ

of [0, 1] with ϕ(x) > x.

In what follows, for any self-map ϕ of [0, 1] we denote by ϕ0 the identity map and

ϕn = ϕ ◦ ϕn−1 for each positive integer n.

Proposition 2.2.7. Let ϕ be a continuous self-map of [0, 1] with ϕ(x) > x for 0 <

x < 1 and non-constant on any subinterval. Then the support of each eigenfunction

of Vϕ corresponding to a non-zero eigenvalue is [0, 1].

Proof. Let f be different from zero such that Vϕf = λf for a complex number λ 6= 0.

Suppose that f vanishes on [a, b] with 0 6 a < b 6 1. The eigenvalue equation implies

that

F (x) =
∫ x

0
f(t) dt

vanishes on ϕ([a, b]) and, therefore, so does f = F ′, since the interval ϕ([a, b]) is non-

trivial. Upon iterating this argument, we find that f vanishes on ϕn([a, b]), which

contains the interval [min{ϕn(a), ϕn(b)},max{ϕn(a), ϕn(b)}] for every positive n. In

particular, for each positive integer n we have∫ ϕn(b)

0
f(t) dt = λf(ϕn−1(b)) = 0.

Since ϕ(x) > x for 0 < x < 1, the sequence {ϕn(b)} tends to 1. Thus the display above

implies that f is orthogonal to the constant functions, which contradicts Lemma 2.2.5

and the result follows.
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Remark. Using Proposition 2.2.7, it is not difficult to produce an example in which

0 6 α < 1 is a fixed point of ϕ and max[0,α] ϕ is not contained in [0, α], then the

conclusion in Lemma 2.2.5 is not true.

We shall express σ(Vϕ) in terms of the spectra of simpler composition Volterra

operators defined on subintervals of [0, 1]. For a measurable self-map ϕ of [0, 1], we

can consider

Sϕ = {y ∈ [0, 1] : max
[0,y]

ϕ 6 y}

and denote its boundary by ∂Sϕ. If ∂Sϕ has zero Lebesgue measure, then it induces an

orthogonal decomposition of L2[0, 1] in the obvious way. Indeed, since ∂Sϕ is closed,

we have

[0, 1] \ ∂Sϕ =
⋃
j∈J

Ij ,

where Ij are pairwise disjoint open intervals and J is countable. We clearly have

L2[0, 1] =
⊕
j∈J

L2(Ij).

Upon writing Ij = (aj , bj), j ∈ J , we see that {aj : j ∈ J} as well as {bj : j ∈ J} are

subsets of ∂Sϕ. The key point here is that Vϕ has a block lower triangular matrix with

respect to the decomposition above whenever J is ordered in the obvious way, that is,

i < j if bi 6 aj . Indeed, let Pj be the orthogonal projections that correspond to the

above orthogonal decomposition and let V i,j
ϕ = PiVϕPj , then it is easy to show that

V i,j
ϕ is equal to zero whenever i < j. To compute the spectrum of Vϕ, it is enough to

compute the spectrum of each V j,j
ϕ . We have

Theorem 2.2.8. Let ϕ be a measurable self-map of [0, 1] with µ(∂Sϕ) = 0. Then

σ(Vϕ) =
⋃
j∈J

σ(V j,j
ϕ ). (2.2.1)

Proof. First, observe that the operators involved are compact and thus zero is in both

sides of (2.2.1). Now, suppose that J is finite. In this case, the left-right inclusion is

well-known, see [15, Problem 72], for instance. The right-left inclusion is elementary

and follows by induction because all the elements in the spectra are eigenvalues.

Finally, suppose that J is infinite. Then for each positive integer, consider

ϕn(x) =

{
ϕ(x), if x ∈ Ij and bj − aj > 1/n;

0, otherwise.

Note that this time the subscript n does not mean the sequence of iterates. Clearly, Vϕn

has a finite number of non-zero blocks with respect to the orthogonal decomposition
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induced by ϕ. In addition, the non-zero diagonal blocks of Vϕn coincide with the

corresponding ones of Vϕ. Since ‖Vϕn − Vϕ‖ tends to zero as n tends to ∞ and Vϕ

has totally disconnected spectrum, we find that {σ(Vϕn)} converges to the spectrum

of Vϕ in the Hausdorff metric, see [37, Theorem 3]. The proof is complete.

The next proposition follows easily from the fact that ‖V j,j
ϕ ‖ 6 bj − aj for each

j ∈ J and we omit its proof.

Proposition 2.2.9. Let ϕ be a measurable self-map of [0, 1] with µ(∂Sϕ) = 0. Then

for each non-zero eigenvalue λ of Vϕ the set {j ∈ J : λ ∈ σ(V j,j
ϕ )} is finite.

Thus, for each non-zero eigenvalue λ of Vϕ, we may consider

j(λ) = max{j ∈ J : λ ∈ σ(V j,j
ϕ )}. (2.2.2)

The next corollary improves Lemma 2.2.5.

Corollary 2.2.10. Let ϕ be a continuous self-map of [0, 1] with ϕ(x) > x for 0 6 x 6

1 and max[0,y] ϕ 6 y for a fixed point y of ϕ with µ(∂Sϕ) = 0. If f is an eigenfunction

of Vϕ corresponding to an eigenvalue λ 6= 0, then supp (f) ⊂ [aj(λ), 1] and f(y) 6= 0

whenever aj(λ) < y.

Proof. Since λ belongs to σ(V j(λ),j(λ)
ϕ ), by Theorem 2.2.8 and (2.2.2), there is a cor-

responding non-zero eigenfunction f of Vϕ whose support is contained in [aj(λ), 1]. In

addition, Lemma 2.2.5 ensures that f(bj(λ)) 6= 0. Let ϕ̃ be the restriction of ϕ to

[bj(λ), 1]. Theorem 2.2.8, along with (2.2.2) shows that λ is not σ(V
eϕ). Thus V

eϕ−λ is

invertible. Now, a straightforward computation shows that

g(x) =


0, if 0 6 x 6 aj(λ);

f(x), if aj(λ) < x 6 bj(λ);

−λf(bj(λ))
(
(V

eϕ − λ)−1(1)
)
(x), if bj(λ) < x 6 1

is an eigenfunction of Vϕ corresponding to the eigenvalue λ. Since the hypotheses of

Corollary 2.2.6 are satisfied, we find that λ has geometric multiplicity 1 and therefore

g = cf for some constant c. Since f(bj(λ)) = g(bj(λ)) 6= 0, we have f = g, which proves

the first statement. The second one is just an application of Lemma 2.2.5.

2.2.4 Positivity of the eigenvalues

In this section we show that eigenvalues of Vϕ are non-negative provided ϕ is increas-

ing. We also estimate the sum of eigenvalues.
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Theorem 2.2.11. Let ϕ be an increasing self-map of [0, 1]. Then all eigenvalues of

Vϕ are real and non-negative. Furthermore,

∞∑
n=0

λn(ϕ) 6 µ({x ∈ [0, 1] : ϕ(x) > x}) 6 1. (2.2.3)

The key to prove Theorem 2.2.11 is the concept of totally positive matrix. Given

an n-square matrix (aj,k), we will be considering m-square submatrices (ajp,kq), where

1 6 j1 < · · ·< jm 6 n and 1 6 k1 < · · ·< km 6 n. A square matrix with real entries is

totally positive when all its square submatrices have non-negative determinant. The

following theorem, whose proof can be found in [32], furnishes the main spectral

property of totally positive matrices.

Theorem P. The eigenvalues of a totally positive matrix are real and non-negative.

We need to consider matrices with 0–1 entries, which are totally positive. Let M
denote the set of n-square matrices (aj,k) defined by

aj,k =

{
0, if j 6 mk;

1, otherwise,
for each choice 0 6 m1 6 · · · 6 mn 6 n.

It is easy to check that detA > 0 for A in M. Indeed, if mn = n, then the last

column of A is zero and, therefore, detA = 0. If there is k such that mk = mk+1,

then the k-th and (k + 1)-th columns of A coincide and detA = 0 again. Finally, if

0 = m1 < · · ·< mn < n, then A is lower triangular with 1 on each entry of the main

diagonal and detA = 1. Consequently, since each square submatrix of a matrix in M
is clearly in M again, each matrix in M is totally positive. Thus as a consequence of

Theorem P, we have

Proposition 2.2.12. The eigenvalues of each matrix in M are real and non-negative.

Now, we can prove Theorem 2.2.11.

Proof of Theorem 2.2.11. Let [r] denote the integer part of the real number r. For

each positive integer n, consider the self-map of [0, 1] defined by

ϕn(x) =
[nϕ([nx]/n)]

n
,

where again the subscript n does not mean iterate. Clearly, ‖ϕ− ϕn‖1 tends to 0 as

n tends to ∞ and, therefore, by Proposition 2.1.5,

‖Vϕ − Vϕn‖ → 0 as n→∞. (2.2.4)
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Now, for 1 6 j 6 n, consider the characteristic functions χj,n = χ((j−1)/n,j/n). Since

ϕn is constant on each interval ((j− 1)/n, j/n) and takes values in {j/n : 0 6 j 6 n},
the range of Vϕn is contained in span {χj,n : 1 6 j 6 n}. Thus, non-zero eigenvalues

and the corresponding generalized eigenfunctions of Vϕn are those of itself acting on

its reducing subspace span {χj,n : 1 6 j 6 n}. Let An = (anj,k) be the corresponding

matrix with respect to the basis {χj,n : 1 6 j 6 n}. Using that ϕ is increasing, one

can check that

nanj,k =

{
0, if ϕ((j − 1)/n) < k/n;

1, otherwise.
(2.2.5)

Thus nAn is in M. By Lemma 2.2.12, the eigenvalues of nAn and, therefore, of An
are real and non-negative. Since σ(Vϕn) = σ(An) ∪ {0}, it follows from (2.2.4) that

all eigenvalues of Vϕ are also real and non-negative.

It remains to prove (2.2.3). From (2.2.5), we have naj,j = 1 if and only if

ϕ((j − 1)/n) > j/n,

which implies that ϕ(x) > x for (j−1)/n < x < j/n. Thus, the trace of nAn does not

exceed the number of j’s in {1, . . . , n} for which ϕ(x) > x for (j − 1)/n < x < j/n. It

follows that

trVϕn = trAn =
1
n

tr (nAn) 6 µ({x ∈ [0, 1] : ϕ(x) > x}).

Since the eigenvalues of Vϕn are all real and non-negative, for each positive integer k

we have

k∑
m=0

λm(ϕn) 6 trVϕn 6 µ({x ∈ [0, 1] : ϕ(x) > x}), for 1 6 k < n.

Now, for fixed k, the map that to each operator T assigns
∑k

m=0 λm(T ) is operator

norm continuous on the space of compact operators. Thus we can make n tend to ∞
in the above display to obtain that

k∑
m=0

λm(ϕ) 6 µ({x ∈ [0, 1] : ϕ(x) > x}), for each positive integer k.

Passing to the limit as k tends to ∞, we obtain the inequality (2.2.3).

From the proof of Theorem 2.2.11 we have

Example 2.2.13. Consider the piecewise constant function ϕn(x) = ([nx] + 1)/n.

Then range of Vϕn is span {χj,n : 1 6 j 6 n}, as in the proof of Theorem 2.2.11. In
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this case, the only non-zero eigenvalue of Vϕn is 1/n and the Jordan form of An is

just one block. It follows that eigenvalues of a composition Volterra operator can have

any algebraic multiplicity.

Remark. Observe that Proposition 2.2.4 and Theorem 2.2.11 provide upper and lower

sharp bounds for the spectral radius and the ‘trace’ of composition Volterra operators

with increasing symbols. Indeed, if ϕ = bχ[a,1], for 0 6 a < b 6 1, the spectrum of

Vϕ is a one-point set and the inequalities in Proposition 2.2.4 and Theorem 2.2.11

become equalities. Moreover, in Theorem 3.1.26 we will see that if ϕ is continuous

and ϕ(x) > x for each 0 6 x 6 1, then the upper bound found for the ‘trace’ in

Theorem 2.2.11 is always achieved. Also, from Proposition 2.2.4 and Theorem 2.2.11,

one immediately deduces the characterization of quasi-nilpotent of Vϕ for increasing

symbols.

We close by observing that the spectrum of each Vϕ is symmetric with respect to

the real axis.

Proposition 2.2.14. Let T be a bounded linear operator on L2[0, 1] such that the

space L2([0, 1],R) is invariant under T . Then the spectrum of T is symmetric with

respect to the real axis.

Proof. Since L2([0, 1],R) is invariant under T , we have that Tf = Tf for each f in

L2[0, 1]. It follows that the Hilbert space adjoint T ? of T coincides with the Banach

space adjoint T ∗, being the adjoint with respect to the dual pairing

(f, g) =
∫ 1

0
f(t)g(t) dt.

The equalities σ(T ∗) = σ(T ) and σ(T ?) = σ(T ), which are true for any bounded linear

operator on L2[0, 1], imply that σ(T ?) = σ(T ).

Corollary 2.2.15. Let ϕ be a measurable self-map of [0, 1]. Then the spectrum of Vϕ
is symmetric with respect to the real axis.
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Spectrum of Vϕ and analyticity

of its eigenfunctions

In Section 3.1, we go into a deeper analysis of the spectrum of Vϕ for those symbols

satisfying ϕ(x) > x for 0 6 x 6 1. As usual in the Fredholm determinants Theory,

specially appropriate when dealing with integral operators, there is an entire func-

tion Fϕ associated to Vϕ. Solving a differential equation, we prove not only that the

inverses of the zeros of Fϕ correspond to the eigenvalues of Vϕ, but also that their mul-

tiplicities coincide. Once this is done, analyzing the growth of Fϕ, we provide several

characterizations of the finiteness of the spectrum of Vϕ. Under suitable hypotheses,

the exponent of convergence of the sequence of eigenvalues of Vϕ is computed. For

increasing, continuous symbols with the graph over the main diagonal we show that

the sequence of eigenvalues is absolutely summable, which reflects that Vϕ behaves like

a nuclear operator, although it is not. In such cases, we provide an explicit formula

for the ‘trace’ of Vϕ.

In Section 3.2, we turn our attention to the analyticity of the eigenfunctions of Vϕ
being ϕ analytic. The analyticity of the symbol ϕ is inherited by the eigenfunctions

provided that ϕ(x) > x for 0 6 x < 1 and ϕ′(1) < 1. Here, the Fao de Bruno formula

for the derivative of compositions will play a key role. If ϕ′(1) = 1, then we can

provide examples in which the eigenfunctions are non-analytic although ϕ is.

3.1 Spectral properties of Vϕ

The main result in this section is that the eigenvalues of Vϕ are the inverses of the

zeros of an entire function. Furthermore, the multiplicity of each zero of the entire

35
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function is the same as the algebraic multiplicity of the corresponding eigenvalue.

Using this, we shall characterize the finiteness of the spectrum of Vϕ. In view of the

characterization of quasi-nilpotent composition Volterra operators and Theorem 2.2.8

about decomposition of the spectrum, we will focus on the following set of symbols

Λ = {ϕ : [0, 1] → [0, 1] continuous and such that ϕ(x) > x for 0 6 x 6 1},

that we consider endowed with the topology inherited from the Banach space C[0, 1].

3.1.1 The map F

For each ϕ in Λ, consider the bounded operator

(Wϕf)(x) =
∫ 1

ϕ(x)
f(t) dt, f ∈ L2[0, 1].

For ϕ(x) = x, we just write Wϕ = W . Now, we may define F : Λ × [0, 1] × C → C
that to each element (ϕ, x, z) assigns

Fϕ(x, z) = Fϕ
x (z) =

∞∑
n=0

(−1)naϕn(x)zn, (3.1.1)

where aϕ0 (x) = 1 and aϕn(x) = (WWn−1
ϕ 1)(x) for each n > 1.

In order to prove that F is well defined, some properties of aϕn are needed. All

the properties listed in proposition below follow immediately from the definition of aϕn
and, thus, their proofs are omitted.

Proposition 3.1.1. For each ϕ in Λ, the functions aϕn satisfy the following properties.

(i) aϕ0 (1) = 1 and aϕn(1) = 0 for n > 1.

(ii) For each n > 0 the function aϕn belongs to C1[0, 1] and

(aϕ0 )′ = 0 and (aϕn)′(x) = −an−1(ϕ(x)) = −(Wn−1
ϕ 1)(x) for n > 1.

(iii) For each n > 0, the map ϕ 7→ aϕn is continuous from Λ into C1[0, 1].

(iv) For each n > 0 and 0 6 x 6 1, we have

0 6 aϕn(x) 6
(1− x)n

n!
and 0 6 −(aϕn+1)

′(x) 6
(1− x)n

n!
.

(v) For each n > 0, the function aϕn is decreasing.

(vi) If ψ is in Λ and ϕ(x) 6 ψ(x) for 0 6 x 6 1, then aϕn(x) > aψn(x) for n > 0 and

0 6 x 6 1.
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In what follows, H(C) stands for the space of entire functions endowed with the

topology of uniform convergence on compact sets. As it was recalled in 1.4, for F in

H(C) the maximum modulus function

M(F,R) = max
|z|=R

|F (z)|, 0 6 R <∞,

is well defined and increasing.

The next proposition records some of the fundamental properties of F . The differ-

ential equation satisfied by Fϕ already suggests that Fϕ is intimately related to the

eigenvalue equation for Vϕ.

Proposition 3.1.2. The function F is well defined, differentiable with respect to x,

holomorphic with respect to z and (ϕ, x) 7→ Fϕ(x, ·) as well as (ϕ, x) 7→ ∂Fϕ

∂x (x, ·) are

continuous mappings from Λ× [0, 1] into H(C). Furthermore,

∂Fϕ

∂x
(x, z) = zFϕ(ϕ(x), z), (3.1.2)

Fϕ(1, z) = 1. (3.1.3)

In addition, we have the Taylor series representation

∂Fϕ

∂x
(x, z) =

∞∑
n=1

(−1)nbn(x)zn, (3.1.4)

where bn(x) = (V n−1
ψ 1)(1− x) with ψ(x) = 1− ϕ(1− x).

Proof. Clearly, Proposition 3.1.1 (iv) implies uniform convergence and uniform bound-

edness of the sums of the series in (3.1.1) and the series
∞∑
n=0

(−1)n(aϕn)′(x)zn

on Λ × [0, 1] × DR for each R > 0, where DR = {z ∈ C : |z| 6 R}. Therefore, F
is well defined, differentiable with respect to x, holomorphic with respect to z and

(ϕ, x) 7→ Fϕ(x, ·) as well as

(ϕ, x) 7→ ∂Fϕ

∂x
(x, ·)

are continuous mappings from Λ× [0, 1] into H(C). Since (aϕ0 )′ = 0, it is clear that

∂Fϕ

∂x
(x, z) =

∞∑
n=1

(−1)n(aϕn)′(x)zn. (3.1.5)

Hence, by Proposition 3.1.1 (ii), we have

∂Fϕ

∂x
(x, z) =

∞∑
n=1

(−1)n−1aϕn−1(ϕ(x))zn = z
∞∑
n=0

(−1)naϕn(ϕ(x))zn = zFϕ(ϕ(x), z),
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which is equality (3.1.2). From Proposition 3.1.1 (i), we also have the initial value

(3.1.3).

Finally, consider the involutive isometry (Uf)(x) = f(1− x) and compare (3.1.4)

with (3.1.5). It follows from Proposition 3.1.1 (ii) that

bn(x) = −(aϕn)′(x) = (Wn−1
ϕ 1)(x).

On the other hand, Wϕ = UVψU . Therefore,

bn(x) = (UV n−1
ψ U1) = (V n−1

ψ 1)(1− x)

and (3.1.4) is also proved. The proof finished.

The next proposition provides some basic monotonic properties of F .

Proposition 3.1.3. Let ϕ be in Λ and c > 0. We have,

(a) If 0 6 x 6 y 6 1, then 1 6 Fϕ(y,−c) 6 Fϕ(x,−c) 6 ec(1−x).

(b) If |z| 6 c, then |Fϕ(x, z)| 6 Fϕ(x,−c) for 0 6 x 6 1.

(c) If ψ is in Λ with ϕ(x) 6 ψ(x) for 0 6 x 6 1, then Fϕ(x,−c) > Fψ(x,−c) for

0 6 x 6 1.

Proof. The inequality Fϕ(x,−c) 6 ec(1−x) follows from (3.1.1) and Proposition 3.1.1

(iv). The rest of the inequalities in (a) and (b) follow from (3.1.1) and Proposition 3.1.1

(v). Finally, (c) also follows from (3.1.1) and Proposition 3.1.1 (i) and (vi).

Some monotonic properties of F extend to the maximum modulus.

Corollary 3.1.4. Let ϕ be in Λ and R > 0. Then the function M(Fϕ
x , R) is decreasing

with respect to x and

M(Fϕ
x , R) = Fϕ(x,−R) 6 eR(1−x), for 0 6 x 6 1.

In addition, for ψ in Λ with ϕ(x) 6 ψ(x) for 0 6 x 6 1, we have

M(Fϕ
x , R) > M(Fψ

x , R), for 0 6 x 6 1.

Proof. The first statement follows from Proposition 3.1.3 (a) and (b). The second

statement follows from Proposition 3.1.3 (b) and (c).
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3.1.2 Existence and uniqueness of solution of a differential equation

We need an existence and uniqueness theorem of solution of certain differential equa-

tions. For a Banach space B, the space C([a, b],B) is the one of continuous functions

from [a, b] into B endowed with the supremum norm.

Proposition 3.1.5. Assume that a 6 α 6 b and let ϕ be a continuous self-map of

[a, b] such that {
x 6 ϕ(x) 6 α, if a 6 x 6 α;

α 6 ϕ(x) 6 x, if α 6 x 6 b.

Assume also that T is a bounded operator on a (real or complex) Banach space B, x0

belongs to B and G belongs to C([a, b],B). Then the Cauchy problem{
H ′(x) = TH(ϕ(x)) +G(x),

H(α) = x0

(3.1.6)

has a unique solution H : [a, b] → B, which belongs to C1([a, b],B).

Proof. Consider the bounded operator Q acting on C([a, b],B) defined by

(Qf) (x) =
∫ α

x
Tf(ϕ(t)) dt.

One easily checks that

‖Qn‖ 6
cn‖T‖n

n!
, where c = max{α− a, b− α}.

Thus Q is quasi-nilpotent and, therefore, I + Q is invertible. Upon integrating the

equation in (3.1.6), we see that Cauchy problem (3.1.6) is equivalent to

H +QH = R, where R(x) = x0 −
∫ α

x
G(t) dt.

Thus H = (I +Q)−1R is the unique solution of (3.1.6). It is also obvious that H is in

C1([a, b],B).

As an immediate application of Proposition 3.1.5, we have the following lemma,

which will be used later.

Lemma 3.1.6. Let ϕ be a continuous self-map of [0, 1] with ϕ(x) > x for 0 6 x 6 1

and max[0,α] ϕ 6 α for a fixed point α of ϕ. If Fϕ(α, λ) = 0 for some λ in C, then

Fϕ(x, λ) = 0 for 0 6 x 6 α.
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Proof. Consider the functions f, g : [0, 1] → C defined by

f(x) = Fϕ(x, λ) and g(x) =

{
Fϕ(x, λ), if α 6 x 6 1;

0, if 0 6 x < α.

