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Chapter 1
Introduction

This work is devoted to the study of the irregularity of the GKZ-hypergeometric Den—
modules M4 () (see Definition 3.1.3). To this end, we explicitly construct Gevrey series
solutions of M4(8) along coordinate subspaces. Let us first recall some general notions

and results about the irregularity in D-module Theory.

Let X be a complex manifold and Dy the sheaf of linear partial differential operators

with coefficients in the sheaf of holomorphic functions Ox.

One fundamental problem in the study of the irregularity of any holonomic Dy-module
M is the description of its analytic slopes along a smooth hypersurfaces Y in X (see Z.
Mebkhout [Meb90]). An analytic slope is a gap s > 1 in the Gevrey filtration Irrgf) (M) of
the irregularity complex Irry (M) (see Definitions 2.4.4 and 2.4.8). The description of the
Gevrey series solutions of a holonomic D-module M along a smooth variety Z is another
fundamental problem closely related to its irregularity. In particular, if Z is a smooth
hypersurface the index of any non convergent Gevrey solution of M along Z is an analytic
slope of M along Z (see Definition 2.4.8).

Y. Laurent also defined the algebraic slopes of M along a smooth variety Z (see
Definition 2.4.9) as those real numbers s > 1 such that the s—micro-characteristic variety
of M with respect to Z is not homogeneous with respect to the filtration by the order of
the differential operators. He proved that the set of slopes of M along Z is a finite set of

rational numbers (see [Lau87]).

When M is a holonomic D—module and Z is a smooth hypersurface, the comparison
theorem of the slopes (due to Laurent and Mebkhout [LM99]) states that the algebraic
slopes coincide with the analytic ones (see Theorem 2.4.11). Mebkhout has remarked
that since 1986 there is a candidate definition for the analytic slopes of a holonomic D-

module M along any smooth subvariety Y using the blowing up p : X — X of Y in



X and considering the analytic slopes of the holonomic D-module p* M along the smooth
hypersurface p~'Y. However, he also recalled that he doesn’t know any significant result
related to this definition.

Let us consider the complex manifold X = C" and denote D := Dx. We will also write

9; := -2 for the i—th partial derivative.
ox;

Our objects of study are hypergeometric systems, that were introduced by Gel’fand,
Graev, Kapranov and Zelevinsky (see [GGZ87] and [GZK89]). They are left D—modules
M4 () associated with a pair (A, 3) where A is a full rank d x n matrix A = (a;;) with
integer entries (d < n) and 3 € C%is a vector of complex parameters (see Definition 3.1.3).
A general goal in the study of hypergeometric systems is the description of their invariants

in terms of the combinatorics of the pair (A4, [3).

A good introduction for the theory of hypergeometric systems is [SST00]. These systems
are known to be holonomic and their holonomic rank (equivalently, the dimension of the
space of holomorphic solutions at nonsingular points) is the normalized volume of the
matrix A = (a;)1; € Z*" with respect to the lattice ZA := Y7 | Za; C Z (see Definition
6.6.1) when either 3 is generic or 14 is Cohen-Macaulay (see [GZK89], [Ad094]). For results
about rank-jumping parameters 3 see [MMWO05], [Ber08| and the references therein. Several
authors have studied the holomorphic solutions at nonsingular points of M4 (/) (see for
example [GZK89], [SST00] and [OTO07]).

Let us explain the structure of this dissertation. In Chapter 2 we recall some general
notions and results related to the irregularity in D-module Theory, mainly following
[Meb90] and [LM99]. In Chapter 3 we introduce hypergeometric systems following [GGZ87]

and [GZK89], recall some well-known results and make some comments and remarks.

Chapter 4 is devoted to the description of the irregularity complex of the hypergeometric
systems in two variables by elementary methods. Then in Chapter 5 we compute the
cohomology sheaves of the irregularity complex of M 4(/3) with respect to its singular locus
for any one row integer matrix A = (a;y - - - a,) such that 0 < a; < --- < a, (see [FC,08]).
Our method is to reduce the problem to the case in two variables using deep results in

D-module Theory and restrictions theorems.

The structure of Chapter 6 is the following. In Section 6.1 we consider a simplex o, i.e.,
aset 0 C {1,...,n} such that A, = (a;)ies is an invertible submatrix of A, and we use
['-series introduced in [GZK89] and slightly generalized in [SST00] to explicitly construct
a set of linearly independent Gevrey solutions of M () along Y, = {z; =0: i ¢ o}. The

cardinality of this set of solutions is the normalized volume of A, with respect to the lattice



ZA and we prove that they are Gevrey series of order s = max{|A,'a;| : i ¢ o} along the
coordinate subspace Y = {z; = 0: |A 'a;] > 1} D Y,. Moreover, we also prove that s is

their Gevrey index when [ is very generic.

In Section 6.2 we construct for any simplex ¢ and for all 5 a set of Gevrey series along
Y with index s that are solutions of M 4(3) modulo the sheaf of Gevrey series with lower
index. This implies for s > 1 that s is a slope of M 4(/3) along Y when Y is a hyperplane
by Lemma 8.0.8, that will be proved in the Appendix.

In Section 6.3 we describe all the slopes along coordinate hyperplanes Y at any point
p €Y (see Theorem 6.3.10). To this end, and using some ideas of [SWO08], we prove that the
s—micro-characteristic varieties with respect to Y of M 4(/3) are homogeneous with respect
to the order filtration for all s > 1 but a finite set of candidates s to algebraic slopes. Then
we use the results in Sections 6.1 and 6.2 to prove that all the candidates s to algebraic
slopes along hyperplanes occur as the Gevrey index of a Gevrey series solution of M 4(/3)
modulo convergent series and thus they are analytic slopes. In particular we prove that the
set of algebraic slopes of M 4((3) along any coordinate hyperplane is contained in the set
of analytic slopes without using the comparison theorem of the slopes [LM99]. We need
to use that the set of analytic slopes is contained in the set of algebraic slopes in order to
prove that there are no more slopes of M4(3) along a coordinate hyperplane. Notice that
this inclusion of the comparison theorem for the slopes is a consequence of Laurent’s index

theorem for holomorphic hyperfunctions [Lau99, Corollary 5.3.3] (see also [Meb90, 6.6]).

M. Schulze and U. Walther [SWO08] described first the algebraic slopes of M 4(3) along
coordinate subspaces assuming that ZA = Z? and that A is pointed. A matrix A is said to
be pointed if its columns ay, . . ., a, lie in a single open linear half-space of R? (equivalently,
the associated affine toric variety V(I4) passes through the origin). Previous computations
of the slopes of M4(8) along coordinate hyperplanes in the particular cases d = 1 and
n =d+ 1 appear in [CT03|, [Har04] and [Har03].

In Section 6.5.1 we use the Gevrey series constructed in Section 6.1 and convenient
regular triangulations of the matrix A to provide a lower bound for the dimensions of the
Gevrey solution spaces. In particular, the lower bound that we obtain for the dimension of
the formal solution space of M 4(3) along any coordinate subspace Y, = {x; =0: i & 7},
T C{1,...,n}, at generic points of Y, is nothing but the normalized volume of the matrix
A, = (a;)ier With respect to ZA.

In Section 6.5.2 we prove that this lower bound is actually an equality for very
generic parameters 3 € C? and then we have the explicit description of the basis of

the corresponding Gevrey solution space. Example 6.3.13 shows that this condition on



the parameters is necessary in general to obtain a basis. This example also points out
a special phenomenon: some algebraic slopes of M 4(() along coordinate varieties of
codimension greater than one do not appear as the Gevrey index of any formal solution

modulo convergent series.

Then, in Section 6.6 we assume some conditions (ZA = Z% A is pointed, 3 is non-
rank-jumping and Y is a coordinate hyperplane) in order to use some multiplicity formulas
for the s—micro-characteristic cycles of M4(3) obtained by M. Schulze and U. Walther
in [SWO08] and general results on the irregularity of holonomic D-modules due to Laurent
and Mebkhout [LM99] to compute the dimension of HO(Irrg) (Ma(5))), for generic points
p € Y. Thus, the set of the classes in HO(Irrgf) (M4())), of the Gevrey solutions of M 4(3)
that we construct along a hyperplane Y is a basis for very generic parameters. Moreover,
since Irrg) (M4(B)) is a perverse sheaf on Y by a theorem of Z. Mebkhout [Meb90], we
know that for i > 1 the i—th cohomology sheaf of Irrgf) (M 4(B)) has support contained in a
subvariety of Y with codimension i. This gives the stalk of the cohomology of Irrgf) (Ma(B))
at generic points of Y. As a consequence, we compute the Newton polygon of M 4(3) along
Y with respect to Y at generic points of Y.

Finally, in Chapter 7 (joint work with Uli Walther) we investigate the restriction of
M 4(3) with respect to a coordinate subspace, generalizing Corollary 5.1.4.



Chapter 2

Preliminaries I: Irregularity of a

holonomic D-module.

In this chapter, we introduce some definitions and well-known results in the general setting

of D-module Theory that will be used in the sequel.

2.1 Irregularity of a linear differential operator in one

variable.

To set up the problem of computing the Gevrey solutions of a left D-module, we will first

recall the situation in the one dimensional case.

Consider an ordinary linear differential operator, of order m,

m
dx™

with a; = a;(x) a holomorphic function at the origin in C. Recall that = = 0 is a singular

d
P=a, + - tai=— +ap
dz

point if and only if a,,(0) = 0. The slopes of P are the slopes of the Newton polygon N (P)
of P defined as the convex hull of

m

(G, = v(a) + (Z<o)?)

i=0
where v(a;) is the multiplicity of the zero of a;(z) at x = 0. By Fuchs’ Theorem, P is
regular at z = 0 if and only if N(P) is the quadrant

(m,m —v(am)) + (Z<o)®

Malgrange-Komatsu’s comparison theorem states that P is regular at x = 0 if and only
if the solution space Sol(P, ©/0) is zero ([Kom71], [Mal74]). Here P acts naturally on the
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quotient O/ where O = C[[z]] (resp. © = C{z}) is the ring of formal (resp. convergent)
power series in the variable x. This solution space measures the irregularity of P at x =0
and will be denoted

Irro(P) := Sol(P, O/ 0).

Example 2.1.1. Consider the differential operator P = xk“% — k, k> 1. The space of

—1/zF

holomorphic solutions of P at any point of C\ {0} is generated by f = e , which has an

essential singularity at x = 0. The irreqularity Irrg(P) is generated by the classes in (’3/(9

of the formal power series:

m—1 .
o J o\ itk(mt)
f]_ZH (m—i—k z)x’
m>0 =0
forj=0,...,k—1 since P(f;) = —kait* € O.
Moreover, the vector space Irrg(P) is filtered by the so-called Gevrey solutions of the

equation P(u) = 0. Let us denote by (’35 C O the subring of Gevrey series of order less

than or equal to s (where s > 1 is a real number). A formal power series
f=> fa'e0

is in (’35 if and only if the series

is convergent at x = 0.
The irregularity Irrg(P) is filtered by the solution subspaces
Irr$? (P) := Sol(P, O,/ 0).

By the comparison theorem of J.P. Ramis [Ram84] the jumps in this filtration are in bijective
correspondence with the slopes of N(P) and the dimension of each vector space Irr((f)(P)
can also be read on N(P).

In higher dimension, one has analogous results but the situation is much more involved
(see Subsection 2.4).

2.2 Gevrey series along a smooth subvariety.

Let X be a complex manifold of dimension n > 1, Ox (or simply O) the sheaf of
holomorphic functions on X and Dy (or simply D) the sheaf of linear differential operators

with coefficients in Ox. The sheaf Ox has a natural structure of left Dx-module.

8



Let Z be a subvariety in X with defining ideal Z;. We denote by Ox/; the restriction
to Z of the sheaf Oy (and we will also denote by Ox/z its extension by 0 on X). Recall
that the formal completion of Ox along Z is defined as

Oy = lim Ox /T3,
k

By definition OX‘Z
Dx—module. We will also denote by O <z

the quotient sheaf defined by the following exact sequence

is a sheaf on X supported on Z and has a natural structure of left

the corresponding sheaf on Z. We denote by Q

O—>OX|Z—>O)?‘\Z—>QZHO.
The sheaf Q; has then a natural structure of left Dx—module.

Remark 2.2.1. If X =C and Z = {0} then Oxiz.0

power series in one variable x, while (’)X‘Z = 0 for any nonzero p € X. In this case
Qzo= (fc:[{[i} and Qz, =0 for p # 0.

is nothing but C[[x]] the ring of formal

Definition 2.2.2. Assume Z C X s a smooth subvariety and that around a point p € X
the variety Z s locally defined by ;41 = --- = x, = 0 for some system of local coordinates

(x1,...,2,). A germ

P S

is said to be a Gevrey series of order s € R (along Z at the point p) if the power series

1 mi+1 m
T e @ @)™ 2 € Oz,
1

ps(f) =

meNn—L

18 convergent at p.

The sheaf O Xz admits a natural filtration by the sub-sheaves O 5] 7 (5)

order s, 1 < s < oo where OX‘Z(OO) = Oxj; by convention. It is clear that OX|Z< ) = Oxz.

We can also consider the induced filtration on Qy, i.e. the filtration by the sub-sheaves

of Gevrey series of

Qz(s) defined by the exact sequence:
0 — Oxjz — Ogpy(s) — Qz(s) = 0 (2.1)

Definition 2.2.3. Let Z be a smooth hypersurface in X = C" and let p be a point in Z.
The Gevrey index of a formal power series [ &€ O)?I\Zp with respect to Z is the smallest

1 < s <00 such thathOX|Z( S)p-



2.3 Perverse sheaves

We recall here the definition and some general well-known results about perverse sheaves.

Definition 2.3.1. A complex F* € D’(Cx) of sheaves of vector spaces is said to be a
constructible sheaf if there exists a stratification (X)) of X such that the cohomology sheaves
H(F*) are local systems on each X)y.

Definition 2.3.2. Let F € D%Cx) be a constructible sheaf, then the Euler-Poincaré

characteristic of F is the following constructible function on X :

X(F): X — Z
r - X(]—")I:Z(—l)j dime H'(F,)

where H(F,) = H'(F), and H'(F) denotes the i-th cohomology sheaf of F.

Definition 2.3.3. A constructible sheaf F* satisfies the support condition on X if the

following conditions hold:
1. H(F*) =0 fori <0 andi>n=dim(X).
2. The dimension of the support of H'(F®) is less than or equal to n — i for 0 <i < n.

Definition 2.3.4. A constructible sheaf F* € D%(Cx) is said to be a perverse sheaf on X
if both F* and its dual RHomc, (F*,Cx) satisfies the support condition.

Remark 2.3.5. Let Z C X be a subvariety with codimension p € N. Then a constructible
sheaf F* on Z is a perverse sheaf on Z if the constructible sheaf on X obtained by extending
Fel—p] by 0 is a perverse sheaf on X.

The category Per(Cx) of perverse sheaves on X is an abelian category but the category
of constructible sheaves € D%(Cy) is just additive (see [BBD82]).

By the Riemann-Hilbert correspondence (see [Meb84]) the derived functor
RHOTTLDX (—, Ox)

establishes an equivalence of categories between the category of regular holonomic Dx-

modules and the one of perverse sheaves Per(Cy).

We will include a proof of the following result for the sake of completeness.

10



Theorem 2.3.6. Let F* be a perverse sheaf on X, then there exists a Whitney stratification
{Xo}aer of X such that:

Ch(F*) € UpesTe X (2.2)

Moreover, for every Whitney stratification of X satisfying (2.2) we have that:

H (F®) x.
are locally constants sheaves of finite rank for all i € N and o € I.

Proof. Let F* be a perverse sheaf on X, then by the Riemann-Hilbert correspondence
([Meb84]), there exists a regular holonomic Dx-module M ze such that

F* = RHOmDX(M}'-, Ox)
Thus, by [Kas83, Th. 6.3.1.], we have:
Ch(Mz.) = Ch(RHomp, (Mze,Ox)) = Ch(F*)

By some results of M. Kashiwara (see [Kas83, Theorems 5.1.3, 5.1.6] and [Kas83, Lemma
3, page 114]) we have that there exists a Whitney stratification {X,}oes of X such that

Ch(Mz.) C U T X (2.3)
and that for any Whitney stratification of X satisfying (2.3) the sheaves:
Hi(f.)‘xa = Exti(/\/lf-, OX)\XQ

are locally constants sheaves of finite rank.

2.4 Irregularity and slopes of a holonomic D-module

Let X be a complex manifold. We recall here the definition of the irregularity (also called
the irregularity complex) of a left coherent Dx—module given by Z. Mebkhout [Meb90,
(2.1.2) and page 98].

Recall that if M is a coherent left Dx—module and F is any Dx—module, the solution

complex of M with values in F is by definition the complex
RHomp, (M, F)

which is an object of D?(Cx) the derived category of bounded complexes of sheaves of C—

vector spaces on X. The cohomology sheaves of the solution complex are then £ mt%,x (M, F)

(or simply Ext' (M, F)) for i € N.

11



Definition 2.4.1. [Meb90, (2.1.2) and page 98| Let Z be a subvariety in X. The irreqularity
of M along Z (denoted by Irrz(M)) is the solution complex of M with values in Qz, i.e.

Irrz (M) :== RHomp, (M, Qz).

Definition 2.4.2. A holonomic Dx-module M is regular with respect to a subvariety
Z C X ifirg(M) is zero. M is said to be regular if Irr z(M) is zero for any subvariety Z.

Proposition 2.4.3. A holonomic Dx-module M is reqular if and only if Trrz(M) is zero
for any hypersurface Z.

If Y is a smooth hypersurface in X we also have the following definition (see [Meb90,
Déf. 6.3.7]).

Definition 2.4.4. For each 1 < s < oo, the irreqularity of order s of M along Y is the
complex

Irrl? (M) := RHomp, (M, Qy(s)).

Remark 2.4.5. Since O)?B,(oo) = Oxpy we have Irr§,°°)(/\/l) = Irry (M). The support of

the irreqularity of M along Z (resp. Irrgf) (M) ) is contained in Z (resp. in'Y ).

If X = C, Z = {0} and M = Dx/DxP is the Dx—module defined by some
nonzero linear differential operator P(x, d%) with holomorphic coefficients, then Irryz (M)
15 represented by the complex
Cllel) e Cllel)

Clzy  C{z}

where P acts naturally on the quotient %.

Theorem 2.4.6. [Meb90, Th. 6.3.3] If M is a holonomic Dx-module and ¥ C X
1s a smooth hypersurface, then the complex Irr§f)(/\/l) is a perverse sheaf on'Y for any

1 <s < 0.

Remark 2.4.7. From [Meb90, Cor. 6.3.5] each Irrgf)(—) for 1 < s < oo, is an exact
functor from the category of holonomic Dx-modules to the category of perverse sheaves on
Y.

Moreover, the sheaves Irrg/s)(/\/l), 1 < s < o0, form an increasing filtration of

Irrg/oo)(./\/l) = Irry (M). This filtration is called the Gevrey filtration of Irry (M) (see [Meb90,
Sec. 6]).

12



Let us denote by
()
I
Gry(Irry (M) = H;Z—)W)
Irry~" (M)
for 1 < s < oo the graded object associated with the Gevrey filtration of the irregularity
Irry (M) (see [LM99, Sec. 2.4]).

Definition 2.4.8. [LM99, Sec. 2.4] We say that 1 < s < oo is an analytic slope of M
along Y at a point p € Y if p belongs to the closure of the support of Grs(Irry (M)).

Let us denote by A = Ty X the conormal bundle of Y in X and let 7*A be the cotangent
bundle of A. Let F' be the filtration on Dy by the order of the differential operators and
let V' be the Malgrange-Kashiwara filtration on Dx with respect to Y. Recall that V' is
defined by:

Vi(Dx)p ={P €Dx,: Vj > 0,P(Iy) C 1}

for all p € X and k € Z, where Zy C Ox is the defining ideal of Y and ZF = Ox for k < 0
by convention. For all s > 1 there exists an intermediate filtration Ly = F' + (s — 1)V4 on
Dx (see [Lau87]). The induced filtration on M by the filtration L; on Dx determines a
positive cycle of T*A denoted by CCh*(M). The support Ch*(M) of CCh*(M) is called the
s-micro-characteristic variety of M with respect to Y. Let I(s)(M) be the analytic closure

of the union of the projections on Y of the irreducible non-F-homogeneous components of
Ch*(M) via T*A — Y.

Definition 2.4.9. [Lau;85], [Lau87] s > 1 is an algebraic slope of M with respect to'Y at
peY ifpel(s)(M).

Remark 2.4.10. The algebraic slopes of a Dx-module M with respect to a smooth
hypersurface Y can be algorithmically computed if M s defined by differential operators
with polynomial coefficients [ACGI6].

The following important result generalizes the comparison theorem of J.P. Ramis
[Ram84] in one variable.

Theorem 2.4.11. [LM99, Th. 2.5.3] If M is a holonomic Dx-module and Y is a smooth
hypersurface, then s > 1 is an analytic slope of M with respect to'Y at p € Y if and only
if s > 1 is an algebraic slope of M with respect to Y atp e Y.

13






Chapter 3

Preliminaries II: Hypergeometric

systems and ['—series.

In this chapter we introduce our objects of study: hypergeometric systems (see [GGZ87]

and [GZK89]). We also recall some results and make some remarks and comments.

From now on we consider the complex manifold X = C" and denote D := Dx. We will

also write 0; := % for the ¢-th partial derivative.

3.1 Hypergeometric systems

Let A be a full rank d x n matrix A = (a;;) with integer entries, d < n. To this data we

can associate an irreducible algebraic variety as follows (see [Stu95] for example).
Definition 3.1.1. The toric ideal associated with A is the following binomial ideal:
Iy=(0,:=0""=90": welkZ", Au=0) CC[d,...,0]. (3.1)
Here u =uy —u_ and uy,u_ € N" have disjoint supports.
The zeros variety V(14) of I in X = C" is called the toric variety associated with A.

Remark 3.1.2. 14 is a prime ideal whose zeros variety V(I4) C C" has Krull dimension
d (see for example [Stu95]).

Let 3 € C? be a vector of complex parameters and 1 < i < d. Then the linear differential

operator:

Ei — ﬁz = Zaijxjaj — ﬁz (32)
7j=1
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is called the i-th Euler operator associated with (A, 3) (or the Euler operator associated
Wlth (ai,l s a,-,n) and 6,)

Following Gel'fand, Graev, Kapranov and Zelevinsky (see [GGZ87] and [GZKS&9)), we

give the following definition:

Definition 3.1.3. The hypergeometric system associated with the pair (A,[3) is the
following left ideal of the Weyl algebra A, (C) = Clxy, ..., z,{(01,...,00):

d
Ha(B) == An(C)1a + Z An(C)(E; = 3)
i=1
The hypergeometric D—module associated with the pair (A, 3) is the quotient sheaf M () =
D/DHa(B)-

Remark 3.1.4. Notice that Ha(8) = Hoa(GB) for any invertible matriz G such that GA

18 an integer matrix.

The following basic result was proved in [GZK89] when the toric ideal is homogeneous

and in [Ado94] for the general case.

Theorem 3.1.5. M4(3) is a holonomic D-module for all 3 € C.
There is a characterization of the regular hypergeometric systems:
Theorem 3.1.6. For all § € C? the following conditions are equivalent:

i) Ha(B) is a regular holonomic ideal.
ii) All the columns of A lie in a hyperplane off the origin.

Proof. The implication i) = 1) is a theorem of R. Hotta [Hot98, Ch. II, 6.2, Thm.]. The
converse result was proved by Saito, Sturmfels and Takayama [SST00, Thm. 2.4.11] when
3 is generic (see Definition 3.2.4) and by Schulze and Walther [SW08, Corollary 3.16] when
A is a pointed matrix such that ZA = Z? On the other hand, when A is non-pointed
then M 4((3) is never regular holonomic: the existence of a toric operator 9" — 1 € 4,
u € N™ implies that the holonomic rank of some initial ideals of H([3) is zero and this is a

contradiction for regular holonomic ideals with positive rank (see [SST00, Thm. 2.5.1.]). O

3.2 ['—series

In what follows we recall the definition of I'-series following [GGZ87] and [GZKS89, Sec. 1]
and in the way these objects are handled in [SST00, Sec. 3.4].
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Let the pair (A, 3) be as in Section 3.1. Assume v € C". We will consider the '-series
— v +1 +n
0y =2 ZL U+u+1x € 2°Cl[z7, ..., x."]] (3.3)
u€l 4

where 1 = (1,1,...,1) € N*, L4 = Ker(A)NZ" and for a complex vector v = (71,...,7) €
C"™ one has by definition
=1[T(w
i=1

Here I' is the Euler Gamma function. Notice that the set
"Cllat, ... 22"

has a natural structure of left A, (C)-module although it is not a Dy g-module. Nevertheless,
if Av = (3 then the expression ¢, formally satisfies the operators defining M 4(3). Let us
notice that if u € L4 then ¢, = @, 4.

Observe that ¢, is zero if and only if (v + La) N (C\ Z-)" = 0. In contrast, the series
¢, does not define a formal power series at any point if (v + La) N (C \ Zo)" contains
v+ (Z" N L") for some linear subspace 0 # L' C Ker(A).

If v € (C\ Z«y)" then the coefficient —F(v—‘,—lu-i—l)

u; + v; > 0 for all ¢ with v; € N. In this case, we also have the following equality

is non-zero for all v € L4 such that

Pw+1) [l
Tv+u+1)  [v+ul,,

(3.4)

Here
a;—1

SIRICE

iro>0 j=0

is the Pochhammer symbol, for any z € C" and any a € N".

Definition 3.2.1. The negative support of a vector v € C" (denoted by nsupp(v)) is the
set of indices i such that v; € Zy. We say that v has minimal negative support if there is

no u € Ly such that nsupp(v + u) C nsupp(v).

