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Despite the conceptual importance of contextuality in quantum mechanics, there is a hitherto limited
number of applications requiring contextuality but not entanglement. Here, we show that for any quantum
state and observables of sufficiently small dimensions producing contextuality, there exists a commu-
nication task with quantum advantage. Conversely, any quantum advantage in this task admits a proof of
contextuality whenever an additional condition holds. We further show that given any set of observables
allowing for quantum state-independent contextuality, there exists a class of communication tasks wherein
the difference between classical and quantum communication complexities increases as the number of
inputs grows. Finally, we show how to convert each of these communication tasks into a semi-device-
independent protocol for quantum key distribution.
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Introduction.—Contextuality is one of the most signifi-
cant properties of quantum mechanics [1–6]. It stipulates
that, for some correlations, there is no probability distri-
bution in agreement with the marginal distributions corre-
sponding to sets of compatible (i.e., jointly measurable)
observables. In particular, contextuality forbids us to assign
predetermined context-independent values to the outcomes
of quantum sharp measurements (defined as those that yield
the same outcome when they are repeated and do not
disturb any compatible observable). While nonlocality,
which can be seen as a form of quantum contextuality
requiring entanglement, has found many applications in
quantum communication [7–9], so far, entanglement unas-
sisted quantum contextuality has found few applications
despite its conceptual importance [10–19].
Here, we first show that any contextual correlations

achieved using quantum systems of sufficiently small
dimensions offer a quantum advantage in a suitably
designed one-way communication complexity (or distrib-
uted computation) task. Conversely, whenever an addi-
tional condition holds, any quantum protocol providing
advantage in those tasks produces a proof of contextuality.
By itself, this result provides an operational way to
understand the sense in which some famous forms of
quantum contextuality (notably, the one produced by the
violation of the Klyachko-Can-Binicioğlu-Shumovsky
inequality with quantum systems of dimension three [3])
are “nonclassical.”
As a second result, we show that for every form of state-

independent (SI) contextuality [4,24–26], the ratio between

the dimensions of the classical systems and quantum
systems required to accomplish the task can be made
arbitrarily large by increasing the number of inputs.
These communication complexity tasks are the so-called
“equality problems” that appear in many practical scenarios
[27–29]. Finally, we present a semi-device-independent
protocol for quantum key distribution (QKD) [30], based
on the quantum advantage in our communication complex-
ity tasks, in which security is proven by using the mono-
gamy relation [31–33] of contextuality.
Contextuality witnesses.—Given a set feigni¼1 of events

produced in a contextuality experiment, one can define an
n-vertex graph G in which each event is represented by a
vertex and exclusive events correspond to adjacent vertices.
G is called the graph of exclusivity of feigni¼1. In quantum
mechanics, each event ei is represented by a projector Πi.
Mutually exclusive events are represented by mutually
orthogonal projectors. A quantum realization of a set of
events feigni¼1 with graph of exclusivity G is a set of
projectors fΠigni¼1 that satisfies all the exclusivity relations
in G and all the constraints imposed by the definition of
the events.
Definition 1: Contextuality witness.—A functional

W ¼
Xn
i¼1

wiPðeiÞ; ð1Þ

where wi ≥ 0 and PðeiÞ is the probability of event ei, is a
quantum contextuality witness if there is a quantum
realization fΠigni¼1 of feigni¼0 and a quantum state ρ
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such that

Xn
i¼1

witrðρΠiÞ > αðG; w⃗Þ; ð2Þ

where αðG; w⃗Þ is the independence number of the vertex-
weighted graph ðG; w⃗Þ, where G is the graph of exclusivity
of feigni¼0 and w⃗ ¼ fwigni¼1. That is, αðG; w⃗Þ is the largest
value of