Clearly, by Proposition 3.1.2, f as well as g are solutions of the Cauchy problem{
H ′(x) = λH(ϕ(x)),

H(1) = 1.

Therefore, by Proposition 3.1.5, we find f = g and the result follows.

3.1.3 The zeros of Fϕ
0 and the eigenvalues of Vϕ

Theorem below not only states that the eigenvalues of Vϕ are the inverses of the zeros

of Fϕ
0 , but also there is a correspondence between the multiplicity of the zeros and

the algebraic multiplicity of the eigenvalues.

Theorem 3.1.7. Let ϕ be a continuous self-map of [0, 1] with ϕ(x) > x for 0 6 x 6 1.

Then λ 6= 0 is a zero of order k of Fϕ
0 if and only if λ−1 is an eigenvalue of algebraic

multiplicity k of Vϕ. Furthermore, in such a case, a basis for ker (Vϕ − λ−1I)k is

formed by

gj(x) =
∂j+1Fϕ

∂x∂zj
(x, z)

∣∣∣∣
z=λ

, for 0 6 j 6 k − 1.

Proof. First, suppose that Fϕ
0 (λ) 6= 0 with λ 6= 0 and there is a non-zero f in L2[0, 1]

such that Vϕf = λ−1f . By Lemma 2.2.5, we may assume that∫ 1

0
f(t) dt = 1.

In particular,

F (x) =
∫ x

0
f(t) dt

belongs to C1[0, 1] with F (0) = 0 and F (1) = 1 and is a solution of the Cauchy problem{
H ′(x) = λH(ϕ(x)),

H(1) = 1.

On the other hand, from (3.1.2) and (3.1.3), we know that Fϕ(·, λ) is also a solution

of the above Cauchy problem. Thus, by Proposition 3.1.5, we have F = Fϕ(·, λ) and,

therefore,

0 6= Fϕ
0 (λ) = Fϕ(0, λ) = F (0) = 0,

a contradiction. Hence λ−1 is not an eigenvalue of Vϕ.
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Conversely, suppose that λ 6= 0 is a zero of order k > 1 of Fϕ
0 and consider

Gj(x) =
∂jFϕ(x, z)

∂zj

∣∣∣∣
z=λ

, for j > 0.

Clearly, Gj are in C1[0, 1] and, therefore, gj(x) = G′
j(x) are in C[0, 1] for j > 0. Since

λ is a zero of order k of Fϕ
0 , we have

Gj(0) = 0, for 0 6 j 6 k − 1 and Gk(0) 6= 0. (3.1.7)

In particular, we have

Gj(x) =
∫ x

0
gj(t) dt for 0 6 j 6 k − 1. (3.1.8)

Upon differentiating successively with respect to z on both sides of (3.1.2), and taking

into account that Fϕ(1, z) = 1, we obtain

G′
0(x) = λG0(ϕ(x)) and G′

j(x) = λGj(ϕ(x)) + jGj−1(ϕ(x)), for j > 1. (3.1.9)

The last display along with (3.1.8) implies that

(I − λVϕ)g0 = 0 and (I − λVϕ)gj = jVϕgj−1, for 1 6 j 6 k − 1. (3.1.10)

Now, an induction argument along with (3.1.10) shows that

(I − λVϕ)gj =
j−1∑
m=0

(−1)m+j−1 j!
m!λj−m

gm, for 1 6 j 6 k − 1. (3.1.11)

Since, by Corollary 2.2.6, dim ker (I/λ−Vϕ) 6 1, it follows from (3.1.10) that ker (I/λ−
Vϕ) is one-dimensional and is spanned by g0. In addition, from (3.1.11), it follows,

for 1 6 j 6 k, that ker (I/λ − Vϕ)j has dimension j and is spanned by g0, . . . , gj−1.

Thus λ−1 is an eigenvalue of algebraic multiplicity at least k. To show that it is

precisely k, it suffices to prove that gk−1 is not in the range of (I/λ − Vϕ). But if

gk−1 is in the range of (I/λ − Vϕ), then by (3.1.10), there is g in L2[0, 1] such that

(I − λVϕ)g = kVϕgk−1. Therefore,

H1(x) = G(x)−G(1)G0(x), where G(x) =
∫ x

0
g(t) dt

is a solution of the Cauchy problem{
H ′(x) = λH(ϕ(x)) + kGk−1(x),

H(1) = 0.
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Since Gk is also a solution of the above Cauchy problem, Proposition 3.1.5 implies

that H1 = Gk. Hence

Gk(0) = H1(0) = G(0)−G(1)G0(0) = 0,

which contradicts (3.1.7). Thus λ−1 has algebraic multiplicity k. The proof is com-

plete.

Corollary 3.1.8. Let ϕ be a continuous self-map of [0, 1] with ϕ(x) > x for 0 6 x 6 1.

Then Vϕ has no real negative eigenvalues.

Proof. By Proposition 3.1.3, we have Fϕ
0 (−t) > 1 for each t > 0. Thus Fϕ

0 has no

negative zeros and the result follows from Theorem 3.1.7.

Remark. Example 2.1.12 shows that the hypothesis ϕ(x) > x for 0 6 x 6 1 in

Corollary 3.1.8 cannot be omitted.

3.1.4 Finiteness of σ(Vϕ)

Next we proceed to characterize when σ(Vϕ) is finite. In order to do this, we need to

estimate the growth of the entire function Fϕ
0 . We begin with the following lemma.

Lemma 3.1.9. Let ϕ be a continuous self-map of [0, 1] with ϕ(x) > x for 0 6 x 6 1.

If 0 6 α < β 6 1, then, for each R > 0, we have

(1 + (β − α)R)Fϕ(η,−R) 6 Fϕ(α,−R) 6 (1 + (β − α)R)Fϕ(γ,−R), (3.1.12)

where

γ = min{β,min
[α,β]

ϕ} and η = max
[α,β]

ϕ. (3.1.13)

Proof. Using (3.1.2) in the second equality below, we have

Fϕ(α,−R) = Fϕ(β,−R)−
∫ β

α

∂Fϕ

∂x
(x,−R) dx

= Fϕ(β,−R) +R

∫ β

α
Fϕ(ϕ(x),−R) dx.

Since Fϕ(x,−R) is decreasing with respect to x, see Proposition 3.1.3 (a), and γ 6

ϕ(x) 6 η for α 6 x 6 β, we find that

Fϕ(η,−R) 6 Fϕ(ϕ(x),−R) 6 Fϕ(γ,−R),

which along with the above display implies (3.1.12). The result is proved.
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The next two lemmas establish that under suitable hypotheses the function Fϕ(·,−R)

cannot grow arbitrarily.

Lemma 3.1.10. Let ϕ be a continuous self-map of [0, 1] with ϕ(x) > x for 0 6 x 6 1.

Assume also that ϕ(x) > x for u 6 x 6 v for certain 0 6 u < v 6 1. Then there

exists a sequence {γn}n∈Z, with γn > 0, such that∑
n∈Z

γn = v − u

and

Fϕ(u,−R) 6 Fϕ(v,−R)
+∞∏

n=−∞
(1 + γnR), for each R > 0. (3.1.14)

Proof. Since ϕ is continuous and ϕ(x) > x for u < x < v, we may choose a bilateral

sequence {αn} satisfying u 6 αn 6 αn+1 6 v for each n in Z with αn tending to u

as n tends to −∞ and αn tending to v as n tends to +∞, and in such a way that

ϕ(x) > αn+1 for αn 6 x 6 αn+1. Setting γn = αn+1 − αn > 0, we have∑
n∈Z

γn = v − u.

Moreover, Lemma 3.1.9 implies that

Fϕ(αn,−R) 6 Fϕ(αn+1,−R)(1 + γnR), for each n ∈ Z and each R > 0.

Therefore, the required inequality (3.1.14) follows by iterating inequality above and

that Fϕ(x, z) is continuous with respect to x. The result is proved.

Lemma 3.1.11. Let ϕ be a continuous self-map of [0, 1] with ϕ(x) > x for 0 6 x 6 1.

Assume also that ϕ(x) > x for u < x < v for certain 0 6 u < v 6 1. If either

ϕ(u) = u or ϕ(x) < v for u < x < v, then there exists a sequence {γn}n>0, with

γn > 0, such that
∞∑
n=0

γn 6 v − u

and

Fϕ(u,−R) > Fϕ(v,−R)
∞∏
n=0

(1 + γnR), for each R > 0. (3.1.15)

Proof. If ϕ(u) = u, we take a strictly decreasing sequence {an}n>0 with u < an < v

and satisfying that {an} tends to u as n tends to ∞ and ϕ(an+1) < an for each non-

negative integer n. If ϕ(x) < v for u < x < v, we take a strictly increasing sequence
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{an} with u < an < v satisfying that {an} tends to v as n tends to ∞ and such that

ϕ(an) < an+1 for each non-negative integer n. Thus, in any case there is a sequence

of pairwise disjoint intervals (αn, δn) contained in (u, v) such that ϕ(αn) < δn for each

non-negative integer n. Now, we take βn in (αn, δn) such that max[αn,βn] ϕ 6 δn and

set γn = βn − αn. Clearly, γn > 0 and since the (αn, δn) are pairwise disjoint and

contained in (u, v), we also have
∞∑
n=0

γn 6 v − u.

Hence Lemma 3.1.9 implies that

Fϕ(αn,−R) > Fϕ(δn,−R)(1 + γnR), for each n > 0 and each R > 0.

Since Fϕ(x,−R) is decreasing with respect to x, see Proposition 3.1.3 (a), and (αn, δn)

are disjoint, we have

Fϕ(u,−R)
Fϕ(v,−R)

>
∞∏
n=0

Fϕ(αn,−R)
Fϕ(δn,−R)

>
∞∏
n=0

(1 + γnR),

which proves (3.1.15). The result is proved.

Recall from 1.4 that the exponential type of an entire function F is

τ(F ) = lim
R→∞

lnM(F,R)
R

.

For a measurable self-map ϕ of [0, 1] we set E(ϕ) = {x ∈ [0, 1] : ϕ(x) = x} and

τx = µ(E(ϕ)∩[x, 1]) where, as usual, µ is the Lebesgue measure. The next proposition

shows that τx is precisely the exponential type of Fϕ
x .

In the reminder we make use of the widely extended Landau’s asymptotic notation

to compare functions. Given f and g, functions defined on the real line, satisfying

that there exists M > 0 such that for all large enough x we have

|f(x)| 6 M |g(x)|,

we say that f is big-O of g as x goes to +∞, in symbols

f(x) = O(g(x)), as x→ +∞.

If on the other hand, for each M > 0 and all large enough x we have

|f(x)| 6 M |g(x)|,

then we say that f is small-o of g as x goes to +∞, in symbols

f(x) = o(g(x)), as x→ +∞.
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Proposition 3.1.12. Let ϕ be a continuous self-map of [0, 1] with ϕ(x) > x for

0 6 x 6 1. Then for each 0 6 x 6 1, there exists a sequence {γn}n>0, with γn > 0,

such that
∞∑
n=0

γn = 1− x− τx

and

eτxR 6 M(Fϕ
x , R) 6 eτxR

∞∏
n=0

(1 + γnR), for each R > 0. (3.1.16)

In particular, τ(Fϕ
x ) = τx for 0 6 x 6 1.

Proof. For x = 1 the result is trivial. Thus suppose that 0 6 x < 1 and R > 0.

Propositions 3.1.2 and 3.1.3 imply that Fϕ(·,−R) is continuously differentiable, de-

creasing and Fϕ(t,−R) > Fϕ(1,−R) = 1 for 0 6 t 6 1. Thus we may consider

f(t) = ln(Fϕ(t,−R)) which is clearly non-negative, decreasing and f(1) = 0. There-

fore, by (3.1.2), we have

f(x) = −
∫ 1

x
f ′(t) dt = R

∫ 1

x

Fϕ(ϕ(t),−R)
Fϕ(t,−R)

dt.

Since Fϕ(ϕ(t),−R) 6 Fϕ(t,−R) for ϕ(t) > t and ϕ(t) = t for t in E(ϕ), and the last

set is closed, we find that [x, 1] \ E(ϕ) is a union of disjoint open intervals (uj , vj),

j > 1, where there are possibly finitely many non-empty (uj , vj). Therefore, we may

split the last integral in the above display so that

R

∫
E(ϕ)∩[x,1]

dt 6 f(x) = R

∫
E(ϕ)∩[x,1]

dt+
∞∑
j=1

(f(uj)− f(vj)),

where the last series may have finitely many terms different from zero. Hence,

τxR 6 f(x) = τxR+
∞∑
j=1

ln
Fϕ(uj ,−R)
Fϕ(vj ,−R)

. (3.1.17)

Since ϕ(t) > t for uj < t < vj for each j > 1, we may apply Lemma 3.1.10 and,

therefore, there is a sequence {γj,k : j > 1 and k ∈ Z} of non-negative real numbers,

such that
∞∑

k=−∞
γj,k = vj − uj and

Fϕ(uj ,−R)
Fϕ(vj ,−R)

6
∞∏

k=−∞
(1 + γj,kR), for each j > 1.

(3.1.18)

Upon rearranging {γj,k} in just one sequence {γn}n>0, we see that

∞∑
n=0

γn = 1− x− τx.
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It also follows from (3.1.17) and (3.1.18) that

eτxR 6 ef(x) = Fϕ(x,−R) 6 eτxR
∞∏
n=0

(1 + γnR),

from which (3.1.16) follows.

Finally, for each ε > 0, we take a positive integer m such that
∑∞

k=m γk < ε. Then

ln
∞∏
k=m

(1 + γkR) =
∞∑
k=m

ln(1 + γkR) 6 R
∞∑
k=m

γk < Rε.

The above inequality along with (3.1.16) shows that

eτxR 6 M(Fϕ
x , R) = O(Rme(τx+ε)R), as R→∞.

Therefore, τx 6 τ(Fϕ
x ) 6 τx + ε. Since ε was arbitrary, we conclude τ(Fϕ

x ) = τx. The

result is proved

The most important case is the one for which µ(E(ϕ)) = 0. We have

Corollary 3.1.13. Let ϕ be a continuous self-map of [0, 1] with ϕ(x) > x for 0 6 x 6

1. Assume also that the set of points for which ϕ(x) = x has zero Lebesgue measure.

Then Fϕ
x is of exponential type 0 for each 0 6 x 6 1.

As mentioned in 1.4, the order of an entire function f is defined as

ρ(f) = lim
R→∞

ln lnM(f,R)
lnR

.

It should be noted that if 0 < τ(f) <∞, then ρ(f) = 1 and if τ(f) = 0, then ρ(f) 6 1.

It is well known that if F inH(C) has finitely many zeros, then F (z) = p(z)eg(z), where

p is a polynomial and g ∈ H(C). We need a more precise result.

Lemma 3.1.14. Let F be an entire function with finitely many zeros and of finite

exponential type. Then F (z) = p(z)eaz, where p is a polynomial and |a| = τ(F ).

Proof. Since F is of finite exponential type, we have ρ(F ) 6 1. Thus Hadamard’s

Theorem, see 1.4.2 or [29, p. 24], implies that

F (z) = zmebz+c
n∏
k=1

(
1− z

λk

)
ez/λk ,

where m > 0, b and c belongs to C and λk, 1 6 k 6 n, are the zeros of F repeated

according to their multiplicities. Therefore, F (z) = p(z)eaz, where p is a polynomial

and a belongs to C. It is also clear that |a| = τ(F ).
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The next theorem provides several equivalent conditions for σ(Vϕ) to be finite.

Observe that the assumption max[0,x] ϕ 6 x for each fixed point x of ϕ is a weaker

assumption than increasing. Recall that ϕn denotes the n-th iterate of ϕ.

Theorem 3.1.15. Let ϕ be a continuous self-map of [0, 1] with ϕ(x) > x for 0 6 x 6 1

satisfying sup{x : ϕ(x) > x} = 1 and max[0,y] ϕ 6 y for each fixed point y of ϕ. Then

the following are equivalent.

(i) The spectrum σ(Vϕ) is finite.

(ii) There exists a positive integer n such that ϕn(x) = 1 for each 0 6 x 6 1.

(iii) The map ϕ is identically 1 on a neighborhood of 1 and ϕ(x) > x for 0 6 x < 1.

(iv) For some positive integer n, the operator V n
ϕ has finite rank.

(v) If P is the orthogonal projection onto the constant functions, then P − Vϕ is

nilpotent.

Proof. It is elementary to verify that (ii) is equivalent to (iii).

Now we shall prove that (ii) is equivalent to (v). First, it is easy to see that

(P − Vϕ)n is the integral operator JKn with kernel

Kn(y0, yn) =
∫

[0,1]n−1

χn(y0, y1, . . ., yn−1, yn) dy1· · ·dyn−1,

where χn is the characteristic function of

Sn = {y ∈ [0, 1]n+1 such that yj > ϕ(yj−1), for 1 6 j 6 n+ 1}.

Clearly, (P − Vϕ)n = 0 if and only if Kn = 0 a.e. By Fubini’s Theorem, this is

equivalent to the fact that Sn has zero Lebesgue measure. Now, it is easy to check

that Sn has zero Lebesgue measure if and only if ϕn is identically 1. For instance, if

ϕn(x) = 1 for 0 6 x 6 1, then Sn is contained in {y ∈ [0, 1]n+1 such that yn = 1}.
Thus, (ii) is equivalent to (v).

Since P is a rank one operator, we have that (v) implies (iv). Obviously (iv)

implies (i).

Thus the proof will be finished once we have shown that (i) implies (ii). To this

end, suppose that σ(Vϕ) is finite and ϕ does not satisfy (ii). We will distinguish two

cases.

Case 1. There is 0 6 w < 1 such that ϕ(w) = w. The hypotheses on ϕ allow us to

choose fixed points u and v of ϕ such that ϕ(x) > x for u < x < v. Proposition 3.1.12
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implies that Fϕ
u and Fϕ

v have the same exponential type

τ = µ(E(ϕ) ∩ [v, 1]).

The hypotheses imply that ϕ(x) 6 u if x 6 u and ϕ(x) 6 v if x 6 v. Therefore from

Lemma 3.1.6 and Theorem 3.1.7, it follows that if λ 6= 0 is a zero of Fϕ
uFϕ

v , then λ−1

is an eigenvalue of Vϕ. Since Vϕ has finitely many eigenvalues, we find that Fϕ
u and

Fϕ
v have finitely many zeros. Consequently, by Lemma 3.1.14, there are polynomials

p and q and a and b in C such that |a| = |b| = τ and Fϕ
u = p(z)eaz and Fϕ

v = q(z)ebz.

In addition, by Proposition 3.1.3, we have

M(Fϕ
u , R) = Fϕ

u (−R) and M(Fϕ
v , R) = Fϕ

v (−R), for R > 0.

Therefore a = b = −τ . Hence Fϕ
u (z) = p(z)e−τz and Fϕ

v (z) = q(z)e−τz. Thus there

exists a positive integer m such that

Fϕ(u,−R) = O(RmFϕ(v,−R)), as R→∞. (3.1.19)

On the other hand, since ϕ(x) > x for u < x < v and ϕ(u) = u, by Lemma 3.1.11,

there is a sequence of positive numbers {γk}k>0 such that

Fϕ(u,−R) > Fϕ(v,−R)
∞∏
k=0

(1 + γkR),

which contradicts (3.1.19).

Case 2. ϕ(x) > x for 0 6 x < 1. By Corollary 3.1.13 and Theorem 3.1.7, we find that

Fϕ
0 has zero exponential type and finitely many zeros. Therefore, by Lemma 3.1.14,

we have that Fϕ
0 is a polynomial. In particular, there is a positive integer n such

that M(Fϕ
0 , R) = O(Rn) as R tends to ∞ and thus, by Proposition 3.1.3, we have

M(Fϕ
x , R) = O(Rn) for each 0 6 x 6 1. Hence, Fϕ

x is a polynomial of degree at

most n for each 0 6 x 6 1 and, therefore, aϕm = 0 for m > n + 1. Upon applying

successively Proposition 3.1.1 (ii), we see that an−j+1(ϕj(x)) = 0 for 1 6 j 6 n and

0 6 x 6 1. Since ϕn is not identically 1, we find that ϕn([0, 1]) is equal to [α, 1] for

some 0 6 α < 1. We conclude that all aϕn for n > 1 vanish identically on [α, 1]. Thus,

according to (3.1.1), we find that Fϕ(x, z) is identically 1 on [α, 1] and z in C, which

contradicts equation (3.1.2). The proof is complete.

Remark. If ϕ is a continuous self-map of [0, 1] with ϕ(x) > x for 0 6 x 6 1 and

α = sup{x : ϕ(x) > x} < 1, then the spectra of Vϕ acting on L2[0, 1] and Vϕ acting on

L2[0, α] coincide. Moreover, each generalized eigenfunction of Vϕ acting on L2[0, α] is

the restriction of a generalized eigenfunction of Vϕ acting on L2[0, 1]. Therefore, from

Theorem 3.1.15, we have
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Corollary 3.1.16. Let ϕ be a continuous self-map of [0, 1] with ϕ(x) > x for 0 6 x 6

1 and max[0,y] ϕ 6 y for each fixed point y of ϕ. Then the following are equivalent.

(i) The spectrum of Vϕ is finite.

(ii) Either ϕ is the identity or there exist 0 < β < α = sup{x : ϕ(x) > x} such that
ϕ(x) > x, if 0 6 x < β;

ϕ(x) = α, if β 6 x 6 α;

ϕ(x) = x, if α < x 6 1.

The following corollary is an immediate consequence of Theorem 3.1.15.

Corollary 3.1.17. Let ϕ be a continuous self-map of [0, 1] with ϕ(x) > x for 0 < x <

1. If ϕ(0) = 0 or ϕ−1(1) does not contain an interval of the form [1 − ε, 1] for some

ε > 0, then the spectrum of Vϕ is infinite.

3.1.5 Exponent of convergence of the eigenvalues of Vϕ

Recall that the sequence of non-zero eigenvalues of Vϕ is denoted by {λn(ϕ)}, arranged

in decreasing order of moduli and such that each eigenvalue appears as many times as

its multiplicity indicates. Recall also from 1.4 that the convergence exponent s({λn})
of a sequence {λn}n>0 is the infimum of c > 0 for which

∞∑
n=0

|λn|c

is finite. For the sake of brevity we write s(ϕ) = s({λn(ϕ)}).
Let ϕ be a continuous increasing self-map of [0, 1] with ϕ(x) > x for 0 < x < 1 and

ϕ(y) < ϕ(x) whenever y < x and ϕ(y) < 1, which means that ϕ is strictly increasing

on ϕ−1([0, 1]), where ϕ−1 is as in subsection 2.1.2. In the present case, ϕ−1 is clearly

continuous on [0, 1]. Thus we can extend the notation ϕn for the iterates of ϕ in the

obvious way to all the integers Z. Observe that if ϕ(0) = 0 and ϕ−1(1) = {1}, then ϕ

is invertible and ϕ−1 is just the inverse of ϕ.

The next proposition records some of the properties of the iterates ϕn, which

are very easy to check. Throughout the remainder of this subsection, we denote by

{γn(ϕ, c)} the sequence of differences of {ϕn(c)}, that is, γn(ϕ, c) = ϕn(c)− ϕn−1(c).