Assume v € (C\ Z-¢)™ has minimal negative support. The negative support of v is then
a non-empty set and I'(v+1) = oo. Moreover for each u € L 4 at least one coordinate of v+u
must be strictly negative (otherwise nsupp(v + u) = C nsupp(v)). So '(v +u + 1) =
for all u € L4 and ¢, = 0.
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If v & (C\ Z<p)™ does not have minimal negative support then there exists u € L, such
that v + « has minimal negative support. If nsupp(v 4+ u) = () then ¢, = p,1,, # 0 while if
nsupp(v + u) # 0 then ¢, = @y, = 0.

Following [SST00, p. 132-133], for any v € C"™ we will consider the series
[V]u_
Gy = 2" —" (3.5)
u%;, [V + ulu,
where N, = {u € L4 | nsupp(v + u) = nsupp(v)}.

For v € (C\ Z«y)™ we have (3.4) and I'(v + 1)p, = ¢,. If v & (C\ Z-)" then the

coefficient of z¥ in ¢, is non-zero (in fact this coefficient is 1) while it is zero in @,.

Proposition 3.2.2. [SST00, Prop. 3.4.13] If Av = [ then ¢, is a solution of the
hypergeometric ideal Ha(B) (i.e. ¢, is formally annihilated by H4(B)) if and only if v

has minimal negative support.

In order to simplify notations we will adopt in the sequel the following convention: for
v € C" and u € L4 we will denote

Loy ul = —ML
[V + uly,
if uw € N, and I'[v; u] := 0 otherwise. With this convention we have

¢y =2 Z [[v; ulx®.

uel 4

We will also use the following definitions.
Definition 3.2.3. The support of a series ), cn cox? is the set
{veC": ¢, #0}.

Definition 3.2.4. 3 € C? is said to be generic if it runs in a Zariski open set. (3 is said

to be very generic if it runs in a countable intersection of Zariski open sets.

['—series ¢, (resp. ¢,) are used in [GZK89] (resp. [SST00]) in order to construct a basis
of the space of holomorphic solutions of M 4(3) at some nonsingular points in the case
when the conditions 7) and iz) of Theorem 3.1.6 are satisfied and [ is very generic (resp.

generic).

18



Chapter 4

Irregularity of M 4(3) for A = (a b).

4.1 The case of a plane curve

This chapter is devoted to the study of the irregularity of the hypergeometric system
associated with an affine plane monomial curve (joint work with F. J. Castro Jiménez
[FC,08]). In Section 5.1 (see also [FC208]) the study of the irregularity of the hypergeometric
system associated with any affine monomial curve in C" will be reduced to the two
dimensional case by using deep results in D-module theory. This justifies our separated
treatment for the two variables case in this chapter. In addition, we would like to point out

that we will just use elementary methods in this chapter.

We will assume throughout this chapter that A = (@ b) is an integer row matrix with
0 <a<band f € C. We can assume without loss of generality that a,b are relatively
prime (see Remark 3.1.4).

In this case, the hypergeometric D-module M 4(f3) is the quotient of D modulo the
sheaf of left ideals generated by the operators

P =0 gy = 0 — 04

and
EA — ﬁ = axlal + bx282 - ﬁ

Sometimes we will write £ = E4 — [ if no confusion is possible.

Although it can be deduced from general results ([GGZ87] and [Ado94, Th. 3.9]) a

direct computation shows that the characteristic variety of M 4(5) is
Ch(M4(8)) =Tx X UTy X
where Y = {xo = 0} and then the singular support of M 4(3) is the axis Y.
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Our goal here is to explicitly describe the cohomology of Irry (Ma(3)), ie. we will

compute the vector spaces

H (el (Ma(8))), = Extis(Ma(B), Oy (5)),

forpeY,ie N and 1 < s < oo. In the process we will also compute the cohomology of
RHomp(Ma(B), Ox)y(s)) for all 1 <'s < oo.

4.1.1 Holomorphic solutions of M 4(/3) at a generic point

By [GZK89, Th. 2] and [Ado94, Cor. 5.21] the dimension of the vector space of holomorphic
solutions of M4(3) at a point p € X \ Y equals b. A basis of such vector space of solutions
can be described, using I'-series (see [GGZ87], [GZK89, Sec. 1] and [SST00, Sec. 3.4], see

also Section 3.2) as follows.

For 7 =0,...,b—1 let us consider

and the corresponding ['-series

J i p\" J

Gpi = 2° [[v?; u(m)] (—(11) € 2 Cl[zy, 75 ']

with w(m) = (bm,—am) € Ly = Kerz(A), which defines a holomorphic function at any

point p € X \ Y. This can be easily proven by applying d’Alembert ratio test to the series
b

b

. T m
= Z C[v?; u(m)] (—i) .
m>0 T2

Writing ¢, := T'[v7; u(m)] we have
Cm+1 (am)a
Cm
Thus {¢,i,: j=0,...,b—1} is a basis of Homp(Ma(8), Ox), at any point p € X\ Y.
However ¢,; ¢ Ox(X \Y) if @ ¢ 7 because it has monodromy along any loop around

the axis Y.

lim

m—00

=0.

pu— 1' —_—
meooo (bm)b

4.2 Free resolution of M 4(3)

The aim of this section is to compute a free resolution of M 4(3). This will be useful in

Sections 4.3 and 4.4, where we will describe the cohomology of the irregularity complex

Irry (M ().
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Lemma 4.2.1. A free resolution of M () is given by
0—D D2 DT Mu(B) — 0 (4.1)

where 1y is defined by the column matriz (P,E)', 1, is defined by the row matriz

(E' + ab, —P) and m is the canonical projection.

Proof. 1t is a well-known result that the stalk D, is a flat A,(C)-module, for all p € X.

Then, we only need to prove that (4.1) is an exact sequence for A,(C) instead of D.
We will prove that Ker(¢) C Im(t);) since the rest of inclusions are obvious.
Consider the symbol map

0:A,(C) — Clr1,22,&, &)
R = Za ao(2)0* +— o(R)= Z|a|:m ()€

where m = ord(R) is the order of R. Notice that

U(Rle) = O(Rl)U(Rg)

and that
o(Ry) +0(Ry) if ord(R;) = ord(Ry)
o(R1+Ry) =4 o(Ry) if ord(R;) > ord(Ry)
o(R2) if ord(R;) < ord(Ry)

Let (Q, R) € A,(C)? be a relation for the pair (P, E), with Q, R # 0, i.e., QP+ RE = 0.
Let us prove that (@, R) € A,,(C)(E + ab, —P) = Im(ty)o:

Denote 6; := ord(Q) and Jy := ord(R). Since QP + RE = 0, we have that
0 +b=ord(QP) = ord(RE) =62 + 1
and that
0(Q)o(P) = —o(R)o(E) (4.2)
However, o(P) = & and o(E) = ax,&; + bro&, are relatively prime so
(0(Q),0(R)) = Ay - (0(E),a(P))
for some polynomial A; € C[zy, x9,&;, ] which is homogeneous in the variables &;.

Take an operator Ay € A, (C) such that o(A;) = A; and consider the relation for (P, E):

Q1P+R1E = O
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where (Q1, R1) = (Q, R) — Ay(E + ab, —P).

We have that ord(Q;) = ord(Q — Ay(E + ab)) < & and ord(R;) = ord(R + A1 P) < 8,
by (4.2). Thus, iterating this process leads to a relation:

QP + RiE =0

such that (Q;, R) = (Q,R) — ', A;(E +ab, —P), A; € A,(C), and either the order of @,
or the order of R; is lower than or equal to 0. Since the order of P is b > 1 and the order of
FE is 1, we can assume that the order of ); is lower than or equal to 0, i.e., Q; = ¢;(z) € C[z].
Applying the symbol map we obtain ¢ (z)o(P) = —o(R;))o(E), i.e.,

Ql@)flf = —o(Ry)(azi&1 + bxaéo)

which is a contradiction (since £ and ax,&; + bry&, are relatively prime) except in the case
R, =¢q =0. Thus (Q,R) € A,(C)(E + ab,—P). O

Remark 4.2.2. For any left D-module F the solution complex
RHomp(Ma(B), F)

15 represented by
0— F&)F@f BN F—0

where U3(f) = (P(f), E(f)) and w5 (fi, f2) = (E+ab)(f1) = P(f2) for f, fu, f» local sections
m F.

4.3 Nullity of Irry(Ma(8))00)

The aim of this section is to prove the following result.
Theorem 4.3.1. With the previous notations we have Irrgf) (Ma(8)) 00 =0 forall € C
and 1 < s < oco. In other words

Ext'(Ma(B), Qv (s)) 00 =0

forallpeC,1<s<ooandi € N. Here the Ext groups are taken over the sheaf of rings
D.

Let us consider the following vector spaces

Va(B,s) := { Z aat® € Ox1y(5)0,0) : o =0 if Ao = [3}

a€eN?

and

Wa(B,s) = { Z aat” € Ox1y(5)0,0) : o = 0if Aa # ﬁ}

a€eN?
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Remark 4.3.2. It is clear that Va(5,s) ® Wa(5,5) = Ox|v(5)(0,0). Moreover, Wa(53,5) is
a vectorial subspace of Clxq, xs] with finite dimension. In particular, Wa(3,s) =0 (and so

Va(B,5) = Oxy(8)00) if and only if § & aN + bN.

Lemma 4.3.3. i) The C-linear map

Ex— B :Va(B,8) — Va(5,s)

is an automorphism for all 1 < s < oo and 3 € C. In particular, if 5 ¢ aN + bN then
E4 — B is an automorphism of Oxy(s),0) for all 1 < s < o0.
it) The C~linear map

P:Wa(B,s) = Wa(8 — ab, s)

is surjective for all 1 < s < oo and [ € C.

Proof. 1t 8 ¢ ab+ aN + N then W4(8 — ab,s) = 0 and part i) is obvious in this case.
Anyway, for all 5 € C and f € Wy(8 — ab, s) the solution h € W4(,s) to the equation
P(h) = f is given by the following recurrence relation for the coefficients h; and f; of

B-bj B=bj_y .
j J s olv-
xy* xyand x; ¢ x5 in h and f respectively:

B 1 B3 — bk
thra(erl) - (k T a(m T 1))a (( a - bm)b hk-i—am - .fk:-i—am) (43)

for k=0,...,a—1and m € N.

Let us prove part i). For f =3 _\» fax® € C[[x1,,]] we have that

(Ba=B)(f) =D falAa—B)z™.

a€eN2

This implies that F4 — 3 is an automorphism of V4(3, 00). It is also clear that E4 — [ is
an automorphism of V4(5,1). For any 1 < s < oo we have ps(E4 — ) = (Ea — 3)ps and
then E4 — (3 is an automorphism of V4 (3, s) (see Section 2.2 for the definition of ps). O

Corollary 4.3.4. E4 — (3 is an automorphism of the vector space Qy(s)((m) forl <s < oo
and 3 € C.

Proof. [Theorem 4.3.1] Let us simply write F := E4 — 3. The complex Irrgf) (Ma(5)) 0,0
is represented by the germ at (0,0) of the following complex

0 — Oy(s) 2% Oy (s) @ Oy(s) 25 Qy(s) — 0

where 3 (f) = (P(f), E(f)) and &§(fi, f2) = (E + ab)(f1) — P(f2) for f, f1, fo germs in

Qy (s) (see Remark 4.2.2). In particular, we only need to prove the statement for i = 0, 1, 2.
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For i = 0,2 the statement follows from Corollary 4.3.4. Let us see the case i = 1.
Let us consider (f,7) € Ker(¢7)0,0 (i.e. (E+ ab)(f) = P(g)). We want to prove that
there exists h € Qy(s)(,0) such that P(h) = f and E(h) = g, where (7) means modulo
Oxiy,00 = Clz}.

From Corollary 4.3.4 we have that there exists a unique h € Qy (8)(0,0) such that
E(h) =7g. Since PE = (E + ab)P and (E + ab)(f) = P(g) we have:

(E +ab)(f) = P(g) = P(E(h)) = (E + ab)(P(h)).

Since for all 3 € C, E+ab = E, — ( — ab) is an automorphism of Qy(s)(,0) (see Corollary
4.3.4) we also have f = P(R). So (f,7) = (P(h), E(h)) € Tm(¥¢)0.0)- O

Remark 4.3.5. From Theorem 4.3.1 and the long exact sequence of cohomology associated

with the exact sequence (2.1) we have

Ext'(Ma(B3), Ox1y)0,0) = Ext' (Ma(B), Oxpy (s))0,0)
for1 < s<oo,i€Nand f € C. In fact we have the following two propositions.

Proposition 4.3.6. With the previous notations we have

Ext'(Ma(B), Oxy(s)) 0.0 = 0
forall B ¢ aN+bN, 1 < s < oo andi € N.

Proof. Since 3 ¢ aN + bN then V4(8) = Oxy(8)o0 and thus £ = E4 — (3 is an
automorphism of Ox)y(s),0) by part i) of Lemma 4.3.3. It follows that the proof is

analogous to the one of Theorem 4.3.1. O]
Proposition 4.3.7. With the previous notations we have

1 if i=0,1

dim(c(gl‘ti(MA(ﬁ),Ox‘y(s))(op)) = { 0 Zf P9

for all § € aN+bN and 1 < s < oo. Moreover, Ext'(M4(3), Ox|y(s))0,0) is generated by a
polynomial ¢« when i =0 and by the class of (0, ¢ya) when i =1 (see the proof of Lemma
4.4.1 for the definition of ¢ya).

Proof. By Remark 4.2.2 it is enough to consider ¢ = 0, 1, 2. Let us treat first the case i = 2.
Let h € Ox|y(5)(0,0) and write h = hy + hy with hy € Va(8 — ab, s) and hy € Wa(8 — ab, s).
From Lemma 4.3.3 there exist f € V4(8—ab, s) and g € W(5, s) such that (E+ab)(f) = hy
and P(g) = —hy. Then ¥{(f,g9) = (E + ab)(f) — P(g9) = h1 + ha = h and so the germ of
¥y at (0,0) is surjective. This implies the statement for i = 2.
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Let us see now that Ext"(Ma(8), Oxv(s)),0) has dimension 1. Assume that h €
Ox|v(8)(0,0) satisfies P(h) = E(h) = 0 and write h = hy + hy with hy € Va(8,s) and
hy € Wa(B,s). We have E(hy) = 0 and then E(h) = E(hy) = 0 implies Ay = 0 because
of Lemma 4.3.3. Now, from P(h) = P(hs) = 0 we get hy = Apya for some A € C (see
Proposition 4.4.4).

Finally, let us prove that Ext'(Ma(8), Oxy(s))(0,0) has dimension 1. Consider (f,g) €
Ox|y ()00 such that (E + ab)(f) = P(g) and write f = fi + f2,9 = g1 + g2 with
fi € Va(B—ab,s), fo € Wa(B—ab,s), g1 € Va(B,s) and g2 € Wa(0,s). As (E+ab)(f2) =0
we have (E + ab)(f) = (E + ab)(f1) = P(g1) + P(g2). This implies P(g2) = 0 since
(E +ab)(f1) and P(g1) belong to Va(5 — ab, s). By Lemma 4.3.3 there exists h; € Va(3,s)
such that E(hy) = g1. We also have (E + ab)(f; — P(h1)) = (E + ab)(fi) — PE(h1) =0
and again by Lemma 4.3.3 we have (f1,91) = (P(h1), E(h1)).

By Lemma 4.3.3 there exists ho € Wa(f3,a) such that P(hy) = fo. So, (f2,92) —
(P(hg), E(h2)) = (0,92) = A0, ¢ye) for some A € C since P(g2) = 0 (see Proposition
4.4.4). O

4.4 Description of Irry(M4(3)), for p e Y, p # (0,0)

We will compute a basis of the vector space Ext'(M4(8), Qy(s)), for 1 < s < oo, i € N,
p €Y, p#(0,0). In this section we are writing p = (¢,0) € Y with € € C*.

We are going to use I'-series following ([GGZ87], [GZK89, Section 1]) and in the way
they are handled in [SSTO00, Section 3.4].

We will consider the family v = (@,k) € C?for k =0,...,a — 1. They satisfy
AvF = 3 and the corresponding I'-series are
o = 2" Y T[o* u(m))ar" ™2™ € 2" Cllay?, 2]
m>0

where u(m) = (—bm,am) for m € Z.

Although ¢+ does not define in general any holomorphic germ at (0,0) it is clear that
it defines a germ ¢, ,, in O)a\Yp for k=0,1,...,a—1. Let us write 1 = t; + € and remind
that e € C*. We have

Dok p t1+6 a SL’QZFU u(m)](t; + €) g™

m>0
Lemma 4.4.1. 1. If 8 € aN+bN then there exists a unique 0 < g < a—1 such that ¢yq
is a polynomial. Moreover, the Gevrey index of ¢k, € O)?I\Y g for0<k<a-1

and k # q.
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2. If B ¢ aN + bN then the Gevrey index of ¢k, € O)?I\YP is g for0<k<a-1.

Proof. The notion of Gevrey index is given in Definition 2.2.3. Let us assume first that
B € aN 4+ bN. Then there exists a unique 0 < ¢ < a — 1 such that 5 = ¢b+ aN. Then for

m € N big enough @ — bm is a negative integer and the coefficient I'[v9; u(m)] is zero.

So ¢vq is a polynomial in C[zy,z5] (and then ¢y ,(t1, x2) is a polynomial in C[ty, x9))

since for 2=2 —£ — bm > 0 the expression

vl _—bm, .am
R R

is a monomial in Clzy, 4.

Let us consider an integer number k& with 0 < k& < a — 1. Assume @ ¢ N. Then the
formal power series ¢, ,(t1,22) is not a polynomial. We will see that its Gevrey index is

b/a. It is enough to prove that the Gevrey index of

. —bm am_ ‘T% "
tl,.TQ . ZF’U u t1+€ ZFU u (m)

is b/a, i.e. the series

(bt z2)) = > F[v’“;u(ﬁz)] (( 9 ) )m

1s—1 b
= (am)! t1+e
is convergent for s > b/a and divergent for s < b/a.

Considering p,(1(t1,72)) as a power series in (z3/(t; + €)?) and writing

T[v"; u(m)]
Cp i = —————
(am)!s—1
we have that
b )b 0 ifas > b
lim | = lim 2 =< (b/a)’ ifas=0b
m—oo | Cp, m—o00 (am)as

00 ifas <b

and then by using the d’Alembert’s ratio test it follows that the power series p,(1(t1, 2))
is convergent for s > b/a and divergent for s < b/a.

]

Proposition 4.4.2. We have that

dime (m (Ma(8), O ) ) _

forall € C,pe Y \{(0,0)}.
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Proof. Recall that p = (¢,0) with e € C*. The operators defining M4(3), are (using
coordinates (t;,75)) P = 0% — 0% and E, = at10; + bxa0y + acd; — (.

First of all, we will prove the inequality

dime <€:z:t0(MA(ﬁ) Ol ) <a. (4.4)

Assume that f € C[[t1,22]], f # 0, satisfies E,(f) = P(f) = 0. Then choosing w € RZ,
such that aw, > bw;, we have in(_, .\ (E,) = aed; and in_, .\ (P) = 95, where in_, . (—)
stands for the initial part with respect to the weights weight(x;) = —w;, weight(0;) = w;.

Then (see [SST00, Th. 2.5.5]) 9y (in,(f)) = 94(in,(f)) = 0. So, in,(f) = Nz}, for some
0 <l <a-—1and some \; € C. This implies the inequality (4.4).

On the other hand, remind that

Guk t1+e a IQZFU u(m)](t; + €)~"mag™

m>0
is a formal series in C[[t1, 23]] with support contained in N x (k+aN) for k =0,1,...,a—1.
Then the family {¢,+,|k =0,...,a — 1} is C-linearly independent and they are solutions
of M4(5), in O5iv O

Proposition 4.4.3. If 5 ¢ aN + bN then

if s >

a—1
Eat’(Ma(B), Oxy (s)) = { 0 o E0 if s <

[SEISESHISS

for all p = (¢,0) € C* x {0}.

Proof. The equality for s > b/a follows from Proposition 4.4.2 and Lemma 4.4.1. Moreover,
since the series ¢, , have pairwise disjoint supports (see the proof Proposition 4.4.2) we
have that any non-trivial linear combination ZZ;(I) Ak@yr , With A, € C has Gevrey index
equal to b/a if § ¢ aN + bN. This implies the equality for s < b/a. ]

Proposition 4.4.4. If 5 € aN + bN then

-1 .
Z 0Cour,p if s>

51’t0<MA(ﬁ) OX|Y( )) { C¢ . ZfS <

ISHISRSHISH

for allp = (¢,0) € C*x {0} where q is the unique k € {0,1,...,a—1} such that 8 € kb+aN.

Proof. The proof is analogous to the one of Proposition 4.4.3 and follows from Lemma
4.4.1. O
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Lemma 4.4.5. The germ of E := E4 — (3 at any point p = (¢,0) € C* x {0} induces a

surjective endomorphism on O)(|y(8)p forallpeC, 1< s < 0.

Proof. We will prove that
By Oxpy(8)00) — Oxjy(5)00)
is surjective (using coordinates (t1,x2). It is enough to prove that
F := 01 + bxau(t)0s — Lul(ty)

yields a surjective endomorphism on Oxjy (s)(,0), where u(t1) = (a(t; + €)' € C{t1}.
For s = 1, the surjectivity of F' follows from Cauchy-Kovalevskaya theorem. To finish the
proof it is enough to notice that p; 0 F' = F o p, for 1 < s < co. For s = 0o the result is

obvious. O
Corollary 4.4.6. For allpe Y, p# (0,0), 3 € C and 1 < s < 0o, we have:

i) Ext*(Ma(B), Oxpy(s))y = 0.

i) Ext*(Ma(8), Qy(s)), = 0.

Proof. i) We first consider the germ at p of the solution complex of M () as described
in Remark 4.2.2 for 7 = Ox|y(s). Then we apply that £ + ab is surjective on Oxy(s),
(Lemma 4.4.5).

i1) It follows from i) and the long exact sequence in cohomology associated with (2.1). [J

4.4.1 Computation of Ext’(M(5), Qy(s)), for p €Y, p # (0,0)

Lemma 4.4.7. Assume that f € C[[t,,x]] satisfies E,(f) = 0. Then f = 30_0 f*) where

FO =5 frram(ty + ) tmaltam

m>0
with fk—i—am S C.
Proof. By [SST00, Th. 2.5.5] we have that in_,,)(E,)(in,(f)) = 0 for all w = (wy,ws) €
R2,,.

If wy > 0 then in_, ) (E,) = aed; and so, in,(f) € C[xs]] for all w with w; > 0.
On the other hand, if wy = 0 then in_,,)(E,) = E, and in particular E,(in@1)(f)) = 0.

Then in(_ . (Ep)(ing, (ing,1)(f))) = €di(ine,1y(f)) = 0 and so in,(ing,1)(f)) € Clas], for all
w € R%,.
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This implies the existence of h(t;) € C[[t1]] with h(0) # 0 such that ing 1) (f) = z5h(t1)
for some r € N. Take (k, m) the unique pair with & € {0,...,a — 1} and m € N such that

r=%k-+ am.

There exists friom € C* such that ¢; divides
: B2k by k+am k+am
1ﬂ(0,1)(f) - fk+am<t1 + 6) @ Lo S C[[tl]]x2 .

This and the fact that

Ep<in(0 1) (f) fk+am(t1 + 6) o tm k+am> =0
. . B=bk _ m am
imply that ing1)(f) = feram(t1 + 6)% b gphram.

We finish by induction by applying the same argument to f — ing1)(f) since E,(f —
in(o,1)(f)) = 0. u

Recall that Y = {2, = 0} C X = C? and v* = (%,k} fork=0,...,a— 1.
Remark 4.4.8. As in the proof of Lemma 4.4.1 if 3 € aN + DN then there exists a unique

0<q<a—1 suchthat B € gb+ aN and that ¢« is a polynomial.

B—gb
a )

Let us write mg =

m' the smallest integer number satisfying bm’ > mqg + 1 and
04 = vl +u(m') = (mg — bm’, q + am’).

It is clear that Av? = 3 and that v? does not have minimal negative support (see Definition
3.2.1, [SST00, p. 152-133]). Then the I'-series ¢z is not a solution of H4(3). We have

¢z = z"" Z L0 u(m)]a;omas™.

meN; bm>mo+1

It is easy to prove that Ha(5),(¢m

vd,p

) C Ox, for all p = (¢,0) € X with € # 0 (in fact,
(Ea—B)(¢z2) =0 and P(¢5) is a Laurent monomial term in the variables x1, xo with pole

along x1 =0), and that ¢

sip 15 a Geurey series of index b/a.

Theorem 4.4.9. For allp € Y\ {(0,0)} and 5 € C we have

a if s>b/a
dime (Ext® (Ma(B), Qy (s))p) =
0 if s<b/a

Moreover, we also have
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i) If B ¢ aN + bN then:

Ext®(Ma(B) Z(&bv »

for all s >b/a

ii) If 6 € aN + bN then for all s > b/a we have :

Ext®(Ma(5), Oy (s Z Courp + Coga,

k=0,k#q

with ¢z as in Remark 4.4.8.
Here ¢ stands for the class modulo Oxyp of ¢ € Oxy(s),.

Proof. 1t follows from Propositions 4.4.3 and 4.4.4, and Theorems 4.4.10 and 4.4.12 below

by using the long exact sequence in cohomology. O]

4.4.2 Computation of Ext!(M(5), Qy(s)), for p €Y, p # (0,0)
Theorem 4.4.10. For all § € C we have

Ext' (Ma(B), Oxpy(s))y = 0
for all s > b/a and for allp € Y, p % (0,0).

Proof. We will use the germ at p of the solution complex of M4(3) with values in
F = Oxy(s) (see Remark 4.2.2):

0 — Oxjy (s) % Oxpy(s) & Oxy(s) 25 Oxpy(s) — 0
Let us consider (f,g) € (Oxy(s),)? in the germ at p of Ker(¢7), i.e
(Ep + ab)(f) = P(g).
We want to prove that there exists h € Oxy(s), such that P(h) = f and E,(h) = g.