P
i∈I wi, where I is the set of the subsets consisting

of nonadjacent vertices of G [34].
The name “contextuality witness” follows from the

fact that, given W, one can find a noncontextuality
inequality [35,36] whose upper bound for noncontextual
models is αðG; w⃗Þ and whose quantum value is the left-
hand side of Eq. (2) [5,35,36].
We will focus on quantum realizations of contextuality

witnesses constructed as follows. We first identify a
vertex-weighted graph ðG; w⃗Þ for which we can identify
fΠigni¼1 and ρ such that Eq. (2) holds. We will refer to
fðG; w⃗Þ; fΠigni¼1; ρg as a quantum realization of a con-
textuality witness for ðG; w⃗Þ. In some cases, there is no
need to identify a state ρ.
Definition 2: State-independent contextuality witness.—

The functional Eq. (1) is a quantum state-independent
contextuality witness for dimension d if there is a quantum
realization fΠigni¼1 of feigni¼0 such that Eq. (2) holds
∀ ρ ∈ OðCdÞ, where OðCdÞ denotes the set of quantum
states in Cd.
If we have fðG0; w⃗Þ; fΠign0i¼1; ρg satisfying Eq. (2) that

includes projectors that are not of rank one, we can obtain
fðG; w⃗Þ; fjψ iihψ ijgni¼1; ρg satisfying Eq. (2) by splitting
each of the projectors that are not rank one into rank-one
projectors. See Ref. [37], Appendix A.
One-way communication complexity.—Communication

complexity [27] studies the amount of communication
required for tasks involving inputs distributed among
several parties. In one-way communication complexity
[8,27,38,39], there are two parties. As shown in Fig. 1,
in each round, Alice, receives a random input x ∈ X.
Depending upon x, Alice sends a message (classical or
quantum) to Bob. In addition, Bob receives a random input
y ∈ Y. Using y and the message received from Alice,

Bob outputs z, which is Bob’s guess about a certain
function fðx; yÞ. After many rounds, they produce the
probability pðzjx; yÞ of z, given inputs x and y. The figure
of merit of the task is given by

S ¼
X
x;y

tðx; yÞpðz ¼ fðx; yÞjx; yÞ; ð3Þ

where tðx; yÞ ≥ 0 and
P

x;y tðx; yÞ ¼ 1. We are interested in
two aspects: first, the maximum value of S that can be
achieved under the restriction that the dimension of the
(classical or quantum) system communicated from Alice to
Bob is d, and second, the minimum dimensional (classical
or quantum) system required to communicate in order to
achieve a certain value of S. Sharing prior classical
randomness between Alice and Bob is allowed.
Communication complexity advantage based on

quantum contextuality witnesses.—Consider fðG; w⃗Þ;
fjψ iihψ ijgni¼1; ρg satisfying Eq. (2) and such that ρ∈OðCdÞ.
Since wi ≥ 0, without loss of generality, we can take
maxi wi ¼ 1. The task is defined as follows. First, we
consider an extended graph G̃ by adding additional vertices
toG such that each vertex in G̃ belongs to, at least, one clique
of size d. A clique is a set of vertices in which every pair is
adjacent. We thereupon assign additional vectors (or rank-
one projectors) to those additional vertices, so each vector
belongs to at least one basis within the new set of vectors; see
Fig. 1. Alice receives x ∈ f0; 1;…; nþ kg and Bob receives
y ∈ f1;…; nþ kg, where k number of vertices is added.
Bob outputs his guess for

fðx; yÞ ¼

8><
>:

0; if y ¼ x;

1; if y ∈ Nx;

0; if y ∈ f1;…; ng and x ¼ 0;

ð4Þ

where Nx is the set of the vertices that are adjacent to (i.e.,
neighbors of)x in G̃. In otherwords,Bobneeds to distinguish
the runswhere y ¼ x and x ¼ 0 from the runswhere y ∈ Nx.
Except for these, whenever y ≠ x and y ∉ Nx or x ¼ 0 and
y ∈ fnþ 1;…; nþ kg, the runs do not contribute to the
figure ofmerit of the communication task.That is, the task for
Alice and Bob is to maximize