Proposition 3.1.18. Let ϕ be a continuous increasing self-map of [0, 1] with ϕ(x) > x

for 0 < x < 1 and ϕ(y) < ϕ(x) whenever y < x and ϕ(y) < 1. Assume also that

0 < c < 1. Then
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(i) For each n in Z, the interval ϕ([ϕn−1(c), ϕn(c)]) is contained [ϕn(c), ϕn+1(c)].

(ii) The sequence {ϕn(c)}n∈Z is increasing.

(iii)

lim
n→−∞

ϕn(c) = 0 and lim
n→+∞

ϕn(c) = 1.

(iv) If ϕ(0) = 0, then ϕ(ϕn(c)) = ϕn+1(c) for each n in Z. If in addition, ϕ(x) = 1

only for x = 1, then {ϕn(c)}n∈Z is strictly increasing.

(v) The sequence of differences {γn(ϕ, c)}n∈Z satisfies

∞∑
n=−∞

γn(ϕ, c) = 1.

We observe that ϕn(c) > 0 for each n ∈ Z if and only if ϕ(0) = 0. Also, ϕn(c) < 1

for each n ∈ Z if and only if ϕ(x) = 1 only for x = 1.

Proposition 3.1.19. Let ϕ be a continuous self-map of [0, 1] with ϕ(x) > x for

0 < x < 1 and ϕ(y) < ϕ(x) whenever y < x and ϕ(y) < 1. Then for each 0 < c < 1

and R > 0, we have

∞∏
n=−∞

(1 + γ2n(ϕ, c)R) 6 Fϕ(0,−R) 6
∞∏

n=−∞
(1 + γn(ϕ, c)R). (3.1.20)

Proof. We set γn = γn(ϕ, c). Upon taking [α, β] = [ϕn(c), ϕn+1(c)] in Lemma 3.1.9,

we have

(1+γn+1R)Fϕ(ϕn+2(c),−R)6Fϕ(ϕn(c),−R)6(1+γn+1R)Fϕ(ϕn+1(c),−R). (3.1.21)

Since Fϕ(x,−R) is continuous, decreasing with respect to x and Fϕ(1,−R) = 1, see

Propositions 3.1.2 and 3.1.3, the second inequality in (3.1.20) follows by applying the

second one in (3.1.21) for each n in Z and taking limits. Similarly, the first inequality

in (3.1.20) follows from the first one in (3.1.21), but considering only odd integers.

The result is proved.

The following lemma must be known to the experts. Since we have not found a

precise reference, we include a proof.

Lemma 3.1.20. Let F be an entire function of exponential type 0. Let {λn}n>0 be

the sequence of non-null zeros of F repeated accordingly to their multiplicity. Then

the exponent of convergence s({λ−1
n }) is equal to the order of F .
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Proof. First, for any entire function we have that s({λ−1
n }) 6 ρ(F ), see 1.4.5 or [29,

Theorem 2, p. 18]. If ρ(F ) < 1, the statement is just that of Theorem 1 in [29, p. 31]

or the remark after 1.4.5.

Now, proceeding by contradiction, assume that s({λ−1
n }) < ρ(F ) = 1, then by

Hadamard’s Theorem [29, p. 26] we have F (z) = zmeaz+bG(z), where a and b are

complex numbers, m is a non-negative integer and

G(z) =
∞∏
n=0

(
1− z

λn

)
.

Moreover, by Borel’s Theorem, see 1.4.1 or [29, p. 30], ρ(G) = s(G) = s({λ−1
n }) < 1.

Hence a 6= 0, otherwise ρ(F ) = ρ(G) < 1. But then one checks that τ(F ) = |a| 6= 0,

which is a contradiction.

The following Theorem provides estimates on the exponent of convergence of the

eigenvalues of Vϕ.

Theorem 3.1.21. Let ϕ be a continuous self-map of [0, 1] with ϕ(x) > x for 0 < x <

1. Set

ρ+ = ρ+(ϕ) =max
{

lim
x→0

ln(ϕ(x)− x)
lnx

, lim
x→1

ln(ϕ(x)− x)
ln(1− x)

}
and ρ− = ρ−(ϕ) =max

{
lim
x→0

ln(ϕ(x)− x)
lnx

, lim
x→1

ln(ϕ(x)− x)
ln(1− x)

}
.

Then we have
ρ− − 1
ρ−

6 s(ϕ) 6
ρ+ − 1
ρ+

. (3.1.22)

Proof. We begin by observing that 1 6 ρ− 6 ρ+ 6 ∞. By Theorem 3.1.7, we know

that s(ϕ) is equal to the exponent of convergence of the inverse of the zeros of Fϕ
0 .

Since by Corollary 3.1.13, we have τ(Fϕ
0 ) = 0, Lemma 3.1.20 implies 0 6 s(ϕ) 6 1.

Therefore, if ρ+ = ∞, the right inequality in (3.1.22) is trivially satisfied. If ρ+ <∞,

then we can take r > 0 such that (r+1)/r > ρ+. Clearly, we can choose a continuous,

strictly increasing self-map ψ of [0, 1] with ψ(0) = 0 and ψ(x) > x for 0 < x < 1

satisfying

ψ(x) 6 ϕ(x) for 0 6 x 6 1,

ψ(x) =
x

(1− x1/r)r
on a neighborhood of 0,

and ψ(x) = 1− 1− x

(1 + (1− x)1/r)r
on a neighborhood of 1.
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Now, take 0 < c < 1 and set γn = γn(ψ, c) = ψn+1(c)−ψn(c) for each n in Z. Plainly,

for large enough a > 0, we have

ψ
(
(1 + a)−r

)
= a−r and ψ

(
1− a−r

)
= 1− (a+ 1)−r.

Hence, there is a positive integer n0 and real numbers a+ and a− such that ψn(c) =

1− (n+ a+)−r for n > n0 and ψn(c) = (|n|+ a−)−r for n 6 −n0. Therefore,

γn ∼ r|n|−r−1 as |n| → ∞.

On the other hand, by Corollary 3.1.4 and Proposition 3.1.19, for each R > 0, we have

M(Fϕ
0 , R) 6 M(Fψ

0 , R) 6
∞∏

n=−∞
(1 + γnR) = M(G,R)

where

G(z) =
∞∏

n=−∞
(1 + γnz).

By Lemma 3.1.20, we have s(ϕ) = ρ(Fϕ
0 ) 6 ρ(G) = s(G). Finally, since the asymp-

totic formula for γn shows that s(G) = (r + 1)−1, we find that

s(ϕ) 6 inf
{

1
r + 1

: r > 0 and
r + 1
r

> ρ+

}
=
ρ+ − 1
ρ+

,

which is the right inequality in (3.1.22).

The left inequality in (3.1.22) is trivial if ρ− = 1. If ρ− > 1, we can take r > 0 such

that (r + 1)/r < ρ−. By definition of ρ−, there is a continuous increasing self-map ψ

of [0, 1] with ψ(x) > x for 0 < x < 1 and ψ(y) < ψ(x) if y < x whenever ψ(y) < 1

and satisfying

ψ(x) > ϕ(x) for 0 6 x 6 1

and either ψ(x) =
x

(1− x1/r)r
on a neighborhood of 0

or ψ(x) = 1− 1− x

(1 + (1− x)1/r)r
on a neighborhood of 1.

Again take 0 < c < 1 and set γn = γn(ψ, c). As in the proof of the right inequality,

there is a positive n0 such that either γn ∼ rn−r−1 as n tends to +∞ or γn ∼ r|n|−r−1

as n tends to −∞. Again, by Corollary 3.1.4 and Proposition 3.1.19, for any R > 0,

we have

M(Fϕ
0 , R) > M(Fψ

0 , R) >
∞∏

n=−∞
(1 + γ2nR) = M(G,R),
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where

where G(z) =
∞∏

n=−∞
(1 + γ2nz).

The asymptotic behavior of γn shows that s(G) > (r + 1)−1. Since s(ϕ) = ρ(Fϕ
0 ) >

ρ(G) = s(G), we obtain

s(ϕ) > sup
{

1
r + 1

: r > 0 and
r + 1
r

< ρ−

}
=
ρ− − 1
ρ−

,

which is the left inequality in (3.1.22). The proof is complete.

The next corollaries follow immediately from Corollary 3.1.13, Lemma 3.1.20 and

Theorems 3.1.7 and 3.1.21.

Corollary 3.1.22. Let ϕ be a continuous self-map of [0, 1] with ϕ(x) > x for 0 < x <

1 and such that there exist

ρ0 = lim
x→0

ln(ϕ(x)− x)
lnx

and ρ1 = lim
x→1

ln(ϕ(x)− x)
ln(1− x)

.

Then

s(ϕ) = ρ(Fϕ
0 ) =

ρ− 1
ρ

,

where ρ = max{ρ0, ρ1}.

Corollary 3.1.23. Let ϕ be a continuous self map of [0, 1] with ϕ(x) > x for 0 < x < 1

and satisfying

lim
x→0

ln(ϕ(x)− x)
lnx

= lim
x→1

ln(ϕ(x)− x)
ln(1− x)

= 1.

Then s(ϕ) = ρ(Fϕ
0 ) = 0. In particular, this holds whenever ϕ is differentiable at 0

and 1 with 1 < ϕ′(0) 6 ∞ and ϕ′(1) < 1.

Now we deal with the summability of |λn(ϕ)|. We begin with a lemma that

guarantees the summability of the inverses of the zeros of an entire function.

Lemma 3.1.24. Let {λn}n>0 be the sequence of zeros of an entire function F repeated

accordingly to their multiplicity and where F (0) = 1. Assume also that there is a

sequence {γn}n>0 in (0, 1) such that

∞∑
k=0

γk(1 + | ln γk|) <∞ and M(F,R) 6
∞∏
k=0

(1 + γkR) for each R > 0. (3.1.23)

Then
∞∑
n=0

1
|λn|

<∞.
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Proof. Let N(R) be the number of the zeros of F in the disk |z| 6 R. By a corollary

of Jensen’s Theorem, see 1.4.4 or Lemma 4 in [29, p. 15], we have

N(R) 6 lnM(F, eR), for each R > 0.

Using the above estimate in the last inequality below we find that

∑
|λn|>e−2

1
|λn|

=
∞∑
k=0

∑
ek−26|λn|<ek−1

1
|λn|

6
∞∑
k=0

e2−kN(ek−1) 6 e2
∞∑
k=0

e−k lnM(F, ek).

The second inequality in (3.1.23) implies that the last display is less than

e2
∞∑
k=0

e−k
∞∑
j=0

ln(1 + γje
k) = e2

∞∑
j=0

∞∑
k=0

e−k ln(1 + γje
k).

Since f(t) = e−t ln(1 + γje
t) is decreasing on [0,+∞) for each j > 0, we obtain

∞∑
k=0

e−k ln(1 + γje
k) 6 γj +

∫ ∞

0

ln(1 + γje
x)

ex
dx

= γj − γj ln γj + (1 + γj) ln(1 + γj)

6 3γj(1 + | ln γj |).

Upon putting everything together, we have

∞∑
n=0

1
|λn|

< 3e2
∞∑
j=0

γj(1 + | ln γj |)

and the required result follows.

Unlike Theorem 2.2.11 next Theorem does not require the symbol to be increasing

for the sequence of eigenvalues to be absolutely summable.

Theorem 3.1.25. Let ϕ be a continuous self-map of [0, 1] with ϕ(x) > x for 0 < x < 1

and

max
(

lim
x→0

ln | ln(ϕ(x)− x)|
| lnx|

, lim
x→1

ln | ln(ϕ(x)− x)|
| ln(1− x)|

)
< 1. (3.1.24)

Then the sequence of eigenvalues of Vϕ is absolutely summable.

Proof. The hypothesis (3.1.24) implies that there is r > 1 such that

ϕ(x)− x = o(x1+1/re−x
−1/r

), as x→ 0

and ϕ(x)− x = o
(
(1− x)1+1/re−(1−x)−1/r

)
, as x→ 1.

(3.1.25)
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Consider

α(x) =

 0, if x = 0;(
ln(ex

−1/r − 1)
)−r

, if 0 < x 6 1.

and β(x) =

 1−
(
ln(e(1−x)

−1/r
+ 1)

)−r
, if 0 6 x < 1;

1, if x = 1.

One may check that α and β are continuous, strictly increasing and

α(x)− x ∼ rx1+1/re−x
−1/r

, as x→ 0,

and β(x)− x ∼ r(1− x)1+1/re−(1−x)−1/r
, as x→ 1.

(3.1.26)

Furthermore, for a > e, we have

α((ln(a+ 1))−r) = (ln a)−r and β(1− (ln a)−r) = 1− (ln(a+ 1))−r. (3.1.27)

Now, from (3.1.25) and (3.1.26), it follows that there is a continuous, increasing

self-map ψ of [0, 1] with ψ(0) = 0 and ψ(x) > x for 0 < x < 1 satisfying

ψ(x) 6 ϕ(x) for 0 6 x 6 1,

ψ(x) = α(x) on a neighborhood of 0

and ψ(x) = β(x) on a neighborhood of 1.

Now, take 0 < c < 1 and set γn = ψn(c) − ψn−1(c) for each integer n in Z. Since ψ

is invertible in [0, 1], we have ψ(ψn(c)) = ψn+1(c) for each n in Z. From the behavior

of ψ near 0 and 1 and (3.1.27), it follows that there are real numbers a− and a+ such

that ψn(c) = 1 − (ln(n + a+))−r and ψ−n(c) = (ln(|n| + a−))−r for n large enough.

Therefore, an elementary computation shows that

γn ∼
r

|n|(ln |n|)r+1
, as |n| → +∞.

Hence,
∞∑

n=−∞
γn(1 + | ln γn|) <∞.

Since ψ(x) 6 ϕ(x), Corollary 3.1.4 and Proposition 3.1.19 show that

M(Fϕ
0 , R) 6 M(Fψ

0 , R) 6
∏
n∈Z

(1 + γnR).

Finally, let {1/λn} be the sequence of the non-null zeros of Fϕ
0 . The above display

along with Lemma 3.1.24 shows that {λn}, which is the sequence of eigenvalues of Vϕ,

is absolutely summable.
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Theorem above shows that for a wide class of symbols ϕ the sequence of eigenvalues

is absolutely summable. This means that Vϕ behaves like a nuclear operator, although

it is not. The ‘trace’ of Vϕ is exactly the upper bound found in Theorem 2.2.11 for

increasing maps. This clarifies why the sum of the eigenvalues of Vxα or V1−(1−x)1/α

is equal to 1, see Theorems 2.1.10 and 2.1.11.

Theorem 3.1.26. Let ϕ be a continuous self map of [0, 1] with ϕ(x) > x for 0 6 x 6 1

and assume that the sequence {λn(ϕ)} of eigenvalues of Vϕ is absolutely summable.

Then,
∞∑
n=0

λn(ϕ) = µ({x ∈ [0, 1] : ϕ(x) > x}). (3.1.28)

Proof. We assume that 0 6 c = µ({x ∈ [0, 1] : ϕ(x) = x}) < 1, otherwise there is

nothing to prove. Since {λn} = {λn(ϕ)} is absolutely summable, we find that

G(z) =
∞∏
n=0

(1− λnz)

defines an entire function of exponential type zero. On the other hand, by Theo-

rem 3.1.7, we have that Fϕ
0 and G share the same zeros with the same order. Since,

by Proposition 3.1.12, the entire function Fϕ
0 is of exponential type c, it follows that

H(z) = Fϕ
0 (z)/G(z) is an entire function of exponential type c with no zeros. Thus,

Lemma 3.1.14 implies that H(z) = aebz, where a and b belong to C and |b| = c.

Since G(0) = Fϕ
0 (0) = 1, it follows that a = 1. By Corollary 3.1.4, we know that

M(Fϕ
0 , R) = Fϕ

0 (−R). In addition, Fϕ
0 (z) = G(z)H(z) = G(z)ebz and G has expo-

nential type zero. It follows that b is real and negative and, therefore, b = −c and

Fϕ
0 (z) = G(z)e−cz. Hence,

(Fϕ
0 )′(0) = G′(0)− cG(0) = −c−

∞∑
n=0

λn.

On the other hand, the Taylor series expansion of Fϕ
0 furnished by Proposition 3.1.2

implies that (Fϕ
0 )′(0) = −1, which along with the above display implies (3.1.28). The

proof is complete.

From Theorems 2.2.11 and 3.1.26 we obtain

Corollary 3.1.27. Let ϕ be a continuous increasing self-map of [0, 1] with ϕ(x) > x

for 0 6 x 6 1. Then

∞∑
n=0

λn(ϕ) = µ({x ∈ [0, 1] : ϕ(x) > x}).
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The following example provides another family of symbols for which the spectrum

of the corresponding composition Volterra operators can be found explicitly. It shows

that the eigenvalues λn(ϕ) of Vϕ for a continuous self-map ϕ of [0, 1] with ϕ(x) > x

may be non-real. Moreover, in these examples, the sequence of eigenvalues is not

absolutely summable. It is also worth noting that all the eigenvalues, except the

corresponding one to the spectral radius, are non-real.

Example 3.1.28. Assume that 0 < a < b 6 1 and let ϕa,b be the continuous self-map

of [0, 1] defined by

ϕa,b(x) =

{
b− b−a

a x, if 0 6 x < a;

x, if a 6 x 6 1.
(3.1.29)

Then

σ(Vϕa,b
) = {0} ∪

{
λn =

b− a

ln(b/a) + 2πni

}
n∈Z

.

Furthermore, the eigenvalues λn have algebraic multiplicity 1 and the corresponding

eigenfunctions are

fn(x) =

{
b

b−ae
(a−1)/λn − a

b−ae
(b−1− b−a

a
x)/λn , if 0 6 x < a;

e(x−1)/λn , if a 6 x 6 1.

Proof. First, we will find an explicit expression for Fϕa,b . Set g(x) = Fϕa,b(x, z) for

each z in C. By (3.1.2) and (3.1.3), we have{
g′(x) = zg(ϕa,b(x)), for 0 6 x 6 1,

g(1) = 1.
(3.1.30)

From (3.1.29) and (3.1.30), we see that

g′(x) = zg(x) for a 6 x 6 1. (3.1.31)

One checks that a solution of the Cauchy problem given by (3.1.31) and g(1) = 1 is

g(x) = ez(x−1) for a 6 x 6 1. (3.1.32)

From (3.1.29) and (3.1.30) and the above display, we have{
g′(x) = zez(b−1− b−a

a
x) for 0 6 x 6 a,

g(a) = ez(a−1).

Solving the above Cauchy problem, we obtain

g(x) =
b

b− a
ez(a−1) − a

b− a
ez(b−1− b−a

a
x) for 0 6 x 6 a.
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Thus from (3.1.32) and the above display, we see that

Fϕa,b(x, z) =

{
b

b−ae
z(a−1) − a

b−ae
z(b−1− b−a

a
x), if 0 6 x 6 a;

ez(x−1), if a < x 6 1.
(3.1.33)

In particular,

Fϕa,b

0 (z) =
b

b− a
ez(a−1) − a

b− a
ez(b−1) =

e−z

b− a
(beaz − aebz).

It is elementary to see that the zeros of Fϕa,b

0 are 1/λn, n in Z, and they are sim-

ple. Thus the formulae for the eigenvalues and the eigenfunctions follow from Theo-

rem 3.1.7.

3.2 Analyticity of eigenfunctions of Vϕ

This section is devoted to showing that under suitable hypotheses on the symbols,

the eigenfunctions of composition Volterra operators are analytic. An example is

provided in which while the symbol is analytic, the eigenfunctions are not. Recall

that a function f defined on a real interval [u, v] is said to be analytic if it admits a

holomorphic extension to an open set U of C that contains [u, v]. This is equivalent

to the fact that f coincides with the sum of its Taylor series on a neighborhood of

each point on [u, v]. We will use of a well-known criterion of analyticity. Let f be in

C∞[u, v] and

Mn(f) =
1
n!

max
[u,v]

|f (n)|.

Then f is analytic on [u, v] if and only if

lim
n→∞

(Mn(f))1/n <∞. (3.2.1)

The formula for the n-th derivative of the composition provided by the next lemma

is known as the Fao de Bruno formula, see [52, Chapter 3]. In the expressions below,

each kj , 1 6 j 6 n, is a non-negative integer.

Lemma 3.2.1. Let f and g be in Cn[u, v]. Then for each u 6 x 6 v, we have

(g ◦ f)(n)(x) = n!
∑

k1+···+nkn=n

g(k1+···+kn)(f(x))
k1! · · · kn!(1!)k1 · · ·(n!)kn

(f ′(x))k1 · · ·(f (n)(x))kn . (3.2.2)

The next lemma is an application of Lemma 3.2.1. It will be needed later.

Lemma 3.2.2. For any c in C and any positive integer n, we have∑
k1+···+nkn=n

(k1 + · · ·+ kn)!
k1! · · · kn!

ck1+···+kn = c(c+ 1)n−1.
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Proof. Just consider f(x) = (2 − x)−1 and g(x) = (c + 1 − cx)−1. Since f (k)(x) =

k!(2− x)−k−1 and g(k)(x) = ckk!(c+ 1− cx)−k−1, we see that (3.2.2) implies

(g ◦ f)(n)(1) = n!
∑

k1+···+nkn=n

(k1 + · · ·+ kn)!
k1! · · · kn!

ck1+···+kn . (3.2.3)

On the other hand, we have (g ◦ f)(x) = (c+ 1)−1
(
1 + c

(
(c+ 2)− (c+ 1)x

)−1) and,

therefore, (g ◦ f)(n)(1) = n!c(c+ 1)n−1, which along with (3.2.3) implies the required

equality.

Proposition 3.2.3. Let ϕ be a continuous self-map of [0, 1] with ϕ(x) > x for 0 6

x 6 1. Assume in addition that ϕ is analytic on [α, 1] for a certain 0 6 α < 1 and

sup
[α,1]

|ϕ′| < 1. (3.2.4)

If g is analytic on [α, 1] and λ belongs to C, then each f in C1[α, 1] with f ′(x) =

λf(ϕ(x)) + g(x) for α 6 x 6 1, is analytic on [α, 1].

Proof. We suppose that λ 6= 0, otherwise the result is trivial. Clearly, f belongs to

C∞[α, 1], since ϕ([α, 1]) is contained in [α, 1] and g as well as ϕ are analytic on [α, 1].

To prove that f is analytic, it is enough to show that the sequence {Mn(f)}, relative

to the interval [α, 1], satisfies (3.2.1).

Let r = sup[α,1] |ϕ′|. We may assume that r > 0, otherwise the result is trivial.

We set

R = sup
n>2

(
Mn(ϕ)
r

)1/(n−1)

,

which is finite, since ϕ is analytic on [α, 1]. We clearly have

Mn(ϕ) 6 rRn−1, for n > 1. (3.2.5)

On the other hand, since g is analytic on [α, 1] there are positive numbers A and B

such that

Mn(g) 6 ABn+1, for n > 0. (3.2.6)

Set C = max{B,R/(1− r)} and take a positive integer q such that

2r|λ| 6 C(q + 1). (3.2.7)

Let L > 2A be a constant such that Mn(f) 6 LCn for 1 6 n 6 q. It suffices to verify

that

Mn(f) 6 LCn, for each n > 1. (3.2.8)



60 CHAPTER 3. SPECTRUM OF Vϕ

Let m > q be a positive integer. It is enough to show that if (3.2.8) holds for 1 6 n 6

m, then so does for n = m+1. Upon differentiatingm times on f ′(x) = λf(ϕ(x))+g(x)

and using Lemma 3.2.1 we obtain

f (m+1)(x) = g(m)(x) +
∑

k1+···+mkm=m

m!λf (k1+···+km)(ϕ(x))
k1! · · · km!(1!)k1 · · ·(m!)km

(ϕ′(x))k1 · · ·(ϕ(m)(x))km .