From Lemma 4.4.5, there exists € Ox |y (s)p such that Ep(?z) = g. Then:

(f.9) = (P(h), E,(h)) + (f,0)
where f = f — P(}Al) € Oxpy(s), and (f, 0) € Ker(¢7).

In order to finish the proof it is enough to prove that there exists h € Oxy(s), such
that P(h) = f and E,(h) = 0.
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Since h, f € C[[t1, z3)), (E, + ab)(f) = 0 and E,(h) must be 0, it follows from Lemma

4.4.7 that
h = Z Z hk+am b1+ 6 T hm k+am
k=0 m>0
and )
N M* m am
f= Z Z Frevam(ts +€) e Pt
k=0 m>0

with hk—‘,—am, fk—i—am € C.

The equation P(h) = fis equivalent to the recurrence relation:

1 8 — bk
Pita(me1) = —b Pisam — frtam 4.5
k+a(m+1) (k—l—a(m—i—l))a (( a m)b k+ Jrt > ( )
for k=0,...,a —1 and m € N. The solution to this recurrence relation proves that there

exists h € C[[t1, z2]] such that P(h) = f and E,(h) = 0.
We need to prove now that h € Oxy(s)p.
Dividing (4.5) by ((k + a(m + 1))!1)*~! we get:

hk+a(m+l) _ 1 5—bk‘ hk+am fk+am
(k+a(m+1)!s=1 7 ((k+a(m+1))q)*® (( a bm)b (k+am)ls—1 (k—&-am)!S*l)

so it is enough to prove that there exists C', D > 0 such that

h
‘ ram | < cp™ (4.6)

(k 4+ am)!s—1

forall 0 < k <a—1and m > 0. We will argue by induction on m.

~

Since p,(f) is convergent, there exists C, D > 0 such that

|fk:+am| ~ 7
__Nktaml S pm
(k+am)ls=1 — ¢

forallm>0and k=0,...,a — 1.
Since s > b/a, we have

. (=2 — bm)y| b
A T am ).y = Y

and then there exists an upper bound Cy > 0 of the set

(55 —bm)s|
{<<k+a<m+1>>a>s ey
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Let us consider

L
C = maX{C' e 3 k=0,...,a—1}

and
D = max{D,C; + 1}.

So, the case m = 0 of (4.6) follows from the definition of C'. Assume |(k+ﬂ%| <CcD™.

We will prove inequality (4.6) for m + 1. From the recurrence relation we deduce:

hk—i—am
! (k4 am)!ls—t

Rita(m+1)
(k4 a(m+ 1))ls—1
and using the induction hypothesis and the definition of C, D we get:

+CD™

< (C,+1)CD™ < D™,

Pk ta(m1)
(k+a(m+1))ls1

In particular ps(h) converges and h € Ox|y (). O

Lemma 4.4.11. Assume that h € O}?Ty ,p €Y, p# (0,0), satisfies E(h) = 0 and

P(h) € Oxy(s), with s < b/a. Then:
i) If B & aN + bN there exists g € Oxy(s), with P(h) = P(g) and E(g) = 0.
i) If B € aN + bN there exists g € Ox|y(s), with P(h) = P(g + A\¢g ) and E(g) = 0.

Proof. Since E(h) = 0 then (E 4 ab)(f) = 0 for f := P(h). Reasoning as in the proof of
Theorem 4.4.10 we have the recurrence relation (4.5) for the coefficients of h and f Let
us prove first that for all £ = 0,...,a — 1 such that @ ¢ N there exists A, € C with
%) — N € Oxpy (),

B-bk stk
Since hpr, © % is holomorphic in a neighborhood of p and E(z; * z§) = 0 we can

assume without loss of generality that hy = 0 obtaining:

(B < (k+ar)
Pta(m ar- 4.7
kta(m+1) = (k+a(m e Babk b(r+1) fk+ 4D

. Otk _p . .
Recall that the coefficient of z, = 257%™ in Gyk 18

com
INETAR —
[ u(m)] (k+am)!”
Therefore for all A\, € C we get:
(%25 )bmt) — (k+ar) fyrar
Piratmaet) — ML 0% u(m 4 1)] = “ —k\, — — ]
Fa(m+1) (k + a(m +1))! ; ()0
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Since as < b we can choose

. (lf + CLT)!fk+a7«
Ak_z—kl(M)b cC

r>0 a (r+1)

and, because f* ¢ Ox|y(5)p, there exist real numbers C' > 0,D > 0 such that
| firar] < CD™(k 4+ ar)!*! for all » > 0. Then:

(5ot S Era) i
, .

hitagm+1) = M0 u(m +1)] (k+a(m+1))

—bk
T r>m+l (ﬁa )b(7'+1)

Equivalently,

k+ a(r +m + 1))arfk+a(r+m+1)
Pista(mit) — ML [0% u(m + 1)] = ( '
ka(m+1) — ML 0% u( )] ; (=2 — (m+ )byt

The series

(k+alr+m+1)):,.
Z F—bk <
r>0 |( a (m + 1)b)b(r+1)|

is an entire function in the variable z for all m > 0. To prove that it is enough to apply

gm(z) =

the d’Alembert’s ratio test using b > sa:

. (k+a(r+m+ 1) (k+alr+m+1)—=1)°--(k+alr+m)+1)°
lim -
r—o0 120 b+ m+ D)) [ — (e +m 4 2)b+

. (ar)®
=1

rggo (br)b

In particular, 0 < ¢,,(D) < 0o and

=0.

\Mksama1) — ML u(m + 1)]| < Cgpn(D)D™ M (k 4 am)!* 1.

It can be proved (by using elementary properties of the Pochhammer symbol and
standard estimates) that there exists meo, C € N such that for all m > ma, gmi1(D) <
C gm (D). This implies that

|gmi1(D)] < C™ 172, (D)
for all m > my. Then, taking C' = a_ngmQ(D) > 0, we obtain:
a1y — ML u(m 4+ 1)]| < C(CDY™ (k + am)!*
for all m > 0. Hence h®) — Aot € Ox 1y (8)p.

If 3 ¢ aN + bN then we have that g := h — 30"/ Ae®ui p € Oxy (s), satisfies statement
i).
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it) If 5 € aN + bN there exists a unique ¢ € {0,1,...,a — 1} verifying @ =mgy € N.
For k # q we have as before that A®) — X\y@,e,, € Ox|y(s),. For k = ¢ we can assume
without loss of generality that hgie, = 0 for m = 0,1,...,[mg/b] (here [—] denotes the
integer part) obtaining an expression for g4 q(m+1) similar to Equality (4.7) for m > [mg/b)].
Then by using ¢ instead of ¢« we get, alike in 7), that h — A\y¢5; € Ox|y(s),. Hence
g:=h-— Zz;é’,@éq M@t p — Mgz € Oxy (), satisfies ). O

Theorem 4.4.12. We have

dimccthl(MA(ﬁ),oxy<s>>p>:{ L Jor € aN N

0 for (¢ aN-+ bN

for all p € Y, p # (0,0) and 1 < s <
Ext'(Ma(B3), Ox|y(s)), is generated by the class

Q|

Moreover, if 3 € aN + bN then
f (P(¢31,),0).

)

Proof. By definition

{(f,9) € (Oxy(s)p)*: (E+ab)(f) =
{(P(h), E(h)) : h € Oxy(s)y}

As in the proof of Theorem 4.4.10 we can assume g = 0 and then (E + ab)(f) = 0. This
implies that f = Y20} f® (see Lemma 4.4.7) with

B—bk
k —b(m+1) k4+am
f( ) = E Jrram®y © L9

m>0

Eat (Ma(B), Oxiy () = o))

We can then consider h € O, such that P(h) = f and E(h) = 0 (by using (4.7)) and

X|Y.,p

apply Lemma 4.4.11. Furthermore, it is easy to prove that P(¢) is a Laurent monomial

term with pole along {x; = 0} and hence holomorphic at any point p € Y \ {(0,0)}. This
finishes the proof. n

Remark 4.4.13. Notice that the generator (P(¢z),0) does not define a germ at
the origin although the dimension of Ext'(Ma(B), Ox|y(s))0) is one (see Proposition
4.83.7).  Nevertheless, it can be checked that the class of (0,¢.) is a generator of
Ext'(Ma(B), Ox|y(s)), at any point of p €Y.

Proposition 4.4.14. For all 3 € C we have
Ext'(Ma(B), Qy(s)) =0
forall1 < s < .

Proof. Since Ext*(M4(8), Qy(s)), = 0 for p = (0,0) (see Section 4.3) it is enough to prove
the equality for all p € Y\ {(0,0)}.
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From Corollary 4.4.6 (for s = 1), Theorem 4.4.10 and the long exact sequence in

cohomology we get the equality for s > b/a. Using again Corollary 4.4.6 (for s = 1),
Theorem 4.4.12, Theorem 4.4.9 (only necessary in the case # € aN+bN) and the long exact

sequence in cohomology we get the equality for 1 < s < b/a.

4.5 Remarks and conclusions

Let us summarize the results in this chapter and point out some observations:

)

Michel Granger has remarked that some of the proofs of the results of this chapter
can be simplified if one observes that RHomp(M (3), F) is the mapping cone of the

following morphism of Euler-Koszul type complexes induced by P:

E

(E 4 ab)

E

o — — — o
W
SR T T

For example, since E and E + ab induce automorphisms on Fy = Qy(s),0) by
Corollary 4.3.4 (i.e. the stalks at the origin of the Euler-Koszul type complexes below

are acyclic), we obtain a shorter proof of Theorem 4.3.1.

In Sections 4.3 and 4.4 we have proved that the irregularity complex Irrgf)(/\/l () is
zero for 1 < s < b/a and concentrated in degree 0 for b/a < s < co. Moreover, we have
described a basis of Ext), (Ma(B), Qy(s)), for p € Y, p # (0,0), and b/a < s < oo
(see Theorem 4.4.9). This description proves in particular that the cohomology of
the complex Irrgf) (M4(P)) is constructible on Y, with respect to the stratification
given by {{(0,0)},Y \ {(0,0)}}. This is a particular case of [Meb90, Corollaire 6.2.4]
(that uses Laurent’s constructibility theorem for holomorphic hyperfunctions [Lau93],
Mebkhout’s local duality theorem [Meb90, Théoreme 6.2.2] and the local biduality

theorem for constructible complexes).

From the form of the basis described it is also easy to see that the eigenvalues of

the monodromy of Irrgf) (M4(B)) along any loop in Y around the origin are simply
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exp(2mi ) for k =0,...,a — 1. Notice that for 5 € aN + bN one eigenvalue (the

one for k = q) is just 1.

We can also give an elementary proof of the fact that the complex Irrgf) (Ma(B)) is
a perverse sheaf on Y for any 1 < s < oo using the previous results. This is a very
particular case of a general result of Z. Mebkhout [Meb90, Th. 6.3.3] (see Theorem
2.4.6). To this end, as Irrgf) (M4(PB)) is concentrated in degree 0, it is enough to
prove the co-support condition, which is equivalent (see [BBD82]) to prove that the
hypercohomology H{p}(lrrg)(MA(ﬁ))) with support on {p} is zero, for p € Y. This

is obvious because Exty, (M a(f), Qy (s)) has no sections supported on points.

We have also proved that the Gevrey filtration Irr (/\/l 4(B)) has a unique gap for

= b/a. So the only analytic slope of M4(5) with respect to Y is b/a [Meb90,
Déf. 6.3.7]. On the other hand it is also known (see [Har04, Th. 3.3]) that the
only algebraic slope of M 4(8) is b/a. This fact is a very particular case of the slope
comparison theorem of Y. Laurent and Z. Mebkhout [LM99, Th. 2.4.2].

Similar methods to the ones presented here can be applied to prove that the
irregularity complex Irryz (M, (8)) is zero for Z = {z; = 0}, i = 1,2. Let us
notice that the characteristic variety of M 4(f3) is defined in this last case by the ideal
(&1&2, —ax &1 +broés) and then its singular support is the union of the two coordinate

axes in C2.
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Chapter 5

Irregularity of M 4(3) for
A=(a;---ap), 0<a; < - - <ap.

In what follows we will study the irregularity of the hypergeometric D-module M4 (/)
associated with an affine monomial curve through the origin in X = C" (i.e. when
A= (ay---a,) is a row matrix with positive integer entries) and with a parameter § € C.
More precisely, we will describe the cohomology sheaves of the irregularity complex of
M (f) along its singular locus. To this end, we first consider the hypergeometric D-
module M 4 () associated with an affine smooth monomial curve (see Section 5.1). Then
we prove that in this case the problem can be reduced to the case of a plane curve treated

in Chapter 4 by using restrictions (see Subsection 5.1.1).

The results presented in this chapter are a joint work with F. J. Castro Jiménez [FC,08].

5.1 The case of a smooth monomial curve

Let A = (lay --- a,) be an integer row matrix with 1 < a3 < -+ < a, and g € C
throughout this section. The toric ideal 14 is generated in this case by the differential

operators:
P :=0"—-0; fori=2,...,n.

The Euler operator associated with (A, [3) is:
E—ﬁ:xlal+a2x282+---+anxn8n—5

Thus, the hypergeometric D-module associated with (A, 3) is:

D
<Ej—ﬁ>—|—,D<P17z Z:2,,7’L>

Ma(B) = D
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Although it can be deduced from general results (see [GGZ87] and [Ado94, Th. 3.9]), a

direct computation shows in this case that the characteristic variety of M () equals
Ch(M4(B)) =Tx X UTy X

where Y = {z,, = 0}. The module M 4((3) is then holonomic and its singular support is Y.
Let us denote by Z C C" the hyperplane z,_; = 0.

One of the main results in this Section is

Theorem 5.1.1. Let A be an integer row matriz as above and 3 € C. Then the cohomology
sheaves of Irr§f) (Ma(B)) satisfy:

i) Exth(Ma(B), Qy(s)) =0 for 1 < s < a,/an1.
i) Exth(Ma(B), Qv (s))ynz =0 for 1 <s < oo.
i) dime (Exth(Ma(B), Qy(5))y) = an_1 for s > apfa,—1 andp € Y \ Z.

i) Extiy(Ma(B),Qy(s)) =0 fori>1and 1 < s < co.

The main ingredients in the proof of Theorem 5.1.1 are:

1. The corresponding results for the case of affine monomial plane curves (see Chapter
4).

2. Corollary 5.1.4.
3. Cauchy-Kovalevskaya Theorem for Gevrey series (see [LM02, Cor. 2.2.4]).
4. The perversity of Irrgf) (Ma(B)) [Meb90, Th. 6.3.3].

5. Theorem 2.3.6 (that is a consequence of the Riemann-Hilbert correspondence [Meb84]

and Kashiwara’s constructibility theorem [Kas75]).

We will also describe a basis of the solution vector space in part i) of Theorem 5.1.1
(see Theorem 5.1.23).

5.1.1 Reduction of the number of variables by restriction

In the sequel we will use some results concerning restriction of hypergeometric systems.
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Theorem 5.1.2. [CT03, Th. 4.4] Let A = (1 as --- a,) be an integer row matriz with
l<ay<---<a, and § € C. Then fori=2,...,n, the restriction of Ma(3) to {x; =0}

is isomorphic to the D' —module

M@)oy 1= e 2
AN T DHAB) + #D ~ D'Ha(B)
where A" = (1 ag -+ a;—1 ajy1 -+ a,) and D' is the sheaf of linear differential operators
with holomorphic coefficients on C"™1 (with coordinates Ty, ..., T 1, i1, .-, Tp)-

Theorem 5.1.3. Let A = (1 ka kb) be an integer row matriz with 1 < a < b, 1 < ka < kb
and a,b relatively prime. Then for all 3 € C there exist By, ..., 0k—1 € C such that the
restriction of Ma(B) to {x1 = 0} is isomorphic to the D'-module

D k—1
MA(ﬁ)HﬂH:O} = DHA(ﬁ) +ZI§'1D = @MA,<5Z)

where D' is the sheaf of linear differential operators on the plane {z; = 0} and A’ = (a b).
Moreover, for all but finitely many 6 € C we can take (3; = %, 1=0,1,...,k—1.

An ingredient in the proof of Theorem 5.1.1 is the following
Corollary 5.1.4. Let A= (1 ay -+ a,) be an integer row matriz with 1 < ay < -+ < ay,
and 3 € C. Then there ezist 5; € C, 1 =0,...,k—1 such that the restriction of M4(8) to

X' =(ry=29="--=x,_9=0) is isomorphic to the D'-module
D k-1
MA(5)|X/ = 'DHA(ﬂ) n (Il, R 7In_2>,D ~ N MA/(@')
where D' is the sheaf of linear differential operators on X', A" = %(an_l a,) and

k = gced(ap—1,a,). Moreover, for all but finitely many B € C we can take 3; = %,
i=01,. . k-1

Let us fix some notations and state some preliminary results in order to prove Theorem
5.1.3.

Notation 5.1.5. Let A be an integer d x n—matriz of rank d and § € C". For any weight
vector w € R"™ and any ideal J C C[0] = Cl[0y, ..., 0,] we denote by in,(J) the initial ideal
of J with respect to the graduation on C[0] induced by w. According to [SST00, p. 106] the
fake initial ideal of Ha(() is the ideal

fin,(Ha(B)) = Aning(14) + A, (A0 — )
where 0 = (0y,...,60,) and 0; = ;0;.
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Assume that A = (1 ka kb) is an integer row matrix with 1 < a < b, 1 < ka < kb and

a, b relatively prime.

Let us write P, = 95 — 0%, Py = 0% — 0y, Py = Of* — 03 and E = 0, + kaf, + kbl — 3.
It is clear that P, € Ha(f) = (P2, P3, E) C As.

Let us consider < a monomial order on the monomials in A3 satisfying:

Y1+ aye +bys <1 +avy + by
or =
Y1+ are +bys =71 + avs + by; and 3aye 4 2073 < 3ay; + 2b7;

= 297 < 29"

Write w = (1,0,0) and let us denote by <, the monomial order on the monomials in
As defined as

! !
Yo <oy
’ 7 Def,
240" <, 2407 & or

/ /
v —ap =91 — o) and %07 < x* 9"

Since g.c.d.(a,b) = 1, there exist a,y € N such that ca — b = 1. If a = 1 then we can
take a = 1 and v = 0. Otherwise, we can assume that 0 <y < a and 0 < o < b. Then we
have the following result.

Lemma 5.1.6. Let A = (1 ka kb) be a row matriz with integer entries and 1 < a < b
relatively prime integers, 1 < ka < kb. If a > 1, then we have the following Groebner basis
of 14 C A3(C) with respect to <,,:

Ga={P,PQ;,Q;:j=1,...,a—1}

where Q; = OFO T — 917" and Q; = pikpy et Al _ gt tidla - prope l; € N is the

unique non-negative integer such that 0 < jy —lja < a, j =1,...,a—1. Ifa =1, the
reduced Groebner basis of I4 C A3(C) with respect to <, is simply &4 = {Py, P}.

Proof. This is a technical result that follows easily from the application of Buchberger’s

algorithm in the Weyl algebra Asz to the given set of differential operators. O

Lemma 5.1.7. Let A = (1 ka kb) be an integer row matriz with 1 < a < b, 1 < ka < kb

and a,b relatively prime. Then
fing (H4(B3)) = Asing(I4) + AsE = As(Py, B, %)
for ¢ N*:= N\ {0} and for all § € N* big enough.
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Proof. By Lemma 5.1.6 we have that

ing(I4) = (Py, b, 9%l gikp 7ottt s 19 a—1)

=

where [; € N is the unique non-negative integer such that 0 < jy—lja <a,j=1,...,a—1.
Thus, -
fin,(Ha(3)) = (E, Py, 0k, &Fol7 71 otk 7 . j =12, a—1)

and it is enough to prove that 9 € fin,(H4(3)).

We have in particular that 0§, 0805, 0893 € in,(14) C fin,(Ha(B3)). Let us see that
this implies that 9f € fin,(H4(3)) for 3 as in the statement.

Let r; € N be the smallest non-negative integer such that 0, (A ¢ fin,(H4(5)) and

let us assume to the contrary that r; > 1.

Let 7, € N be the smallest non-negative integer such that
o ot ¢ fing, (Ha(B))
and r3 € N be the smallest non-negative integer such that
Oy 0T € fing, (Ha(B)).
Since E € fin,(H4(8)) then 8F )~ 'or20r E e fing (H(f3)). Moreover,
T oo B = (E + k(ry 4+ 1) — 1+ kary + kbrg)0X Tt op2 018

and using that 8”“ 3§T1+1 = Loptt o (ri+)= Yorzortl e fin, (Ha(3)) we deduce that
(=B + k(ri +1) — 1+ kary + k‘brg)@ ”H) 'or2or: e fing(Ha(3)). Then for § ¢ N* or
8 € N* big enough, we have Ok(”H Lor2or € ﬁnw(HA(ﬂ)). From the definition of r3 it is
clear that OF"* V71902 € fin,(H4(B)) and then a (D=1 ¢ fing (Ha(B)) (by the definition
of r3). Anlogously, from the fact that """V ¢ fin, (HA(8)) with 1 > j > k — 1
and using that k(r;y + 1) — 7 > k + 1 (because r; > 1 and j < k — 1), it follows that
8{“(”“)‘0“) € fin,(HA(3)). Finally, 0™ € fin, (H4(0)), which is a contradiction with the
definition of r; unless r; = 0, i.e. 95 € fin,(Ha(3)). O

Definition 5.1.8. [SST00, Def. 5.1.1] Let I C A, be a holonomic ideal (i.e. A,/I is
holonomic) and @ € R™\ {0}. The b-function I with respect to @ is the monic generator of
the ideal

in(,g,@) (I) N C[T]

where T = 101+ - - +wp0, and in_gz) (1) is the initial ideal of I with respect to the weight

vector (—w,w).
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Corollary 5.1.9. Let A = (1 ka kb) be an integer row matriz with 1 < a < b, 1 < ka < kb
and a, b relatively prime. Then the b—function of H () with respect to w = (1,0,0) is

b(r)=7(r—1)--- (17— (k—1))
for all but finitely many (6 € C.

Proof. From [SST00, Th. 3.1.3] for all but finitely many § € C we have

i (Ha(5)) = fin, (Ha(8)).

Then by using Lemma 5.1.7 we get
() (Ha(8)) = A3(Pr. B, 0F)

for all but finitely many 3 € C. An easy computation shows that { P, E,9}} is a Groebner
basis of the ideal in(_,, .y(H4(3)) with respect to any monomial order > satisfying 03 > 6, 0,

and 9% > 9%. In particular we can consider the lexicographic order
CL’3>JI2>82>83>I1>81
which is an elimination order for z; and d;. So we get

in(ww) (Ha(B)) N Clz1](01) = (7)
and since z§0F = 6,(0; — 1)--- (0, — (k — 1)), we have
in(_ww)(Ha(B)) NClo1] = (01(61 — 1) -+ (61 — (k= 1)))
This proves Corollary 5.1.4. ]
Remark 5.1.10. Corollary 5.1.9 can be related to [CT0S3, Th. 4.3] which proves that for
A= 1ag -+ ap) with 1 < ay < -+ < ay, the b—function of Ha(3) with respect to e; is

b(t) =7, fori=2,...,n. Here e; € R" is the vector with a 1 in the i—th coordinate and 0

elsewhere.

Recall (see e.g. [SST00, Def. 1.1.3]) that a Groebner basis of a left ideal I C A,, with
respect to (—w,w) € R*" (or simply with respect to w € R") is a finite subset G C I such
that I = A,G and in_, (1) = Apin_ww)(G) where in_y,.)(G) = {in—ww)(P) | P € G}.
Then the proof of Corollary 5.1.9 also proves the following

Lemma 5.1.11. Let A = (1 ka kb) be an integer row matriz with 1 < a < b, 1 < ka < kb
and a, b relatively prime. For all but finitely many B € C, a Groebner basis of Ha(3) C As
with respect to w = (1,0,0) is

{P\, P,, P, E, R}

for some R € Ay satisfying in_,, ,)(R) = OF.
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The following Proposition is a particular case of [Ber08, Th. 6.5.] (see also [Sai01, Th.
2.1]) and it will be used later.

Proposition 5.1.12. Assume A = (a; az---ay) is an integer row matriz with 0 < a; <
ay < -+ < a,. For 3,8 € C% we have that MA(B) ~ M(B') if and only if one of the

following conditions holds:

i) 3,0 € NA.
i) 3,0 € Z\ NA.
iit) 8,00 ¢ Z but p— (' € 7.
Proof. (Theorem 5.1.3) We have A = (1 ka kb) with 1 < a < b, 1 < ka < kb and a,b
relatively prime. From Proposition 5.1.12 it is enough to compute the restriction for all but

finitely many 5 € C. We will compute the restriction of M 4(3) to {z; = 0} by using an
algorithm by T. Oaku and N. Takayama [SST00, Algorithm 5.2.8].

Let » = k — 1 be the biggest integer root of the Bernstein polynomial b(7) of H4 (/)

= (1,0,0) (see Corollary 5.1.9). Recall that D' = D¢z and that

we are using (7o, r3) as coordinates in C2. We consider the free D'-module with basis
Bpy:={0i:i=0,1,....k—1}:

with respect to w

k—1
(D/>r+1 _ (D/)k ~ @D/ai
=0

To apply [SST00, Algorithm 5.2.8] to our case we will use the elements with w—order
less than or equal to k — 1, in the Groebner basis G := { Py, P, P5, E, R} of Hs(/3). Recall
that G is given by Lemma 5.1.11 for all but finitely many 3 € C. Each operator 9P},

v and

OiE,i=0,...,k— 1, must be written as a C-linear combination of monomials z*d
then substitute x; = 0 into this expression. The result is an element of (D')* = D'By. In

this case we get:
(8iP1)|x1:o = Plgi, (8§E)‘x1:0 = (k:axQ(()g + k:bx383 - ﬁ + z)é){, 1= 0, ey k—1
and this proves the theorem. O

Remark 5.1.13. Let us consider A= (lay -+ a,), 1 <as < -+ < ay,, k=ged(a,_1,a,)
and A" = %(an_l, a,). We can apply Cauchy-Kovalevskaya Theorem for Geuvrey series (see
[LM02, Cor. 2.2.4]), Corollary 5.1.4 and [CTO03, Prop. 4.2] to the hypergeometric system
Ma(B) to prove that for each 5 € C there exist 5; € C, i = 0,...,k — 1, and a quasi-
1somorphism

k—1

RHomp, (Ma(B), Ox|y(s))x — EDRHomp,, (Mu(5:), Og ()

=0
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for all 1 < s < oo where Y = {x, = 0}, X' = {z1 = 29 = -+ = 2,9 = 0} and
Y' =Y N X' Moreover, for all but finitely many 8 we can take [3; = Tﬂ Notice that

"= (zp_1,T,) and

‘ . P
coordinates in X, Y, X', Y are x = (x1,...,2,), y = (T1,.. ., Tp_1), T

y' = (zn_1) respectively.