SðG̃;w⃗;dÞ ¼ 1

N

�Xnþk

x¼1

pðz ¼ 0jx; y ¼ xÞ

þ
Xnþk

x¼1

X
y∈Nx

pðz ¼ 1jx; yÞ

þ
Xn
y¼1

wypðz ¼ 0jx ¼ 0; yÞ
�
; ð5Þ

where

FIG. 1. On the left, the construction of the extended graph from
the 5-cycle graph. Each of the 8 vertices of the extended graph
belongs to at least one clique of size 3. On the right, scheme of the
communication complexity task based on the extended graph.
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N ¼ nþ kþ
Xnþk

x¼1

jNxj þ
Xn
i¼1

wi; ð6Þ

thus
P

x;y tðx; yÞ ¼ 1. Alice and Bob must accomplish this
task with the restriction that the dimension of the (classical
or quantum) system communicated between them is d.
Therefore, the communication task is fully specified by
the value of d, the extended graph G̃, and theweights w⃗. The
important point is that there is quantum advantage in this
communication taskwhenever d is “sufficiently small” in the
sense that d ≤ χðGÞ, where χðGÞ is the chromatic number of
the graph G [40].
Result 1.—For any fðG; w⃗Þ; fjψ iihψ ijgni¼1; ρg with ρ ∈

OðCdÞ such that Eq. (2) holds and d ≤ χðGÞ, there exists a
quantum strategy for the communication complexity task
defined by Eq. (5) that provides an advantage over any
strategy in which the system communicated between Alice
and Bob is classical.
In a general quantum strategy, let ρx ∈ OðCdÞ denote the

quantum state sent by Alice to Bob upon receiving x, and
let fM0jy;M1jy ¼ 1 −M0jygnþk

y¼1 denote the quantum meas-
urement Bob performs on ρx to obtain z, upon receiving
input y. Suppose that fðG; w⃗Þ; fjψ iihψ ijgni¼1; ρg is a con-
textuality witness satisfying Eq. (2). Since, the projectors in
fjψ iihψ ijgni¼1 are of rank one, one can always add k rank-
one projectors fjψ iihψ ijgnþk

i¼nþ1 so that the extended set
fjψ iihψ ijgnþk

i¼1 has the relations of orthogonality given by G̃.
Given fðG; w⃗Þ; fjψ iihψ ijgni¼1; ρg, Alice and Bob choose an
extended set and apply the following strategy:

ρ0 ¼ ρ; ρx ¼ jψxihψxj; x¼ 1;…;nþk;

M0jy ¼ jψyihψyj; y¼ 1;…;nþk: ð7Þ
This way, pðz ¼ 0jx; y ¼ xÞ ¼ pðz ¼ 1jx; y ∈ NxÞ ¼ 1,
so the value of SðG̃;w⃗;dÞ in Eq. (5) is

1

N

�
nþ kþ

Xnþk

x¼1

jNxj þ
Xn
i¼1

witrðρjψ iihψ ijÞ
�
; ð8Þ

while communicating a (quantum) system of dimension d
between Alice and Bob. In contrast to that, we find the
following.
Theorem 1.—Whenever d ≤ χðGÞ, for any strategy in

which the system communicated between Alice and Bob is
a classical system of dimension d, the value of SðG̃;w⃗;dÞ is
upper bounded by

SðG̃;w⃗;dÞ ≤ SðG̃;w⃗;dÞc ¼ 1

N

�
nþ kþ

Xnþk

x¼1

jNxj þ αðG; w⃗Þ − δ

�
;

ð9Þ

where δ is the minimum number of “improperly colored”
vertices of G̃ when d colors are used to color all the

vertices. A vertex is improperly colored if it has at least one
neighbor sharing the same color.
For a proof, see Ref. [37], Appendix B. Because of

Eq. (2) and the fact that δ is non-negative, the expression in

Eq. (8) is strictly larger than SðG̃;w⃗;dÞc .
Let us suppose that dmin is the minimum dimension in

which the set of projectors fjψ iihψ ijg and ρ can be realized
such that fðG; w⃗Þ; fjψ iihψ ijgni¼1; ρg is a contextuality wit-
ness. For any SI contextuality witness, χðGÞ > dmin [41–43].
Therefore, whenever d ¼ dmin, there will be at least two
adjacent vertices sharing the same color when d colors are
used to color the graph, implying δ ≥ 2. Moreover, in this
case, ρ0 can be any quantum state in OðCdÞ.
Explicit examples of the quantum advantage for com-