Therefore,

Mm+1(f)6Mm(g)+
∑

k1+···+mkm=m

|λ|(k1 + · · ·+ km)!
(m+ 1)k1! · · · km!

Mk1+···+km(f)(M1(ϕ))k1· · ·(Mm(ϕ))km.

The induction hypotheses along with (3.2.6) shows that

Mm+1(f) 6 ABm+1 +
L|λ|Rm

m+ 1

∑
k1+···+mkm=m

(k1 + · · ·+ km)!
k1! · · · km!

(
rC

R

)k1+···+km

.

Hence, by Lemma 3.2.2, we have

Mm+1(f) 6 ABm+1 +
LrC|λ|
m+ 1

(rC +R)m−1 6 ABm+1 +
LC2

2
(rC +R)m−1 6 LCm+1,

where we have used (3.2.7) in the second inequality above and the fact that B 6 C,

rC+R 6 C and 2A 6 L in the third. Thus (3.2.8) is satisfied for each positive integer

n. The result is proved.

As usual, a function f is said to be analytic on (u, v], if it is on [s, v] for each

u 6 s 6 v.

Lemma 3.2.4. Let ϕ be a continuous self-map of [0, 1] with ϕ(x) > x for α < x < 1

for some 0 6 α < 1. Assume also that ϕ is analytic on (α, 1] and ϕ′(1) 6= 1. If

g is analytic on (α, 1] and λ belongs to C, then each f in C1(α, 1] with f ′(x) =

λf(ϕ(x)) + g(x), is analytic on (α, 1].

Proof. We may assume that λ 6= 0. Now, observe that ϕ′(1) < 1. Thus we may choose

α < v 6 1 such that sup[v,1] |ϕ′| < 1. By Proposition 3.2.3, we find that f is analytic

on [v, 1]. Set

u = inf
{
s ∈ (α, 1) : f is analytic on [s, 1]

}
and assume that u > α. Then there is ε > 0 such that [u− ε, u+ ε] is contained (α, 1)

and ϕ([u− ε, u+ ε]) is contained in (u, 1]. Since f ′(x) = λf(ϕ(x))+ g(x), we find that

f is analytic on [u− ε, 1], which is a contradiction.
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Lemma 3.2.5. Let ϕ be a continuous self-map of [0, 1] with ϕ(x) > x for some

α 6 x < 1. Assume also that ϕ is analytic on [α, 1] and ϕ′(1) 6= 1. If g is analytic on

[α, 1] and λ belongs to C, then each f in C1[α, 1], with f ′(x) = λf(ϕ(x)) + g(x) for

α 6 x 6 1, is analytic on [α, 1].

Proof. Set a = min[α,1] ϕ. The hypotheses on ϕ imply that a > α. According to

Lemma 3.2.4, we find that f is analytic on (α, 1]. Since ϕ([α, 1]) = [a, 1] and a > α,

we obtain that f is analytic on [α, 1] because f ′(x) = λf(ϕ(x)) + g(x). The result is

proved.

Now, we can prove our main theorem in this section.

Theorem 3.2.6. Let ϕ be a continuous self-map of [0, 1] with ϕ(x) > x for 0 < x < 1

and f be a generalized eigenfunction of Vϕ corresponding to a non-zero eigenvalue. If

ϕ is analytic on [α, 1] for some 0 < α < 1 and ϕ′(1) 6= 1, then f is analytic on [α, 1].

The same is true for α = 0, provided that ϕ(0) > 0.

Proof. Since f is a generalized eigenfunction of Vϕ corresponding to a non-zero eigen-

value λ, there are functions f0, f1, . . . , fk = f in L2[0, 1] such that and (Vϕ−λI)f0 = 0

and (Vϕ − λI)fj = fj−1 for 1 6 j 6 k. Consequently, each fj is continuous and thus

Fj(x) =
∫ x

0
fj(t) dt, 0 6 j 6 k,

belongs to C1[0, 1]. We also have

F ′
0(x) = λ−1F0(ϕ(x)) and F ′

j(x) = λ−1Fj(ϕ(x)) + F ′
j−1(x), for 1 6 j 6 k

and applying successively Lemma 3.2.5, we see that each Fj for 1 6 j 6 k, is analytic

on [α, 1] and, therefore, so is each fj , 0 6 j 6 k. The result is proved.

Remark. Observe that Theorem 3.2.6 holds for α = 0 provided that ϕ(0) > 0, but

it fails to be true if ϕ(0) = 0. Indeed, if ϕ(0) = 0, it follows that all the derivatives of

each generalized eigenfunction f of Vϕ vanish at 0. Thus either f is identically zero or

f is not analytic on [0, 1]. The next example shows that ϕ′(1) 6= 1 in Theorem 3.2.6

is also essential.

Example 3.2.7. The map ϕ(x) = (2 − x)−1 satisfies all the hypotheses of Theo-

rem 3.2.6 with α = 0, except that ϕ′(1) = 1. In addition, by Corollary 2.2.3, the

spectral radius r = r(Vϕ) > 0 is an eigenvalue. On the other hand, f(x) = F ′(x),

where F (x) = Fϕ(x, 1/r), satisfies, by Theorem 3.1.7, that Vϕf = rf , but f is not

analytic on [0, 1].
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Proof. If f is analytic on [0,1], then so is F . Since F ′(x) = r−1F (ϕ(x)), by Lemma 3.2.1,

we have

F (n+1)(1) =
n!
r

∑
k1+···+nkn=n

F (k1+···+kn)(1)
k1! · · · kn!(1!)k1 · · ·(n!)kn

(ϕ′(1))k1 · · ·(ϕ(n)(1))kn .

Substituting the value ϕ(n)(1) = n! for n > 0, we obtain

F (n+1)(1) =
n!
r

∑
k1+···+nkn=n

F (k1+···+kn)(1)
k1! · · · kn!

, (3.2.9)

which implies that F (n)(1) > 0 for all n > 0. For each constant C > 0, we may choose

a positive integer q such that

(C + 1)n−1 > Cnr(n+ 1), for each n > q. (3.2.10)

Since F (n)(1) > 0, there is A > 0 such that F (n)(1) > ACnn! for 0 6 n 6 q. Suppose

that n > q and we have already proved that F (m)(1) > ACmm! for each m 6 n. From

(3.2.9), we have

F (n+1)(1) >
A(n+ 1)!
r(n+ 1)

∑
k1+···+nkn=n

(k1 + · · ·+ kn)!
k1! · · · kn!

Ck1+···+kn .

Hence, by Lemma 3.2.2 and using 3.2.10 in the second inequality below, we obtain

F (n+1)(1) > ACn+1(n+ 1)!
(C + 1)n−1

r(n+ 1)Cn
> ACn+1(n+ 1)!.

Thus for each C > 0, there is A > 0 such that F (n)(1) > ACnn! for each n > 0.

Therefore, F is not analytic on [0, 1], as required.



Chapter 4

Asymptotic behavior of orbits of

quasi-nilpotent Vϕ’s

In this Chapter, we deal with the asymptotic behavior of the norms of powers of Vϕ
and norms of orbits {V n

ϕ f}n>0 for quasi-nilpotent composition Volterra operators. In

particular, it will be shown that for the most interesting class of symbols, the sequence

{‖V n
ϕ ‖1/n2} has a positive limit strictly less than one, that depends only on ϕ′(0) and

ϕ′(1). These estimates will be particulary useful in Chapter 5 to prove and disprove

supercyclicity and cyclicity respectively.

It is worth mentioning, see for instance [36], that for each bounded operator T

acting on a Banach space B we have that

lim
n→∞

‖Tnf‖1/n = r(T )

for f in a dense subset of B and

lim
n→∞

‖Tnf‖1/n = r(T )

for f in a dense Gδ set in B. Thus, if T is not quasi-nilpotent, that is, the spectral

radius r(T ) > 0, the asymptotic behavior of the orbits is to some extend determined

by the value of r(T ). If r(T ) = 0, we know only that ‖Tn‖1/n tends to 0 and, therefore,

‖Tnf‖1/n tends to 0 for each f in B. If ϕ is the identity map, that is, Vϕ = V is the

Volterra operator, the asymptotic behavior of the orbits of Vϕ are known. Namely,

Shkarin in [53] has proved, for each f in Lp[0, 1], that

lim
n→∞

(n!‖V nf‖p)1/n

does exist and equals 1 − inf supp (f). We shall see that if ϕ(x) < x for 0 < x < 1,

the orbits of Vϕ tend to zero much faster than that.

63
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4.1 The asymptotic behavior of ‖V n
ϕ ‖

We will be mainly concerned with continuous strictly increasing symbols, since it is

necessary for cyclicity of composition Volterra operators, see Section 5.3. However,

most of the proofs in this section still work for non-increasing self-maps.

Let ϕ be a continuous strictly increasing self-map of [0, 1] with ϕ(x) 6 x for

0 6 x 6 1 and ϕ(1) = 1. Let Ω1(ϕ) = [0, 1] and for each n > 2 consider

Ωn(ϕ) = {x ∈ [0, 1]n : x1 6 ϕ(x2), x2 6 ϕ(x3), . . . , xn−1 6 ϕ(xn)}. (4.1.1)

The next lemma relates the values of ‖V n
ϕ ‖ to those of νn(ϕ) = µn(Ωn(ϕ)), where µn

is the n-dimensional Lebesgue measure.

Lemma 4.1.1. Let ϕ be a continuous strictly increasing self-map of [0, 1] with ϕ(x) 6

x for 0 6 x 6 1 and ϕ(1) = 1. Then νn+1(ϕ) 6 ‖V n
ϕ ‖p 6 νn−1(ϕ) for each n > 2 and

1 6 p 6 ∞.

Proof. Let 1 denote the function identically 1 on [0, 1]. It is clear that

‖V n
ϕ 1‖∞ = ‖V n−1

ϕ 1‖1 = (V n
ϕ 1)(1) = νn(ϕ)

for each positive integer n. Hence,

‖V n
ϕ ‖p > ‖V n

ϕ 1‖p > ‖V n
ϕ 1‖1 = νn+1(ϕ).

We also have ‖V n
ϕ f‖∞ 6 ‖V n

ϕ 1‖∞‖f‖∞ = νn(ϕ)‖f‖∞ for each f ∈ L∞[0, 1]. Hence

‖V n
ϕ f‖p 6 ‖V n−1

ϕ Vϕf‖∞ 6 νn−1(ϕ)‖Vϕf‖∞ 6 νn−1(ϕ)‖f‖p

for each n > 2. Thus, νn+1(ϕ) 6 ‖V n
ϕ ‖p 6 νn−1(ϕ) for any n > 2.

Before stating our main result, we need one more lemma. Let ϕ be a continuous

strictly increasing self-map of [0, 1] with ϕ(x) 6 x for 0 6 x 6 1. For each positive

integer n and each 0 < a < 1, we set

Ωa,0
n (ϕ) = {x ∈ Ωn(ϕ) : xn 6 a} and Ωa,1

n (ϕ) = {x ∈ Ωn(ϕ) : x1 > a}.
(4.1.2)

Lemma 4.1.2. Let ϕ be a continuous strictly increasing self-map of [0, 1] with ϕ(x) <

x for 0 < x < 1 and ϕ(1) = 1 and

δ+0 = lim
x→0

ϕ(x)
x

, δ−0 = lim
x→0

ϕ(x)
x

, δ+1 = lim
x→1

1− x

1− ϕ(x)
, δ−1 = lim

x→1

1− x

1− ϕ(x)
.

(4.1.3)
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Then for each 0 < a < 1, we have

lim
n→∞

(µn(Ωa,0
n (ϕ)))1/n

2
6
√
δ+0 , lim

n→∞
(µn(Ωa,0

n (ϕ)))1/n
2

>
√
δ−0 , (4.1.4)

lim
n→∞

(µn(Ωa,1
n (ϕ)))1/n

2
6
√
δ+1 , lim

n→∞
(µn(Ωa,1

n (ϕ)))1/n
2

>
√
δ−1 . (4.1.5)

In particular, if ϕ is differentiable at 0 and at 1, the derivative at 1 is allowed to be

infinite, then

lim
n→∞

(µn(Ωa,0
n (ϕ)))1/n

2
=
√
ϕ′(0) and lim

n→∞
(µn(Ωa,1

n (ϕ)))1/n
2

=
√

1/ϕ′(1).

(4.1.6)

Proof. If δ+0 = 1, the first inequality in (4.1.4) becomes trivial. Indeed, if we denote

u the identity function, we have

µn(Ωa,0
n (ϕ)) 6 µn(Ωn(ϕ)) 6 µn(Ωn(u)) =

1
(n+ 1)!

. (4.1.7)

Thus assume that δ+0 < 1. We take an arbitrary δ+0 < b < 1. Clearly, there is

0 < δ < 1 and a strictly increasing continuous self-map ψ of [0, 1] such that ψ(x) < x

for 0 < x < 1, ψ(x) = bx for 0 6 x 6 δ and ψ(x) > ϕ(x) for 0 6 x 6 1. Since

ψ(x) < x for 0 < x < 1, we find that there is a positive integer k such that ψk(a) 6 δ,

where ψk denotes the k-th iterate of ψ. It immediately follows that

µn(Ωa,0
n (ψ)) 6 µn−k(Ω

δ,0
n−k(ψ))

for n > k. Since ψ(x) = bx for 0 6 x 6 δ, we have

µj(Ω
δ,0
j (ψ)) =

∫ δ

0
dxj

∫ bxj

0
dxj−1· · ·

∫ bx3

0
dx2

∫ bx2

0
dx1 =

δjbj(j−1)/2

j!
(4.1.8)

for each positive integer j. Since µn(Ω
a,0
n (ϕ)) 6 µn(Ω

a,0
n (ψ)) for each positive integer

n, from the last two displays it follows that

lim
n→∞

(µn(Ωa,0
n (ϕ)))1/n

2
6
√
b.

Since δ+0 < b < 1 was arbitrary, the first inequality in (4.1.4) follows.

If δ−0 = 0, the second inequality in (4.1.4) is trivial. Thus assume that δ−0 > 0.

We take an arbitrary 0 < b < δ−0 . Clearly, there is 0 < δ < a and a strictly increasing

continuous self-map ψ of [0, 1] such that ψ(x) < x for 0 < x < 1, ψ(x) = bx for

0 6 x 6 δ and ψ(x) 6 ϕ(x) for 0 6 x 6 1. Since

µn(Ωa,0
n (ϕ)) > µn(Ωa,0

n (ψ)) > µn(Ωδ,0
n (ψ))
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for each positive integer n, from (4.1.8) we obtain

lim
n→∞

(µn(Ωa,0
n (ϕ)))1/n

2
>
√
b.

Since 0 < b < δ−0 was arbitrary, the second inequality in (4.1.4) also follows.

Finally, since ϕ satisfies (4.1.5) if and only if φ(x) = 1−ϕ−1(1−x) satisfies (4.1.4),

the proof of the statement of the lemma is complete.

In order to state the main result of this section, we define

φ(u, v) =


exp

(
lnu ln v
2 ln(uv)

)
, if u > 0, v > 0 and (u, v) 6= (1, 1);√

|u− v|, if u = 0 or v = 0;

1, if (u, v) = (1, 1),

which is clearly continuous on [0, 1]2 and takes values in [0, 1].

Theorem 4.1.3. Let ϕ be a continuous strictly increasing self-map of [0, 1] with

ϕ(x) < x for 0 < x < 1 and ϕ(1) = 1 and δ+0 , δ−0 , δ+1 , δ−1 be as in (4.1.3). Then, for

1 6 p 6 ∞, we have

ρ− 6 lim
n→∞

‖V n
ϕ ‖1/n2

p 6 lim
n→∞

‖V n
ϕ ‖1/n2

p 6 ρ+,

where ρ− = φ(δ−0 , δ
−
1 ) and ρ+ = φ(δ+0 , δ

+
1 ). In particular, if ϕ is differentiable at 0

and at 1, then

lim
n→∞

‖V n
ϕ ‖1/n2

= φ(ϕ′(0), 1/ϕ′(1)).

Proof. According to Lemma 4.1.1, it is enough to show that

ρ− 6 lim
n→∞

(νn(ϕ))1/n
2

6 lim
n→∞

(νn(ϕ))1/n
2

6 ρ+. (4.1.9)

If ρ+ = 1, the last inequality in (4.1.9) follows from the second one in (4.1.7). Thus

assume that ρ+ < 1. Hence, we must have δ+0 < 1 and δ+1 < 1. We take δ+0 < b0 < 1

and δ+1 < b1 < 1. By Lemma 4.1.2, there is c > 0 such that

µn(Ω1/2,0
n (ϕ)) 6 cb

n2/2
0 and µn(Ω1/2,1

n (ϕ)) 6 cb
n2/2
1 (4.1.10)

for each positive integer n. Clearly,

Ωn(ϕ) ⊂
n⋃
k=0

Ak,
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where A0 = Ω1/2,0
n (ϕ), An = Ω1/2,1

n (ϕ) and Ak = Ω1/2,0
n−k (ϕ)× Ω1/2,1

k (ϕ) for 0 < k < n.

Hence,

νn(ϕ) 6
n∑
k=0

µn(Ak) =
n∑
k=0

µn−k(Ω
1/2,0
n−k (ϕ))µk(Ω

1/2,1
k (ϕ)).

Using (4.1.10), we obtain

νn(ϕ) 6 c2
n∑
k=0

b
(n−k)2/2
0 b

k2/2
1

6 c2(n+ 1) max
06k6n

b
(n−k)2/2
0 b

k2/2
1

6 c2(n+ 1)
(

max
[0,1]

b
(1−x)2/2
0 b

x2/2
1

)n2

.

The last maximum is attained for x = ln b0/ln(b0b1) and equals to φ(b0, b1). Therefore,

lim
n→∞

(νn(ϕ))1/n
2

6 φ(b1, b2).

Since δ+0 < b0 < 1 and δ+1 < b1 < 1 were arbitrary, we see that the last inequality in

(4.1.9) is satisfied.

If ρ− = 0, the first inequality in (4.1.9) is trivial. Thus assume that ρ− > 0.

Hence, we must have δ−0 > 0 and δ−1 > 0. We take 0 < b0 < δ−0 and 0 < b1 < δ−1 . Let

a > 0 be small enough to ensure that a < ϕ(1 − a). By Lemma 4.1.2, there is c > 0

such that

µn(Ωa,0
n (ϕ)) > cb

n2/2
0 and µn(Ω1−a,1

n (ϕ)) > cb
n2/2
1 (4.1.11)

for each positive integer n. Choose a sequence {kn}n>1 of positive integers such that

kn < n for each n and kn/n tends to ln b1/ln(b1b2) as n tends to ∞. Clearly,

Ωn(ϕ) ⊃ A = Ωa,0
n−kn

(ϕ)× Ω1−a,1
kn

(ϕ).

Hence,

νn(ϕ) > µn(A) = µn−kn(Ωa,0
n−kn

(ϕ))µkn(Ω1−a,1
kn

(ϕ)).

Using (4.1.11), we obtain

νn(ϕ) > c2b
(n−kn)2/2
0 b

k2
n/2

1 = c2
(
b
(1−(kn/n))2

0 b
(kn/n)2

1

)n2/2
.

Since kn/n tends to ln b0/ln(b0b1), we see that

lim
n→∞

b
(1−(kn/n))2

0 b
(kn/n)2

1 = φ(b0, b1).
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From the last two displays, we obtain

lim
n→∞

(νn(ϕ))1/n
2

> φ(b0, b1).

Since 0 < b0 < δ−0 and 0 < b1 < δ−1 were arbitrary, we see that the first inequality in

(4.1.9) is also satisfied. The proof is complete.

Corollary 4.1.4. Let ϕ be a continuous strictly increasing self-map of [0, 1] with

ϕ(x) < x for 0 < x < 1 and ϕ(1) = 1. If ϕ is differentiable at 0 and 1 and ϕ′(0) = 0,

then, for 1 6 p 6 ∞, we have

lim
n→∞

‖V n
ϕ ‖1/n2

p =
1√
ϕ′(1)

.

If ϕ is differentiable at 0 and ϕ′(1) = ∞, then

lim
n→∞

‖V n
ϕ ‖1/n2

p =
√
ϕ′(0).

Müller [36] proved that for any bounded operator T on Banach space B and for

each sequence {an}n>0 of positive numbers with

∞∑
n=0

a1/2
n <∞

there is a dense subset E of B such that for each x in E, we have ‖Tnx‖ > an‖Tn‖
for n large enough. From the latter result and Theorem 4.1.3, we have

Corollary 4.1.5. Let ϕ be a continuous strictly increasing self-map of [0, 1] with

ϕ(x) < x for 0 < x < 1 and ϕ(1) = 1. Assume also that ϕ is differentiable at 0 and

at 1. Then the set of f in Lp[0, 1], 1 6 p 6 ∞, for which

lim
n→∞

‖V n
ϕ f‖1/n2

p = φ(ϕ′(0), 1/ϕ′(1))

is dense in Lp[0, 1].

4.2 Orbits of Vϕ. Upper estimate

The next lemma will be very useful to determine the cyclic properties of Vϕ.

Lemma 4.2.1. Let ϕ be a continuous strictly increasing self-map of [0, 1] with ϕ(x) <

x for 0 < x < 1, ϕ(1) = 1 and

δ+1 = δ+1 (ϕ) = lim
x→1

1− x

1− ϕ(x)
.
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Assume also that f in Lp[0, 1], 1 6 p 6 ∞, satisfies inf supp (f) > 0. Then,

lim
n→∞

‖V n
ϕ f‖1/n2

p 6
√
δ+1 .

In particular, if ϕ is differentiable at 1, we have

lim
n→∞

‖V n
ϕ f‖1/n2

p 6
√

1/ϕ′(1).

Proof. Let ε > 0 be such that f vanishes on [0, ε]. Since Vϕf is continuous and also

vanishes [0, ε], there is c > 0 for which |(Vϕf)(x)| 6 cχ[ε,1](x) for each 0 6 x 6 1,

where χ[ε,1] is the characteristic function of [ε, 1]. Hence,

‖V n
ϕ f‖p 6 ‖V n

ϕ f‖∞ 6 c‖V n
ϕ χ[ε,1]‖∞ = c(V n

ϕ χ[ε,1])(1) = c‖V n−1
ϕ χ[ε,1]‖1. (4.2.1)

Let Ωε,1
n (ϕ) be as in (4.1.2). Then (V n

ϕ χ[ε,1])(1) = µn(Ω
ε,1
n (ϕ)) for each positive integer

n. Therefore, by Lemma 4.1.2, we have

lim
n→∞

‖V n
ϕ χ[ε,1]‖

1/n2

1 = lim
n→∞

(µn(Ωε,1
n (ϕ)))1/n

2
6
√
δ+1 .

The required result follows immediately from the last two displays.

4.3 The backward orbits of Vϕ

In this section, we consider the asymptotic behavior of certain backward orbits of Vϕ.