The last quasi-isomorphism induces a C—linear isomorphism
k—1

gxt?DX (MA<6)7OX\Y(S))( -0,6n—1,0) —= @gxt] , MA’(HZ) X/\y/( )))(6n—1,0)

foralle, 1 € C, s>1andj €N and we also have equivalent results for Qy (s) and Qy(s)

instead of Ox|y(s) and OX,|Y/( s).

In particular, using [FC;08, Proposition 5.9], we have:

Proposition 5.1.14. Let A= (1 as --- a,) be an integer row matriz with 1 < ay < --- <
ay,. Then for all g € C

an-1 if > anfap_1, j=0
dimc(é’xtgx (Ma(B), Qv (5))©,..0n1,0) = and €, 1 # 0.

0 otherwise.

Corollary 5.1.15. Let A= (1 ay -+ ay) be an integer row matriz with 1 < ag < -++ < ay,.
Then for all 5 € C

Ch(lrr§ (Ma(8))) € T5Y | Ty Y
for s >

>
Proof Here Ch(Irr (/\/l 4(B))) is the characteristic variety of the perverse sheaf
Irr{ (M4(8)) (see e.g. [LM99, Sec. 2.4]). The Corollary follows from the inclusion

h O (M4(B) Cc Te X UTEX UTEX

for s > a,/a,_1 and then by applying [LM99, Prop. 2.4.1]. O
Proof. (Theorem 5.1.1) Let us consider the Whitney stratification ¥ = Y; U Y5 of
Y = {x, =0} C C" defined as
Vi=Y\(YNZ)=C"?%xC"
Yo=Y NZ=C"?x{0}.
As Irrgf)(MA(ﬁ)) is a perverse sheaf for all # € C and 1 < s < oo [Meb90, Th. 6.3.3]

we can apply the Riemann-Hilbert correspondence (see [Meb84] and [KK79], [Kas84]),
Kashiwara’s constructibility theorem [Kas75] and Corollary 5.1.15, to prove that

Exti,(Ma(B), Qv (s))y,

is a locally constant sheaf of finite rank for all © € N, j = 1,2. To finish the proof it is
enough to apply Proposition 5.1.14. O]
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5.1.2 Gevrey solutions of M 4(3)

We will compute a basis of the vector spaces Ext'(M4(3), Qy (s)), forallp e Y, 1 < s < o0,
geN ieNand A= (1ay -+ a,) is an integer row matrix with 1 < ay < -++ < a,.
In fact it is enough to achieve the computation for i = 0 and p € Y \ Z, otherwise the

corresponding germ is zero by Theorem 5.1.1.

Lemma 5.1.16. Let A = (1 ay --- a,) be an integer row matriz with 1 < ay < --- < a,

and w € RY, satisfying
a) w; > aw for2<i<n—2 ori=n
b) Ap_1W1 > Wp—1
€) Wpo1 > Wi,y ..., Wnoo

Then H4(B) has a,—1 exponents with respect to w and they have the form
W= (,0,....0,0= gy e
an—1

j=0,1,...,a,1—1.
Proof. The notion of exponent is given in [SST00, page 92|. The toric ideal 14 is generated
by PLZ':aili—aiEC[@],iZQ,...,n.

Let w = (w1, ... ,wy,) € R%, be a weight vector satisfying the statement of the lemma.
We have:

ot ifi=n—1

0; ifi=2,...,n—2,
i Pri = { if ¢ n n

In particular {Py; : i =2,...,n} is a Groebner basis of 14 with respect to (—w,w) and
then

inw[A = <827 s 787L727 8fn*178n>.
The standard pairs of in,(14) are ([SST00, Sec. 3.2]):

S(in,(I4)) = {(@,{n—1}): 7=0,1,... 4,1 — 1}
To the standard pair (9, {n — 1}) we associate, following [SST00, page 108], the fake

exponent »
b=

n—1

v = (4,0,...,0, 0)

of the module M 4(/3) with respect to w. It is easy to prove that these fake exponents are
in fact exponents since they have minimal negative support [SST00, Th. 3.4.13]. n
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Remark 5.1.17. With the above notation, the I'-series ¢, associated with v’ for j =
0,...,a,_1 — 1, is defined as
bpi = ¥ Z Lol uz"

u€el g
where Ly = Kerz(A) is the lattice generated by the vectors {u?, ..., u"} and u' is the
(1 — 1)~th row of the matriz
—a 1 0 -~ 00 00
—Qp—o 0 0 - 01 00
an-1 0 0 - 0 -1 0
—a, 0 0 - 0 01
For any m = (ma,...,my,) € Z" ' let us denote u(m) := > ,mu' € La. We can
write
Gus = 2 > L[v7; u(m)]z"™

Z'L;énflaimigj"ran,lmnil
for j = 0,1,...,a,1 — 1. We have for m = (my,...,m,) € N*"' such that j —
Zz‘;én—1 a;im; + ap_1Mp_1 > 0

(%)mnflj'

[[v/; u(m)] = ,
[v; u(m)] Mol -y olmp (G — 37, aimi + ap_1mp, 1)
and
xu(m) _ [L'; Zi;ﬁn—l aimi+an—1mn—1x72nz . xn 2 mnmln 11';”"
Proposition 5.1.18. Let A= (1 as --- a,) be an integer row matriz with 1 < ay < --- <

an, Y ={2, =0} C X and Z = {x,,_1 =0} C X. Then we have:

an—1—1

X\Y Z Cgbv] »P

gxtO(MA(

foralleC,peY\ Z.

Proof. Step 1.- Using [GZK89] and [SSTO00] we will describe a,_; linearly independent
solutions of M 4(f3),, living in some Nilsson series ring. Then, using initial ideals, we will

prove that an upper bound of the dimension of £Ext°(M4(3), O =,), is a1 for pin Y\ Z.

X|Y)

First of all, the series
{¢W ’] = 07 y An—1 — 1} C .fE (C[[xl y L2yt 7$n727$;ilaxn]]
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described in Remark 5.1.17, are linearly independent since in,,(¢,;) = 2% for 0 < j <
an—1 — 1. They are solutions of the system M4 () (see [GGZ8T7], [GZK89, Sec. 1],[SST00,
Sec. 3.4]).

On the other hand
dime Ext*(Ma(B), Oy )p < an (5.1)

for p = (e1,...,€,-1,0), €41 # 0. This follows from the following facts:
a) The initial ideal in,(I4) equals (Da, ..., 0y 2,0!"",,) for w as in Lemma 5.1.16.
b) The germ of E at p is nothing but E, := E + 3.7 a;6;0; (here a; = 1) and satisfies

in(—u.),w) (Ep) = an—len—lan—l .

c) By [SST00, Th. 2.5.5] if f € Oxjy, is a solution of the ideal H4(B) then in,(f) must
the annihilated by in(_,, ,)(Ha(3)). That proves inequality (5.1).

Step 2.- It is easy to prove, using standard estimates, that the series ¢,; , are in fact

in Oﬁp for all p € Y\ Z. Then by step 1, they form a basis of the the vector space

SxtO(MA(ﬁ),O)?l\Y)p forpe Y\ Z. O

Remark 5.1.19. We will prove (see Theorem 5.1.21) that the Gevrey index of ¢y, is
an/an_1 for € C and p € Y \ Z except for f € N and j = q the unique integer
0<gq<ay1—1 such that § —q € a,_1N. In that case ¢y is a polynomial (see details in
Remark 5.1.22).

Proposition 5.1.20. Let A= (1 ay --- ay) be an integer row matriz with 1 < ag < --- <
an, Y ={x, =0} C X. Then we have:

i) For each 8 € C\ N we have Ext! (Ma(3),Ox)y) =0 for all j € N.

i) For each 3 € N the sheaf Ext!(Ma(3), Ox|y) is locally constant on'Y of rank 1 for
7 =0,1 and it is zero for j > 2.

Proof. Recall that the characteristic variety of M4(f) is
Ch(Ma(B)) = Tx X UTy X.

Then from Kashiwara’s constructibility theorem [Kas75] we have that, for all j € N, the
sheaf

5(£tj(MA(ﬂ),Ox)‘y = gZL’tj(MA(ﬁ),Oxw)‘y (52)
is locally constant.
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Assume ¢ N. From Corollary 5.1.4 and Proposition 5.1.12 we have that there exists
m € N such that M4 (5) ~ Mu(8 —m) and

M= M= e = @My (27

with X' = {2 = -+ = 2,00 = 0} C X, k = ged(an-1,a,) and ay = % for £ =n — 1,n.
Then by applying Cauchy-Kovalevskaya Theorem (see Remark 5.1.13) we get:

Ext! (Ma(B), Oxpy)ixr = @5‘“] n1ah) (%)  Oxy)

with Y/ = X'NY.

As ¢ N then B_;:“_i ¢ a,, N+ a/Nfori=0,...,k—1. Then part i) follows from
Proposition 4.3.6.

Assume now 3 € N. From Corollary 5.1.4 and Proposition 5.1.12 we have that there
exists m € N such that M4(8) =~ Ma(8+ m) and

k—1 ‘
MalBlie = Malf +mhix N@Mwn L) (%)

Then by applying Cauchy-Kovalevskaya Theorem (see Remark 5.1.13) we get:

Extj(./\/lA( Ox|y X = @gl'tj M(a L al) (%) 7OX’|Y’)'

y [FC,08] this last module is in fact equal to

j +m—1
Ext! (M ar) (%) , Oxrpyr)

where 7¢ is the unique integer number such that 0 < iy < k—1 and f+m — iy € kN. Then
part i) follows from Proposition 4.3.7. O

Theorem 5.1.21. Let A= (1 ay --- a,) be an integer row matriz with 1 < as < -+ < ay,
Y ={2,=0}C X and Z = {z,,.1 =0} C X. Then we have:
i)
ap—1—1

Ext’ (M4 (B), Oxy(s) @ Couip

foralleC,peY \Z and s > a,/a,_1.
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0  f¢N
Cow ifBEN

for allp € Y\ Z and 1 < s < ap/a,—1, where q is the unique element in

Ext’(Ma(B), Ox|y(s)), = {

{0,1,...,a,_1 — 1} satisfying fn;_ql € N and ¢yq is a polynomial.

Proof. i) Let us consider a,/a,-1 < s < oo and p € Y \ Z. Assume first that 5 ¢ N. By
Proposition 5.1.20 and the long exact sequence of cohomology associated with the short

exact sequence (2.1) we have that

Ext"(Ma(B), Oxyy (s))p = Ext’(Ma(B), Qv (s)),
and by Theorem 5.1.1 this last vector space has dimension a,_1. As

Ext"(Ma(B), Oxy (s))p C Ext’(Ma(B), Oy )y
part i) follows from Proposition 5.1.18 if § ¢ N.

Assume now € N. Applying the long exact sequence of cohomology associated with
the short exact sequence (2.1), Theorem 5.1.1 and Proposition 5.1.20 we get an exact

sequence of vector spaces
0—C— Ly — Ext®(Ma(B),Qy(s)), = C— Ly —0

where £ = Ext®(Ma(B),Oxy(s)), and Lo = Ext*(Ma(3),Ox|y(s))p. Let us write
v; = dimg(L;). By Theorem 5.1.1 we also have v; = a,_1 + v2. On the other hand,
by Proposition 5.1.18, we know that v; < a,_;. This implies v; = a,,_1 and L, = {0}. In

particular we have the equality
SxtO(MA(ﬁ),OX|y(s))p C Ext®(MA(B), O)?TY)P

part i) also follows from Proposition 5.1.18 if § € N.

Let us prove part ii). First of all, by Theorem 5.1.1, Ext/ (M4 (B), Qy(s)), = 0 for all
j € N. Then the result follows from the long exact sequence of cohomology associated with
the short exact sequence (2.1) and Proposition 5.1.20. O

Remark 5.1.22. Let us recall here the notations introduced in Lemma 5.1.16. For
A= 1ay -+ a,) an integer row matriz with 1 < ay < --- < a,, and w € RY, generic and

satisfying
1. w; > a;w, for2<i<n—2ori=n

2. Qp_1wi > Wn_1
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8. Wno1 > Wi,y e.,Wnoo

we have proved (see Lemma 5.1.16) that H4(B) has a,_1 exponents with respect to w and
that they have the form:

W= (,0,...,0,2= gy e
n—1
j=0,1,... ap1—1.
The corresponding I'—series ¢,; is defined as:
Gpi = 7 Z T[v; u(m)]z )
MY,y My —1,Mn >0
Yigtn—1aimi<itan_1mp_1
for j =0,1,...,a,_1 — 1, where for any m = (ma,...,m,) € Z" ' we denote u(m) :=
S amiut € Ly.
Form = (my,...,m,) € N"=! such that j — D ign1 QMG+ ap 1My > 0, we have

(é%f%)anlj!

J. —
F[U ,u(m)] - | ] V(- |
ma! -+ my,_olmy, ! (j — E#nfl a;m; + ap_1Mp_1)!
and
u(m) __ 721’;&71—1 @iMi+an—1Mn—1 m, M2 —Mn-1_m
Zz =2 Lo "Ly Lpq a:nn‘

If B € N then there exists a unique 0 < q¢ < a,_1 — 1 such that B — q € a,_1N. Let us
B—q

an—1"

write mo =

Then for m € N big enough mo—a,m is a negative integer and the coefficient I'[v?; u(m)]

is zero and then ¢yq is a polynomial in C[x].
Recall that v = (a,_1,0,...,—1,0) € Ly and let us write
ve = vl + (mo+ D)u" = (¢ + (mo + 1)an_1,0,...,0,—1,0) = (8 + a,_1,0,...,0,—1,0).
We have Avi = 3 an the corresponding T'-series is
b =" Y Tt u(m)]a" ™
me M (q)

where for m = (my,...,m,) € Z" one has u(m) = >""" , mu' and

M(q) = {(m27 s 7mn) € Nn_l | q+ (mU + Mp—1 + 1)an—l - Z a;my; > 0}
i#n—1
Let us notice that v¢ does not have minimal negative support (see [SST00, p. 132-133])
and then the I ~series ¢z is not a solution of H(3). We will prove in Theorem 5.1.23 that

HA(B)p(¢52,) C Oxp for allp € Y \ Z and that ¢, is a Gevrey series of index an/a, 1.

vd,p
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The second main result of this Section is the following

Theorem 5.1.23. Let A= (1ay -+ a,) be an integer row matriz with 1 < as < -+ < ay,
Y={2,=0}C X and Z ={z,-1 =0} CX. Then forallpe Y\ Z and s > a,/a,—1 we
have:

i) If B ¢ N, then:

ap—1—1

€$tO(MA<ﬁ @ (CQSW P

ii) If B € N, then there exists a unique q € {0,...,a,_1 — 1} such that % € N and we

have:
ap—1—1

Ext®(Ma(B), Qy (s @ Couip ® Cog,y p°

q#3j=0

Here ¢ stands for the class modulo Ox|y,, of ¢ € (’)lep( s).

Proof. Part i) follows from Theorem 5.1.21 and Proposition 5.1.20 using the long exact

sequence of cohomology.

Let us prove ii). Since Ext!(Ma(B), Qy(s)) = 0 (see Theorem 5.1.1) and applying

Theorem 5.1.21, Proposition 5.1.20 and the long exact sequence in cohomology we get that

Ext (Ma(B), Oxy (s))v\z

is zero for s > a,/a,_1 and locally constant of rank 1 for 1 < s < a,/a,_;. We also have
that

Ext' (MA(B), Oxy(8))ynz

is locally constant of rank 1 for all s > 1.

Assume s > a,/a,_1. We consider the following long exact sequence associated with
the short exact sequence (2.1) (with p € Y\ Z and M = M,(5))

0 — Ext® (M, Oxpy), — Ext’ (M, Oxy (s)), 2 Ext® (M, Qy(s)), — Ext' (M, Oxy), — 0
(5.3)

We also have

Ext’(Ma(3),Oxyy), ~C
Ext’(Ma(B), Oxy (s)), =~ C*=!
Ext®(Ma(B), Qv (s)), = C™
Ext'(Ma(B), Oxpy), = C
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Since € N there exists a unique ¢ = 0,1,...,a,-1 — 1 such that ai;_ql € N and then
¢ua € Clz] generates Ext’(Ma(B), Oxpy), = Ker(p).

Using the above exact sequence and the first isomorphism theorem we get that the
family
{gbvj,p 20 S] < Gp-1— ]-aj 7é Q}

is linearly independent in Qy(s), for allp € Y\ Z.

In a similar way to the proof of Theorem 5.1.1 it can be proved that ¢, € Ox)y(s),
forallpe Y\ Z and s > a,/a,_1.

Writing ¢, ; = ', and defining:

_5a 1
¢ﬁ($17 cee 7xn—27tn—1axn) =T UqQSﬁ(:L‘h ceey Tp—2, t_a mn)
n—1
we have that
04 S (C[[xly ceey Tp—2, tn—la xn“
Taking the subsum of 55 for mg = -+ = my,_o =0, m,, = ap_1m, My_1 = a,m, m € N,
we get the power series
m
Z Cm (t%ﬁlef”)
m>0

where
_ (=1)*™™(a,m)!

Cm = (Ap—1m)!

This power series has Gevrey index a,/a,—1 with respect to x, = 0. Then ¢ has

Gevrey index a,/a, 1.

We have E(¢5) = Pi(¢pyn) = 0, for all ¢ = 1,2,....n — 2,n and P,_1(¢5) is a

meromorphic function with poles along Z (and holomorphic on X \ Z):

=3 ipn—1@iMitan—1(mo+1) . Mn_2 —1 _m
(B+ an_1)lx, Ly~ Tpg T 1Ty

— ma! - my_olm,!(q — Z#n_l a;m; + ap_1(mo + 1))!

where

M(q> - {<m27 s 7mn—27mn) S Nn_2| Z a;m; S q + Cln_1<m0 + 1) - 6 + a'IZ—l}
is a finite set (recall that my = f;%‘i e N).

In particular, H4(3)(¢5) C Ox(X \ Z2).
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So,
bgap € Ext"(Ma(B), Qv (5))y

forallpe Y\ Z and s > a,/a,_1.

In order to finish the proof we will see that for all \; € C (j =0,...,a,_1 — 1; j # q)
and for all p € Y\ Z we have

Grip— D ANiduiy & Oxvyp.
J#q
Let us write
¢Uj (x17 vy Tp—9, tn—la xn) = vaj (:Ula vy p—2y T, xn)
Assume to the contrary that there exist p € Y\ Z and \; € C such that:
iy = D Aibup € Oxprp
J#4q
Let us consider the holomorphic function at p defined as
f qu N Z )\]wlﬂ P
J#4q
We have the following equality of holomorphic functions at p:
f+Z/\]¢w _ps( vl va)
J#q

for s > a,.

_ _ 8-
The function ps(x”"1)z) is holomorphic in C™ while each ps(1),s) has the form ¢, "}~ 1);

with 1; holomorphic in C".

Making a loop around the ¢, axis (logt, 1 — logt, 1 + 2mi) we get the equality:
ps(f + Z C]')‘jd}vj) = ps(xvqwﬁ)
J#q
—B=1 org . _j . . .
where ¢; = e T # 1 (since % ¢ 7 for all j # q) and f is obtained from f after the

loop. Since f is holomorphic at p then falso is. Subtracting both equalities we get:

p(F =+ (e = DAjiby) =

J#q
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and then
D (= DA\hy =f— f

J#q
in the neighborhood of p. This contradicts the fact that the power series {¢,; : j # ¢,0 <
J < an—y — 1} are linearly independent modulo Oxjy,, (here we have ¢; — 1 # 0). This
proves the theorem. O

Corollary 5.1.24. If 3 € N then for allp € Y \ Z the vector space

Ext! (Ma(5), OXlY)p

1s generated by the class of:

(P2(@52), - Pae1(950), Pu(95a), E(¢5)) =

q—Z#n,l aimi+an—1(m0+1)xm2 1

0,...,0, 3 (8 +an-1) ) 27Ty T )
AR mz!---mnlemn!(q—Zi;ﬁnﬂaimi+an71(m0+1))! o

m
(Ox1v)y
Im(wgv OX|Y)10

where

M(q) - {<m27 s 7mn—27mn> c Nn_2 | Zaimi S q + an_l(mo + 1) = 6 —+ an—l}
is a finite set (with my = f;%ql € N) and 4§ being the dual map of

Yo : D" — D
(Qla s 7Qn> — Z?:Q QJ-PJ + QTLE

Proof. Tt follows from the proof of Theorem 5.1.23 since Ext*(M4(3), Ox|y ), ~ C for all
p € Y\ Z and moreover

<P2(¢vj>""7Pn(¢vj)7E(¢vj)> =0
for0<j<a,1—1,j#q. ]

Remark 5.1.25. We can also compute the holomorphic solutions of Ma(3) at any point
in X\Y forA=(1ay ... ay) withl < ay < ... < a, and for any 3 € C, whereY = {x, =
0} € X = C". We consider the vectors w! = (j,O,...,O,Ba;nj) eC",j=01...,a,—1
then the germs at p € X \'Y of the series solutions {¢; : j=0,1,...,a, — 1} is a basis
of Exthy(MA(5), Ox)y.

We have summarized the main results of this Section in Figure 5.1. Here A =
(Lag -+ an), s> 2, p€Y\Z, 26 YNZ, fosp € Nand Byen ¢ N.
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(2, Besp) | (P, Besp)

(2, Bgen) | (0, Bgen) | Ext°(Ma(B), F) | Ext'(Ma(B), F)
Feow ot o T
7200 o e T o
F=0v(s) T T T

Figure 5.1: Dimension of the germs of Ext}, (Ma(3), F)

5.2 The case of a monomial curve

Let A= (aj ay -+ a,) be an integer row matrix with 1 < a; < ay < -+ < @, and assume

without loss of generality ged(aq, ..., a,) = 1.

In this Section we will compute the dimension of the germs of the cohomology of
Irrg/s)(MA(ﬁ)) at any point in Y ={z, =0} C X =C"forall € Cand 1 < s < 0.

We will consider the auxiliary matrix A” = (1 a; --- a,) and the corresponding
hypergeometric ideal Ha/(8) C A,41 where A, is the Weyl algebra of linear differential
operators with coefficients in the polynomial ring Clzg, 21, . .., x,]. We denote dy the partial

derivative with respect to z.

In this Section we denote X’ = C"*! and we identify X = C" with the hyperplane
{zo = 0} in X'. If Dxs is the sheaf of linear differential operators with holomorphic
coefficients in X’ then the analytic hypergeometric system associated with (A’, 3), denoted
by Ma/(53), is by definition the quotient of Dy, by the sheaf of ideals generated by the
hypergeometric ideal Ha/ () C A,41 (see Section 3.1).

One of the main results in this Section is the following

Theorem 5.2.1. Let A’ = (1 a; -+ ay,) an integer row matriz with 1 < a; < --- < a,, and
ged(ay, ..., a,) = 1. For each B € C there exists 3 € C such that the restriction of Ma/(3)
to X = {xo =0} C X’ is the Dx—module

Ma(B)x L

= Dl (3) + 2Dy ~ Ma(f')

where A = (ay ay -+ ay,). Moreover, for all but finitely many 5 we have ' = 3.

Proof. Following [SST00], we will use the notations defined in Notation 5.1.5 and Definition
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5.1.8. For ¢ = 1,2,...,n let us consider §; € N the smallest integer satisfying 1 + d;a; €
Z#i a;N. Such a ¢; exists because ged(aq, ..., a,) = 1.

Let us consider p;; € N such that

1+ 51‘0,1‘ = Zpijaj.
J#i

Then the operator Q); := 80651' — 0" belongs to I, where 07 = H#O’i (‘9;”. Moreover, for

w=(1,0,...,0) € N"*! we have in(_, . (Q;) = 80851' €in,ly fori=1,...,n.
We also have that P, = 95 — 01 € T4 and in_, )P, = 9y* € in,l4. Then
ing Ly D (95", 000" ..., 000", Ty, ..., T,) (5.4)

for any binomial generating system {T3,...,T,} C Cl[0y,...,0,] of the ideal I, = I N
Cldr, ..., 0,) (notice that u € Ly = Kerg(A) C Z" < (0,u) € La = Kerg(A") C Z™*1).

Using (5.4) we can prove (similarly to the proof of Lemma 5.1.7 for £ = 1) that for
B ¢ N* or # € N* big enough, we have

80 S ﬁnw(HA/(ﬁ)) =in,la + <E/> (55)
where E' = E + 200y and E := E(3) = > | a;x;0; — 5. So there exists R € Hx () such
that dy = in(_u ) (R). In particular we have

(Ha(B),00) € fin,(Ha(B)) C in—ww)(Ha(B))

and the b—function of H 4 () with respect to w is b(7) = 7. So the restriction of M4/ (/)
to {xg = 0} is a cyclic Dx-module (see [SST00, Algorithm 5.2.8]).

In order to compute M (83)|{zo=0y We will follow [SST00, Algorithm 5.2.8]. First of
all we need to describe the form of a Groebner basis of H4 () with respect to w. Let
{T1,...,T,, Ry, ..., Ry} be a Groebner basis of I4 with respect to w. So we have

]A/ = <T1,...,TT7R1,...,R5>

and
ianA/ = <T1, c. ,Tr, in(,w7w)R1, c. ,in(,ww)RD.