munication complexity tasks based on some quantum SI
contextuality sets are presented in [37], Appendix D,
together with a proof of their robustness against white
noise.
Certifying contextuality witness from communication

complexity task.—The quantum communication strategy
given by Eq. (7) is based on a contextuality witness.
However, a general quantum strategy with advantage
consists of a set of states fρxgnþk

x¼0 acting on Cd and a
set of measurement fM0jygnþk

y¼1 so that the value of S
ðG̃;w⃗;dÞ is

greater than SðG̃;w⃗;dÞc . In general, such a strategy may not be
related to contextuality witnesses. Nevertheless, the follow-
ing theorem allows us to identify whether or not an
unknown quantum communication strategy admits a con-
textuality witness.
Theorem 2.—For the above introduced communication

task defined by SðG̃;w⃗;dÞ, the following condition holds:

∀x;y;pð0jx;y¼ xÞ¼pð1jx;y∈NxÞ¼ 1; ð10Þ

if and only if fρxg is a set of rank-one projectors that has G̃ as
graph of orthogonality and ρx ¼ M0jx.
For a proof, see Ref. [37], Appendix B. Therefore,

Theorem 2 presents operational criteria to certify a set of
rank-one projectors satisfying orthogonality relations
according to a graph. Note that the probabilities in the
Eq. (10) condition are the first two terms of SðG̃;w⃗;dÞ.
Consider the particular case of the task, Eq. (5), in which
d ¼ χðGÞ and an unknown quantum strategy comprising

fρxg,fM0jyg provides greater value than SðG̃;w⃗;dÞc . First,
it follows from Eq. (9) that, in this case,P

n
y¼1 wytrðρ0M0jyÞ > αðG; w⃗Þ since δ ¼ 0. In addition to

that, if the first two terms in SðG̃;w⃗;dÞ attain their algebraic
values, then Theorem 2 implies fðG; w⃗Þ; fM0jygny¼1; ρ0g
must be a contextuality witness.
Increasing advantage in communication complexity.—

Here, we will consider only those contextuality witnesses
where χðGÞ > dmin. In these cases, it suffices to consider a
simplified version of the above-described communication
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complexity task by taking the first two terms of SðG̃;w⃗;dÞ.
Therefore, the figure of merit will be

SG ¼ 1

N

�Xn
x¼1

pðz ¼ 0jx; y ¼ xÞ þ
Xn
x¼1

X
y∈Nx

pðz ¼ 1jx; yÞ
�
;

ð11Þ

where N ¼ nþP
n
x¼1 jNxj. Here, the communication

problem is solely based on the exclusivity graph G [15],
and we do not need to consider additional inputs apart from
the set of vertices ofG. More importantly, this is an equality
problem as Bob guesses whether his input y is equal to
x or not [27].
Let QðGÞ [or CðGÞ] be the minimum dimension of

quantum system (or classical system) that should be
communicated to achieve SG ¼ 1. We are now interested
in quantum advantages in terms of CðGÞ and QðGÞ. A
quantum advantage in communication complexity implies
CðGÞ > QðGÞ, or, equivalently, log2 ½CðGÞ� > log2 ½QðGÞ�
conventionally expressed in terms of classical and quan-
tum bits.
Theorem 3.—Given any witness fðG; w⃗Þ;

fjψ iihψ ijgni¼1; ρg where jψ ii ∈ Cdmin ,

QðGÞ ≤ dmin; CðGÞ ¼ χðGÞ: ð12Þ

Moreover, QðGÞ is the minimum dimension d such that
there exists a set of projectors fΠig acting on Cd satisfying
the orthogonality relations given by G.
A proof is provided in [37], Appendix B. We can readily

check that the quantum strategy, ρx ¼ M0jx ¼ jψ iihψ ij,
yields SG ¼ 1. Thus, we have an advantage whenever
χðGÞ > dmin. In order to observe an increasing advantage,
we need to consider products of graphs.
Definition 3: Inclusive graph product or co-normal

product or disjunctive product or OR product G ×H.—
The vertex set of the “inclusive graph product” of two
graphs G, H is VðGÞ × VðHÞ. The edges of G ×H are
defined as ði; jÞ ∼ ði0; j0Þ if and only if i ∼ j or i0 ∼ j0. We
denote by Gm the m-times product of the same graph
G [44,45].
Theorem 4.—Given a graph G with n vertices, the ratio

between classical and quantum communication complex-
ities of SG based on Gm, that is, CðGmÞ=QðGmÞ, increases
polynomially with m,