In the next Chapter, we shall apply these results to determine the cyclic behavior of

composition Volterra operators.

We begin by observing that if S is a linear, not necessarily bounded, operator

acting on a linear space X, then

S∞(X) =
∞⋂
n=0

Sn(X)

is a subspace of X invariant under S. Moreover, it is clear that S(S∞(X)) = S∞(X).

Thus the restriction of S to S∞(X) is always onto. In addition, if kerS = {0}, then

the restriction of S to S∞(X) is bijective. In such a case, since S is one-to-one from

S∞(X) onto itself, the backward orbits of any x in S∞ are well defined. This is in

particular our case for kerVϕ = {0}.
Recall that C0[0, 1] is the subspace of C[0, 1] of functions vanishing at 0, endowed

with the supremum norm.
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Theorem 4.3.1. Let ϕ be a continuous strictly increasing self-map of [0, 1] with

ϕ(x) < x for 0 < x < 1 and ϕ(1) = 1. Assume also that ϕ is analytic at 0 and

ϕ′(0) > 0. Then for each b > 1/ϕ′(0), the set

Fb =
{
f ∈ V∞

ϕ (C0[0, 1]) such that lim
n→∞

‖V −n
ϕ f‖1/n2

∞ 6
√
b
}

is a dense linear manifold of C0[0, 1] satisfying Vϕ(Fb) = V −1
ϕ (Fb) = Fb.

The remainder of this section is devoted to proving the above theorem. As in

Section 3.2, for f ∈ C∞[a, b], we set

Mn(f) =
1
n!

max
[a,b]

|f (n)|.

We also need the space F [a, b] being

{f ∈ C∞[a, b] : f (n)(a) = f (n)(b) = 0 for each n > 0 and lim
n→∞

(Mn(f))1/n
2

6 1}.

By means of Leibnitz’s formula one can check that if f is in F [a, b] and g in C∞[a, b]

satisfies limn→∞(Mn(g))1/n
2

6 1, then fg belongs to F [a, b]. In particular, the space

F [a, b] is an algebra with respect to the pointwise multiplication and is invariant under

multiplication by analytic functions.

Lemma 4.3.2. Assume that −∞ < a < b <∞. Then

h(x) =

{
e−

1
x−a

− 1
b−x , if a < x < b;

0, if x = a or x = b
(4.3.1)

belongs to F [a, b].

Proof. Clearly, h is in C∞[a, b] with h(n)(a) = h(n)(b) = 0 for each non-negative integer

n. Thus we need only prove that

lim
n→∞

(Mn(h))1/n
2

6 1. (4.3.2)

To this end, we estimate Mn(g), where g(x) = e−1/x for x > 0 and g(0) = 0. By

induction, one easily sees that g(n)(x) = pn(1/x)g(x) for x 6= 0, where

p0 = 1 and pn+1(t) = t2pn(t)− t2p′n(t), for each n > 1. (4.3.3)

Clearly, pn(t) =
∑2n

j=0 an,jt
j , where the coefficients an,j are real. Therefore,

Mn(g) =
1
n!

sup
x>0

|g(n)(x)| 6 1
n!

2n∑
j=0

|an,j | sup
x>0

x−je−1/x =
1
n!

2n∑
j=0

|an,j | sup
x>0

xje−x.
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Since supx>0 x
je−x = (j/e)j , we have

Mn(g) 6
1
n!

2n∑
j=0

|an,j |
(
j

e

)j
6

(2n)2n

n!e2n
σn, where σn =

2n∑
j=0

|an,j |.

Using (4.3.3), we see that σn+1 6 (2n + 1)σn and, therefore, σn 6 (2n)!/(2nn!).

Upon putting everything together and using Stirling’s formula one sees that Mn(g) 6

(2n/e)2n.

Since h(x) = g(x− a)g(b− x), applying Leibnitz’s formula, we see that

h(n)(x) =
n∑
k=0

(−1)kn!
k!(n− k)!

g(k)(b− x)g(n−k)(x− a), for a 6 x 6 b.

Therefore, using that Mk(g) 6 (2k/e)2k in the second inequality below, we have

Mn(h) 6
n∑
k=0

n!
k!(n− k)!

Mk(g)Mn−k(g) 6 2n max
06k6n

(2k)2k(2n− 2k)2n−2k < (2n)2n,

from which (4.3.2) follows and the result is proved.

The following lemma can also be derived from the Denjoy–Carleman Theorem, see

[43, p. 380]. Here, we provide an elementary proof. We denote by C00[a, b] the Banach

space of complex continuous functions on [a, b] that vanish at a and b endowed with

the supremum norm.

Lemma 4.3.3. Assume that a < b are real. Then F [a, b] is dense in C00[a, b] and

F+[a, b] = {f ∈ F [a, b] such that f(x) > 0 for each x ∈ [a, b]}

is dense in

C+
00[a, b] = {f ∈ C00[a, b] such that f(x) > 0 for each x ∈ [a, b]}.

Proof. Let h be the function in (4.3.1), that is,

h(x) =

{
e−

1
x−a

− 1
b−x , if a < x < b;

0, if x = a or x = b.

By Lemma 4.3.2, we know that h is in F [a, b]. Since h is in C00[a, b] and h(x) > 0 for

a < x < b, we see that

W = {ph such that p is a polynomial}

is dense in C00[a, b]. Also,

W+ = {g ∈W such that g(x) > 0 on [a, b]}

is dense in C+
00[a, b]. Now, the result follows because F [a, b] is stable with respect to

multiplication by polynomials and therefore W ⊂ F [a, b] and W+ ⊂ F+[a, b].



72 CHAPTER 4. ASYMPTOTIC BEHAVIOR OF ORBITS

Now, we proceed to define an operator closely related to the ‘inverse’ of Vϕ. For

0 < a < 1, we set

Ea = {f ∈ C∞[0, 1] such that supp f ⊂ [0, a] and f (n)(0) = 0 for n > 0}. (4.3.4)

For an analytic function ψ : [0, a] → [0, 1] such that ψ(a) > a and ψ(0) = 0 consider

the operator Tψ : Ea → Ea defined as

(Tψf)(x) =

{
f ′(ψ(x)), if x ∈ [0, a];

0, if x ∈ (a, 1].
(4.3.5)

The requirements ψ(a) > a and ψ(0) = 0 implies that Tψ acts from Ea into itself. As

usual, for each pair n and l of non-negative integers, we write

(n)l = 1, if l = 0 and (n)l = (n+ 1) · · · (n+ l), if l > 0.

Lemma 4.3.4. Let ψ be an analytic function from [0, a] into [0, 1], where 0 < a < 1,

with ψ(0) = 0 and ψ(a) > a. Let {cn}n>0 be such that cn > 1 with limn→∞ c
1/n
n = 1

and let {fn}n>0 be in Ea satisfying

βn = sup
k>0

Mn(fk)c−n−1
k <∞, for each n > 0 and lim

n→∞
β1/n2

n 6 1.

Then

lim
n→∞

‖Tnψ fn‖1/n2

∞ 6
√
γ.

Proof. The proof is split into three steps.

Step 1. Let {β̂n}n>0 be a sequence such that {β̂1/n
n } is increasing. Assume also that

c > 0 and l is a non-negative integer. Then for f in Ea satisfying Mn(f) 6 c (n)lβ̂n
for each n > 0, we have

Mn(Tψf) 6 c (n)l+1γ
nβ̂n+1

(
1 +

R

γβ̂
1/(n+1)
n+1

)n
, for each n > 0,

where

R = sup
n>2

(
Mn(ψ)
γ

)1/(n−1)

. (4.3.6)

Proof of Step 1. Since ψ is analytic on [0, a], by (3.2.1), we see that R is finite.

Clearly,

‖Tψf‖∞ 6 ‖f ′‖∞ = M1(f) 6 c(1)lβ̂1 = c(0)l+1β̂1.

Thus the result is true for n = 0. Since

Mn(ψ) 6 γRn−1, for n > 1, (4.3.7)
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using Lemma 3.2.1, for each 0 6 x 6 a with 0 < ψ(x) < a and for each positive

integer n, we have

(Tψf)(n)(x)=(f ′◦ψ)(n)(x)=n!
∑

n=k1+···+nkn

f (k1+···+kn+1)(ψ(x))
k1! · · · kn!(1!)k1 · · ·(n!)kn

(ψ′(x))k1· · ·(ψ(n)(x))kn.

From (4.3.5), we have (Tψf)(n)(x) = 0 for f in Ea and ψ(x) > a and, therefore, we

may write

Mn(Tψf) 6
∑

n=k1+···+nkn

(k1 + · · ·+ kn + 1)!
k1! · · · kn!

Mk1+···+kn+1(f)(M1(ψ))k1 · · ·(Mn(ψ))kn

6 (n+ 1)
∑

n=k1+...+nkn

(k1 + · · ·+ kn)!
k1! · · · kn!

Mk1+···+kn+1(f)(M1(ψ))k1 · · ·(Mn(ψ))kn .

From (4.3.7) and the fact that Mk(f) 6 c(k)lβ̂k, we have

Mn(Tψf) 6 c(n)l+1

∑
n=k1+···+nkn

(k1 + · · ·+ kn)!
k1! · · · kn!

β̂k1+···+kn+1γ
k1(γR)k2 · · ·(γRn−1)kn .

Since {β̂1/k
k } is increasing, it follows that β̂k 6 (β̂m)k/m for 1 6 k 6 m. Therefore,

Mn(Tψf) 6 c (n)l+1R
nβ̂

1/(n+1)
n+1

∑
n=k1+···+nkn

(k1 + · · ·+ kn)!
k1! · · · kn!

(
γβ̂

1/(n+1)
n+1

R

)k1+···+kn

.

Applying Lemma 3.2.2, we have

Mn(Tψf) 6 c (n)l+1γR
n−1β̂

2/(n+1)
n+1

(
1 +

γβ̂
1/(n+1)
n+1

R

)n−1

= c (n)l+1γ
nβ̂n+1

(
1 +

R

γβ̂
1/(n+1)
n

)n−1

6 c (n)l+1γ
nβ̂n+1

(
1 +

R

γβ̂
1/(n+1)
n

)n
.

The proof of Step 1 is complete.

Step 2. Under the hypotheses of the lemma we have

β̃n = sup
k>0

Mn(Tψfk)c−n−2
k

is finite for each n > 0 and

lim
n→∞

β̃1/n2

n 6 1.
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Proof of Step 2. Let δ > 1 be fixed. Since limn→∞β
1/n2

n 6 1, we may choose C > 0

such that βn 6 C δn
2

for each n > 0. For each n > 0, we set β̂n = cnkδ
n2

, where

c = Cck. Then, for each k > 0, we have Mn(fk) 6 cβ̂n. By step 1, we have

Mn(Tψfk) 6 c(n+ 1)γnβ̂n+1

(
1 +

R

γβ̂
1/(n+1)
n+1

)n
, for each n > 0.

Upon substituting the values of c and β̂n+1, we obtain

Mn(Tψfk) 6C (n+ 1)cn+2
k γnδ(n+1)2

(
1 +

R

γckδn+1

)n
6C (n+ 1)cn+2

k γnδ(n+1)2
(

1 +
R

γδn+1

)n
.

Therefore,

β̃n 6 C (n+ 1)γnδ(n+1)2
(

1 +
R

γδn+1

)n
.

In particular, limn→∞β̃
1/n2

n 6 δ. Since δ > 1 was arbitrary, the proof of Step 2 is

complete.

Step 3. The conclusion of the lemma holds.

Proof of Step 3. Let δ > 1 be fixed. Since ψ(0) = 0 and ψ(a) > a, we see that

γ = ‖ψ′‖∞ > 1. Thus using that cj > 1, we may take a positive integer l such that

δn/2
(

1 +
R

γ(γδ)mδ(n+1)/4cj

)n
6 δn, for each m > l and n, j > 0. (4.3.8)

Indeed, it is enough to take l with δl > R/(
√
δ − 1). As in the proof of Step 2, there

is C > 0 such that for 0 6 k 6 l, we have

Mn(T kψfj) 6 Ccn+k+1
j δk/4(n)k(γδ)k(n+(k−1)/2)δn

2/4, for each n, j > 0. (4.3.9)

We will prove that (4.3.9) also holds for each k > l + 1. Suppose that (4.3.9) is true

for an integer k = m > l. For k = m, we can rewrite (4.3.9) as

Mn(Tmψ fj) 6 c (n)mβ̂n,

where c = C cm+1
j δm/4(γδ)m(m−1)/2 and β̂n = cnj (γδ)

mnδn
2/4. Applying Step 1, we

have

Mn(Tm+1
ψ fj) 6 c (n)m+1γ

nβ̂n+1

(
1 +

R

γβ̂
1/(n+1)
n+1

)n
,



4.3. THE BACKWARD ORBITS OF Vϕ 75

which is equal to

Ccm+n+1
j δ(m+1)/4(n)m+1(γδ)m(m−1)/2γn(γδ)mn+mδn

2/4δn/2
(

1+
R

γcj(γδ)mδ(n+1)/4

)n
.

Since m > l, we may use (4.3.8) to obtain

Mn(Tm+1
ψ f) 6 Ccm+n+1

j δ(m+1)/4(n)m+1(γδ)m(m−1)/2γn(γδ)mn+mδn
2/4δn

= Ccn+m+1
j δ(m+1)/4(n)m+1(γδ)mn+m(m−1)/2+n+mδn

2/4

= Cδ(m+1)/4(n)m+1(γδ)(m+1)(n+(m/2))δn
2/4,

which is (4.3.9) for k = m + 1. Thus (4.3.9) holds for all non-negative integers k, n

and j. For n = 0 and j = k, we find that (4.3.9) implies that

‖T kψfk‖∞ 6 Cck+1
k δk/4k!(γδ)k(k−1)/2.

Since c1/kk tends to 1, we obtain

lim
k→∞

‖T kψfk‖1/k2

∞ 6
√
γδ.

Since δ > 1 was arbitrary, it follows

lim
k→∞

‖T kψfk‖1/k2

∞ 6
√
γ.

which is the required result. The proof of Step 3 and that of the statement of the

Lemma is complete.

Observe that the formula for the adjoint of Vϕ is

(V ?
ϕ f)(x) =

∫ 1

ϕ−1(x)
f(t) dt.

that, as an operator, has sense on Lp[0, 1] for 1 6 p 6 ∞. Indeed, the adjoint of V ?
ϕ

acting on L1[0, 1] is Vϕ acting on L∞[0, 1]. The next lemma, which will be very useful,

describes the behavior of the supports of the iterates {V n
ϕ f} and {V ?n

ϕ f}. The proof,

which is straightforward, is omitted.

Lemma 4.3.5. Let ϕ be a continuous strictly increasing self-map of [0, 1] with ϕ(x) <

x and ϕ(1) = 1. Assume also that f is in L1[0, 1]. Then we have

(a) inf supp (Vϕf) = ϕ−1(inf supp (f)).

(b) sup supp (Vϕf) ∈ {1, ϕ−1(sup supp (f))}.

(c) inf supp (V ?
ϕ f) ∈ {0, ϕ(inf supp (g))}.



76 CHAPTER 4. ASYMPTOTIC BEHAVIOR OF ORBITS

(d) sup supp (V ?
ϕ g) = ϕ(sup supp (g)).

(e) sup supp (V n
ϕ f) tends to 1 and inf supp (V ?n

ϕ g) tends to 0 as n tends to ∞.

When dealing with supercyclicity of Vϕ in Section 5.3, we will need special dense

subsets of C0[0, 1]. For each 0 < a < 1, we set

Ca = {f ∈ C0[0, 1] such that sup supp (f) 6 a}.

We have,

Lemma 4.3.6. Let ϕ be a continuous strictly increasing self-map of [0, 1] with ϕ(x) <

x for 0 < x < 1 and ϕ(1) = 1. Assume that 0 < a < 1. Then

Z = span

( ∞⋃
n=0

V n
ϕ (Ca)

)

is dense in C0[0, 1].

Proof. It is enough to prove that Z is dense in L2[0, 1]. Indeed, once this is proved,

the result follows because Vϕ acting from L2[0, 1] into C0[0, 1] is bounded with dense

range and the image of a dense set under an operator with dense range is itself dense

and Z is invariant under Vϕ.

Thus assume that Z is not dense in L2[0, 1]. Then there is a non-zero g in L2[0, 1]

such that 〈V n
ϕ f, g〉 = 〈f, V ?n

ϕ g〉 = 0 for each f in Ca and for each non-negative integer

n. This means that inf supp (V ?n
ϕ g) > a for each non-negative integer n, which is

impossible, since by Lemma 4.3.5, we have inf supp (V ?n
ϕ g) tends to 0 as n tend to ∞,

which proves the result.

For 0 < a < 1, we shall write

Fa =
{
f ∈ Ea such that lim

n→∞
(Mn(f))1/n

2
6 1
}
, (4.3.10)

where Ea is the one defined in (4.3.4). That is, f belongs to Fa if and only if f belongs

to C∞[0, 1], supp (f) ⊆ [0, a] and the restriction of f to [0, a] belongs to F [0, a].

Lemma 4.3.7. Let ψ be analytic from [0, a] into [0, 1], where 0 < a < 1, with ψ(0) = 0

and ψ(a) > a. Let Tψ be the operator on Ea defined in (4.3.5) and Cψ be the operator

on Ea defined as

(Cψf)(x) =

{
f(ψ(x)), if x ∈ [0, a];

0, if x ∈ (a, 1].

Then Fa is invariant under Cψ as well as under Tψ.
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Proof. Let γ > 1 be fixed. If f is in Fa, then there is c > 1 such that Mn(f) 6 cnγn
2

for each positive integer n. Since ψ is analytic, by (3.2.1), we see that the value R

R = sup
n>2

(
Mn(ψ)
γ

)1/(n−1)

is finite. Now, from Lemma 3.2.1, it follows that

Mn(Cψf) 6
∑

n=k1+···+nkn

(k1 + · · ·+ kn)!
k1! · · · kn!

Mk1+···+kn(f)(M1(ψ))k1 · · ·(Mn(ψ))kn .

Using that Mm(ψ) 6 γRm−1 and Mk(f) 6 ckγk
2
, we obtain

Mn(Cψf) 6
∑

n=k1+···+nkn

(k1 + · · ·+ kn)!
k1! · · · kn!

ck1+···+knγ(k1+...+kn)2γk1(γR)k2 · · ·(γRn−1)kn

6 Rn
∑

n=k1+···+nkn

(k1 + · · ·+ kn)!
k1! · · · kn!

(
cγn+1

R

)k1+···+kn

.

Upon applying Lemma 3.2.2, we obtain

Mn(Cψf) 6 Rn
cγn+1

R

(
1 +

cγn+1

R

)n−1

6 (R+ cγn+1)n.

Therefore, it follows that

lim
n→∞

(Mn(Cψf))1/n
2

6 γ.

Since γ > 1 was arbitrary, we see that

lim
n→∞

(Mn(Cψf))1/n
2

6 1

and, therefore, Cψf belongs to Fa. Finally, it is clear that Fa is also invariant under

the derivative operator Df = f ′. Since Tψ = CψD, the result follows.

The next lemma is needed not only to prove Theorem 4.3.1, but also to show the

non-cyclicity of certain composition Volterra operators in Section 5.3.

Lemma 4.3.8. Let ϕ be a continuous strictly increasing self-map of [0, 1] with ϕ(x) <

x for 0 < x < 1 and ϕ(1) = 1. Assume also that ϕ is analytic on [0, ϕ−1(a)], where

0 < a < 1, with ϕ′(x) > 0 for 0 6 x 6 ϕ−1(a). Then Fa is contained in V∞
ϕ (C0[0, 1])

and

lim
n→∞

‖V −n
ϕ f‖1/n2

∞ 6
√
γ for each f ∈ Fa,

where γ = max[0,ϕ−1(a)] 1/ϕ′.
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Proof. We set ψ = ϕ−1 for the inverse of ϕ. Clearly, ψ is analytic on [0, a] and

max[0,a] |ψ′| = γ. It is easy to check that

(Sf)(x) =


f ′(ψ(x))
ϕ′(ψ(x))

, if x ∈ (0, a);

0, otherwise
(4.3.11)

acts from Ea into Ea and that VϕSf = f for each f in Ea. Therefore, it follows that

Fa ⊂ Ea ⊂ V∞
ϕ (C0[0, 1])

and the operator S defined in (4.3.11) coincides with the restriction to Ea of V −1
ϕ

acting on V∞
ϕ (C0[0, 1]).

Now consider the operator Tψ acting on Ea as defined in (4.3.5). One easily sees

that CψSf = TψCψf for each f in Ea, where Cψ is defined as (Cψf)(x) = f(ψ(x)).

Hence CψSnf = TnψCψf for each f in Ea and each non-negative integer n. Thus

‖V −n
ϕ f‖∞ = ‖Snf‖∞ = ‖CψSnf‖∞ = ‖TnψCψf‖∞ for f ∈ Ea and n > 0. (4.3.12)

Now, if f belongs to Fa, then, by Lemma 4.3.7, we have Cψf belongs to Fa. Hence

lim
n→∞

(Mn(Cψf))1/n
2

6 1.

Applying Lemma 4.3.4 with cn = 1 and fn = Cψf for each n > 0, we obtain

limn→∞‖TnψCψf‖
1/n2

∞ 6
√
γ. Therefore, using (4.3.12), we have

lim
n→∞

‖V −n
ϕ f‖1/n2

∞ 6
√
γ,

which is the required conclusion.

Now, we have all necessary tools to prove Theorem 4.3.1.

Proof of Theorem 4.3.1. One easily checks that Fb is linear and that Vϕ(Fb) and

V −1
ϕ (Fb) are contained in Fb, which implies that Vϕ(Fb) = Fb = V −1

ϕ (Fb). Thus

we need only prove that Fb is dense in C0[0, 1].

Set ψ = ϕ−1 for the inverse of ϕ. Since b > 1/ϕ′(0), we may choose 0 < a < 1

such that ϕ is analytic on [0, ϕ−1(a)] and ϕ′(x) > 0 for each 0 6 x 6 ϕ−1(a) and

γ = max
[0,ϕ−1(a)]

1
|ϕ′|

= max
[0,a]

|ψ′| 6 b.

By Lemma 4.3.8, we have Fa ⊂ V∞
ϕ (C0[0, 1]) and

lim
n→∞

‖V n
ϕ f‖1/n2

∞ 6
√
γ 6

√
b, for each f ∈ Fa.
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Thus we find that Fa ⊂ Fb. Since Fb is invariant under Vϕ, we have

span
( ∞⋃
n=0

V n
ϕ (Fa)

)
⊆ Fb.

By Lemma 4.3.3, we know that Fa is dense in the subspace Ca of functions in C0[0, 1]

that vanish on [a, 1]. Therefore, since Vϕ is bounded, it follows from the above display

that

span
( ∞⋃
n=0

V n
ϕ (Ca)

)
⊆ F b,

where the closures are taken in C0[0, 1]. We may conclude from Lemma 4.3.6 that the

left hand side in the above display coincides with C0[0, 1] and, therefore, Fb is dense

in C0[0, 1]. The proof is complete.

4.4 Orbits of Vϕ. Lower estimate

The following theorem provides a lower estimate for orbits of Vϕ under certain regu-

larity hypotheses on ϕ.