If, for some ¢ = 0,...,¢, the w-order of in_, R; is 0, then in_, )R = R; €
Iy NC[o,...,0,] = I4 and then in_, R, = R; € (T1,...,T;).

If the w-order of in(_, ) R; is greater than or equal to 1, then 9y divide in(_, ) R;. Then,
according (5.5), for 8 ¢ N* or 8 € N* big enough, we have

fing (Hu(B3)) = (8o, B, Th, ..., T,) = (90) + Apsr Ha(B) C inwoy(Ha(8)  (5.6)
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From [SST00, Th. 3.1.3], for all but finitely many § € C, we have
in_ww)(Ha(B)) = (00, E,T1, ..., T;) = (00) + Apy1Ha(B). (5.7)
So, for all but finitely many § € C, the set
G={R,Ry,...,Ry,E'\Tq,....,T,}

is a Groebner basis of H/(/3) with respect to w, since first of all G is a generating system
of Ha(3) and on the other hand in(_,, ,)(Ha/(8)) = Ans1in(—ww)(G).

We can now follow [SST00, Algorithm 5.2.8], as in the proof of Theorem 5.1.3, to prove
the result for all but finitely many 3 € C. Then, to finish the proof it is enough to apply
Proposition 5.1.12 for A’ O

Remark 5.2.2. Recall that Y = {z, =0} C X = C" and Z = {x,-1 = 0} C X. Let
us denote Y' = {z, = 0} € X', Z' = {z,1 = 0} C X'. Notice that Y = Y' N X and
Z=7'"NX.

By using Cauchy-Kovalevskaya Theorem for Gevrey series (see [LMO02, Cor. 2.2.4]),
[CTO03, Proposition 4.2] and Theorem 5.2.1, we get, for all but finitely many 5 € C and for
all 1 < s < o0, the following isomorphism

RHomp,, (M (8), Ox(s))1x = RHomp, (Ma(B), Oxy (s)).
We also have the following

Theorem 5.2.3. Let A = (a; as -+ a,) be an integer row matriz with 1 < a; < as <
<o < ay, and ged(ay, ... a,) = 1. Then for all § € C we have

i) Extd (Ma(B),Qy(s) =0 for 1 < s < ap/an_1.
i) Ext] (Ma(B), Qy(s))ynz =0 for 1 <s < oo.
ii) dimg(Exty (Ma(B), Qy(5))p) = an1 for anfan_1 <s<oc andpeY \ Z.
w) Exth (Ma(3),Qy(s) =0, fori>1and1<s < oo.
Here Y ={x, =0} Cc C" and Z = {x,,_1 = 0} C C".
Proof. 1t follows from Remark 5.2.2, Theorem 5.1.1 and Proposition 5.1.12. O

Remark 5.2.4. With the notations of Theorem 5.2.3, a basis of the C—vector space
Extp(Ma(B), Qy(s)), for any >~ < s < oo, p € Y\ Z and B € C is given

n— -
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by the 7substitution” (in a sense to be made precise) of xg = 0 in the basis of
Extd (Mu(B), Qv (5))(0,p) described in Theorem 5.1.23.

Remind that for A’ = (1 ay ... a,) and § € C the I'-series described in Section 5.1 are

o = (2)" > Lo’ u(m)] (a/)"™)

MY, My —1:mn >0
Yitn—1aimi<jtan_1mp_1

where ¥’ = (xg, 71, ...,1,), v/ = (j,O,...,O,i%j,O) e C"! for j=0,1,...,an_1 — 1 and

1
form = (mq,...,m,) € Z"™ we have
( ? )

(:L’/)u(m) _ I(; Z#n,l aimr&-anﬂmnqxgm L x:zan_Q ;Tln—lx;nn‘
Form = (my,...,m,) € N" such that j — Zi;an a;m; + ap_1Mp—1 > 0 we have
. (L) J!
[[v?;u(m)] = L

mal - my_olmy ! (j — Z#nfl aim; + ap_1Mp_1)!

Since Iy = Iy NC[Oy,...,0,], if Ia(f) =0 then I4(fizo=0) = 0 for every formal power

series f € OWP’ where p' = (0,p) €e Y N{xyg =0} =Y.

Furthermore, a Laurent monomial (z')* is annihilated by the Euler operator associated
with (A', B) if and only if A'w’ = B and after the substitution xo = 0 this monomial becomes
zero or x* (in the case w' = (0,w)) which are both annihilated by the Euler operator

associated with (A, ), since Aw = A'w' = 8 in the case w' = (0, w).

Hence, for p € Y, every formal series solution [ € OW 0p) of Ma/(B) becomes, after
the substitution xog = 0, a formal series solution fizo—o € O)?\\Y,p of M (). The analogous
result is also true for convergent series solutions at a point of xq = 0.

After the substitution xzo = 0 in the series ¢,; we get
i

ﬁ—j Mmoo Mn—2 anfl_mnil m

(an_l)mn—lj!xl R R ZTy"
Guilzo=0 = E | |
Myt Mp—2iMy!

L T My —1,Mmn >0

Yaimi=jtan_1mpy_1
for7=0,1,...,a,1 — 1.
The summation before is taken over the set
Aj = {(my,...,my,) € N": Z aim; = j + ap_1Mp_1}.
i#n—1

It is clear that (0,...,0) € Ag and for j > 1, A; is a non empty set since ged(ay, ..., a,) =
1. Moreover A; is a countably infinite set for j > 0. To this end take some A :=
(A1, -5 An) € Ao Then A+ (0, ..., 0, an, an_1) is also in A; for all pn € N.
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The series ¢yijgy—o 15 a Gevrey series of order s = a“—”l since @i also is. We will see
—

that in fact the Gevrey index of Quijpy—o 18 7= for j=0,...,a,_1 — 1 such that aﬁn;_i ¢ N.

an—1

To this end let us consider the subsum of ¢yijz,—o over the set of (my,...,my) € N" of the
form AV + N(0,...,0,a,,an_1) for some fived PR A;. Then we get the series:

. @) @) L=l \0) .
. _ A ANl ap_ n—1 . . )
1(B=i ) 1 .. pnT2n% 1 B— ©) —anm, A\ _
j‘(anfl)Aiflfl Tn—2 Tn-1 (an,]l = A1) agm@y 27yt T
() () Z ()
PV UARERD W >0 (A + ap—1m)!

and it can be proven, by using d’Alembert ratio test, that its Gevrey index equals —*—

n—

at

any point in' Y \ Z, for any j =0,...,an_1 — 1 such that 2L ¢ N.

Forallj=0,...,a,-1 —1 we have
B—j
Ap— —1
¢Uj|$0:0 € xn—ll (C[[xla sy T2, Ty v, In]]

and in particular these a,_ 1 Sseries are linearly independent and hence a basis of
Ext®(Ma(B), Oxy(s))p for s > ap/an_1 and p € Y \ Z) if all of them are nonzero (see
Theorem 5.1.21).

If there exists 0 < j < ap—1 — 1 such that ¢yijzo—0 = 0 then we have that ¢, is a
polynomial divisible by xo and this happens if and only if 5 € N\ NA.

In this last case we do not get a basis of Ext®(Ma(B), Oxy(s)), by the previous
procedure.  We will proceed as follows. Let us consider w' = (0,w) € N such
that 3 = B — A'w' € Z-o. Then taking the basis {¢y|j = 0,...,a,_1 — 1} of
SxtO(MA/(ﬁ’),OW(s))(Qp) given by Theorem 5.1.21 and after the substitution xy = 0,
we get a basis of Ext®(Ma(f'), Oxy(s)), for s > ap/an—1 andp e Y\ Z.

Since 3,3 € Z\ NA then
9" Ma(B') — Ma(B)

is an isomorphism (see [SWO07, Remark 3.6] and [Ber08, Lemma 6.2]) and we can use this
isomorphism to obtain a basis of Ext®(M4(8), Oxy (s))p-

Using previous discussion and similar ideas to the ones of Section 5.1 (we will use the

notations therein) we can prove the following Theorem.

Theorem 5.2.5. Let A = (a; as -+ a,) be an integer row matriz with 0 < a; < as <
o< ap, Y ={r, =0} C X and Z ={x,-1 =0} C X. Then forallpe Y\ Z, f €C

and s > ap/a,_1 we have:
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i) If B ¢ N, then:

anfl—l

gxtO(MA<ﬁ)7 QY(S))P = C(QSvj\mo:O)p'
=0
ii) If B € N, then there exists a unique q € {0,...,a,_1 — 1} such that % € N and we

have:
ap—1—1

Ext'(Ma(8), Qv (5)p = D Clhutm0)p & Cldyasyo)p

q#j=0

Here ¢ stands for the class modulo Oxjyp of ¢ € Oﬁ,p(s).

Remark 5.2.6. We can also compute the holomorphic solutions of Ma(83) at any point

in X\Y for A= (a;as ... a,) with0 < a; < ay < ... < a, and for any € C, where
Y ={x, =0} C X =C" (see [FC,08, Sec. 2.1] and Remark 5.1.25). As in the beginning
of Section 5.2 let us consider the auxiliary matric A’ = (1 ay ay ... a,) and the notation
therein.

Let us consider the vectors w’ = (j,O,...,O,ﬁa;nj) c C*t 5 =0,1,...,a, — 1.
Then the germs at p' = (0,p) € X' \Y' (with p € X \'Y) of the series solutions
{dwi: 7=0,1,...,a, — 1} is a basis of Extd (Ma(B), Ox:)y. Taking

{bwilpo—0: 7=0,1,...,a, — 1}

we get a basis of Ext(Ma(B), Ox), for 5 € C such that 3 ¢ N\NA at any pointp € X\Y.
When 3 € N\ NA we can proceed as in Remark 5.2.4.

5.3 Remarks and conclusions

1) In Sections 5.1 and 5.2 we have proved that the irregularity complex Irr{¥ (M4(3))
is zero for 1 < s < a,/a,_1 and concentrated in degree 0 for a,/a, 1 < s < o
(see Theorems 5.1.1 and 5.2.3). Here A is a row integer matrix (aj ay --- a,) with
0<a; <ap <---<a,and [ is a parameter in C. We have reduced the case a; > 1

to the one where a; = 1 and then to the two dimensional case treated in Chapter 4.

2) We have described a basis of Ext, (Ma(3), Qy(s)), for p € Y \ Z and an/a,—1 <
s < oo (see Theorems 5.1.23 and 5.2.5). Here Y = {z, = 0} € X = C" and

Z ={x,-1 =0} C X. From the form of the basis it is easy to see that the eigenvalues
(27ri(ﬁ—k‘) )

an—1

of the corresponding monodromy, with respect to Z, are simply exp for
k=0,...,a,_1 — 1. Notice that for 3 € Z one eigenvalue (the one corresponding to
the unique £k = 0,...,a,_1 — 1 such that i;_kl € 7Z) is just 1. See Remark 5.2.4 for

notations.
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Chapter 6

Some results regarding the

irregularity of M 4(3)

Let A = (a;---a,) be a full rank matrix with columns a; € Z¢ and 3 € C¢. This Chapter
is devoted to the study of the Gevrey solutions of M 4(/3) along coordinate subspaces and
their relation with the irregularity of M () with respect to such subspaces.

Let us first introduce some notation. For any set 7 C {1,...,n} we denote by conv(r)
the convex hull of {a; : i € 7} C R? and by A, the convex hull of {a; : i € 7} U{0} C R%
We shall identify 7 with the set {a;, : ¢ € 7} and with conv(7). We also denote by A,
the matrix given by the columns of A indexed by 7. A coordinate subspace is denoted by
Y, :={2; =0: i ¢ 7} for some 7 C {1,...,n}. We will also write 7 = {1,...,n} \ 7 and
x; = (2;)ier. We shall use the notation | - | for the sum of the coordinates of a vector as

well as for the modulus of a complex number.

The following definition will be used in Sections 6.1 and 6.2.

Definition 6.0.1. A formal series

f= 2 falz)ef € Cla, —p} 7]

meNn—T

15 said to be Gevrey of multi-order s = (Si)i¢7- € R"7" along Y, at p € Y, if the series

is convergent at p. Here we denote m!5™1 = HigT(mi!)si”.

Remark 6.0.2. Notice that any Gevrey series of multi-order s = (s;);¢- alongY; atp € Y;

is also a Gevrey series of order s = max{s; : i ¢ 7} along Y, at p (see Definition 2.2.2).
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6.1 Gevrey solutions of M ,(3) associated with a (d —
1)—simplex.

Fix aset o C {1,...,n} with cardinality d and det(A,) # 0 throughout this section. Then
A, is a d-simplex and o is a (d — 1)-simplex. The normalized volume of A, with respect

to ZA is
d!vol(A, ) | det(Ay)|

Z7:ZA] ~ [Z7: ZA]

where vol(A,) denotes the Euclidean volume of A,. The aims of this section are: 1) to

VOlZA (AU) =

explicitly construct volz4(A,) linearly independent formal solutions of M 4(/3) along the
subspace Y, = {z; =0: ¢ ¢ o} at any point of Y, N {z; #0: j € o} and 2) to prove that
these series are Gevrey series along Y, of multi-order (s;);¢, with s; = |A 1 a,|.

We reorder the variables in order to have o = {1,...,d} for simplicity. Then a basis of
Ker(A) = {u € Q" : Au = 0} is given by the columns of the matrix:

A tag, —AZtage - —Ajta,
e 1 0 0
B,=| 777 | = 0 1 0
[nfd . . -
0 0 1

Set
vk = Z k;a;),
igo
and observe that Av® = 3 for all k = (k;)i¢, € N""¢. Hence, according to Lemma 1 in
Section 1.1 of [GZK89], we have that p (see (3.3)) is annihilated by the operators (3.1)
and (3.2).

Set Ay = {k +m = (k; + m;)ics € N* 794 Y ics @iy € ZA,}. 1t is clear that
fA;l(Zi@(kﬁmi)ai)karm

e = w77 Z AZH(B = i (ki +m1)az)il)(k+m)

k+m€Ak

is a formal series along Y, = {z; = 0: ¢ ¢ o} at any point of Y, N {z; #0: j € o}

because the coeflicient of xk+m

defines a germ of holomorphic function at any point of
Y,N{z; # 0 : j € o}. Notice that @, is zero if and only if for all m € Ay,

AZH(B = Y igo (ki +mi)a;) has at least one negative integer coordinate.

Let us consider the lattice Zo = ZA, = )., Za; contained in ZA.

i€o

Lemma 6.1.1. The following statements are equivalent for all k, k' € Z"=4:
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1) vk — ¥ e zZn
2) [Ask]| = [AsK'] in ZA]Zo.
3) Ax = Ay
Lemma 6.1.2. We have the equality:
{Ax: keZ ={Ax: ke N9}
and the cardinality of this set is [ZA : Zo| = volza(A,).

Proof. The equality is clear because Azc € Zo for ¢ = |det(4,)| - (1,...,1) € (N*)*~< and
then for any k € Z"? there exists o € N such that k + ac € N*~% and Ay = Ayiac.

VA € ZA/Zo there exists k € Z" ¢ with Azk = A € ZA/Zo. Then by the equivalence
of 2) and 3) in Lemma 6.1.1 we have that {Ay : k € Z"?} has the same cardinality as the
finite group ZA/Zo. O

Remark 6.1.3. Notice that, for all k, k' € N*=¢ such that v* — ¥ € Z" we have that

Yok = Qe and in the other case we have that p.x, @ have disjoint supports.

Remark 6.1.4. One may consider k(1),...,k(r) € N*=¢ such that
ZA|Zo = {[Azk(i)] : i =1,...,r}

with r = [ZA : Zo|. Then the set in Lemma 6.1.2 is equal to { Axuy : i =1,...,r} and it
determines a partition of N*=¢ ij.e., Ay VAx(j) =0 if i # j and Uj_ Ak = I\

We have described volz4(A,) formal solutions of M4(3) along Y, associated with a
simplex ¢ having pairwise disjoint supports. Thus, they are linearly independent if none of
them is zero.

Remark 6.1.5. For very generic 3 (see Definition 3.2.4) we have that v® does not have
any negative integer coordinate for allk € N"=. In particular, if 3 is very generic we have
that p # 0, Vk. More precisely, very generic parameter vectors 3 lie in the complement

of a locally finite arrangement of countable many hyperplanes that depend on A.

From now on, we consider the I'-series ¢, (3.5) defined in [SST00, p. 132-133] because

they are not zero for any v € C" and they will be especially useful in Section 6.2.
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Remark 6.1.6. Observe that any u € La has the form (=3, riA ta;,r) with v =
(1) j¢0 € Z" such that Agr = > j¢o Ti@j € Zo. Then we can choose k € N=4 sych that
v¥ has minimal negative support because we do not change the class of Zj¢o‘ k;ja; modulo
ZA, when replacing k by k + 1 € N"=% Then the new series ¢X := ¢ # 0 has the form:

¢k _ Z [Uk]u(m)f ka—l—u(m)
7 k+meSy, [Uk + u(m)]“(m)+

where

Sk := {k+m € Ay : nsupp(v*™) = nsupp(v*)} C Ay
and u(m) = (=3, miA  a;,m) for m = (m;)ig, € 74, It is clear that k + m € Sy if
and only if V8™ € v¥ + N.

Remark 6.1.7. Using that Sx C Ay, Vk € N"™¢ and Remark 6.1.4 we have that two
series in {¢X 1 k € N"=4} are either equal up to multiplication by a nonzero scalar or they
have disjoint supports. Thus, the set {¢% : k € N"=} has volza(A,) linearly independent
formal series solutions of Ma(B3) along Y, at any point of Y, N{z; #0: j € o} for all
B e C.

Example 6.1.8. Let A = (a; ay az) € Z**3 be the matriz with columns:

(1) (3) (1)

The kernel of A is generated by u = (6,1, —2) and so Ly = Zu. Then the hypergeometric
system associated with A and 3 € C? is generated by the differential operators:

O, = 8%, — 03, By — 81 = 2101 + 37303 — (1, Ea — Bo = 22905 + 1305 — [o.

In this example ZA = 72, A is pointed and o = {1,2} is a simplex with normalized volume
volza(A,) = |det(A,)| =2 (see Figure 6.1).

A

Q o

Figure 6.1
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Two convenient vectors associated with o are
UO = <ﬁ17ﬁ2/270> G/fld Ul = (ﬁl — 3, (52 — 1)/2, 1)

The associated series:

oo = Z [B1lem[B2/2]m O a2 o

- Yomizes mim x
= (2m)! ! 3

and

[ﬁ ]GmKﬁZ _ 1)/2]m ,@ —3—6m ( b—1)/2—m 142
¢U1 = v g "
are formal series along Y, = {x3 = 0} at any point of Y, N {x1xe # 0} that are annihilated
by the Euler operators By — 31, Ey — 35 because AvF = 3 and by the toric operator O, since

V¥ has minimal negative support for all 3 € C? for k =0, 1.

The following Lemma is very related to [OT07, Lemma 1], [GZK89, Proposition 1,
Section 1.1.] and [PST05, Proposition 5|, that deal with the convergence of I'-series that

are solutions of regular hypergeometric systems.

Lemma 6.1.9. Assume that {b;}?_,., is a set of vectors in Q¢ x N"~¢ k € Z"~%. Let us
denote u(m) = 7", m;b; and consider a set Dy C {k+m € N"%: y(m) € Z"} and a
vector v € C" such that nsupp(v + u(m)) = nsupp(v) for any m € Dy — k. Then for all

s € R"? the following statements are equivalent:

1) Z “(m yk““ is Gevrey of multi-order s along y = 0.
k+mEDk

2) Z m y ™ s Gevrey of multi-order s along y = 0.

m
k+m€Dk

3) Z H (kj +my)!~Pily*t™ s Gevrey of multi-order s along y = 0.

k+méeDy j=d+1

In particular, for s = (Sqi1,-..,5n) with s; =1 —|b;|, i =d+1....,n, 1),2) and 3)
are satisfied. Moreover, 1), 2) and 3) are also equivalent if we write order s instead of

multi-order s and all these series are Gevrey of order s = max{l — |b;|}.

Proof. Yo € C, Ym € N with [a],, # 0 there exists C, D > 0 such that:

C™|[adm| < m! <], | D™ (6.1)
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For the proof of (6.1) it is enough to consider ¢, := [a],/m! and see that
lim, o0 [€my1/cm| = 1. The proof for (6.1) with o + m instead of « is analogous. It

follows that 1) and 2) are equivalent.

We can use Stirling’s formula m! ~ v/27wm(m/e)™ in order to prove that ¥Ym € N,
Vq € Q, with gm € N, there exist C’, D" > 0 verifying:

(CY"m!? < (gm)! < (D")"m! (6.2)
Take A € N* such that A\b; € Z™ for all i = d+1,...,n. Then by (6.2) we have 2) if and

. . (Au(m) )N .
only if the series E (Oa(m) )7 <Y is Gevrey of multi-order s along y = 0.
u +):

For the rest of the proof we assume for simplicity that Dy C (k + N*~¢) N N"~¢, The

equivalence of 2) and 3) can be proven without this assumption but it is necessary to

k+m€Dk

distinguish more cases.

Observe that Mu(m)y—Au(m)— =37 Xbi)ymi—y 7 4.1 AMbi)—m,; and u(m)4, u(m)_,
Yo a1 Mbi)emg, Yo7 0 AMbi)—m,; € N™. However, u(m)4, u(m)_ have disjoint supports
while > 7, A(bi)ym; and Y77, A(b)—m; do not have disjoint supports in general.

On the other hand, for all m,n € N with n < m we have that:

(m—n)! < T:—" < 2™(m —n)! (6.3)

Then by (6.3) we have 2) if and only if

(0 g A -m)\
k—";GS ((Z?:d—i-l )\(bz)+ml>'> y (64)

is Gevrey of multi-order s along y = 0.

If we replace m by m + n in (6.3) and multiply by n! we obtain a formula that can be
generalized by induction. We obtain that Vmg,1, ..., m, € N there exist C”, D" > 0 such
that:

@z [Lmit < (3 ma)t < (D)= T md (6:5)

A combination of (6.5) and (6.2) proves that 3) holds if and only if (6.4) is Gevrey of

multi-order s along y = 0.

Finally, it is clear that 3) is true for s, =1 — |b;|, i =d+1,...,n. ]
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Remark 6.1.10. From the proof of the equivalence of 1) and 2) in Lemma 6.1.9 it can be
deduced that after applying ps to the series in 1) there exists an open set W such that this

series converges in W and 0 € W does not depend on v but on Dy — k.

Consider s = (s;),¢, with
sj=|Atay], ¢ o
and s = max;{s;} throughout this section.

Lemma 6.1.11. For all k € N"~¢ the series

[0*]urm) - k
Vg = ym
k+§;sk [+ () )

is Gevrey of multi-order s along y = 0 € C". Moreover, if 3 is very generic then it has

Gevrey index s along y =0 € C*4,
Proof. 1t follows from Lemma 6.1.9 (if we take byy; equal to the i-th column of B,, Dy = Sk
and v = v¥) that ¥ is Gevrey of multi-order s along y = 0.

If G is very generic we have that Sy = Ayx and it is obvious that the series in 3) of

Lemma 6.1.9 has Gevrey index s in this case. O

Corollary 6.1.12. The series ¢X is Gevrey of multi-order s = (55)j¢0 along Y, at any point
of YoN{x; #0: i € o}. If B is very generic then it is Gevrey with index s along Y.

Proof. If we take y = (y;);¢0 With y; := x;Aglajxj, j ¢ o, then ¢%(z) = 247 Ayk(y) and
the result follows from Lemma 6.1.11. [l

Example 6.1.13. (Continuation of Example 6.1.8) We have that

ps(pun) = 2 a2~ [BJ6m B2/ 2] m < ng )m

= (2m)!* iy

It is easy to see that ps(py0) has a nonempty domain of convergence if and only if s > 7/2
when (1, 32/2 ¢ N (use D’Alembert criterion for the series in one variable y = x3/(x%x5) ).
Then ¢ is a Gevrey series solution of Ma(3) with index s = 7/2 along Y, = {x3 =0} at
any point of Y, N{x1xs # 0}. Nevertheless, ¢.o0 is a finite sum if either 31 € N or 55/2 € N
and so it has the same convergence domain as the (multi-valued) function x11x§2/2. If both
b1, B2/2 € N, then ¢ is a polynomial.

Analogously, ¢,1 is a Gevrey series solution of order s = 7/2 along Y, at any point of
Y, N{z12z2 # 0}. It has Gevrey index s =7/2 if f1 — 3, (f2—1)/2 ¢ N and it is convergent
otherwise.

Notice that s = 7/2 is the unique algebraic slope of Mu(B) along Y, = {x3 = 0} at
0 € C? (see [SWOS] or [Har03]).
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The convergence domain of p?(%) contains {y € C"¢: |y;| < R, j & o} for certain
R > 0. In particular, pZ(¢,x) converges in

{weC: [ai#0, |z;] < Rlaf="|, Vj ¢ o}.
i€o

The unique hyperplane that contains o is
H, ={y eR": [A]'y| =1}

and we denote by H, :={y € R?: |Aly| < 1} (resp. by H} = {y e RY: |A ly| > 1})

the open affine half-space that contains (resp. does not contain) the origin 0 € R%.

Recall that s = (s;);¢, where s; = |A;'a;| is the unique rational number such that
a;/s; € H,. Moreover, s; > 1 (resp. s; < 1) if and only if a; € H} (resp. a; € H).
Taking the set

r={i: a; ¢ HI}

and s’ = (s;);¢, we have that pJ,(¢,x) converges in the open set
U :={zxeC": Hmz #0, |z;] < R|xf;1“]’|, Va; € (H, \ o) UH[}.
€0
This implies that ¢« is Gevrey of multi-order s’ along Y, at any point of U, N'Y,. Then,
if we consider
Uy i={z € C": [[a: #0, 2| < Rlz""|, Va, € H, \ o} (6.6)
€0

the following result is obtained.