CðGmÞ
QðGmÞ ≥

�
χfðGÞ
dmin

�
m

; for m ∈ N; ð13Þ

where χfðGÞ is the fractional chromatic number of G [42].
For any graph, χfðGÞ ≤ χðGÞ.
For a proof, see Ref. [37], Appendix B. Since

χfðGÞ=dmin > 1 for any quantum SI contextuality set in
dimension dmin [42,43], the right-hand side of Eq. (13) can

be arbitrarily large as m increases [46]. It follows from
Eq. (13) that the difference between the classical and
quantum complexities for the equality task based on Gm

is lower bounded by m · log2ðχfðGÞ=dminÞ bits, which
increases with m. In Table I, we present some explicit
examples of the quantum advantage.
Before proceeding to the next section, we point out an

example of SI witness and the respective equality problem
where the separation between the classical and quantum
communication complexities grows exponentially with the
dimension. Consider the set of vectors in Cd of the form
ð1= ffiffiffi

d
p Þ½1; ð−1Þx1 ;…; ð−1Þxd−1 �T , where xi ∈ f0; 1g such

that in every vector the number of xi taking value 1 is even.
Note that there are 2d−2 such vectors in Cd, and let us
denote this set by fjϕiig2d−2i¼1 . The graph, say GNd

, repre-
senting the orthogonality relations for this set of vectors
was introduced by Newman [50] and has been recently
studied in the context of application of contextuality [49].
It turns out for any d ≥ 1128 and divisible by 4,
fðGNd

; w⃗Þ; fjϕiihϕijgg is SI contextuality witness where
wi ¼ 1 for all i (see Appendix C in [37] for the proof).
Remarkably, for the equality problem defined by Eq. (11)
with respect to GNd

, we have

CðGNd
Þ

QðGNd
Þ ≥

1

d

�
2

1.99

�
d
: ð14Þ

Thus, the gap between classical and quantum complexities
is at least 0.007d − log2 d bits. The detailed proof of this
fact is provided in Appendix C of [37], which follows from
the results by Frankl-Rödl [51].
Semi-device-independent quantum key distribution.—

Here, we propose a QKD protocol based on quantum
advantage in the communication complexity task intro-
duced by SðG̃;w⃗;dÞ in Eq. (5) where d is taken to be dmin.
Unlike fully device-dependent protocols [14,52], our pro-
tocol is semi-device-independent [30] involving two black
boxes: Alice’s preparation device and Bob’s measurement
device. We only assume that (i) the dimension of the

TABLE I. In order to compare the quantum advantages origi-
nated from various SI contextuality witnesses, we have taken the
value of m for each set such that 200 qubits is sufficient to
accomplish the respective equality problem. With respect to that,
the lower bounds on the classical and quantum ratios have been
obtained for various SI contextuality witnesses.

SI witness
with n dmin χfðGÞ

CðGmÞ=QðGmÞ from Eq. (13)
so that dmmin ∼ 200 qubits

YO-13 [25] 3 35=11 ≥ 6 × 1013

Peres-33 [47] 3 13=4 ≥ 4 × 1013

CEG-18 [48] 4 9=2 ≥ 3.4 × 107

Pauli-240 [49] 8 15 ≥ 1.9 × 1018

Pauli-4320 [49] 16 60 ≥ 5 × 1028
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degrees of freedom (of the physical system), in which the
information is encoded, is bounded by dmin, and (ii) the
devices may share classical randomness but that is uncor-
related with the choices of the inputs x, y. The QKD
protocol is as follows. After completing a large number of
runs, Alice randomly chooses some runs and publicly
announces her input x so that Bob can verify that the
obtained value of the figure of merit is greater than Sc.
Thereby, Bob is ensured that the probabilities produced by
his device cannot be simulated by classical systems under
the aforementioned assumptions. Bob publicly announces
his input y for the remaining runs. Subsequently, Alice
notes down fðx; yÞ according to Eq. (4) as the shared key.
Whenever y ∉ fx; Nxg, or, y ∈ fnþ 1;…; nþ kg and
x ¼ 0, Alice publicly announces that the transmission is
unsuccessful.
It is not difficult to show that such QKD protocol is