Theorem 4.4.1. Let ϕ be a continuous strictly increasing self-map of [0, 1] with

ϕ(x) < x for 0 < x < 1 and analytic at 1 with ϕ(1) = 1. Then, for each non-zero f

in L1[0, 1], we have

lim
n→∞

‖V n
ϕ f‖

1/n2

1 >
1√
ϕ′(1)

. (4.4.1)

Proof. Recall from Section 2.1 that the adjoint V ?
ϕ that acts on L∞[0, 1] is V ?

ϕ = UVφU ,

where U is the involutive isometry defined by (Ug)(x) = g(1 − x) and φ(x) = 1 −
ϕ−1(1− x). Since ϕ is analytic at 1, then so is ψ = φ−1 at 0. We take γ > ψ′(0) > 1.

Next, we take 0 < a < 1 such that ψ is analytic on [0, a] and

sup
[0,a]

ψ′ 6 γ.

By Lemma 4.3.5, we have sup supp (V k
ϕ g) tends to 1 as k tends to ∞ for each non-

zero g in L1[0, 1]. Therefore, for each non-zero g in L1[0, 1], we have sup supp (V k
ϕ g) >

1− a for all k large enough. Observe also that for any positive integer k and for any

non-zero g in L1[0, 1] the inequality in (4.4.1) is satisfied for f = g if and only if it is

satisfied for f = V k
ϕ g. Since the range of Vϕ is contained in C0[0, 1], we see that it is

enough to show the inequality in (4.4.1) for each f in C0[0, 1] with sup supp (f) > 1−a.
Thus assume that f in C0[0, 1] has sup supp (f) > 1−a. We may take 1−a < b < 1

and δ > 0 such that 1 − a < b − δ < b + δ 6 1 and f(b) 6= 0. By Lemma 4.3.3,



80 CHAPTER 4. ASYMPTOTIC BEHAVIOR OF ORBITS

F+[1− b− δ, 1− b+ δ] is dense in C+
00[1− b− δ, 1− b+ δ]. In particular, there is g1 in

F [1− b− δ, 1− b+ δ] such that g1(x) > 0 for each 1− b− δ 6 x 6 1− b+ δ and∫ 1−b+δ

1−b−δ
g1(x) dx = 1.

We may think of g1 as defined on the whole real line, by just making g1 equal to 0

outside of [1 − b − δ, 1 − b + δ]. Now, consider gn(x) = ng1(nx − (1 − b)(n − 1)) for

n > 1. In this way, {gn}n>1 is a positive summability kernel at 0, see [25, pp. 9–10].

Since supp (gn) ⊆ [1− b− δ/n, 1− b+ δ/n] ⊂ [0, a], we may regard {gn} as a sequence

in Ea. Now, set fn(x) = gn(ψ(x)) and consider

R = sup
n>2

(
Mn(ψ)
γ

)1/(n−1)

,

where

Mn(ψ) =
1
n!

sup
[0,a]

|ψ(n)|.

By Lemma 3.2.1, we find that

Mn(fk) 6 k
∑

n=k1+···+nkn

(k1 + · · ·+ kn)!
k1! · · · kn!

Mk1+···+kn(g1)(M1(ψ))k1 · · ·(Mn(ψ))knkk1+···+kn .

Since Mn(ψ) 6 γRn−1, setting αn = max
06j6n

Mj(g1), we have

Mn(fk) 6 kRn
∑

n=k1+···+nkn

(k1 + · · ·+ kn)!
k1! · · · kn!

Mk1+···+kn(g1)
(
kγ

R

)k1+···+kn

6 kRnαn
∑

n=k1+···+nkn

(k1 + · · ·+ kn)!
k1! · · · kn!

(
kγ

R

)k1+···+kn

.

Applying Lemma 3.2.2, we obtain

Mn(fk) 6 αnk
2Rn−1

(
1 +

kγ

R

)n−1

= αnk
2(R+ kγ)n−1 6 αn(R+ kγ)n+1.

Since g1 belongs to Fψ(a), we have limn→∞α
1/n2

n 6 1 and, therefore, all the hypotheses

of Lemma 4.3.4 with ck = R+ kγ are fulfilled. Thus

lim
n→∞

‖Tnψ fn‖1/n2

∞ 6
√
γ, (4.4.2)

where Tψ is as in (4.3.5). Since

V −1
φ f = CφTψC

−1
φ f = CφTψCψf, for each f ∈ Ea,
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we find that gn = V n
φ CφT

n
ψCψgn = V n

φ CφT
n
ψ fn. Using that U is involutive and

V ?
ϕ = UVφU , we see that Ugn = V ?n

ϕ UCφT
n
ψ fn. Therefore,

‖V n
ϕ f‖1 >

|〈V n
ϕ f, UCφT

n
ψ fn〉|

‖UCφTnψ fn‖∞
>
|〈f, V ?n

ϕ UCφT
n
ψ fn〉|

‖UCφTnψ fn‖∞
=
|〈f, Ugn〉|
‖Tnψ fn‖∞

.

Since {gn} is a positive summability kernel at 1− b, then so is {Ugn} at b. Therefore,

|〈f, Ugn〉| converges to |f(b)| 6= 0. Thus,

‖V n
ϕ f‖1 >

|f(b)|
‖Tnψ fn‖∞

(1 + o(1)), as n→∞.

The above display along with (4.4.2) implies that

lim
n→∞

‖V n
ϕ f‖1/n2

p >
1
√
γ
.

Since γ > ψ′(0) = ϕ′(1) was arbitrary, the result follows.

From Theorem 4.4.1 and Corollary 4.1.4, we immediately have

Corollary 4.4.2. Let ϕ be a continuous strictly increasing self-map of [0, 1] with

ϕ(1) = 1 and ϕ(x) < x for 0 < x < 1. Assume also that ϕ is analytic at 1 and

differentiable at 0 with ϕ′(0) = 0. Then for each non-zero f in Lp[0, 1], 1 6 p 6 ∞,

we have

lim
n→∞

‖Vϕf‖1/n2

p =
1√
ϕ′(1)

.





Chapter 5

Cyclicity of composition Volterra

operators

In this Chapter we begin to study cyclicity of composition Volterra operators. In the

first section of the chapter, Section 5.1, we prove that the constant function 1 is cyclic

for Vϕ if and only if the eigenfunctions of the adjoint V ?
ϕ span L2[0, 1]. It follows that

there are symbols ϕ with ϕ(x) < x for 0 < x < 1 for which Vϕ has the constant

function 1 as a cyclic vector. This, in relation with Theorem 2.1.13, shows that the

classical Volterra operator is not a limit case with respect to cyclicity.

In Section 5.2, in order to obtain, in the following section, positive results on

supercyclicity of Vϕ as well as on hypercyclicity of I + Vϕ, we need to extend Salas’s

Theorem on hypercyclicity of perturbations of the identity by backward weighted

shifts, which has been crucial to solve some old open problems in hypercyclicity,

see [48]. We prove a new criterion for an operator acting on a Fréchet space to be

hypercyclic and another criterion that guarantees that in a given class of operators

the set of hypercyclic ones is residual. The latter will be applied to several classes of

operators.

In Section 5.3, we deal with supercyclicity and hypercyclicity of composition

Volterra operators. Salas in [49] asked wether the classical Volterra operator is su-

percyclic or not, which was answered in the negative in [9]. Indeed, the Volterra

operator is not even weakly supercyclic [35]. Thus the fact that there are symbols

below the main diagonal that supply supercyclic composition Volterra operators is

striking. Indeed, using the results of the previous two sections, we show that for every

strictly increasing continuous ϕ with ϕ(x) < x for 0 < x 6 1 (note that ϕ(1) < 1),

the operator Vϕ is supercyclic and the operator I + Vϕ is hypercyclic. Essentially, the

83
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only known examples of supercyclic quasi-nilpotent operators were quasi-nilpotent

weighted shifts, for unilateral ones due to Hilden and Wallen [21] and for bilateral

ones due to Salas, see [49]. It is also shown that there exists a continuous strictly

increasing ϕ with ϕ(x) < x for 0 < x < 1 such that both Vϕ and V ?
ϕ are supercyclic

and both I + Vϕ and I + V ?
ϕ are hypercyclic. The class of operators for which T and

T ? are hypercyclic is very narrow; until now the only known examples, due to Salas

[46] and [48], were bilateral weighted shifts, which are not quasinilpotent compact

perturbations of the identity. Very recently, Salas [47] has also provided examples of

quasinilpotent compact perturbations of the identity which are hypercyclic. In addi-

tion, it is also proved that even for certain symbols with ϕ(1) = 1, supercyclicity is

possible. Namely, for continuous strictly increasing ϕ with ϕ(x) < x for 0 < x < 1,

ϕ(1) = 1 and analytic at 0 and at 1, it is shown that if ϕ′(0)ϕ′(1) > 1, then Vϕ is

supercyclic and if ϕ′(0)ϕ′(1) < 1, then Vϕ is not even cyclic. The proofs essentially

depend on the results in Chapter 4, that allow us to control the behavior of the orbits

of Vϕ.

5.1 The span of the eigenfunctions of Vϕ

The next theorem establishes when the eigenvectors of Vϕ span L2[0, 1] in the case that

Fϕ
0 has order less than 1/2. It turns out that the density of the span of generalized

eigenfunctions of Vϕ is equivalent to the cyclicity of the constant function 1 for Vψ,

where ψ(x) = 1− ϕ(1− x) for 0 6 x 6 1.

Let H0
1/2(C) denote the space of entire functions of order strictly less than 1/2 or

of order 1/2 and type 0. In other words F belongs to H0
1/2(C) if and only if

lim
R→∞

lnM(F,R)√
R

= 0.

Theorem 5.1.1. Let ϕ be a continuous self-map of [0, 1] with ϕ(x) > x for 0 6 x 6 1

and set ψ(x) = 1−ϕ(1−x). If the span of the generalized eigenvectors of Vϕ is dense

in L2[0, 1], then the constant function 1 is cyclic for Vψ. The converse is also true,

provided that Fϕ
0 belongs to H0

1/2(C).

Proof. Recall from Proposition 3.1.2 that the map x 7→ Fϕ
x is continuous from [0, 1]

into the space of entire functions. Hence, for each non-null h in L2[0, 1], we find that

Gh(z) = 〈Fϕ(ϕ(·), z), h〉 =
∫ 1

0
Fϕ(ϕ(x), z)h(x) dx, z ∈ C

is an entire function. By Proposition 3.1.2, the Taylor coefficients of Gh are given by

Ghn = (−1)n−1〈UV n
ψ 1, h〉 = (−1)n−1〈V n

ψ 1, Uh〉, (5.1.1)
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where (Uf)(x) = f(1− x).

Proceeding by contradiction, suppose now that the constant function 1 is not cyclic

for Vψ. Then there is a non-zero h in L2[0, 1] such that 〈V n
ψ 1, Uh〉 = 0 for each n > 0

and, therefore, Gh = 0. Thus, since from (3.1.2) we know that

∂Fϕ

∂x
(x, z) = zFϕ(ϕ(x), z),

it follows that ∫ 1

0

∂Fϕ

∂x
(x, z)h(x)dx ≡ 0.

Upon differentiating in the above display with respect to z, we obtain∫ 1

0

∂k+1Fϕ

∂x∂zk
(x, z)h(x)dx ≡ 0, for each k > 0.

Since, by Theorem 3.1.7, the generalized eigenfunctions of Vϕ belong to

span
{
∂k+1Fϕ

∂x∂zk
(x, z) : k = 0, 1, . . .

}
,

it follows that h is orthogonal to each generalized eigenfunction of Vϕ and, therefore,

the span of the generalized eigenfunctions is not dense in L2[0, 1], a contradiction.

Suppose now that Fϕ
0 belongs to H0

1/2(C) and the constant function 1 is cyclic for

Vψ. If the span of the generalized eigenfunctions of Vϕ, is not dense in L2[0, 1], then

there is a non-null function h in L2[0, 1] such that h is orthogonal to each generalized

eigenfunction of Vϕ. In particular, by Theorem 3.1.7, we have that each zero of Fϕ
0 is

also a zero of Gh of, at least, the same multiplicity. Hence, H(z) = Gh(z)/Fϕ
0 (z) is

an entire function. On the other hand, Corollary 3.1.4 implies

M(Gh, R) 6
∫ 1

0
M(Fϕ

ϕ(x), R)|h(x)| dx 6
∫ 1

0
M(Fϕ

0 , R)|h(x)| dx = M(Fϕ
0 , R)‖h‖1.

Therefore, Gh is in H0
1/2(C), and so is H. Again, by Corollary 3.1.4 for each R > 0,

we have

|Gh(−R)| 6 M(Gh, R) 6 M(Fϕ
0 , R)‖h‖1 = Fϕ

0 (−R)‖h‖1.

Hence, |H(z)| 6 ‖h‖1 for each z real and negative. Since H is in H0
1/2(C), Theorem

1.4.6, which is a consequence of the Phragmén-Lindelöf Theorem, see [29, Theorem 22,

p. 50], implies thatH is bounded on C, and thus it must be constant. HenceGh = cFϕ
0 ,

where c is a constant.

Now, for 0 < x 6 1 set φ(x) = inf{t ∈ [0, 1] : ϕ(t) > ϕ(x)}. Since ϕ(x) > φ(x) > 0

for 0 < x 6 1, we may apply Lemma 3.1.9, for α = 0 and β = φ(x) for each 0 < x 6 1,

to obtain

Fϕ(0,−R) > (1 + φ(x)R)Fϕ(ϕ(x),−R), for each R > 0 and 0 < x 6 1.
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The last display along with cFϕ
0 = Gh implies, for each R > 0, that

|c|Fϕ(0,−R) 6
∫ 1

0
Fϕ(ϕ(x),−R)|h(x)| dx

6
∫ 1

0

Fϕ(0,−R)
1 + φ(x)R

|h(x)| dx

6 Fϕ(0,−R)‖h‖2

(∫ 1

0

dx

(1 + φ(x)R)2

)1/2

.

Therefore,
|c|

‖h‖2
L2

6
∫ 1

0

dx

(1 + φ(x)R)2
, for each R > 0.

Since the integral above tends to 0 as R tends to ∞, we see that c = 0. Thus Gh

is identically zero and so are its Taylor coefficients. Consequently, from (5.1.1), we

find that 〈V n
ψ 1, Uh〉 = 0 for each n > 0. Since Uh is different from zero, the constant

function 1 cannot be cyclic for Vψ, which is a contradiction. The proof is complete.

As an immediate consequence of Theorem 5.1.1 and Corollary 3.1.22, we have

Corollary 5.1.2. Let ϕ be a continuous self-map of [0, 1] with ϕ(x) > x for 0 < x < 1

and assume that

lim
x→0

ln(ϕ(x)− x)
lnx

< 2 and lim
x→1

ln(ϕ(x)− x)
ln(1− x)

< 2.

Then the constant function 1 is cyclic for Vψ, where ψ(x) = 1− ϕ(1− x), if and only

if the span of the generalized eigenfunctions of Vϕ is dense in L2[0, 1].

In particular, the above corollary applies to ψ(x) = 1 − (1 − x)1/2, as mentioned

in subsection 2.1.5. Using Theorem 3.1.23, we also have

Corollary 5.1.3. Let ϕ be a continuous self-map of [0, 1] with ϕ(x) > x for 0 < x < 1.

Assume also that ϕ is differentiable at 0 and at 1 with 1 < ϕ′(0) 6 ∞ and ϕ′(1) < 1.

Then the constant function 1 is cyclic for Vψ, where ψ(x) = 1− ϕ(1− x), if and only

if the span of the eigenfunctions of Vϕ is dense in L2[0, 1].

5.2 Dense generalized kernels

In the next section, we will prove that if ϕ is continuous, strictly increasing and

satisfies ϕ(x) < x for 0 < x 6 1, then Vϕ is supercyclic and I+Vϕ is hypercyclic when

Vϕ acts on Lp[0, 1], 1 6 p < ∞, or on C0[0, 1]. To do this, we will adopt a general
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point of view. We will show that if T is a continuous operator on a separable complete

metrizable topological vector space X such that the linear manifold defined by

Ker†(T ) = span

( ∞⋃
n=1

(Tn(X) ∩ kerTn)

)

is dense in X, then the operator I + T is hypercyclic. We will also show that T is

supercyclic. Actually, a little better results are obtained: the operator I+T is strongly

hereditarily hypercyclic and T is strongly hereditarily supercyclic. This general point

of view causes a minimal extra effort and avoids the repetition of some arguments.

The methods we use allow us to conclude, under certain hypotheses, that an operator

acting on a Fréchet space is hypercyclic and that the set of hypercyclic operators, in

a given class of operators, is residual. The latter will be applied to several classes of

operators.

Although all vector spaces in this section are supposed to be over C, all the proofs

equally work for real vector spaces. Recall that an F-space is a complete metrizable

topological vector space. The space of continuous operators on a topological vector

space X will be denoted by L(X).

Recall that a continuous operator T acting on a topological vector space X is said

to be hypercyclic if there is x in X such that the orbit of x under T , that is, {Tnx}n>0

is dense in X and it is said to be supercyclic if there is x in X such that the projective

orbit

{λTn such that λ ∈ C, n = 0, 1, . . .}

is dense in X. We say that T is hereditarily hypercyclic if there is a subsequence {nk},
such that for each subsequence {nki

} of {nk}, there is x such that {Tnkix} is dense

in X. If the sequence {nk} is the sequence of all positive integers, we say that T is

strongly hereditarily hypercyclic. Similarly, one can define hereditarily and strongly

hereditarily supercyclic. We remark here that in [1] strongly hereditarily hypercyclic

are simply called hereditarily hypercyclic. Here, we use the terminology as in [11, 13]

A bounded operator T acting on a locally convex topological vector space is called

weakly hypercyclic or weakly supercyclic if it is hypercyclic or supercyclic with respect

to the weak topology. Observe that by Mazur’s Theorem the norm closure and the

weak closure of convex sets coincide, weakly supercyclic operators are cyclic. One of

the advantages with respect to cyclic operators is that each positive power of a weakly

supercyclic operator on a Banach space is again weakly supercyclic and thus cyclic,

which is not always the case of just cyclic operators. Hypercyclic and supercyclic
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operators have been intensely studied during the last few decades, see surveys [14, 34]

and references therein.

Let `p, 1 6 p < ∞, denote the Banach space of complex sequences that have

p-summable modulus. Let {en}n>0 be the canonical basis of `p, 1 6 p < ∞. Given

a bounded sequence {wn}n>1 of non-zero complex numbers the backward weighted

shift with weight sequence {wn} is defined by Te0 = 0 and Ten = wnen−1 for n > 1 .

The next theorem, due to Salas [48], is very likely the most interesting result on

hypercyclicity of a fixed operator.

Theorem 5.2.1. Salas’ Theorem. Let T be a backward weighted shift on `2. Then

the operator I + T is hypercyclic.

The next Theorem extends Salas’ Theorem in several directions.

Theorem 5.2.2. Let T be a continuous operator on a separable F-space X such that

ker† T = span

( ∞⋃
n=1

(Tn(X) ∩ kerTn)

)

is dense in X. Then I + T is (strongly hereditarily) hypercyclic.

Remark. Recall that a continuous map T on a topological vector space X is called

mixing if for each pair of non-empty open sets U, V ⊆ X, we have Tn(U) ∩ V 6= ∅ for

all n large enough. In [13], it is proved, in the context of Banach spaces, that T is

mixing if and only if T is strongly hereditarily hypercyclic. Indeed, the same proof

works as well for F-spaces. Thus the conclusion of Theorem 5.2.2 is equivalent to the

operator T to be mixing.

Recall that the generalized kernel of an operator T is the space

ker? T =
∞⋃
n=1

kerTn.

Spectral properties of operators with dense generalized kernel can be found in [4]. It

is worth mentioning that the space ker† T is contained in T (X) as well as in ker? T .

Thus, any operator with dense ker† T has dense range and dense generalized kernel.

Obviously, if T is a (unilateral) backward weighted shift on `p, then ker? T = ker† T

is the space of sequences with finite support, which is dense in `p, 1 6 p <∞. Hence

Theorem 5.2.2 implies Salas’ Theorem. It is also worth noting that if T (kerTn+1) is

dense in kerTn for each positive integer n, then ker† T is dense in ker? T . Thus, we

have,
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Corollary 5.2.3. Let T be a continuous operator on a separable F-space X such that

ker? T is dense in X and T (kerTn+1) is dense in kerTn for each positive integer n.

Then I + T is (strongly hereditarily) hypercyclic.

The advantage of corollary above is that it is much easier to check that T (kerTn+1)

is dense in kerTn.

A generalized backward shift is a continuous operator T on a topological vector

space X such that kerT is one-dimensional and ker? T is dense in X. A dimension

argument shows immediately that if T is a generalized backward shift then kerTn

is n-dimensional and T (kerTn+1) = kerTn for each positive integer n. Indeed, since

dim(kerT ) = 1, for each n-dimensional vector space U we have that n > dim(T (U)) >

n − 1. In particular, since ker? T is dense in X, dim(T (kerTn)) = n − 1. The latter

fact along with dim(kerT ) = 1 implies that dim(kerTn) = n for each positive integer

n. From Corollary 5.2.3, we clearly have,

Corollary 5.2.4. Let X be a separable F-space and T in L(X) be a generalized

backward shift. Then I + T is (strongly hereditarily) hypercyclic.

Remark. The fact that I + T is hypercyclic for a generalized backward shift T on

a separable F-space also follows from Salas’s Theorem by means of a quasisimilarity

argument, as already observed by several authors, see, for instance, [13].

Before proving Theorem 5.2.2, we need some preparation.

5.2.1 A density criterion.

René-Louis Baire (1874-1932) developed what now a dais is known as Category The-

ory. This Theory consists on an attempt to classify sets by its topological size, and

it is widely used to prove existence. Baire defined three categories of sets in a topo-

logical space: a set is called nowhere dense if its closure has empty interior, if a set

is a countable union of nowhere dense sets, it is said to be a first category and its

complement is called residual. All the sets that are not of the first category sets are

called second category sets. Recall now that a topological space X is called a Baire

space if for each first category set A ⊂ X its complement X \ A is dense in X. The

classical Baire theorem, provides a very wide class of Baire spaces that includes the

most natural and common ones. In particular, complete metric spaces are Baire.

Baire’s Theorem 5.2.5. Both complete metric spaces and locally compact spaces are

Baire spaces.
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We need the following proposition, in which appears the concept of second count-

able space. In topology, a second countable space is a topological space with a countable

basis.

Proposition 5.2.6. Let X and Y be Baire topological spaces, where Y is second

countable. Let {Tn}n>0 be a sequence of continuous maps from X to Y . Let Σ be the

set of (x, y) ∈ X×Y for which there exists a sequence {xn}n>0 in X such that xn → x

and Tnxn → y. If Σ is dense in X × Y , then for any subsequence {nk}k>0, there is x

such that {Tnk
x}k>0 is dense in X.

Proof. Since Σ is dense in X×Y , it is enough to apply Theorem 1 in [14, p. 348].

5.2.2 Invertible Matrices

To prove Theorem 5.2.2, we need to show that certain matrices are invertible. For

each pair of positive integers n and k, consider the n-square matrix

Mn,k =
(

(k + n− l)!
(k + n− l + j − 1)!

)
16j,l6n

.