Theorem 6.1.14. For any set s with 0 C ¢ C 7 the series

¢k _ Z [Uk]u(m)- VS Fu(m)
7 k+meSy [Uk + u(m)]“(m)+

is a Gevrey series solution of Ma(83) of order s = max{s; = |A,'a;| : i ¢ o} along Y. at

any point of Y. N U,. If B is very generic then s is its Gevrey index.
Remark 6.1.15. If H,N{a;,: i=1,...,n} =0 then U, = {[],., x: # 0}.

Remark 6.1.16. Recall that in Theorem 6.1.14 the vector v& = (A;Y(3 — Ask),k) has
minimal negative support because we have chosen k € Ay this way (see Remark 6.1.6). This
guarantees that ¢, is annihilated by 14 by [SSTO0, Section 3.4] (see Proposition 3.2.2).

However, this series is also Gevrey of order s when k does not satisfy this condition.
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6.2 Slopes of M ,(3) associated with a (d — 1)—simplex.

In the context of Section 6.1 we fix a simplex 0 C A with det(A4,) # 0 and consider
s = (8;)igo where s; = |A 1 a;|. We consider 7 = {j : a; ¢ H}} D o and the coordinate
subspace Y; = {z; =0: j ¢ 7} in this section.

Our purpose here is to construct one nonzero Gevrey series solution of M4(f) in
(Oxyy, (5)/Oxy, (< s))p for p € Y. N U, with support contained in the set Ay C Nr—d
in the partition of N*~¢ (see Remark 6.1.4) for all 3 € C%. In particular we will prove the

following result:

Proposition 6.2.1. For s = max{s; = |A;'a;| : i & o}, for all p € Y, NU, and for all
3 e Ci:
dim(Homp(M4(5), Oxyy, (5)/Oxy, (< 5)))p = volza(As).

As a consequence of Proposition 6.2.1 and Lemma 8.0.8, we obtain the following result

that justifies the name of this section:

Corollary 6.2.2. If Y, is a coordinate hyperplane (equivalently, the cardinality of T isn—1)
and s = |A'a=| > 1 then s is an analytic slope of Ma(B3) along Y, at any point in the
closure of Y, NU,.

Remark 6.2.3. By Theorem 6.1.14 we only need Lemma 8.0.8 for the proof of Corollary
6.2.2 if B is not very generic.

Remark 6.2.4. Observe that 0 is in the closure of Y. NU,. However, by Remark 8.0.9 we
have that s is a slope along Y, at any point of Y.

Let us proceed with the construction of the announced series and the proof of Proposition
6.2.1.

We identify k +m € N*~? with o™ = (A1(8 — Az(k + m)),k + m) € C? x N*~% and
establish a partition of Ay in terms of the negative support of the vector v*™™ € C?¢ x N~

as follows. For any subset n C o set:
Ay, = {k+m € Ay : nsupp(A;' (8 — Az(k + m))) = n}.

Consider the set
O :={nCo: A, #0}.

Then it is clear that {Ax, : 7 € Qx} is a partition of Ax. Moreover Ay, is the intersection

of a polytope with Ay because the conditions
nsupp(4, (8 — Az(k +m))) =17
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are equivalent to inequalities of type:
(ASH (B — Ax(k+m))); <0

for ¢ € n and
(A;'(8 — Az(k +m))); > 0

for j & n such that (AJ1(8 — A5k)); € Z.

For any n € Qy the series ¢ x+m for k+m € Ay, depends on Ay, but not on k+m € Ay,

up to multiplication by nonzero scalars. Let us fix any ke Ax,, and set:

Qbk,n = ¢vi-
Observe that the support of the series ¢y, is:

supp(¢i.,) = {v*™: k+m € Ay, }.

If the set )k has only one element 7 then Ax = Ay, and the series qbl; = ¢k, Is a
nonzero Gevrey series solution of M4(3) in Oxy, (s) \ Ox}y, (< s) at any point of Y. N U,
(see Theorem 6.1.14).

All the series in the finite set {¢x, : k € N""% n € O} are Gevrey series along
Y, ={z; =0: i ¢ o} with multi-order s at points of Y, N {x; #0: j € o}. In fact, these
series are Gevrey of order s along Y, at any point of Y, N U, and they are all annihilated

by the Euler operators.

For all n € Q, the support of the series ¢y, is supp(¢x,) = {V*™ : k+m € Ay, }
and Uyeq, Ak, = Ak. Then there exists € Qi such that ¢i, € Ox)y, (s) has Gevrey index
s. But a series ¢, is annihilated by I, if and only if v has minimal negative support (see
[SST00], Section 3.4.) so if we take 1 € () with minimal cardinality then ¢y, € Ox)y, (s)

is a solution of M 4(3). In general, we cannot take n = 7/.
The following Lemma is the key of the proof of Proposition 6.2.1.
Lemma 6.2.5. Consider an element n of the set
{n" € Qu: ¢x.y has Gevrey index s}
with minimal cardinality. Then O,(éxy) € Ox)y, (< s) for all u € Ly.

Proof. Consider Ay, with  as above and u € L4. Then there exists m € Z"~? such that
u=(—A;'A>m, m) and then

0, = gie Aei)- g _ Az Aaii) - i
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On the other hand, the series ¢y, has the form:

. Az(k+m k+m
Py = E Ckerx &M (B—Az( D
k+m€Ak7n

where ciym € C verifies that ckym+m /Cx+m 18 a rational function on m (recall that there

L ("] i
exists k € Ay, such that cxym = k+m(k fetm)
[U }u(k7k+m)+

by definition of ¢y,,).

k+m_u7 - ka-&-m-&-?n

A monomial zV ~“+ appearing in 00, (¢k ) comes from the monomials

Uk+m k+m-+m

x and zv after one applies 0"~ and 9%+ respectively.

If k4+mk+m+m € Ay, then the monomial 27U appears in 0"~ (¢x,,) and

0"* (¢x,,) with the same coefficients so it doesn’t appear in the difference.

Ifk+m e Ag, but k+m+m ¢ Ay, (the case k+ m ¢ Ay, but k+ m+m € Ay, is

analogous), we can distinguish two cases:

1) There exists 4 such that vX™ € N but oX™™™ < ( 50 u; = k™™ _ktm o

Then 8~ (z°*"™) = 0 and "™~ does not appear in Oy, (¢i.,)-

2) We have nsupp(v*t™+™) = ¢ C nsupp(v*™) = 5. Then [v¥*™], # 0 and the
coefficient of zv*"™™ 4 in Ou(dky) 18 Cepm[v®T™], # 0. Furthermore, k + m + m €
Ak with ¢ € Qy such that ¢k is Gevrey of index s’ < s because we chose 7 that

way.

By 1), 2) and the analogous cases when k + m ¢ Ay, but k + m + m € Ay ,, we have:

- kt-m_
¢kn Z Z Ck+m+ﬁq[vk+m+m]u+$v mim_y,

/ k+m+m€Ak n
k—i—meAk o

—Z Do emo e (6.7)

k+mEAk m
k+m+m€Ak <

Here, ¢, ¢’ C n varies in a subset of the finite set {2 whose elements ¢” verify that the series

¢x ¢ has Gevrey index s” < s. Let us denote by s < s the maximum of these s”.

Since Ckimiim/Ckim, V™), and [vKT™FM] - are rational functions on m the series

O, (¢x,y) has Gevrey index at most the maximum of the Gevrey index of the series

k+m-+m __
E : 2 Ck+mxv Ut

¢/ ktmimeny ,
k—ﬁ-mEAkS/
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oktm_g
E E Ck+m+mL
S

k+m€Ak,n
k+m+ﬁ1€Ak,q

which is at most s < s.
It follows that (0, (¢x,) € Oxy, (< s) for all u € Ly while ¢y, has Gevrey index s. [

Moreover the classes of the series {¢x,, : k € N"9} (with n € O chosen as 7 in
Lemma 6.2.5) in (Oxyy, (5)/Oxy, (< 8))p, p € Y> N U,, are linearly independent since the
support of ¢y, restricted to the variables z; with i ¢ o is Ak, C Ax and {Ay: k € N*~7}
is a partition of N*~?. This finishes the proof of Proposition 6.2.1.

6.3 Slopes of M 4(() along coordinate hyperplanes

In this section we will describe all the slopes of M 4(/3) along coordinate hyperplanes. First,
we recall here the definition of (A, L)-umbrella [SWO08], but we will slightly modify the
notation in [SWO08] for technical reasons. Consider any full rank matrix A = (a; --- a,) €
Z¥" and s = (sq,...,8,) € R,

Definition 6.3.1. Set af :==a;/s;, j =1,...,n, and let
A% :=conv({aj: i=1,...,n} U{0})
be the so-called (A,s)-polyhedron.

The (A,s)-umbrella is the set ®5 of faces of A% which do not contain the origin.
%7 C @S, denotes the subset of faces of dimension q for ¢ =0,...,d — 1.

The following statement is very similar to [SW08, Lemma 2.13]. The difference here is
that we do not assume that A is pointed and that we just consider s € R™ such that s; > 0
foralli =1,...,n. For this reason we slightly modify a part of the proof of [SW08, Lemma
2.13].

Lemma 6.3.2. Let fj be the ideal of C[&, ..., &,] generated by the following elements:

i) &y v &, where ag, /Si,, ..., a; /S, do not lie in a common facet of ®5.

i) £+ — &' where u € L and supp(u) is contained in a facet of 5.

Then I3, = \/ing(14).
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Proof. The proofs of [SW08, Lemma 2.12] and [SW08, Lemma 2.13] use [SW08, Lemma 2.8|
and [SW08, Lemma 2.10], but they do no use that A is pointed elsewhere. We rewrite here
the proofs of [SW08, Lemma 2.8] and [SW08, Lemma 2.10] without the pointed assumption
on A but for s € RZ. Let us prove in particular that ing(Z4) C I5 C \/ing(Iy).

For the proof of the inclusion ing(74) C INj we only need to prove that Vu € Z" with
Au = 0 then ing(0,) € I5.

If supp(u) € 7 € @5 then Jh, € Q¢ such that (h,,a;/s;) = 1, Vi € 7, ie,
(hr,a;) = s;, Vi € 7. Since Au = 0 and supp(u) C 7 we have

0= (h,, Au) = (h, A, u) Zs u; = Zsiui (6.8)
i=1

1ET

so ing(0,) = &% — £~ which lies in I % by definition.

Assume there exists 7 € ®5 such that supp(uy) C 7 and supp(u_) C 7' for any 7/ € ®5,.
h-(a;) = s; Vi € 7 but h,(a;) < s; Vi ¢ 7. Since Au = 0 then Au; = Au_ and by the
assumption

n

D si(ug)i = (heAuy) = (hy, Auy) = <hT,Au,><Zsi(u,

=1

so ing([d,) = &“~ is a multiple of H &; which is an element of the type of i) by

jesupp(u-—)
assumption.

The case supp(u_) C 7 and supp(u_) C 7’ for any 7" € ®5 is analogous to the previous
case. If there is no face containing supp(u,) nor supp(u_) it is trivial that £*+ "+ € fj
and so % — Ut € fj. Finally, since Au, = Au_ it is not possible that ¢ = supp(uy) C 7
and ¢ = supp(u_) C 7’ for any 7,7 € %" such that 7 # 7’ (because this implies that
pos(c) Npos(<’) = {0}).

Let us prove the inclusion I5 5 C \/ing(14). Tt is clear that the elements of type ii) lies
in ing(/4) C +/ing(/4) so we only need to prove that the elements of type ¢) belong to

ins([A):

If a;, /Si,,---,a; /s, donot lie in a common facet of ®% then Ja such that:

(1) a € conv(as,/Siys---,ai, /i)

(2) a lies in the interior of AS,.
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By (1) we can write:

a = ZGJ'(IZ']./SZ'J. (69)

j=1

with > e; =1 and ¢; > 0, Vj.

And by (2) there exists ¢ > 1 such that ta still belongs to A% and we can write:

i=1

with ».n; =1 and n; > 0, Vj.

Finally, by (6.9) and (6.10) we have:

Z tej)ag, /si; = Zmaz/sZ
i=1

Then there exists A € N* such that

Ate;/s; A1 /55
P:Haijtj/] _Hajm/] €l
j=1 j=1

and the s-degree of the first monomial is At while the s-degree of the second monomial is A
50 ing(P) = [T}_, 0" € ing(I4). This implies that &, - &, € /ins(L4). 0

Let 7 C {1,...,n} be a set with cardinality { > 0 and consider the coordinate subspace
={z;=0: i ¢ 7} with dimension /.

The special filtration
Ly:=F+(s—1)V;

with s > 1 is an intermediate filtration between the filtration F' by the order of the
differential operators and the Malgrange-Kashiwara filtration with respect to Y, that we
denote by V,. Recall that V, is associated with the weights —1 for the variables z-, 1 for
0= and 0 for the rest of the variables.

We shall identify s € R with (sq,..., ) throughout this section, where s; = 1if¢ € 7
and s; = s if i ¢ 7. Then (Lg),; = s; forall j =1,.

Lemma 6.3.3. Assume s > 1 is such that ®% = @5 = &5 for sufficiently small € > 0.
Then the ideal Tj is homogeneous with respect to F' and V. In particular V(fj + (Ax¢)) is

a bi-homogeneous variety in C*",
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Proof. We only need to prove that the elements in Lemma 6.3.2, ii), are bi-homogeneous.
From the proof of Lemma 6.3.2 we deduce that they are Ls,-homogeneous. Since ®% =
5 = &5 we have that they are also Ly.-homogeneous for all € > 0 small enough. Since

Lsre = F+ (st e—1)V; we obtain that they are F-homogeneous and V,-homogeneous. []
Lemma 6.3.4. dimc(V(ing, (14)) N V(AxE)) < n.

Proof. Let w € RZ; be a generic weight vector such that in,(inz,(/4)) is a monomial ideal.

For € > 0 small enough in,(iny, (/4)) = ing({4) for w = s+ ew € RZ,,.

Choose any monomial order < in Clx,&]| that refines the partial order given by
(w,v) == (1 —ewr,...,1 — ewy; ewr, ..., ew,) € RZ. Tt is clear that ing, . (Az€); = (Axf);
for alli =1,...,d and that ing,,(inz,(14)) = ing(L4). Then

ing(1a) + (Axg) C ing,w(ing, (1) + (AxE))
and so we have that:
E (ing,(1a) + (AxE)) = E<(ing,)(ing, (1a) + (Azg))) D Ec(ing(la) + (AxE))  (6.11)

where E_(I) := {(a,y) € N* : in (P) = ca,2°?, P € I\ {0}} for any ideal
I C Clz,€]. The inclusion (6.11) implies that the Krull dimension of the residue ring
Clz, €]/ (ing, (14) + (AxE)) is at most the one of C[z, £]/(ing(L4) + (AXE)).

Then it is enough to prove that C[z,£]/(ing(L4) + (AxE)) has Krull dimension n. Since

M = ing(I4) is a monomial ideal then:

. bi+1 .
ing(1a) = N(ab,0)es(M) <5f+ L j¢o)

where S(M) denotes the set of standard pairs of M (see [SST00, Section 3.2]). This implies
that

V(ing(La) + (Ax€)) = Ugryeson V(& © J & o) + (AzE)).

By [SST00, Corollary 3.2.9.], the columns of A indexed by ¢ are linearly independent when

(0°,0) € S(M), so the dimension of each component

V& ¢ o)+ (Azg)) =V(&: JE o)+ (5§ j€ o))
is n. L]

Lemma 6.3.5. Under the assumptions of lemma 6.3.3 we have that s is not an algebraic
slope of M(B) along Y, at any point of Y.
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Proof. We know that:

Ch*(Ma(B)) = V(V/ing, (Ha(8))) € V(i (14)) N V(AxE) = V(I + (AxE)).

Hence the s-characteristic variety of M4 (f) is contained in a bi-homogeneous variety
of dimension at most n when the assumptions in Lemma 6.3.3 are satisfied. Since
Ch*(M4(0)) is known to be purely n-dimensional, each irreducible component is an
irreducible component of V(f 5+ (Ax€)) and so it is also bi-homogeneous. Moreover, this
is true not only at the origin x = 0 € R™ but also at any point of Y, because (L); = 0 for
ie€Tand Y, ={x; =0: i ¢ 7}. Then s is not an algebraic slope of M4(5) along Y, at
any point of Y. O

Remark 6.3.6. Observe that after the proof of Lemma 6.3.5 we have the equality in Lemma
6.9.4.

Remark 6.3.7. A consequence of Lemma 6.3.5 is that M 4() has no algebraic slopes along
0eC” atO.

Example 6.3.8. Let A = (a1 ag as ay) be the non-pointed matriz with columns

() () (2 ()

and consider the associated hypergeometric system:
HA(ﬁ) = ]A —|— <ZL‘181 — 3[E383 —|— 25(7404 — 51, —xlf)l —|— anQ — 21’383 —|— 21’4@4 — 52)

where [A = <61828364 — 1, 6183 — 0382,83?82 — (922> and ﬁla 62 e C.

A
ay .CL4
a9 as
%a2 /‘\\%CM
a1 3]
as as
Figure 6.2 Figure 6.3

From Lemma 6.3.5 we deduce that there is not any algebraic slope along a coordinate
subspace different from'Y = {xy = 0} and Z = {x4 = 0}. By Corollary 6.2.2 and using
again Lemma 6.3.5 we know that the unique slope of M 4(3) along Y is |A7 as| = 5/2 with
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o = {3,4} and that the unique slope of Ma(B) along Z is |A-'as] = 6 with & = {1,2}.
Notice that 2as/5 lies in the affine line passing through as and a4 (see Figure 6.2) and that
a4/6 lies in the affine line passing through a; and as (see Figure 6.3). We also can construct

volza(A,) = 2 Gevrey solutions of Ma(B) along Y (it is analogous for Z) as follows.

The matriz B, s

10
s_| 0 1
2 -1
5/2 —3/2

and we consider the vectors v' = (0,0, A;'08) = (0,0, =1 + fa, =01 + 202) and v* =
(07 1714;1(5 - a2)) = (07 L=0B1+ 06— 1, -0 + %(52 - 1))

If none of By — Pa, — 1+ %/62 and — (3 + %(52 —1) are integers then the series ¢, and ¢,
are Gevrey series solutions along Y of M a(3) with index5/2 at any point of Y N{x129 # 0}.
In other case, we can replace the vectors v by v®F := v’ + k(0,1,—1,—-3/2) with k € 2N

big enough in order to obtain Gevrey solutions ¢ix of Ma(B) modulo convergent series at
any point of Y N{z1xo # 0} with index 5/2.

Denote for s > 1:
O = {0 C7: det(A,) # 0,max{|A; ;| : i ¢ 7} =54 e <1,¥j €7}
Then we have the following result.

Lemma 6.3.9. If 0 € Q) # 0 then for all p € Y, N U,:

1) sg is the Gevrey index of a solution of M4(B) in (9)?'7 . for very generic parameters
B e Ch.

2) sq is the Gevrey index of a solution of M4(3) in (’))7'? p/(’)X|yT(<SO)7p for all 3 € C%.

3) If Y. is a hyperplane, then so is the Gevrey index of a solution of Mu(B) in
O)ﬂ?f,p/Olenp for all 3 € C.

Proof. We consider any o € ngf). If 3 is very generic the Gevrey series solutions of M ()
along Y, associated with o, {#¥}x (see Section 6.1), have Gevrey index sy = max{| A, 'a;| :
i €1}along Y, at pe Y. NU,. If §is not very generic we can proceed as in Section 6.2
in order to construct a Gevrey series associated with ¢ with index sq which is a solution of
Mu(B) in (Ox)y(s0)/Ox)y (< s0))p for all p € Y NU,. By a similar argument to the one in
the proof of Lemma 8.0.8 the result is obtained. O
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Assume that Y is a coordinate hyperplane for the remainder of this section. We can
reorder the variables so that Y = {z,, = 0}.

Theorem 6.3.10. For all p € Y the following statements are equivalent:
1) ®% jumps at s = sq.
2) QL0 £,
3) s¢ is an analytic slope of M4(B) along Y at p.
4) so is an algebraic slope of Ma(B) along Y at p.

Proof. We will prove first the equivalence of 1) and 2). Assume there exists o € ngO) £ 0,
then H, = {y € R?: |A ly| = 1} is the only hyperplane containing a; for all i € o and
| A (an/(so + €))] = so/(so +€) < 1, Ve > 0. Hence a,/sy € H, but a,/(so +¢€) ¢ H,,
Ve > 0.

Consider p = {i : a; € H,}, thenn € ! Ve > 0and n ¢ n while pU{n} € &%
so ®% jumps at s = sp.

onversely 1 = () then Vo C B such that |A“a;] < or a
C ly if Q0 = @ then V 1,2 1} such that |A;! 1 for all

i=1,...,n—1 we have |A 'a,| < so or |A 'a,| > so.

Consider ¢ > 0 small enough such that |AJ'a,| < so %+ € if |A 'a,| < sp and
|Ata,| > so + € if |A a,] > so for all simplices o such that |AJ'a;| < 1 for all
i=1,....n—1

Let us prove that CI>f407d—1 _ (I)io:te,d_1'

Assume first that n ¢ n C {1,...,n}. Then:

n € ®0" = 35 C 1y such that |A; a;| =1 for i € n, |[A;'a;| < 1fori ¢ nU{n} and
|A 1a,| < sg <= Jo C n such that |[Ala;| =1 fori € n, |[AJ ;| < 1fori ¢ nuU{n} and
|AS ay| < so £ € <= n € ONFITT

If nenC{l...,n} and dim(conv(n \ {n})) = d — 1 then there exists a simplex
o C 1\ {n} such that det(A,) # 0. Then 5 ¢ & because in such a case |A;'a;| < 1 for
all i # n, |A ta,| = sy and so o € ngO), a contradiction. Moreover 1 ¢ @05~ for € > 0

small enough because |A'a,| is a fixed value while sq & € varies with e.

Finally, if n € n C {1,...,n} and dim(conv(n \ {n})) < d — 1 then there exists a
hyperplane H' = {y € R?: I/(y) = 0} that contains 0 € R? and q; for all i € '\ {n}. We
also can choose the linear function A’ in the definition of H’ such that h’(a,) = 1. In this

case:
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ne oV = n\{n} € 0" and IH” = {y € R*: h"(y) = 1} such that h"(a;) = 1
for i € n\ {n}, h"(a,) = so and h"(a;) < 1 for j ¢ n. This imply for h := h"” £ ek’ that
h(a;) =1 for all i € n\ {n}, h(a,) = so £ € and h(a;) = h"(a;) £ eh'(a;) < 1 for j ¢ n and
¢ > 0 small enough because h”(a;) < 1 for j ¢ . Hence n € ®+4 1,

We have proved that @50 C ®%0=~!  This implies equality since they are (A, s)-
umbrellas of the same matrix A and s = sg£€ > 0 (in particular Uy gt pos(n) = pos(A)

for all s > 0). Moreover, the (A, s)-umbrellas are determined by their facets, so % = ®5=°.

The implication 2) = 3) is a direct consequence of Lemma 6.3.9 if p belongs to the
closure of Y N U, for some o € Qg}%) (for example, if p = 0). Nevertheless, since the
analytic slopes are found in relatively open subsets of the hyperplane Y we can use the
constructibility of the slopes in order to prove the result at any point of Y (see Remark
8.0.9). The implication 3) = 4) follows from Laurent’s index theorem for holomorphic
hyperfunctions [Lau99] (see also [Meb90, 6.6]). Finally, the implication 4) = 1) is nothing
but Lemma 6.3.5. O

Remark 6.3.11. In Theorem 6.3.10, the equivalence of 3) and 4) is a particular case of
the comparison theorem of the slopes [LM99]. Notice that we don’t need to use this theorem
for the implication 4) = 3).

Remark 6.3.12. Notice that if Y is a coordinate hyperplane then every algebraic slope sg of
M4(B) along Y is the Gevrey index of certain Gevrey solutions of Ma(3) along Y modulo
convergent series. Fxample 6.3.13 shows that this is not true for coordinate subspaces of

codimension greater than one.

Example 6.3.13. Let M () be the hypergeometric D-module associated with the matriz

A:103
01 -1

and the parameter vector 3 € C?. In this case n = 3 = d + 1 and so the toric ideal is
principal Iy = (03 — 0x03).

If we take Y = {xy = x3 = 0} then the only algebraic slope of Ma(B) alongY atp €Y
is so = 3/2 (observe Figure 6.4 and see [SWO08] since A is pointed). Nevertheless, we will
prove that if By & Z then for all s > 1, HO(Irrgf)(MA(ﬁ)) =0:

ma,.ms3

For any formal series f =" o fm(21)xy 25" along Y at p = (p1,0,0) €Y then

(Bs = B2)(f) = D (mo —myg = (o) frn(w1) 25"y

meN?2
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and hence (Ey — (2)(f) € Ox, (resp. (Ea — B2)(f) = 0) if and only if f € Ox, (resp.
f=0) because (my —mg — (32) # 0, Yms, m3 € N.

a2
2
302
a
2, 3
3 3
Figure 6.4

On the other hand, if By € Z we can take k € N the minimum natural number such that
v= (0 — 3k,[Bs + k, k) € C x N? has minimal negative support. Since Av = 3 then

RN By — 3K|3m L —3(k+m M htm
by = Z( 151 Js 1A B

=t (k+m)l[Bo + K+ m]y

is a formal solution of M () along Y at any point p € Y with p; # 0. In fact ¢, has
Gevrey index so = 3/2 if 1 — 3k ¢ N and it is a polynomial when B — 3k € N. In this last
case, if we consider v' = v+ k'u with u = (=3,1,1) € L and k' € N such that v} < 0 then
G is a Gevrey series of index so and P(¢,) is convergent along Y at any point p € Y \{0}.

Thus, the algebraic slope sy = 3/2 is the index of a Gevrey solution of Ma(3) along Y
if and only if By € Z. Observe that "the special parameters” are not contained in a Zariski
closed set but in a countable union of them. Note also that 14 is Cohen-Macaulay and then

it 1s known that the set of rank-jumping parameters is empty.