secure against restricted eavesdroppers whenever the con-
textuality witness satisfies the “monogamy relations” that
are proposed in [31]. The monogamy relation between two
witnesses of contextuality realized on two separate degrees
of freedom of any quantum state ρ implies

Xn
i¼1

witr½ρðΠi ⊗ 1Þ� þ
Xn
i¼1

witr½ρð1 ⊗ Π̄iÞ� ≤ 2αðG; w⃗Þ

ð15Þ

for any w⃗, where fΠig, fΠ̄ig realize the respective
exclusivity graph G. Such relation holds for a large class
of contextuality witnesses, including the well-known odd-
cycle witnesses [31]. The QKD protocol is secure if the
mutual information of Alice-Bob is greater than the mutual
information of Alice-Eve [30], i.e., IðA∶BÞ > IðA∶EÞ,
which for individual attacks and binary output implies
SB > SE, taking SBðSEÞ as the value of SðG̃;w⃗;dÞ obtained by
Bob (Eve). Since Eve also knows the input y, she and Bob
are in the same state to guess fðx; yÞ. Because of Theorem
2, when Bob observes that the first two terms in SðG̃;w⃗;dÞ
attain their maximal values, then M0jy are rank-one pro-
jectors realizing G̃. We assume that M0jy for Eve also
realizes G̃. Now, even if Eve shares arbitrary quantum
correlation with the preparation device of Alice, due to the
Eq. (15) monogamy relation, the following holds true:

Xn
y¼1

wypBð0jx ¼ 0; yÞ þ
Xn
y¼1

wypEð0jx ¼ 0; yÞ ≤ 2αðG; w⃗Þ:

ð16Þ

Taking the best possible scenario for Eve in which she also
observes Eq. (10), the above relation implies

SB þ SE ≤ 2SðG̃;w⃗;dÞc : ð17Þ

Therefore, whenever Alice-Bob obtains quantum advan-

tage, that is, SB > SðG̃;w⃗;dÞc , the protocol is secure against
such eavesdropping. Subsequently, the key rate can be
obtained by r ¼ IðA∶BÞ − IðA∶EÞ (see Table I in [37]).
In addition to the QKD protocol, these communication

tasks can also be used to generate quantum randomness in
the prepare-and-measure scenario [53–55]. We have dis-
cussed this in Appendix D of [37].
Conclusions.—This Letter shows that all forms of quan-

tum contextuality with sufficiently small dimension provide
quantum advantage in distributed computation and in
various communication protocols without requiring entan-
glement. In distributed computation, equality problems are
essential for implementing large-scale circuits and data
verification [27–29] (see Appendix F of [37]). We show
the existence of a variant of the equality problem pertaining
to every vertex-weighted graph with certain properties
providing an advantage over classical communication.
Considering equality problems defined by the graphs of

a large class of contextuality witnesses, including all
quantum state-independent contextuality witnesses, we
show that the communication complexity required to
execute such problems in classical theory is larger than
that in quantum theory. Moreover, the complexity advan-
tage increases with an increase in the number of inputs,
identifying a class of equality problems that can be solved
only in quantum communication.
As further applications of quantum contextuality driven

communication tasks, we show how such tasks can be used
for semi-device-independent QKD, as well as for the
purpose of randomness generation. As interesting open
problems for further work, we point out the possibility of
extending the security proof of the QKD protocol to
arbitrary individual eavesdropping strategies and finding
optimal communication complexity advantages. It would
also be interesting to extend the link between quantum
contextuality and quantum advantage in communication
complexity tasks involving more than two parties, like,
quantum fingerprinting [56].
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