Lemma 5.2.7. For each pair n and k of positive integers, we have

detMn,k =
(n− 1)!k!(k + 1)!

(k + n− 1)!(k + n)!
detMn−1,k+2. (5.2.1)

Proof. It is clear that (5.2.1) holds for n = 2. Thus suppose that n > 3. Subtracting

to each column of Mn,k, except the first, the previous one, we see that

detMn,k = det


1 0 . . . 0

(k+n−1)!
(k+n)!

... Nn,k

(k+n−1)!
(k+2n−2)!

 ,

where

Nn,k =
(
j
(k + n− l − 1)!
(k + n− l + j)!

)
16j,l6n−1

.

Thus detMn,k = detNn,k. Now, dividing each j-th row of Nn,k by j and multiplying

each l-th column by (k + n− l + 1)!/(k + n− l − 1)!, we obtain Mn−1,k+2. Hence

detMn,k = detMn−1,k+2

n−1∏
j=1
l=1

j(k + n− l − 1)!
(k + n− l + 1)!

=
(n− 1)!k!(k + 1)!

(k + n− 1)!(k + n)!
detMn−1,k+2.

The result is proved.
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Consider now the n-square matrix

An =
(

1
(j + k − 1)!

)
16j,k6n

.

Lemma 5.2.8. For each positive integer, An is invertible. Furthermore, detA1 = 1,

detA2 = −1/12 and

detAn =
(−1)(n−1)n/2

(2n− 1)!

2n−4∏
j=1

j!

2n−3∏
j=n

j!−2

 , for n > 3.

The key lemma in the proof of Salas’s Theorem is Lemma 3.1 in [48] that asserts

that An is invertible for n = 2k with k a positive integer. The latter is also used in [28]

to prove that the operators in Salas’s Theorem do satisfy Kitai’s Criterion. Actually,

An is invertible for each positive integer n. Indeed, detAn can be computed explicitly.

Proof. Let Bn be the matrix obtained from An by reversing the order of the columns

of An. Clearly, detAn = (−1)(n−1)n/2detBn. Multiplying the j-th column of Bn by

(n− j + 1)! for 1 6 j 6 n, we obtain Mn,1. Hence,

detAn = (−1)(n−1)n/2detMn,1

n∏
j=1

(j!)−1

for each positive integer n. Now, the result follows by applying n − 1 times (5.2.1)

and then simplifying.

Finally, for each pair of positive integers m and n with m > 2n, we consider the

n-square matrix

Bm,n =
((

m

k + j − 1

))
16j,k6n

,

where (m
k

)
=

m!
k!(m− k)!

.

Lemma 5.2.9. For each pair of positive integers m and n with m > 2n, we have that

Bm,n is invertible. Furthermore,

detBm,n = detAn
n∏

j=−n
(m+ j)n−|j|.

Proof. By multiplying the j-th column of Bm,n by (m− j)!/m! for 1 6 j 6 n, we

obtain Pm,n, whose entries are p1,k = 1/k!, 1 6 k 6 n, and

pj,k =
(m− k)!

(k + j − 1)!(m− k − j + 1)!
, for j > 2.
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Now consider Qm,n obtained from Pm,n by replacing the j-th row P[j] by

j−1∑
l=0

(
j − 1
l

)
P[l+1].

Clearly, detPm,n = detQm,n. In addition, one can check that the entries of Qm,n are

q1,k = 1/k!, 1 6 k 6 n, and

qj,k =
(m+ j − 1)!
m!(k + j − 1)!

, for j > 2.

Multiplying the j-th row of Qm,n by m!/(m+ j − 1)! for 2 6 j 6 n, we arrive to An.

Upon putting everything together, we obtain

detBm,n =

 n∏
j=1

m!
(m− j)!

 n∏
j=2

(m+ j − 1)!
m!

detAn.

Simplifying, the required formula for detBm,n follows.

5.2.3 Proof of Theorem 5.2.2

Now, we begin to prove Theorem 5.2.2. For x in Cn, n > 1, we denote by xj its j-th

coordinate.

Lemma 5.2.10. Let S in L(C2n), n > 1, be defined on the canonical basis {ei : 1 6

i 6 2n} by Sei = ei−1, 2 6 i 6 2n and Se1 = 0. Then for each m > 2n and each u

and v in Cn, there exists a unique x = x(m) in C2n such that

(a) xj(m) = uj, for 1 6 j 6 n;

(b)
(
(I + S)mx(m)

)
j

= vj, for 1 6 j 6 n.

Furthermore,

|xn+j(m)| = O(m−j) as m→∞ for 1 6 j 6 n; (5.2.2)

|((I + S)mx(m))n+j | = O(m−j) as m→∞ for 1 6 j 6 n. (5.2.3)

Proof. For y in C2n and z in Cn, set

ỹ = (yn+1, . . . , y2n) ∈ Cn and ẑ = (z1, . . . , zn, 0, . . . , 0) ∈ C2n

and let w(m) in Cn be defined by

wj(m) = vn−j+1 − ((I + S)mû)n−j+1 for j = 1, . . . , n.
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One sees that there is a unique x(m) satisfying (a) and (b) if and only if the equation

Bm,nx̃ = w(m), (5.2.4)

where Bm,n is the matrix defined in the previous subsection, has a unique solution.

Thus the first statement of the lemma follows from Lemma 5.2.9.

It remains to show that (5.2.2) and (5.2.3) also hold. To this end, first observe

that

wj(m) = vn−j+1 −
j−1∑
l=0

(m
l

)
un−j+1+l for 1 6 j 6 n.

Thus

wmj = O(mj−1), as m→∞ for 1 6 j 6 n. (5.2.5)

Now consider the n-diagonal matrix Dm,n with entries mj−1, 1 6 j 6 n − 1, in the

main diagonal. A computation shows that

Bm,n = mDm,nCm,nDm,n,

where Cm,n = {γj,k}16j,k6n has entries

γ1,1 = 1 and γj,k =
1

(j + k − 1)!

j+k−2∏
l=1

(
1− l

m

)
for (j, k) 6= (1, 1).

Since Bm,n as well as Dm,n are invertible, so is Cm,n and (5.2.4) implies that

x̃m = B−1
m,nw(m) = m−1D−1

m,nC
−1
m,nD

−1
m,nw(m).

From (5.2.5), the sequence {D−1
m,nw(m)}m>2n is bounded in Cn. On the other hand,

the sequence of invertible matrices {Cm,n}m>2n converges to the matrix An defined in

the previous subsection, which is invertible by Lemma 5.2.8. Hence, C−1
m,n converges

to A−1
n as m tends to ∞ and therefore, the sequence {C−1

m,nD
−1
m,nw

m}m>2n is bounded

in Cn. Hence,

xn+j(m) = x̃j(m) = m−1(D−1
m,nC

−1
m,nD

−1
m,nw

m)j

satisfy (5.2.2) for 1 6 j 6 n. Finally, since

((I + S)mx(m))n+j =
n−j∑
l=0

(m
l

)
xn+j+l(m) for 1 6 j 6 n,

the estimates in (5.2.3) follow from (5.2.2) and the result is proved.

Lemma 5.2.10 allows us to prove the following
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Lemma 5.2.11. Let T be a continuous operator on a topological vector space X.

Assume that x belongs to Tm(X) ∩ kerTm, where m is a positive integer. Then there

exist sequences {uk}k>0 and {vk}k>0 in X such that

uk → 0, (I + T )kuk → x, vk → x and (I + T )kvk → 0 as n→∞. (5.2.6)

Proof. If x = 0, it is enough to take uk = vk = 0. Thus, assume that x 6= 0. We will

show that the proof reduces to the operator S = T defined in Lemma 5.2.10. Let n be

the smallest positive integer for which Tnx = 0. In particular, n 6 m, which implies

that x belongs to Tn(X). Thus we may choose w in X such that Tnw = x. We set

hj = T 2n−jw for 1 6 j 6 2n and Y = span {h1, . . . , h2n}.

In particular, we have Thj = hj−1, 2 6 j 6 2n, and Th1 = T 2nh2n = Tnx = 0. Thus

clearly, Y is invariant under T . Since h1 = T 2n−1h2n = Tn−1x 6= 0, it follows that

dimY > 2n and, therefore, {h1, . . . , h2n} is a basis of Y . Let J be the operator from

C2n onto Y defined by Jek = hk, 1 6 k 6 2n. Clearly, T acting on Y is similar

under J to S acting on C2n, where S is the operator defined on Lemma 5.2.10. Now,

J−1x = en. Thus taking, u = (0, . . . , 0, 1) in Cn and v = (0, . . . , 0), we find that

there is a sequence {gk}k>0 in C2n such that gk → en and (I + S)kgk → 0 as k →∞.

Applying Lemma 5.2.10 with u = (0, . . . , 0, 0) and v = (0, . . . , 0, 1), we find that there

is a sequence {fk}k>0 in C2n such that fk → 0 and (I + S)kfk → em as k →∞. The

result follows because any topological vector spaces of the same finite dimension are

homeomorphic under any algebraic isomorphism.

Lemma 5.2.12. Let T be a continuous operator on a topological vector space X.

Assume that x and y belong to ker† T . Then there exists a sequence {xk} in X such

that xk → x and (I + T )xk → y as k →∞.

Proof. Let Σ be the set of (x, y) in X × X for which there is a sequence {xn} in X

such that xn tends to x and (I + T )nxn tends to y. By Lemma 5.2.11, we have

kerTn ∩ Tn(X)× {0} ⊂ Σ and {0} × kerTn ∩ Tn(X) ⊂ Σ for each n > 1.

On the other hand, it is clear that Σ is a subspace of X ×X. From the above display,

one immediately obtains that ker† T ×ker† T ⊆ Σ, which is what had to be shown.

Now we are ready to prove Theorem 5.2.2.

Proof of Theorem 5.2.2. Let Σ be the set of (x, y) ∈ X ×X for which there is {xn}
in X such that xn → x and (I + T )nxn → y. By Lemma 5.2.12, it follows that Σ
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contains ker† T × ker† T . Since ker† T is dense in X, we obtain that Σ is dense in

X ×X. According to Theorem 5.2.6, for each subsequence {nk} there is x in X such

that {(I + T )nkx} is dense in X, that is, I + T is strongly hereditarily hypercyclic.

The proof of Theorem 5.2.2 is complete.

5.2.4 Supercyclicity

For the sake of completeness, we shall prove a proposition that extends another result

by Salas [49].

Proposition 5.2.13. Let X be a separable F-space and T in L(X). Assume also

that T has dense range and dense generalized kernel. Then T is (strongly hereditarily)

supercyclic.

The advantage of Proposition 5.2.13 over Corollary 2.8 in [49] is that we avoid the

existence of the local inverse.

The next criterion for an operator to be strongly hereditarily supercyclic, is anal-

ogous to one of the forms of the Supercyclicity Criterion, see [34]. Its proof is a

straightforward modification of the proof of Theorem 2.2 in [10] and it is omitted.

Theorem 5.2.14. Let T be a continuous operator on a F-space X and {λk}k>0 be

a sequence of non-zero complex numbers. Assume also that there exist dense subsets

E and F of X and mappings Sk : F → X such that T kSky → y and λ−1
k Sky → 0

for each y ∈ F and λkT
kx → 0 for each x ∈ E as k → ∞. Then T is hereditarily

supercyclic.

Theorem 5.2.14 is all what we need to prove Proposition 5.2.13.

Proof of Proposition 5.2.13. Let d be a metric that induces the topology of X. Let F

be a dense countable subset ofX. Since T has dense range, we find that T k(X) is dense

in X for each k > 0. Hence, we may choose Sk : F → X such that d(y, T kSky) < 2−k

for each y in F and each k > 0. Clearly, T kSky → y for each y in F . Since F is

countable and X is metrizable, there is a sequence {λn}n>0 of positive numbers such

that λ−1
n Sny → 0 as n → ∞ for each y in F . Finally, E = ker? T is dense in X and

for each y in E we have Tny = 0 for all n large enough and, therefore, λnTny → 0 as

n→∞. Thus all the hypotheses of Theorem 5.2.14 are fulfilled and we conclude that

T is (strongly hereditarily) supercyclic.
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5.2.5 Residual sets of hypercyclic operators

The next proposition allows us to show that the set of hypercyclic operators in certain

subsets of L(X) is residual in the Baire Category sense.

Proposition 5.2.15. Let X be a separable metrizable topological vector space and M
a subset of L(X) endowed with a topology satisfying

(i) M×X is Baire.

(ii) For each n > 0, the map Φn : M × X → X defined by Φn(T, x) = Tnx is

continuous.

(iii) The set {(T, x, Tnx) such that T ∈M, x ∈ X,n > 0} is dense in M×X ×X.

Then the set of hypercyclic operators T in M is a dense Gδ-set in the Baire space M.

Proof. Let H be the set of hypercyclic operators T in M. Let {Un}n>0 be a basis of

open sets of the topology of X. We set

Λn,x,m = {T ∈M such that Tnx ∈ Um}.

Using that the set of hypercyclic vectors of each hypercyclic operator is dense, one

can check that

H =
∞⋂

k,m=0

Wk,m, where Wk,m =
⋃
x∈Uk

∞⋃
n=0

Λn,x,m

From (i), we see that each Λn,x,m is open in M and, therefore, so is each Wk,m. Hence,

H is a Gδ-set in M. It remains to verify that H is dense in M.

From (i) through (iii), it follows that (T, x,Φn(T, x)) is dense in M×X ×X. By

Theorem 1 in [14], there is a Gδ dense Ω ⊂M×X for which {Φn(T, x)}n>0 is dense in

X. Since the latter density means that T is hypercyclic, we have that the projection

from M×X onto M takes Ω onto H, it follows that H is dense in M.

Remark. Since in the previous proposition X is second countable, we find that (i) is

equivalent to the fact that both M and X are Baire, see [38].

In order to see the previous proposition in action, we present the following theorem,

which provides an alternative proof, involving biorthogonal sequences, of the existence

of hypercyclic bounded operators on any separable infinite dimensional Banach space.

A biorthogonal sequence in a pair (X,X?), where X is a Banach space and X? is its

dual space, is a couple of sequences {fk} in X and {gk} in X?, with 〈fj , gk〉 = δjk.

For a detailed study of biorthogonal sequences see [45, Chap. 4].
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Theorem 5.2.16. Let B be a separable infinite dimensional Banach space. Let N be

the operator norm closure of the finite rank nilpotent operators on B. Then the set of

hypercyclic operators T in I +N is a dense Gδ-set in I +N .

Proof. Set M = I + N . Let ε > 0 and (T0, u, v) in M× B × B. Since T0 is in M,

there is a finite rank nilpotent operator S on B such that ‖I+S−T0‖ < ε/2. Since S

has finite rank, there are subspaces B0 and B1 of B, with dimB0 <∞ and u, v ∈ B0,

such that B = B0 ⊕ B1, the operator S vanishes on B1 and B0 is invariant under S.

Let n be a positive integer with Snu = Snv = 0. Since B1 is infinite dimensional and

B = B0 ⊕B1, there is a biorthogonal set {(x1, f1), . . . , (x2n, f2n)} in B × B? such that

xj belongs to B1 and fj vanishes on B0. Now, for each t > 0 consider the operator St
acting on B defined by

Stx = Sx+ tf1(x)u+ tfn+1(x)v +
n∑
j=2

t(fj(x)xj−1 + fn+j(x)xn+j−1).

Clearly, each St is of finite rank and nilpotent, and ‖S − St‖ tends to 0 as t tends

to 0. We take t0 > 0 with ‖S − St0‖ < ε/2. Since St on B0 coincides with S and

Snt xn = tnu and Snt x2n = tnv for each t > 0, we have

u, v ∈ Snt0B ∩ kerSnt0 ⊂ ker† St0 .

By Lemma 5.2.12, there is x in B and a positive integer m such that ‖u− x‖ < ε and

‖v− (I+St0)
mx‖ < ε. Since ‖I+St0 −T0‖ < ε, each neighborhood of (T0, u, v) meets

the set

{(T, x, Tmx) such that T ∈M, x ∈ B, m = 1, 2, . . .},

which means that (iii) in Proposition 5.2.15 holds. Since conditions (i) and (ii) in

Proposition 5.2.15 are trivially satisfied, we find that the set of hypercyclic operators

in M is a dense Gδ-set in M.

As shown by Salas [46] with bilateral weighted shifts, there is a hypercyclic operator

on a separable Hilbert space, whose adjoint is also hypercyclic. From Theorem 5.2.16,

it follows that many operators of the form I+T , where T is a compact quasi-nilpotent

operator on a separable Hilbert space, have the required behavior. The existence

of such hypercyclic ‘small’ perturbations of the identity with hypercyclic adjoint has

been also shown by Salas in [47]. In particular a hypercyclic operator with hypercyclic

adjoint can have one-point spectrum, as it is also the case of the example provided by

Salas [47, Remark 3.2].
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Corollary 5.2.17. Let Q be the set of compact quasi-nilpotent operators on a separable

infinite dimensional Hilbert space. Then the set of T in I+Q such that T and T ? are

hypercyclic is a dense Gδ-set in I +Q.

Proof. Since any compact quasi-nilpotent operator in Q is the limit in the operator

norm of finite rank nilpotent operators [19], we see that Q coincides with the closure

N of the finite rank nilpotent operators, which implies that the set H of hypercyclic T

in I+N is a dense Gδ-set in I+Q. Since the map that to each operator T assigns its

adjoint T ? is an isometric isomorphism from I +Q into itself, we see that the set H?

of T in I +Q for which T ? is hypercyclic, is also a dense Gδ-set in I +Q. Therefore,

H ∩H? is also a dense Gδ-set and the result follows.

Finally, as far as we know there are no known examples of compact bilateral

weighted shifts T such that I +T is hypercyclic on `2(Z). The problem here is that it

is quite difficult to control the orbits. The next proposition shows that there are many

compact bilateral weighted shifts T on `2(Z) such that I+T and I+T ? are hypercyclic.

Recall that a bilateral weighted shift Tw, where w = {wn}n∈Z is a bounded sequence

in C, acts on the canonical basis {en}n∈Z as Ten = wnen−1 for each n in Z. Observe

that

‖Tw‖ = ‖w‖∞.

Proposition 5.2.18. The set of w in c0(Z) for which I+Tw and I+T ?w are hypercyclic

on `2(Z) is a dense Gδ-set in c0(Z).

Proof. Consider M = {I + Tw such that w ∈ c0(Z)}, endowed with the distance

d(I + Tw, I + Tw′) = ‖Tw − Tw′‖L2(`2(Z)).

Since the map Φ defined as Φ(w) = I + Tw is an isometry from c0(Z) onto M, we see

that M is complete with respect to d.

Let ε > 0 and (I + Tw, u, v) in M × `2(Z) × `2(Z). Since the space c00(Z) of

sequences with finite support is dense in `2(Z), we may take x = {xk} and y = {yk}
in c00(Z) such that ‖u−x‖ < ε/2 and ‖v−y‖ < ε/2. Let m be a positive integer such

that xk = yk = 0 for |k| > m. We can take n > m and w′ in c0(Z) such that

‖w − w′‖∞ < ε and
{
w′k 6= 0, for k > −n,
w′k = 0, for k < −n.

Since w′k 6= 0 for k > −n, we find that x and y belong to T kw′(c00(Z)) for each positive

integer k and T kw′x = T kw′y = 0 for k > m+ n+ 1. Therefore, x and y are in ker† Tw′ .



5.3. SUPERCYCLICITY OF Vϕ AND HYPERCYCLICITY I + Vϕ 99

By Lemma 5.2.12, there are x′ in `2(Z) and a positive integer l such that

‖x− x′‖ < ε/2 and ‖y − (I + Tw′)lx′‖ < ε/2.

Upon putting everything together, we have x′ in `2(Z), a positive integer k and I+Tw′

in M for which

‖I + Tw − (I + T ′w)‖ = ‖w − w′‖∞ < ε, ‖u− x′‖ < ε and ‖v − (I + Tw′)lx′‖ < ε.

Therefore, every neighborhood of (I + Tw, u, v) meets

{(I + Tw′ , x, (I + Tw′)kx) such that I + Tw′ ∈M, x ∈ `2(Z), k = 1, 2, . . .},

which means that (iii) in Proposition 5.2.15 holds. Since (i) and (ii) are trivially

satisfied, Proposition 5.2.15 implies that the set of hypercyclic operators I + Tw with

w in c0(Z) is a dense Gδ-set in M.

Now consider the unitary operator U on `2(Z) defined on its canonical basis by

Uen = e−n for each n in Z. Clearly, the map that to each operator T assigns U?T ?U

is an isometry from M onto itself. Since hypercyclicity is invariant under similarity,

the set of T in M for which T ? is hypercyclic is a dense Gδ-set in M. Thus the set

of T in M such that T and T ? are hypercyclic is a dense Gδ-set in M. The result

follows from the fact that Φ(w) = I + Tw is an isometry from c0(Z) onto M.

For sake of completeness, we end this section by providing an analog of Proposi-

tion 5.2.15 for supercyclicity. The proof is a slight modification of the one of Propo-

sition 5.2.15 and is omitted.

Proposition 5.2.19. Let B be a separable Banach space and let S = {x ∈ B : ‖x‖ =

1}. Assume that a subset M in L(B) is endowed with a topology satisfying (i) through

(iii) of Proposition 5.2.15 and

(iv) The set {(T, x, Tnx/‖Tnx‖) : T ∈M, x ∈ S, Tnx 6= 0, n = 0, 1, . . .} is dense in

M× S × S.

Then the set of supercyclic operators T in M is a dense Gδ-set in the Baire space M.

5.3 Supercyclicity of Vϕ and hypercyclicity I + Vϕ

In this section we shall study the supercyclicity of Vϕ as well as the hypercyclicity

of I+Vϕ acting on the spaces Lp[0, 1], 1 6 p <∞, and the space C0[0, 1] of continuous
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functions that vanish at 0 endowed with the supremum norm. Observe that since Vϕ
is a contraction on Lp[0, 1], 1 6 p <∞, or C0[0, 1], it cannot be weakly hypercyclic.

The following proposition states that if Vϕ is weakly supercyclic, then ϕ(x) 6 x

a.e.

Proposition 5.3.1. Let ϕ is a measurable self-map of [0, 1] with ϕ(x) > x on a set

of positive Lebesgue measure, then Vϕ acting on Lp[0, 1], 1 6 p < ∞, is not weakly

supercyclic.

Proof. Since any supercyclic compact operator acting on a Banach space must be

quasi-nilpotent, see [20], and the same is true for weakly supercyclic operators (the

same argument works). By Corollary 2.2, Vϕ is not quasi-nilpotent and the result

follows.

In what follows, we will be considering only continuous symbols. The following

lemmas describe the closure of the range of Vϕ. We will denote ranp Vϕ the closure of

the range of Vϕ acting on Lp[0, 1]. If it acts on C[0, 1] or C0[0, 1] it will be denoted by

ranVϕ and ran0 Vϕ, respectively.

Lemma 5.3.2. Let ϕ be a continuous self-map of [0, 1]. Assume that Vϕ acts on

C[0, 1]. If ϕ is not strictly monotone, then the codimension of ranVϕ is infinite. If ϕ

is strictly monotone and ϕ(0) 6= 0, ϕ(1) 6= 0, then ranVϕ = C[0, 1]. If ϕ is strictly

monotone and ϕ(0) = 0, then ranVϕ = {f ∈ C[0, 1] : f(0) = 0}. Finally, if ϕ is

strictly monotone and ϕ(1) = 0, then ranVϕ = {f ∈ C[0, 1] : f(1) = 0}.