6.4 Regular triangulations and (A, s)-umbrellas.

The aims of this section are to compare the notion of (A,s)-umbrella in [SWO08] with the
one of regular triangulation of the matrix A (see for example [Stu95]), to show that the
common domain of definition of the constructed Gevrey series solutions ¢X is nonempty
when o varies in a regular triangulation and to prove the existence of convenient regular

triangulations.

For any subset o C {1,...,n} we will write pos(o) = Y_,., Rsoa; C R% Recall that we
identify o with {a; : i € o}.
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Definition 6.4.1. A triangulation of A is a set T whose elements are subsets of columns

of A verifying:
1) {pos(o) : o € T} is a simplicial fan.
2) pos(A) = Uyer pos(o).
A vector w € R"™ defines a collection T, of subsets of columns of A as follows:

o CH{ay,...,a,} is a face of T, 0 € Ty, if there exists a vector ¢ € R such that
(c,aj) =wj forall j € o

and

(c,aj) <w;j forall j ¢ o.

Remark 6.4.2. We will say that w € R™ is generic when the collection T, is a simplicial

complex and a triangulation of A.

Definition 6.4.3. A triangulation T is said to be reqular if there exists a generic w € R"
such that T =T,.

Observe that the collection {pos(c) : o € ®%} is a polyhedral fan. When s € RZ
is generic it is a simplicial fan and so ®5 is a triangulation of A. In fact it is a regular

triangulation because for any s € R, we have that ®% = Ts:

o € ® < Jc € RY (c,a;/s;) = 1, Vi € o, and (c,a;/s;) < 1, Vi ¢ 0 —
dc| (c,a;) = s, Vi € 0 and (c,q;) < s;, Vi ¢ 0 <= 0 € T,.

Given a (d — 1)-simplex o € T,, there exists ¢ € R? such that cA, = w, and cAy < wy.
This is equivalent to:

c=w,A! waA;IAg < ws.

o )

But this happens if and only if w € C(0) := {w € R" : wB, > 0} which is an open convex
polyhedral rational cone of dimension n. Then we can write

Clo)={weR": c€T,}
and for any regular triangulation T = T, we have

wo € C(T) == (] Clo).

ceT

Hence C(T) = {w € R": T, = T} is a nonempty open rational convex polyhedral cone.

It is clear that UpC/(T) = R"™ where T runs over all regular triangulations of A and C(T)
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denotes the Euclidean closure of C'(T). More precisely, there exists a polyhedral fan with
support R™ such that T, is constant for w € R™ running in any relatively open cone of this
polyhedral fan. We also can restrict this fan to RZ, and obtain that the (A,s)-umbrella is

constant for s € R, running in any relatively open cone.

Remark 6.4.4. Recall from (6.6) that

U, ={zeC": H:r;l #0, (—log|zi],...,—log|z,|)Bs; > —log R, Ya; € H, \ 0}
i€o
where B, ; is the j-th column of By, i.e. the vector with o-coordinates —A,'a; and -

coordinates equal to the j-th column of the identity matriz of order n—d. Then U, contains

those points x € C* N {[[.., xi # 0} for which

1€0
(=log |21, ..., —log|zy|)

lies in a sufficiently far translation of the cone C(o) inside itself. Then for any regular
triangulation T of A we have that NyerU, is a nonempty open set since it contains those
points x € C*" N {[[;c, i # 0: o € T} for which (—log|x|,..., —log|z,|) € R™ lies in a
sufficiently far translation of the nonempty open cone C(T) inside itself.

Lemma 6.4.5. Given a full rank matriv A € Z™ with d < n and a lattice A with
A C A CZ? there exists a reqular triangulation T of A such that

vola(Ag) = Y vola(A,) (6.12)

c€T,dimo=d—1

Proof. The volume function voly with respect to a lattice A is nothing but the Euclidean
volume function normalized so that the unit simplex in A has volume one. Hence, it is

enough to prove the result for the Euclidean volume.

Take w = (wy,...,w,) with w; = 1 for all i = 1,... n. If all the facets 7 of Ay (with
0 ¢ 7) contain exactly d columns of A then T}, is a regular triangulation of A that verifies
(6.12).

Let us denote by H,, , the unique hyperplane that contains {a;/w; : ¢ € 7} for a facet
T € T,,. Assume now that there exists a facet 7 € T, with at least cardinality d4+1. Then we
can take i € 7 such that H,, ; is the unique hyperplane that contains {a;/w; : j € 7\ {i}}.
Consider all the hyperplanes H,, .- # H, , determined by facets 7' € T,, such that a; ¢ 7.
Then a;/w; lies in the open set N H v and so a; /(w; — €) does too for € > 0 small enough.
This means that we do not modify the sets in 7, that not contain a; via replacing w; by
w;—e>0. Ifq; € 7" €T, and 7"\ {a;} does not determine H,, ,» then 7’ is not modified
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neither with this replacing. We just modify the facets 7 € T, such that a; € 7" and
7'\ {a;} determine H, .. Such a kind of facet is replaced by more than one facet with
vertices contained in 7" and hence each of the new facets contain less columns of A than the
original one. This process finishes in a finite number of steps and yields to a vector w € RZ,
such that T, is a regular triangulation (i.e. there is not any 7 € T, with cardinality greater
than d). Moreover, T,, satisfies (6.12) because (6.12) is satisfied at any step of the process

to construct 1,,. ]

6.5 Gevrey solutions of M 4(3) along coordinate sub-

spaces.

6.5.1 Lower bound for the dimension.

In this section we provide an optimal lower bound in terms of volumes of polytopes of the
dimension of Homp(Ma(8), Ox)y, (5))p, s € R, for generic points p € Y; = {z; =0: i ¢ 7}
and for all 3 € C?. To this end we will use regular triangulations T(7) of the submatrix
A, = (a;)ier of A and Theorem 6.1.14.

Consider the submatrix A, = (a;);er of A. If the rank of A, is d then there exists a
regular triangulation T(7) of A, such that

volza(A;) = > volza(Ay) (6.13)

o€T(r),dimo=d—1

because of Lemma 6.4.5. If the rank of A, is lower than d then this equality holds for any

regular triangulation of the matrix A, since all the volumes in (6.13) are zero.
For all s € R we consider the following subset of T(7):
T(r,s) :={oc € T(r): dim(c) =d—1, aj/s ¢ H} Vj ¢ 1}
The following theorem is the main result in this section.
Theorem 6.5.1. For all 7 C{1,...,n},

dim(c Homp(MA(ﬁ), @ )p 2 VOIZA<AT) (6.14)

X|Yr

for p in the nonempty relatively open set Wy := Y. N (ﬂUGT(T) U,). More precisely,

dime Homp(Ma(5), Oxyy, (5))p > Z volza(Ay) (6.15)
o€T(t,s)
for all s € R and p in the nonempty relatively open set Wrr ) == Y. N (ﬂgeT(T,s) Us,).
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Proof. Wr(ry € Wr(rs) are nonempty relatively open subsets of Y, because T(7) is a regular
triangulation of A, (use Remark 6.4.4 for A, instead of A).

For each fixed (d — 1)-simplex o € T(7,s), we have that |4, 'a;| < 1 for all j € 7
and |A,'a;] < s for all j ¢ 7 and we can construct volza(A,) Gevrey solutions of M 4(3)
of order s along Y, at any point of Y, N U, by Theorem 6.1.14. These volz4(A,) series
{¢k}y are linearly independent because they have pairwise disjoint supports. The linear
independency of the set of all volz4(A,) series ¢X when o varies in T(7) is also clear if
we assume that (3 is very generic (because this implies that they have pairwise disjoint

supports).

If § is not very generic some of the series could be equal up to multiplication by a
nonzero scalar. In such a case one can proceed similarly to the proof of Theorem 3.5.1. in
[SST00]:

We introduce a perturbation 3 — 3+ €3’ with 3 € C? such that 3+ ¢/ is very generic
for € € C with |e| > 0 small enough (it is enough to consider 3’ € C¢ such that (A;'3'); # 0
foralli=1,...,d and o € T(7)).

Consider the set {¢¥ : o € T(7),k € N""?} with volza(A,) Gevrey series solutions
of Ma(B + ¢3') with disjoint supports. We will denote these series by ¢X(3 + ¢/3') in this
proof. It is clear that ¢X(5 + €3') = @y (p1ep) for

vs (B + €8') = v5(B) + vl ().
Here vX(3) has o-coordinates A;!(3 — Azk) and G-coordinates k. Similarly, v2(/') has
o-coordinates A;'3" and G-coordinates 0. Let T be a regular triangulation of A such that
T(7) C T. For any ¢X(3) we can assume without loss of generality that v¥(/3) has minimal

negative support, @x(3) = ¢,x(s) and in,(¢%(0)) = 25 (%) for some fixed generic w € C(T).
Then for two simplices 0,0’ € T(7) we have that ¢,k = C¢ka 3 for some ¢ € C if and

only if v¥(8) = v (3).

Let us denote v = volza(A,). Since [+ ¢’ is very generic, there exist v C(¢)-linearly

independent Gevrey series solutions of M 4(/3) along Y, of the form

vk eB)+u(m
oX(B+eB) = Z Qs (€) 2?5 BB ) Fu(m)

k+meAy
where . .
Geom(€) = [v5 (8) + €05 (5)Ju(m)_
[os(6) + 600(5’) + u(m)u(m
for o € T(7) and k € N"~¢ verifying that ¢%(5) = ¢,x(3). Observe that for all k +m € Ay

we can write
B +l(3) bu(m) _ elogae 7 ols(8)
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Then we have:

O, J?A;IB/ ’Uk u(m
GE(B+ef) = e N g (e)atr DT,

k+meAy,
It is clear that gxim(€) is a rational function on € and it has a pole of order py iy, with
0 < pixim < d. On the other hand

B , A;l ﬁ/
o _ = (log(eg” PO

!

(&
>0

so we can expand the series e#¢X(3 + ¢3') (with g = max{i m} < d) and write it in the
form 37 .. ¢;(x)e’ where ¢o(z) # 0 and ¢;(z) are Gevrey solutions of M () along Y that
converge in a common relatively open subset of Y, for all j.

After a reiterative process making convenient linear combinations of the series and
dividing by convenient powers of €, one obtain v Gevrey solutions of M4 (5 + ¢3’) of the
form 379 ;(x)€ where 1io(x) # 0,4 =1,...,v, are linearly independent. Then we can
substitute € = 0 and obtain the desired v linearly independent Gevrey series solutions of
M4 (B). The logarithms log(z;) just appear for i € ¢ with o varying in T(7) at any step
of the process. Thus the v = volz4(A,) final series just have logarithms log(z;) with i € 7
and they are Gevrey series solutions of M4 () along Y; at points of Wr(;). This proves
(6.14). Moreover, it is clear that the Gevrey index cannot increase with this process and

so (6.15) can be proved with the same argument. O

Remark 6.5.2. The proof of Proposition 5.2. in [Sai02] guarantees that all the series
solutions obtained after the process that we mention in the proof of Theorem 6.5.1 have the

form

Zgy(log(xi) cieT)r’
with g,(y-) a polynomial in Cly* : uw € Ly ].

Remark 6.5.3. Theorem 6.5.1 generalizes [SST00, Theorem 3.5.1] and [Tak07, Corollary
1] (taking 7 = {1,...,n} and s = 1 in (6.15)), that establish that the holonomic rank
of a hypergeometric system (i.e. the dimension of the space of holomorphic solutions at
nonsingular points) is greater than or equal to volza(Aa). A more precise statement than
[Tak07, Corollary 1] is given in [MMWO05]: the holonomic rank of M () is upper semi-
continuous in 3 € C? with the Zariski topology.

Remark 6.5.4. Different reqular triangulations T(7) of A, verifying the condition (6.153)
will produce different sets with volya(A;) linearly independent solutions of Ma(3) in

OX/|37p for p in pairwise disjoint open subsets Wy of Yr. It is natural to ask whether
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UrnyWrey = Yz for T(1) running over all possible regular triangulations T(7) of A;
verifying (6.12). We have that Ut C(T(1)) = R’ and that there exists w,w' € C(T(7))

verifying two-sided Abel lemma:
w+ C(T(7)) € —Log Wr¢ry Cw' + C(T(7))

where Log : C' — R! is the map Log(zy,. .., 1) = (log|z1|,...,log|xi|). This should be
contrasted with [PST05, Lemma 11]. However, an argument similar to that of Remark 8.0.9
proves that (6.14) and (6.15)) hold at generic points of Y.

Remark 6.5.5. If there are no more than d columns of A, in the same facet of A, then

by Theorem 6.1.14 all the series above are Gevrey of the corresponding order along Y, at
any point of Y: N (Noer(r){I Lic, i # 0})-

6.5.2 Dimension for very generic parameters.

In Subsection 6.5.1 we proved the lower bound (6.14) by explicitly constructing volza(A,)
Gevrey series solutions of M 4(3) along Y, in certain relatively open subsets of Y,. The

aim of this section is to prove that equality holds if 3 is very generic.

Let 7 C {1,...,n} be a subset with cardinality I, 1 < [ < n — 1, and recall that we
denote Y, ={z; =0: i ¢ 7}.

Theorem 6.5.6. For generic p € Y, and very generic 3,
dimec Hom(Ma(3), (’)ﬁ)p = volza(A,).

Remark 6.5.7. Theorem 6.5.6 implies that equality holds in (6.15) for wvery generic
parameters 3 € C¢ because the volza(A,) Gevrey series ¢X with o € T(7) have pairwise

disjoint supports and their index along Y, is max{|A, a;|: j & 7}.

Corollary 6.5.8. If 3 € C¢ is very generic then

dime KO (Ma(B), > Y. volza(A,) (6.16)

o€T(1,s)\T(7,1)
for generic p € Y;.

Proof. 1t follows from Theorem 6.5.6, Remark 6.5.7 and the exact sequence 0 —
Hom(Ma(B), Oxy,) — Hom(Ma(B), Oxyy, (s)) — HO(Irrl2 (M4 (). [

Lemma 6.5.9. If f = 3" i fim(z7)2l € Oﬁp is a formal solution of M4(3), then

fm(x,) € Oy, , is a holomorphic solution of Ma, (8 — Azm) for all m € N"~!,
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Proof. 1t is clear that 14 NC[0,] = I4.. Then for any differential operators P € 14, C Cl0,]
we have that

0=P(f)= > Plfunlz:))ay

meNn—L

and this implies that P(f,,(z,)) = 0 for all m € N,

Let © denote the vector with coordinates ©; = x;0; for i = 1,...,n. Then A© — 3 =
ATGT + A?@? — ﬁ and

0=(A0-3)(f) = > (A0 + Aem — B)(fm(w.))al

so fm(z,) must be annihilated by the Euler operators A,0, — (3 — A-m). O

Corollary 6.5.10. If rank(A,) < d and 8 € C? is very generic then

dimcHom (M a(5), 0.

X\Y)

Proof. If rank(A,) < d, then there exists a nonzero vector v € Q% such that the vector vA,
is zero. If (3 is very generic (YA,0, —v(6— Asm) = —y(6— A-m) # 0 is a nonzero constant
that is a linear combination of the Euler operators in the definition of M4 (8 — A-m) and
so Ma, (8 — Asm) = 0. By Lemma 6.5.9, the coefficients in Oy, , of any formal solution
f of My(B) in OXT)Z,p must be solutions of M4 (8 — Azm) = 0. This implies that the
coefficients of f are zero and so f = 0. O

Remark 6.5.11. By Corollary 6.5.10 we have the equality in Theorem 6.5.6 holds when
rank(A,) < d. For the remainder of this section we shall assume that rank(A,) = d and
then I > d.

The following Lemma is a direct consequence of results from [Ado94] and [GZK89].

Lemma 6.5.12. If 3 is very generic and p € Y;, then for all m € N*—!;
dime Hom(Ma. (8 — A=m), Oy, ), < volz,(A;).

Equality holds if p does not lie in the singular locus of Ma_(3) (which does not depend on
B)-

Let us consider T(7) a regular triangulation of A, verifying (6.13).

Lemma 6.5.13. If 3 € C?% is wery generic, then any formal solution f =
Y menn—t Jm(2r )22 € OX/DZ,p of Ma(B), p € Wy C Y5, can be written as follows:

f= Z Z comx H(8- Am)xg“.

c€T(r) meNn—d
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Proof. By Lemma 6.5.12 a basis of Hom(M 4, (38— Azmz, Oy, ;) for p € W,y C Y. is given
by the volz,(A,) series ¢¥ with ¢ running in the (d — 1)-simplices of T(7) and Ay running
in the partition of N/~ (see Remark 6.1.4 and apply it to the matrix A, with [ columns

and o C 7). In particular we obtain that:

—1 B

c€T(T) mgn,ENl—d

and this implies the result. O

Using the partition {Ayxq) : ¢ =1,...,r} of N*~? (see Remark 6.1.4) with r = [ZA : Zo|

we can write the formal solution in Lemma 6.5.13 as:

= Z z’: Z cayk(i)erl,?;l(ﬁ—Ag(k(i)—f—m))x;(i)-i—m‘

oeT(r) =1 k(i)"rmEAk(i)

. 1 . .
Let us denote by vk”™ the exponent of za7 (#~A7k(DFm) K(@)tm

. o . k(i)+m L .
Since Euler operators F; — 3; annihilate every monomial x"~ appearing in f we just

need to use toric operators [J,, = 9"+ — 9"~ with u € L4 = Ker(A)NZ" in order prove that
f is annihilated by H4(3) if and only if the formal series

Z Co k(i)+mxA;1(ﬂ—A;(k(i)+m))xE(i)+m

g

is annihilated by H4(B) for all 0 € T(7) and i =1,...,7.

@Fm _ kG)+m" o 7n it and only if 0 = ¢’ and ¢ = j (because

.. Kk
This is clear because vy "

B is very generic and for fixed 0 we have Lemma 6.1.1). Recall here that for u € L4 any
pair of monomials 2V, 2" verify that 9"~ (z¥) = [v], 2"~ and 0"+ (z*") = [v'],, ¥ "%+ and
2?7U= = gV ~u+ if and only if v — v = u.

1 z(k(7)+m 7)+m . el e .
Moreover, a series Zk(i)—i-meAk(i) Co,k(i)+mxf” (B— Az (k(i)+ ))x;( Hm oo hilated by L4 if

and only if it is cqﬁg(i) for certain ¢ € C.

Thus we obtain that any formal solution of M4(3) along Y; at p € Wy C Y, is
a linear combination of the linearly independent formal solutions ¢¥ with o € T(7) and
Ay € {Ayy 1 <i<volga(A,) = [ZA : Zol} the partition of N"~¢ associated with o (see
Remark 6.1.4). That is, we have a basis with cardinality » yvolza(Ay) (6.19) volza(A;).
This finishes the proof of Theorem 6.5.6.

ceT (T
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6.6 Irregularity of M (§) along coordinate hyper-

planes under some conditions on (A, ().

Assume throughout this section that A is a pointed matrix such that ZA = Z? and that
Y is a coordinate hyperplane. Then we have that the irregularity complex of order s,
Irrg/s)(/\/l 4(0)), is a perverse sheaf on Y (see [Meb04]). This implies in particular the
existence of an analytic subvariety S C Y with codimension ¢ > 0 in Y such that for
allpe Y\ S:

XS (Ma(83)))), = dim(H (Il (M a(8))),) (6.17)

Here x(F) = >_,50(—1)" dim(H*(F)) denotes the Euler-Poincaré characteristic of a bounded
constructible complex of sheaves F € D%(Cy). The characteristic cycle of F € D%(Cy) is

the unique lagrangian cycle

CCh(F) =myTyY + > m 3 Y CTY

a:dimY,<dimY

that satisfies the index formula:

X(F) = Eu(myY + Z (—1)codimy Yol 7))
a:dim Y,<dimY
where Eu denotes the Euler’s isomorphism between the group of cycles on Y and the group
of constructible functions on Y with integer values. Thus by (6.17) we have that for all
peY\S:
dim(H°(Irr{? (M 4(3))), = Eu(CCh(Irr{ (M4 (5)))) = my (6.18)
where my is the multiplicity of 7¢Y in CCh(Irrgf) (Ma(5))).

Y. Laurent and Z. Mebkhout provided a formula in [LM99] to obtain the cycle
CCh(Irrg/S) (M4(f))) in terms of the (14 €)-characteristic cycle and the (s+ €)-characteristic
cycle of M () for € > 0 small enough. By [LM99] in order to compute the multiplicity
my of TyY in CCh(Irrg)(/\/lA(ﬁ))) we only need to know the multiplicity of 7% X and 73 X

in the (1 + ¢)-characteristic cycle of M 4(3) and the (s + €)-characteristic cycle of M4 (/)
with respect to Y for € > 0 small enough.

We are going to use the multiplicities formula for the s-characteristic cycle of M 4(53)
obtained by M. Schulze and U. Walther in [SWO08] in the case when A is pointed and f is

non-rank-jumping. First of all we need to recall some definitions given in [SW0S].

Let us consider &5 57 C 7' € @Z’d_l and the natural projection

Trqp L1 — Z7'[(Z7' N Qr).
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Definition 6.6.1. In a lattice A, the volume function voly is normalized so that the unit

simplex of A has volume 1. We abbreviate vol, . := VOLTT’ (Zr") -

!

Definition 6.6.2. For &% 37 C 7' € 5", define the polyhedra
Py := conv(m, (7" U{0})), Q. :=conv(m, (7'\ 7))
where conv means to take the convex hull.

The following theorem was proven by M. Schulze and U. Walther (see [SW08, Th. 4.21]
and [SWO08, Cor. 4.12]).

Theorem 6.6.3. For generic 3 € C? (more precisely, non-rank-jumping) and 7 € ®%, the
multiplicity of C'y in the s-characteristic cycle of Ma(B3) is:

il = Z (2% Z7) - [(Z7' N QT) : Z7] - vOlrp (Prr \ Qrrr).
TCT' e’
Here C'y is the closure in T*X of the conormal space to the orbit O C Tt X, where O is
the orbit of 1, € {0,1}" ((1,);=1ifa; € 7, (1;); =0 if a; ¢ 7) by the d-torus action:

(CYx Ty X — TgX
(t,8) = &= ("8, 1)
Assume that Y = {z, = 0} by reordering the variables. We are interested in the
multiplicities of 5(2 = T%X and 6%} = Ty X in the r-characteristic cycles of M () for

r=s+eand r = 1+ e with € > 0 small enough. In particular, we need to compute

+e,d  stefn 1+€,0 1+e{n
e st e and plret

It is a classical result that p;? = rank(M4(3)) = volza(A4) for generic 3 (see [GZKS9),
[Ado94]).

From [SWO08, Corollay 4.22] if 7 = ) then

? = volya(U

i rreatil (AL \ conv(7))).

Since ®% is constant for ¢ > 0 small enough we have that all its faces 7 are F-
homogeneous and then volza(conv(7)) = 0. As a consequence,

Nf:&@ — VOlzd<UT,€q)Z+e,d—l (A}_/)) (6.19)

for all € > 0 small enough. Let us compute uf4+€7{n} for s > 1 and € > 0 small enough.

Consider any 7 € @5 such that n € 7. Since € > 0 is generic (¥4 is locally
constant at t = s+ €) we have that a,, ¢ Q(7\ {a,}) and hence there exists certain (d — 1)-
simplices oy,...,0, such that n € 0; C 7, 7 = U;0;, 0, N0 is a k-simplex with £ < d — 2
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({o1,...,0,} defines a triangulation of 7). Then volza(A;) = >"7_, volza(A,,) and we want
to prove that

volza(A,) = [Z*: Z7] - [Z7 N Qay, : Zay) - Vol +(Pinyr \ Qgnyr) (6.20)

Since Zo; C Z7 C Z¢ then volgu(A,,) = (2 : Zo;| = |22 : Z7) - [Z7 : Z0o;] so we only need

to prove:

r

Z[ZT : Zaz] = [ZT N Qan : Zan] : VOl{n},T(P{n},T \ Q{n},T)

i=1
But a, ¢ Q(7\ {a,}) implies that [ZT N Qa, : Za,] = 1 and 7 is F-homogeneous so we

have to prove that:

T

volgny +(Ppnyr) = Z[ZT - Zoy).

i=1
We observe that 7,y - (7U{0}) = (7\{a,})U{0} in Z7/(ZT7NQay) = Z(7\{a,}). Consider
a (d — 2)-simplex o such that Zo = Z(7 \ {an}). Since a, & > ,c .,y Qa; there exists a
hyperplane H such that a; € H for alli € 7\ {n}}, 0 € H and ¢ C H. Recall that the
Euclidean volume of the convex hull of a bounded polytope A contained in a hyperplane
H C R? and a point ¢ ¢ H is the product of the relative volume vol,;(A) of A and the
distance d(c, H) from ¢ to H divided by d!. Hence, we have the following equalities:

VOl (A ) vol(A;) "L vol(A,,
volin +(Pny,r) = Mok = Z vollAs) _

VOlrel(Aa) - VOl(AgU{n}) - _— VOl(Agu{n}) -
Z Z ; :
—Z oi _Z[ZT:ZUZ'].
=1

We have proved (6.20) and as a consequence the following Lemma.

Lemma 6.6.4. Consider s > 1 and 3 non-rank-jumping. Then for all € > 0 small enough:
pitelnd = Z volga(A,).
n676¢2+€

We close this section with the following result about the irregularity along any coordinate
hyperplane Y of the hypergeometric system M 4(3) associated with a full rank pointed
matrix A with ZA = Z<.

Theorem 6.6.5. If 3 € C? is generic (more precisely, non-rank-jumping) then

dlm@(HO(II‘I‘ (./\/lA(ﬁ))) ) = Z volza(A;)

ng¢Ted@s \ oY
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for allp € Y\'S, where S is a subvariety of Y with dim S < dimY'. Then, for very generic
(3 the nonzero classes in Qy(s) of the constructed series ¢¥ with o € T’ form a basis in

their common domain of definition U C Y.
Proof. Using the results of [LM99] we have that
dime (HO(Irr{) (Ma(83)))p) = pi ™ — 0 4 g0 — et
Then by Lemma 6.6.4 and (6.19) we obtain
dime(HO (Il (Ma(8)),) = D volza(Ar) — > volga(A,)

ng¢redste ng¢redlte
But the set of facets 7 € @5 such that n ¢ 7 coincide with the set of facets 7 € ®% such
that n ¢ 7 when € > 0 is small enough because, in that case, for any (d — 1)-simplex o C 7
|A ta,| < s if and only if |4, a,| < s+ € and the value of |A 'a;| < 1 does not depend
on s. On the other hand, {r: n¢ 7€ ®4\} C {r: n ¢ 7€ ®}. Thus, we have the
result. O

Remark 6.6.6. Notice that Theorem 6.6.5 implies that under the assumptions of this
section equality holds in (6.16).