Proof. If ϕ is not strictly monotone, then

A = {(t, s) ∈ [0, 1]2 : t < s and ϕ(t) = ϕ(s)}

is infinite. Since

ranVϕ ⊆ {f ∈ C[0, 1] : f(t) = f(s) for each (t, s) ∈ A}

and the last space has infinite codimension, we see that ranVϕ has infinite codimension

in C[0, 1].

The description of ranVϕ in the case when ϕ is strictly monotone follows from

the decomposition Vϕ = CϕV , where V is the Volterra operator, (Cϕf)(x) = f(ϕ(x))

and the fact that the closure of the range of the Volterra operator acting on C[0, 1]

is C0[0, 1] = {f ∈ C[0, 1] : f(0) = 0}. Indeed, if ϕ(0) 6= 0, ϕ(1) 6= 0, then

Cϕ(C0[0, 1]) = C[0, 1], if ϕ(0) = 0, then Cϕ(C0[0, 1]) = C0[0, 1] and finally if ϕ(1) = 0,

then Cϕ(C0[0, 1]) = {f ∈ C[0, 1] : f(1) = 0}.
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Lemma 5.3.3. Let ϕ be a continuous self-map of [0, 1]. Assume that Vϕ acts on

Lp[0, 1] with 1 6 p < ∞. If ϕ is not strictly monotone, then ranp Vϕ has infinite

codimension. If ϕ is strictly monotone, then ranp Vϕ = Lp[0, 1].

Proof. As in the previous lemma, let ranVϕ be the closure of Vϕ(C[0, 1]) in C[0, 1]. In

order to show that ranp Vϕ∩C[0, 1] = ranVϕ, first observe that both sides in the latter

equality are closed subspaces in C[0, 1] and ranVϕ ⊂ ranp Vϕ ∩ C[0, 1]. On the other

hand, C[0, 1] is dense in the space Lp[0, 1] and Vϕ is bounded from Lp[0, 1] into C[0, 1].

Indeed, given a function f in Lp[0, 1], we have

‖Vϕf‖∞ = sup

∣∣∣∣∣
∫ ϕ(x)

0
f(t) dt

∣∣∣∣∣ 6
∫ 1

0
|f(t)| dt 6 ‖f‖p. (5.3.1)

Hence, ranVϕ is dense in ranp Vϕ in the space C[0, 1] endowed with the supremum

norm. Therefore, there is not a bounded functional over C[0, 1], such that vanishes on

ranVϕ and does not vanish on ranp Vϕ, what finishes the proof of the needed equality.

Now, the result follows immediately from the previous lemma and the fact that both

C0[0, 1] and {f ∈ C[0, 1] : f(1) = 0} are dense in Lp[0, 1].

The following lemma is an immediate consequence of Lemma 5.3.2.

Lemma 5.3.4. Let ϕ be a continuous self-map of [0, 1] satisfying ϕ(0) = 0. Assume

that Vϕ acts on C0[0, 1]. If ϕ is not strictly increasing, then ran0 Vϕ has infinite

codimension. If ϕ is strictly increasing, then ran0 Vϕ = C0[0, 1].

Now, we can use the previous lemmas to show that the cyclicity of Vϕ is a severe

restriction on the inducing symbol.

Proposition 5.3.5. Let ϕ be a continuous self-map of [0, 1]. Assume that Vϕ acting on

Lp[0, 1], 1 6 p <∞ or on C[0, 1] is cyclic. Then ϕ is strictly monotone. In addition,

if ϕ(0) = 0 and Vϕ is cyclic when acting on C0[0, 1], then ϕ is strictly increasing.

Proof. It is well known and easy to see that if an operator is cyclic, then the codimen-

sion of the closure of its range is at most 1. Thus it remains to apply Lemmas 5.3.2,

5.3.3 and 5.3.4.

Since weakly supercyclic operators are cyclic, as another immediate consequence

of Propositions 5.3.1 and 5.3.5, we have

Corollary 5.3.6. Let ϕ be a continuous self-map of [0, 1]. If Vϕ acting on Lp[0, 1],

1 6 p < ∞ or on C0[0, 1], is weakly supercyclic, then ϕ is strictly increasing and

ϕ(x) 6 x for 0 6 x 6 1.
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The cyclic properties that we will be considering are cyclic, weakly supercyclic,

weakly hypercyclic, supercyclic and hypercyclic. Actually, the real core of the ques-

tion, wether a Volterra type operator satisfies any of these properties or not, is in the

friendly Hilbert space setting L2[0, 1]. A basic tool in the study of the cyclic properties

of an operator is the Comparison Principle, for instances see [8] or [49].

Comparison Principle 5.3.7. Suppose that X is a linear metric space and Y is a

dense subspace that is itself a linear metric space with a stronger topology. Suppose

that T is a continuous linear transformation on X that also maps the smaller space

Y into itself, and is continuous in the topology of this space. If T is cyclic on Y , then

it is also cyclic on X and has an X-cyclic vector that belongs to Y . Furthermore, the

same is true for supercyclic and hypercyclic operators.

Proposition 5.3.8. Let ϕ be a continuous self-map of [0, 1] with ϕ(0) > 0 and ϕ(1) >

0. Then Vϕ acting on L2[0, 1] has a given cyclic property if and only if Vϕ acting on

Lp[0, 1], 1 6 p <∞, or on C[0, 1] has the same cyclic property.

Proof. Let 1 < p <∞. First, observe that C[0, 1] is densely and continuously embed-

ded into Lp[0, 1] and Lp[0, 1] is densely and continuously embedded into L1[0, 1]. The

same holds true if all the spaces carry their weak topologies. Thus by the Comparison

Principle, see 5.3.7, it suffices to show that if Vϕ acting on L1[0, 1] has a given cyclic

property, then Vϕ acting on C[0, 1] has it.

Suppose that Vϕ acting on L1[0, 1] has a given cyclic property. By Proposi-

tion 5.3.5, ϕ is strictly monotone. By Lemma 5.3.2, Vϕ acting on C[0, 1] has dense

range. Indeed, from 5.3.1 we have that Vϕ is a bounded linear operator from L1[0, 1]

into C[0, 1] with dense range. It follows that whenever f in L1[0, 1] provides a given

cyclic property for Vϕ acting on L1[0, 1], then Vϕf provides the same property for Vϕ
acting on C[0, 1].

Proposition 5.3.9. Let ϕ be a continuous self-map of [0, 1] with ϕ(0) = 0. Then

Vϕ acting on L2[0, 1] has a given cyclic property if and only if Vϕ acting on Lp[0, 1],

1 6 p <∞, or on C0[0, 1] has the same cyclic property.

Proof. Exactly as in the proof of the above proposition, it suffices to show that if Vϕ
acting on L1[0, 1] has a given cyclic property, then Vϕ acting on C0[0, 1] has it.

Suppose that Vϕ acting on L1[0, 1] has a given cyclic property. By Proposi-

tion 5.3.5, ϕ is strictly increasing and by Lemma 5.3.4, Vϕ acting on C0[0, 1] has

dense range. Hence, as in the proof of the previous Proposition, Vϕ is a bounded

linear operator from L1[0, 1] into C0[0, 1] with dense range, and again it follows that
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whenever f in L1[0, 1] provides a given cyclic property for Vϕ acting on L1[0, 1], then

Vϕf provides the same property for Vϕ acting on C0[0, 1].

In view of propositions 5.3.8 and 5.3.9, there is no interest in studding the cyclic

properties of composition Volterra operators acting on different spaces. Therefore,

in the reminder, the statements concerning cyclicity will not mention the underlying

spaces where the operators act. These will be understood to be the Lp[0, 1] spaces,

for 1 6 p <∞ and either C[0, 1] or C0[0, 1], depending on the value of ϕ at 0.

5.3.1 Supercyclicity of Vϕ and hypercyclicity of I + Vϕ. Case ϕ(1) < 1

Although Vϕ acting on L2[0, 1] cannot be weakly hypercyclic, it may happen that

I + Vϕ is hypercyclic. We have,

Theorem 5.3.10. Let ϕ be a continuous strictly increasing self-map of [0, 1] such that

ϕ(x) < x for 0 < x 6 1. Then Vϕ is supercyclic and I + Vϕ is hypercyclic.

Proof. We just need to verify that conditions of Proposition 5.2.13 and Corollary 5.2.3

are satisfied.

Clearly, the sequence {ϕn(1)} is strictly decreasing and tends to zero as n tends

to ∞. The right-left inclusion in the equality

kerV n
ϕ = {f such that inf supp (f) > ϕn(1)}

is clear if we observe that (a) in Lemma 4.3.5 still holds under the assumptions of the

statement. The left-right inclusion is proved by induction. Let n = 1 and f be such

that 0 ≡ Vϕf = CϕV f . Since the classical Volterra operator V is injective, we have

that V f|[0,ϕ(1)]
≡ 0 implies that f|[0,ϕ(1)]

≡ 0. The second part of the induction process

is just a repetition, with the only observation that a function f is in kerV n+1
ϕ if and

only if Vϕf belongs to kerV n
ϕ .

Since the canonical injection from C0[0, 1] to Lp[0, 1], 1 6 p < ∞, is continuous

and has dense range, we restrict the rest of the proof to the space C0[0, 1] without lose

of generality. As above, write Vϕ = CϕV . We have that V maps densely kerV n+1
ϕ into

itself and Cϕ is a bijective isometry from kerV n+1
ϕ to kerV n

ϕ for each positive integer

n.

The last condition to be checked is that ker? Vϕ is dense in C0[0, 1], but this is

straightforward since {ϕn(1)} tends to 0.
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From Corollary 5.3.6, it follows that if Vϕ is weakly supercyclic, then ϕ cannot fail

to be strictly increasing or to have the graph below the identity function. However,

ϕ(1) < 1 is a different issue.

5.3.2 Supercyclicity of Vϕ. Case ϕ(1) = 1

Although the Volterra operator is not weakly supercyclic, see [35], there are super-

cyclic composition Volterra operators whose symbols are below the diagonal and take

the value 1 at 1. In this subsection we will prove

Theorem 5.3.11. Let ϕ be a continuous strictly increasing self-map of [0, 1] with

ϕ(x) < x for 0 < x < 1 and ϕ(1) = 1. Assume that ϕ is analytic at 0 and ϕ′(0) > δ+1 ,

where

δ+1 = δ+1 (ϕ) = lim
x→1

1− x

1− ϕ(x)
.

Then Vϕ is supercyclic.

As an immediate corollary of Theorem 5.3.11, we have

Corollary 5.3.12. Let ϕ be a continuous strictly increasing self-map of [0, 1] with

ϕ(x) < x for 0 < x < 1 and ϕ(1) = 1. Assume that ϕ is analytic at 0 and differentiable

at 1 with ϕ′(0)ϕ′(1) > 1. Then Vϕ is supercyclic.

Proof of Theorem 5.3.11. By Proposition 5.3.9, it is enough to show that Vϕ is super-

cyclic on C0[0, 1].

We take b > 0 with 1/ϕ′(0) < b < 1/δ+1 and consider the dense subspace of C0[0, 1]

defined by

E = {f ∈ C0[0, 1] : inf supp (f) > 0}.

According to Lemma 4.2.1, we have

lim
n→∞

‖V n
ϕ f‖1/n2

∞ 6
√
δ+1 for each f ∈ E. (5.3.2)

On the other hand, by Theorem 4.3.1,

F =
{
f ∈ V∞

ϕ (C0[0, 1]) such that lim
n→∞

‖V −n
ϕ f‖1/n2

∞ 6
√
b
}

is a dense linear subspace of C0[0, 1] satisfying Vϕ(F ) = F = V −1
ϕ (F ). Let S be the

restriction of V −1
ϕ to F . Clearly, VϕSf = f for each f in F and

lim
n→∞

‖Snf‖1/n2

∞ 6
√
b for each f ∈ F . (5.3.3)
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Finally, take b < c < 1/δ+1 and let λn = cn
2/2 for n > 0. The above display along with

(5.3.2) imply that λnV n
ϕ f tends to 0 as n tends to ∞ for each f in E and λ−1

n Snf

tends to 0 for each f in F . Upon applying Theorem 5.2.14 with T = Vϕ and Sk = Sk,

we conclude that Vϕ acting on C0[0, 1] is supercyclic.

5.3.3 Non-cyclicity

The next theorem complements Theorem 5.3.11.

Theorem 5.3.13. Let ϕ be a continuous strictly increasing self-map of [0, 1] with

ϕ(x) < x for 0 < x < 1 and ϕ(1) = 1. Assume that ϕ is analytic at 1 with ϕ′(1)δ+0 < 1,

where

δ+0 = δ+0 (ϕ) = lim
x→0

ϕ(x)
x

.

Then Vϕ is not cyclic.

As an immediate corollary, we have

Corollary 5.3.14. Let ϕ be a continuous strictly increasing self-map of [0, 1] with

ϕ(x) < x for 0 < x < 1 and ϕ(1) = 1. Assume that ϕ is analytic at 1 and differentiable

at 0 with ϕ′(0)ϕ′(1) < 1. Then Vϕ is not cyclic.

From Corollaries 5.3.12 and 5.3.14, we immediately obtain

Corollary 5.3.15. Let ϕ be a continuous strictly increasing self-map of [0, 1] with

ϕ(x) < x for 0 < x < 1 and ϕ(1) = 1. Assume that ϕ is analytic at 0 and at 1.

(i) If ϕ′(0)ϕ′(1) > 1, then Vϕ is supercyclic.

(ii) If ϕ′(0)ϕ′(1) < 1, then Vϕ is not cyclic.

Proof of Theorem 5.3.13. By Proposition 5.3.9, it is enough to prove that Vϕ is not

cyclic on L2[0, 1].

Clearly, φ(x) = 1 − ϕ−1(1 − x) is continuous, strictly increasing, analytic at 0,

φ(x) < x for 0 < x < 1, φ(1) = 1, φ′(0) = 1/ϕ′(1) and

δ+1 (φ) = lim
x→1

1− x

1− φ(x)
= δ+0 (ϕ).

In addition, the fact that ϕ′(1)δ+0 (ϕ) < 1 implies that φ′(0) > δ+1 (φ). Thus we may

choose 1 6 1/φ′(0) < b < 1/δ+1 (φ). Since φ is analytic at zero, there is 0 < a < 1 such

that φ is analytic on [0, φ−1(a)] and

max
[0,φ−1(a)]

1
φ′

6 b.
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For each n in Z, we set an = φ−n(a). We choose a−1 < c < a0 and set cn = φ−n(c)

for each n in Z. Clearly, {an} and {cn} converge to 1 as n tends to +∞ and to 0

as n tends to −∞. Moreover, cn < an < cn+1 for each n in Z. By Lemma 4.3.3,

there are non-zero functions f0 in F [c0, a0] and f1 in F [a−1, c0] that we extend to the

whole interval [0, 1] by defining them as zero outside their intervals of definition. By

Lemma 4.3.8, we find that f0 as well as f1 are in V∞
φ (C0[0, 1]), which we defined in

Section 4.3, and

lim
n→∞

‖V −n
φ fj‖1/n2

2 6
√
b for j = 0, 1. (5.3.4)

On the other hand, Lemma 4.2.1 implies that

lim
n→∞

‖V n
φ fj‖

1/n2

2 6
√
δ+1 (φ) for j = 0, 1. (5.3.5)

Now, take real numbers b < α < β < 1/δ+1 (φ) and set

zn =

{
αn(1−n)/2, if n < 0;

βn(n+1)/2, if n > 0.

From (5.3.4) and (5.3.5), and the choice of α and β in the definition of the sequence

zn, it follows that

lim
n→∞

(
zn‖V −n

φ fj‖2

)1/n2

6
√
b/α < 1 for j = 0, 1

and

lim
n→∞

(
zn‖V n

φ fj‖2

)1/n2

6
√
βδ+1 (φ) < 1 for j = 0, 1.

J(x⊕ y) =
∞∑

n=−∞
zn(xnV n

φ f0 + ynV
n
φ f1)

defines a bounded operator from `2(Z)⊕ `2(Z) into L2[0, 1].

We need to show that J? has dense range. To this end, it is enough to check that

J is one-to-one. Let x and y be in `2(Z) and suppose that

J(x⊕ y) = 0.

By Lemma 4.3.5, it follows that inf supp (V n
φ f0) = cn and inf supp (V n

φ f1) = an−1 for

each n in Z and sup supp (V n
φ f0) = an and sup supp (V n

φ f1) = cn for n 6 0. Thus, for

each n 6 0, we find that V n
φ f0 is different from zero and supported on [cn, an] and for

each m 6= n, we have that V m
φ fj vanishes on [cn, an]. Similarly for each n 6 0, we find

that V n
φ f1 is different from zero and supported in [an−1, cn] and for each m 6= n, we

have that V m
φ fj vanishes on [an−1, cn]. It follows that xn = yn = 0 for n 6 0. If x⊕ y
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is different from zero, let n be the minimal positive integer for which |xn|+ |yn| > 0.

Since all V m
φ fj vanish on [an−1, cn], except for m = n and j = 1, it follows that yn = 0.

Similarly, xn = 0, a contradiction. Therefore, J is one-to-one and J? has dense range.

Let {en}n∈Z denote the canonical basis of `2(Z) and consider the (forward) weighted

shift Sen = wn+1en+1, with weight sequence

wn =
zn−1

zn
=

{
αn−1, for n 6 0;

β−n, for n > 1.

We have

VφJ = J(S ⊕ S),

what clearly implies both

V n
φ J = J(Sn ⊕ Sn) for n > 1,

and

J?V ?
φ = (S? ⊕ S?)J?.

From subsection 2.1.2, we know that V ?
φ is unitarily similar under (Uf)(x) = f(1−x)

to Vϕ. Thus assuming that Vϕ is cyclic, then so is V ?
φ . Let f in L2[0, 1] be cyclic for

V ?
φ . Then according to the last display we have

span {(S?n ⊕ S?n)(J?f) : n > 0} = J?(span {V ?n
φ f : n > 0}).

Since J? has dense range, it follows that J?f is cyclic for S?⊕S?. Now, the operator R

on `2(Z) defined by Ren = (α/β)|n(n+1)|/2e−n, n in Z, is bounded because α < β. The

operator R is clearly injective and self-adjoint, and one may check that SR = RS?.

Hence,

(I ⊕R)(S? ⊕ S?) = (S? ⊕ S)(I ⊕R).

Therefore,

span {(S? ⊕ S)n(I ⊕R)(J?f) : n > 0} = (I ⊕R)(span {(S? ⊕ S?)n(J?f) : n > 0}).

Taking into account that J?f is cyclic for S?⊕S? and that since R is self-adjoint and

injective, I⊕R has dense range, we see that S?⊕S is cyclic. Let x⊕y in `2(Z)⊕`2(Z)

be cyclic for S? ⊕ S and consider the dual pairing

〈u, v〉 =
∑
n∈Z

unvn, u, v ∈ `2(Z).

Since x⊕ y must be different from zero, the functional

Φ(u⊕ v) = 〈u, y〉 − 〈v, x〉
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on `2(Z)⊕ `2(Z) is non-zero. However, for each non-negative integer n, we have

Φ((S? ⊕ S)n(x⊕ y)) = 〈S?nx, y〉 − 〈Sny, x〉 = 0,

which contradicts that x⊕ y is cyclic for S? ⊕ S. The proof is complete.

5.3.4 Residual sets of hypercyclic I + Vϕ and supercyclic Vϕ

Consider the set

Ω = {ϕ ∈ C0[0, 1] such that 0 6 ϕ(x) 6 x for 0 6 x 6 1 and ϕ is increasing}

endowed with the metric

d(ϕ,ψ) =
∞∑
n=1

2−n max
[3−n,1−3−n]

|ϕ− ψ|.

It is clear that d(ϕn, ϕ) tends to 0 if and only if ϕn converges to ϕ uniformly on

[ε, 1− ε] for each 0 < ε < 1/2. It is also straightforward to see that (Ω, d) is complete.

Now, consider

Ω0 = {ϕ ∈ Ω : ϕ(x) < x for 0 < x < 1, ϕ(1) = 1 and ϕ is strictly increasing}.

Clearly, Ω0 is a dense in (Ω, d). We shall see that Ω0 is also a Gδ set in (Ω, d). Indeed,

we have Ω \ Ω0 = A ∪B ∪ C, where

A = {ϕ ∈ Ω such that ϕ(1) < 1},

B = {ϕ ∈ Ω such that ϕ is not strictly increasing},

C = {ϕ ∈ Ω such that there is 0 < a < 1 for which ϕ(a) = a}.

On the other hand,

A =
∞⋃
n=0

An, B =
⋃

0<a<b<1
a,b∈Q

Ba,b and C =
∞⋃
n=1

Cn,

where

An = {ϕ ∈ Ω such that ‖ϕ‖∞ 6 1− 2−n},

Ba,b = {ϕ ∈ Ω such that ϕ is constant on [a, b]} and

Cn = {ϕ ∈ Ω such that there is 3−n < a < 1− 3−n for which ϕ(a) = a}.

One can check that An, Ba,b and Cn are all closed and with empty interior in (Ω, d)

and, therefore, they all are Fσ sets. Thus, Ω0 is a dense Gδ-set in Ω.
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Theorem 5.3.16. The set of ϕ in Ω0 for which Vϕ and V ?
ϕ are supercyclic and I+Vϕ

and I + V ?
ϕ are both hypercyclic is a dense Gδ-set in Ω0.

Proof. First, let M1 be the set of ϕ in Ω such that Vϕ is supercyclic and I + Vϕ is

hypercyclic. Since ‖Vϕ − Vψ‖2 6 ‖ϕ − ψ‖1 and convergence with respect to d on Ω

implies L1-convergence, we see that ϕ 7→ Vϕ from Ω into L(L2[0, 1]) is continuous.

Since the sets of hypercyclic and supercyclic operators are Gδ-sets with respect to the

operator norm topology, we have that M1 is a Gδ-set in Ω as the pre-image of a Gδ-set

with respect to a continuous map. On the other hand,

{ϕ ∈ Ω such that ϕ(x) < x for 0 < x < 1, ϕ(1) < 1 and ϕ is strictly increasing}

is clearly dense in Ω and is contained in M1 by Theorem 5.3.10. Thus, M1 is a

dense Gδ-set in Ω. Since Ω0 is a dense Gδ-set in Ω, Baire’s Theorem implies that

M2 = M1 ∩ Ω0 is a dense Gδ-set in Ω0.

Now, the map Φ from Ω0 onto itself defined as Φ(ϕ)(x) = 1 − ϕ−1(1 − x) is one-

to-one. One can easily see that Φ is also a continuous involution. Since, as already

mentioned many times, V ?
ϕ is similar to Vψ where ψ = Φ(ϕ), we see that Φ(M2) is

exactly the set of ϕ in Ω0 for which V ?
ϕ is supercyclic and I +V ?

ϕ is hypercyclic. Since

Φ is an homeomorphism from Ω0 onto itself, Φ(M2) is a dense Gδ-set in Ω0. Hence,

M = M2 ∩ Φ(M2) is a dense Gδ-set in Ω0 and the result follows.
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