6.7 Remarks and conclusions

1) An anonymous referee of the paper [FC,08] asked us the following question. Is
there some understanding how Gevrey solutions of M4 () relate to solutions of
M n(B") with A" the matrix obtained from A by adding a row of 1’s and then a
column equal to the first unit vector? The idea is to consider a regular triangulation
T for the matrix A" containing a regular triangulation T(7) of A" such that the
added column ay = ((1)) is a vertex of any d-simplex in T(7). For any d-simplex
{ap} Uo € T(7), the dehomogenization (in the sense of [OT07, Definition 2]) of the
volgan (Afagyus) = volza(A,) holomorphic solutions ¢% of M 4.(8") associated with
{ap} U o are Gevrey solutions of M 4(3) with respect to Y, associated with o.

2) Given a holonomic Dx-module M and a smooth subvariety Y C X, Z. Mebkhout
defined the Newton polygon N(M,Y), of M with respect to Y along each irreducible
component Y, C Y of the characteristic variety of Irry (M) (see [Meb96]). More
precisely, if we consider the slopes 1 < s, < ... < s1 < 1 of M with respect to Y and
denote by mq s, the multiplicity of 7y Y in the characteristic cycle of Gry, (Irry (M)),
then N(M,Y), is the convex hull of (0,0) — N? and the points

%

(Z(Sj — Dina,s,;, — Z Mas;)

Jj=1
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for ©+ = 1,...,r. Thus, under the assumptions of Section 6.6 we can compute
the Newton polygon N(Mu(5),Y )y of Ma(B) with respect to Y = {z, = 0}
along Y. To this end, recall that for Y, = Y we have that my, = mq.s =
,uf:rg@ uf4+€’{"} + uf{e’{n} - ,uz_e’ﬁ for € > 0 small enough (applying the results of
[LM99] to the case M = My(f) and Y = {z,, = 0}). Now we can use Lemma 6.6.4
and (6.19) to conclude that my,s =", . /oy volza(A,), where 1 denotes a facet of
A; with 0 ¢ n and H, is the unique hyperplane that contains 7. There are a finite
set of rational numbers 1 < s, < ... < s; < 00 such that a,/s; lie at least in one
hyperplane H, supported in one facet n of A, with 0 ¢ 7. We have that s; = | A, 'a,|
for any (d — 1)-simplex ¢ € H, N{a; : j =1,...,n — 1} with a,/s; € H,. This
implies that N (M4 (5),Y )y is the convex hull of (O 0) — N? and the points

O (s;=1) > volga(A Z D> volza(Ay)

j=1 n: an/s;E€EHy J=ln:an/sj€Hy

fori=1,...,r.

Let us illustrate this comment with an example. Let A be the matrix with columns
a; = (é), ay = (}), as = (g), ay = (‘;’) and consider 7 = {1,2,3}. Then Y, = {24 = 0},
A, is the convex hull of {ay, as,a3,0} C R?* and a4 ¢ A, (see Figure 6.5).

e ds

Figure 6.5

The unique regular triangulation T(7) of A, that satisfies (6.13) is determined by
o1 = {ay,as} and o9 = {a, az}. Notice that ZA = Z?, volz2(A,,) = 1, volzz(A,,) = 2
and 1 < sy = A as] = 2 < 51 = |A;'as| = 3 < +00. Thus, the Newton polygon of
M (B) with respect to Y, at a generic point p € Y; is the convex hull of ((0,0) — N?)
and the points (2, —1) and (4, —3) (see Figure 6.6).
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M5

Figure 6.6 N(Mu4(5),Y:),

3) Corollary 6.2.2 uses that Y, has codimension one because otherwise the irregularity
complex of a holonomic D-module with respect to Y, is not a perverse sheaf and the

irregularity complexes of order s along Y, do not determine a Gevrey filtration.
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Chapter 7

Restriction of M 4(3) with respect to

a coordinate subspace

This Chapter is a joint work with Uli Walther (Purdue University). Our aim here is the
computation of the restriction of M 4(3) with respect to a coordinate subspace under some
conditions to be precise in the sequel. In particular, we generalize [CT03, Th. 4.4] and
Theorem 5.1.3 (that imply Corollary 5.1.4).

Let A = (a1 --+ a,) € Z¥" be a full rank matrix with integer entries. Consider a
subset 7 C {1,...,n} and denote Y, ={z; =0: ¢ ¢ 7}. Let i; : Y; — X = C" denote the

natural inclusion. Then we will prove the following result:
Theorem 7.0.1. If one of the following conditions holds:
i) B € C?is generic and QoA = QsoA,.
ii) 3 € C?is very generic and rank(A,) = d.

then the (derived) inverse image of Ma(3) is given by

0 if k>0
for some subset Q of {Azk : k € Z"~} with cardinality [ZA : Z7| generating ZA|Zr.

Notation 7.0.2. For any subset 7 C {1,...,n} we shall write x, and 0, for (z;)icr and
(0s)ier Tespectively. We will consider the polynomial ring R, = C[0;] and the Weyl Algebra
D, = Clz,][(0;). We also denote S; = C[t% : i € 7| ~ R./I., where I is the toric ideal

associated with the submatriz A..
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We can prove Theorem 7.0.1 using D4 (resp. D, ) instead of the sheaf of linear differential
operators D4 (resp. D) because of the flatness of the fibers of D (resp. D,) with respect
to Dy (resp. D).

Set the Z?-grading given by deg(9;) = —a; = — deg(x;) for i = 1,...,n in D4. This is
compatible with a Zd-grading in Sy, deg(d;) = —a;.

We know that Li*M4(8) is quasi-isomorphic to the Koszul complex Ko(x;- : i ¢
T; Ma(()) as a complex of left D,-modules (see for example [MT04, Proposition 3.1]).

Recall that the actions z;-, i ¢ 7, are endomorphisms of left D,-modules but they are

not endomorphisms of left D 4-modules.

On the other hand we have by [MMWO05, Theorem 6.6] that the Koszul complex
Ke(Es — (3,54) (see Definition 4.2 in [MMWO05]) is a resolution of M 4(/3) whenever 3
is not rank-jumping for A (see [MMWO05, Theorem 6.6]). Thus, we substitute M 4(3) by
Ke(Ea —3,54) in Ko(z;- 1 @ ¢ 7; Mu(5)) obtaining a double complex Cq o = Ko(z;- 1 @ ¢
T Ke(Ea — 3,54)).

Recall that ICo(Ea — 3,54) = PaezaKe(Ea — f — o, (Da ®g, Sa)a) by Lemma 4.3
in [MMWO05]). Notice that x;- sends an element in (D4 ®c9,] Sa)a to an element in
(Da ®gr, SA)ata; and that z;(E4 — f — ) = (E4 — 0 — a — a;)z;. Thus, all the diagrams

in C, o are commutative.

On the other hand, we have the following natural isomorphism of D 4-modules, which
is also observed in [MMWO05],

(Da®r, S4) — Claz| ®c (Dr ®r, Sa)

ZhT kT O @ m — 2l @ (2H0V) @ 5m (7.1)

Remark 7.0.3. The i-th row of the double complex C, 4 is a direct sum of (?) copies of the
complex Ko(x;-: 1 ¢ 7,;Da ®r, Sa). Thus, using the natural isomorphism (7.1), we have

that this row is quasi-isomorphic to a direct sum of (f) copies of the complex:

Ko(wi: i ¢ 7:Clas]) @c (Dy ®p, Sa) (7.2)

Let 7 be the natural projection of C, o to Ke(z;- : @ ¢ 7; M 4(5)) and let n be the natural
projection of Cye to C ®@c Ko(E, — 3,54). Consider the induced morphisms of the total

complexes:

Tot(Cye) —— Tot(Ke(xs 10 ¢ T, Ma(B))) = Ko(i 20 & 75 Ma(B)) (7.3)
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and
Tot(Cye) —= Tot(C @c Ko(Er — 3,54)) = Ko(Ey — 3, 54). (7.4)

Since Ko(E4 — 3,S4) is a resolution of M 4(3) if 8 is not rank-jumping (see [MMWO5,

Theorem 6.6]), we have that both complexes in (7.3) compute Tor?A(%,MA(ﬁ))
e v

and 7 is a quasi-isomorphism. Moreover, 7 is a quasi-isomorphism too because of Remark

7.0.3. Thus, we have the following result.

Lemma 7.0.4. If 3 is not rank-jumping for A then
LitMa(8) = Ku(Er — 6, S1)
as complexes of left D,-modules.

Remark 7.0.5. Let us denote H;(E, — 3,54) = Hi(Ko(E, — 3,54)). For all 3 € C¢,
we also have that i*Mu(B) ~ Ho(E, — 3,S4) because Ma(B) = Ho(Es — B,54),
i5(Ke(Ea—B3,54)) = % Qp, Ke(Ea — 3,54) is quasi-isomorphic to Ke(Er — 3,54)

1ET z; Dy
and i} 1s right exact.

It is clear that Q>0A = Qs¢A, implies that rank(A,) = rank(A) = d and this last
condition is equivalent to [ZA : Z7| < 4o0.

Consider Sy, = C[NA] and S, = C[NA,|. Then the assumption Q>pA = QoA
guarantees that S is a finitely generated Z?-graded S;-module and so it is a toric R,-module
(see Definition 4.5. and Example 4.7 in [MMWO05]). If we don’t assume Qs0A = Q>0A-
but only rank(A,) = rank(A) = d then we have that S, is a weakly toric R,-module (see
[SWO07)).

Notice that there exists a subset Q0 C ZA- with cardinality [ZA : Z7| such that
DreSr(A) C Sa
where S, (\) = t*S,, and there are not more (shifted) copies of S; in Sa \ DrcaS,(N).

If we assume i) we have that the quotient Q) = S4/(®reS-(A)) verifies that dim(Q) < d.
We can consider the long exact sequence of Euler-Koszul homology associated to the short
exact sequence

0 — BreSr(A\) — S4 — Q — 0

By [MMWO05, Proposition 5.3] vanishing of H;(E, — 3,Q) for all i > 0 is equivalent to
—0 ¢ qdeg(Q). This last condition is satisfied by generic parameters vectors § when
Q>0A = QxpA; because dim(Q) < d in that case. For all 5 ¢ —qdeg(Q), we have

Hi(E: — 3,54) ~ Hi(E; — B, @rcaS-(N)) =
OreaHi(Er — 3,5 (N)) = @rcaMi(Er — B+ A, S7)(N)
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for all ¢ > 0. Then, we use that Ho(E; — 5+ A, S;) = M. (68— ) to obtain Theorem 7.0.1.
Furthermore, notice that Hy(E, — S+, S;) = 0 for all £ > 1 if f— X is not rank-jumping for
A, for all X € Q and this implies that L™*i* M (3) = 0 for all £ > 0. If we assume 47) then
the argument is similar if we use [SWO07, Theorem 5.4] instead of [MMWO05, Proposition
5.3]. This finishes the proof of Theorem 7.0.1.

Remark 7.0.6. If M is a holonomic D-module and Y, is non-characteristic for M it is
known that L="i* M = 0 for all k > 1 and that the holonomic rank of M coincide with the
holonomic rank of it M (see for example [MTO04]). We notice that Y, is non-characteristic
for M a(B) if and only if T contains all the columns of A that are vertices of A4.

Example 7.0.7. Let us consider the matric A = (ag a1 as as ay) with a; = (1) for
1=0,1,2,3,4. In this case we have that Q>gANZA =NA. Thus, 14 is normal and hence
Cohen-Macaulay. This implies that the holonomic rank of Ma(8) equals volza(A4) = 4
for all 8 € C?* (see [MMWO05, Corollary 9.2]). Consider 7 = {0,1,3,4} and Y, = {xy = 0}.
In particular, by Remark 7.0.6 we have that the holonomic rank of i* M(B) is 4 for all
B e C2

On the other hand, the toric ideal I. associated with A, is not Cohen-Macauly and
b= (;) is a rank-jumping parameter for Ma_(3). More precisely, the holonomic rank of
M (B) is volz.(A;) = 4 for all B € C*\ {(})} while the holonomic rank of Ma, (B) is 5
for B = (3) (see [ST98]). This implies that for B = (}), Ma,(B8) cannot be isomorphic to
i*Ma(B') for any 3 € C%
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Chapter 8
Appendix

Let us denote Oxy (< s) = UgOxjy(s’) for s € R. For the sake of completeness we

include a proof of the following result.

Lemma 8.0.8. Let M be a holonomic D-module such that there exists a series f €

OX|y(S)p with Gevrey index s > 1 whose class in

(Oxy (5)/Ox1y (< 5))y

1s a solution of M, for all p in a relatively open set U CY. Then s is a slope of M along
Y at any point in the closure of U.

Proof. Any holonomic D-module is cyclic (see [Bjo93, Proposition 3.1.5]). Thus, we can
assume without loss of generality that M = D/Z with 7 a sheaf of ideals generated by
some differential operators Py,..., P, € D(U). Then, by the assumption, there exists
s; < s such that Pi(f,) € Oxjy(si)p, @ = 1,...,m. For s = max{s;} < s we have that
(P(f))™, € (Qy(s'))™ verifies all the left D-relations verified by (P;)7,. Thus, we can
consider its class in H!(Irr{S ) (M)).

Since Y is a smooth hypersurface, Irrgf/)(M ) is a perverse sheaf on Y [Meb90]. In
particular, the support S of the sheaf Hl(Irrgf,)(M)) has at most dimension equal to
dimY — 1, so the relatively open set U’ = U \ S C Y verifies that Hl(Irrgf/)(M))W/ =0

and its closure is equal to the one of U.

In particular the class of (P(f))*, € (Qy(s"))™ in Hl(Irrgf/) (M) is zero. This implies
the existence of h € Qy(s') such that (P;(h))™, = (Pi(f))™, in (Qy(s'),)™. Equivalently,
P;(f — h) is convergent at any point of U’ for all i = 1,...,m, and we also have that f — h

has Gevrey index s because f has Gevrey index s and h has Gevrey index s’ < s.

The last assertion means that

=" € Homp(M, Qy(s))u \ | Homp(M, Qy(s)) v

s'<s
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and therefore s is a slope of M along Y at any point in the closure of U. m

Remark 8.0.9. By the results of [Meb90] there exists a Whitney stratification {Y,}a of
Y such that Hi(Irrg)(M))% are locally constant sheaves for all s > 1 and i > 0. If
Y is an irreducible algebraic hypersurface and Y, are algebraic subvarieties then the set
Y, = Y \ Udimy,<n-1Ya @ a connected stratum (see [Gro62, Théoréme 2.1.]). Thus, if
UNY, is a relatively open set in Y, and s is a slope of M along Y at any point of U, we
have that s is a slope of M along Y at any point of Y,. This implies that s is a slope of M
along Y at any point of Y by Definition 2.4.8 because Y is the analytic closure of Y.
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Resumen en espanol

Esta memoria versa sobre la irregularidad de los D-mdédulos hipergeométricos M4 (/)
(cf. Definicién 3.1.3), introducidos por Gelfand, Graev, Kapranov y Zelevinsky [GGZ87],
[GZK89]. Nuestro estudio se basa principalmente en la construccién explicita de soluciones
Gevrey de estos D-mdédulos a lo largo de variedades de coordenadas y en el uso de resultados

generales de la Teoria de D-modulos.

La memoria consta de una introduccién (Capitulo 1), dos capitulos de resultados
preliminares (Capitulos 2 y 3), cuatro capitulos con resultados originales (Capitulos 4,5,6

y 7) y un apéndice (Capitulo 8).

Comencemos introduciendo algunas nociones y resultados generales de la teoria de
irregularidad de los D-médulos. Sean X una variedad analitica compleja y Dx el haz

de operadores diferenciales lineales con coeficientes en el haz de funciones holomorfas Ox.

Un problema fundamental en el estudio de la irregularidad de cualquier Dx—mddulo
holénomo M es la descripcion de sus pendientes analiticas a lo largo de una hipersuperficie
Y de X (cf. Z. Mebkhout [Meb90]). Una pendiente analitica s > 1 es un salto en la
filtracién Gevrey Irrgf) (M) del complejo de irregularidad Irry (M) (cf. Definiciones 2.4.4
y 2.4.8). La descripcién de las soluciones Gevrey de un D-médulo holénomo a lo largo
de una variedad lisa Z es otro problema fundamental relacionado estrechamente con la
irregularidad. En particular, si Z es una hipersuperficie lisa, el indice de cualquier solucion
Gevrey de M a lo largo de Z no convergente es una pendiente analitica de M a lo largo

de Z.

Por otro lado, Y. Laurent definié las pendientes algebraicas de un D x-mddulo coherente
M a lo largo de una variedad lisa Z (cf. Definicién 2.4.9) como aquéllos nimeros reales
s > 1 tales que la variedad s—micro-caracteristica de M respecto de Z no sea homogénea
respecto de la filtracién por el orden de los operadores diferenciales. Ademas, probd que

las pendientes de M a lo largo de Z son racionales y que el conjunto de ellas es finito (cf.

[Lau87]).

Si M es un D-médulo holénomo y Z es una hipersuperficie lisa, el teorema de
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comparacién de las pendientes [LM99] afirma que las pendientes analiticas y las algebraicas
coinciden (cf. Teorema 2.4.11). Mebkhout ha comentado que desde 1986 se ha propuesto
una definicién de pendiente analitica de un D-moédulo holénomo M a lo largo de una
subvariedad lisa Y usando una explosion p : X — XdeYenX y considerando las
pendientes analiticas del D-mddulo holénomo p*M a lo largo de la hipersuperficie lisa
p~1Y. Sin embargo, también hizo destacar que no conoce resultados significativos relativos

a esta definicién.

Consideremos la variedad analitica compleja X = C" y denotemos D := Dy. También

denotamos 0; := 6‘2, la derivada parcial i—ésima.

Nuestros objetos de estudio son los D-mddulos hipergeométricos M4(3), que estén
asociados a un par (A, ), donde A = (a;;) es una matriz entera d x n de rango maximo
d<nyfB e C?es un vector de pardmetros complejos (cf. Definicién 3.1.3). Un objetivo
general en el estudio de estos sistemas es la descripcién de sus invariantes en términos de

la combinatoria del par (A, ().

El libro [SST00] es una buena introduccién a la teoria de sistemas hipergeométricos.
Estos sistemas son holénomos y la dimension del espacio de sus soluciones holomorfas en un
punto no singular es igual al volumen normalizado de la envolvente convexa de las columnas
de A = (a;)", € Z%" y el origen respecto del reticulo ZA := Y7 Za; C Z¢ (cf. Definicién
6.6.1) cuando (3 es genérico o I4 es Cohen-Macaulay (cf. [GZK89], [Ado94]). En [MMWO05],
[Ber08] y las referencias que se encuentran en ellos, pueden encontrarse resultados precisos
sobre los saltos de rango de M 4(3) al variar 3. Varios autores han estudiado las soluciones
holomorfas de M 4(3) en puntos no singulares (cf. [GZK89], [SST00] y [OT07]).

Expliquemos la estructura de esta memoria. En el Capitulo 2 recordamos conceptos
y resultados generarles sobre la irregularidad en teoria de D-modulos, principalmente
siguiendo [Meb90] y [LM99]. En el Capitulo 3 introducimos los sistemas hipergeométricos
(GGZ8T7], [GZK89], y exponemos algunos resultados conocidos.

En el Capitulo 4 describimos completamente el complejo de irregularidad de los sistemas
hipergeométricos en dos variables por métodos elementales. En el Capitulo 5 calculamos
los haces de cohomologia del complejo de irregularidad de M4(3) a lo largo de su lugar
singular para toda matriz fila de enteros A = (ay---a,) tal que 0 < a7 < -+ < a, (cf.
[FC508]). Nuestro método es reducir el problema al caso de dos variables y usar algunos

teoremas de restriccién y resultados profundos de Teoria de D-moddulos.

La estructura del Capitulo 6 es la siguiente. En la Seccién 6.1 consideramos un simplice

o, i.e., un conjunto o C {1,...,n} tal que la submatriz A, = (a;);c, de A es invertible, y
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usamos ciertas ['-series introducidas en [GZK89] y generalizadas en [SST00] para construir
explicitamente un conjunto linealmente independiente de soluciones Gevrey de M 4(3) a lo
largo de Y, = {z; = 0: i ¢ o}. El cardinal de este conjunto de soluciones es el volumen
normalizado de A, respecto al reticulo ZA. También probamos que tienen orden Gevrey
s = max{|A;a;| : i ¢ o} alo largo del subespacio Y = {x; =0: |A;'a;| > 1} DY, y que

s es su indice Gevrey cuando [ es muy genérico.

En la Seccién 6.2 construimos para cada simplice o y cada vector de pardametros 5 un
conjunto de series Gevrey a lo largo de Y con indice s que son soluciones de M 4(/3) médulo
el haz de series Gevrey con indice més pequeno. Esto implica que si Y es un hiperplano y
s > 1 se tiene que s es una pendiente analitica de M 4(3) a lo largo de Y debido al Lema

8.0.8, probado en el Apéndice.

En la Seccion 6.3 describimos todas las pendientes a lo largo de hiperplanos de
coordenada Y en cualquier punto p € Y (cf. Teorema 6.3.10). Con este propdsito, y usando
algunas ideas de [SWO08]|, probamos que las variedades s—micro-caracteristicas a lo largo de
Y de M 4(/3) son homogéneas respecto a la filtracién por el orden para todo s > 1 excepto
un conjunto finito de valores de s que son posibles pendientes algebraicas. A continuacion,
usamos los resultados de las Secciones 6.1 y 6.2 para probar que toda posible pendiente
algebraica s a lo largo de un hiperplano es el indice de Gevrey de una solucién formal de
M 4(5) médulo series convergentes y, por tanto, son pendientes analiticas. En particular,
probamos que el conjunto de pendientes algebraicas de M 4(3) a lo largo de un hiperplano
de coordenadas esta contenido en el conjunto de pendientes analiticas sin usar el teorema
de comparacién de las pendientes [LM99]. Necesitamos usar entonces que el conjunto de
las pendientes analiticas esta contenido en el conjunto de las pendientes algebraicas para
probar que M 4(3) no tiene més pendientes a lo largo de hiperplanos de coordenadas. Esta
inclusion del teorema de comparacién para las pendientes es consecuencia del teorema del
indice de Laurent para las hiperfunciones holomorfas [Lau99, Corollary 5.3.3] (cf. [Meb90,
6.6]).

M. Schulze y U. Walther [SWO08] describieron anteriormente las pendientes algebraicas
de M 4(83) alo largo de variedades de coordenadas bajo la hipétesis de que ZA = Z¢ y que
exista un semiespacio abierto que contenga todas las columnas ay, ..., a, de A. En [CT03],
[Har04] y [Har03] se pueden encontrar célculos previos de las pendientes de M4(5) a lo

largo de hiperplanos de coordenadas en el caso particular d =1y n=d + 1.

En la Seccién 6.5.1 usamos las series Gevrey construidas en la Seccion 6.1 y ciertas
triangulaciones convenientes de la matriz A para calcular una cota inferior de las

dimensiones de los espacios de soluciones Gevrey de M 4((3) a lo largo de cada variedad

103



de coordenadas Y, = {x; = 0 : i ¢ 7}, 7 C {1,...,n}, en puntos genéricos de Y;.
En particular, la cota inferior obtenida es igual al volumen normalizado de la matriz
A, = (a;)ie, respecto de ZA.

En la Seccion 6.5.2 probamos que la mencionada cota inferior es una igualdad para
parametros S € C? muy genéricos y, por tanto, tenemos una descripcién explicita de la
base del correspondiente espacio de soluciones Gevrey. El ejemplo 6.3.13 prueba que la
condicién impuesta sobre los parametros es necesaria en general para obtener una base.
Ademas, este ejemplo muestra un fendémeno especial: algunas pendientes algebraicas de
M4(B) a lo largo de variedades de coordenadas de codimensién mayor que uno no son
el indice de Gevrey de ninguna solucién formal de M4(f) médulo el haz de funciones

holomorfas restringido a la variedad.

M4s adelante, en la Seccién 6.6 imponemos algunas condiciones (ZA = Z, las columnas
de A se encuentran en un semiespacio abierto, § es genérico e Y es un hiperplano de
coordenadas) con el objeto de usar algunas férmulas de multiplicidades de los ciclos s—micro-
caracteristicos de M 4(3) obtenidos por M. Schulze y U. Walther en [SWO08] y resultados
generales sobre la irregularidad de los D-mddulos holénomos debidos a Laurent y Mebkhout
[LM99] para calcular la dimensién de HO(Irrgf) (M4(B))), en puntos genéricos p € Y. Por
tanto, el conjundo de las clases en HO(Irrgf)(M 4(0))), de las soluciones Gevrey de M 4(/3)
que construimos a lo largo de un hiperplano Y es una base para parametros muy genéricos.
Ademds, puesto que Irrgf) (MA(()) es un haz perverso sobre Y por un teorema de Z.
Mebkhout [Meb90], sabemos que para i > 0 el soporte del i—ésimo haz de cohomologia
de Irrgf)(/\/l 4(B)) estda contenido en una subvariedad de Y de codimensién i. Tenemos
entonces la fibra de los haces de cohomologia de Irrg/s) (M 4(()) en puntos genéricos de Y.
Como consecuencia, se calcula de forma explicita el poligono de Newton de M 4(53) a lo

largo de de Y respecto de Y en puntos genéricos de Y.

Por 1ltimo, el Capitulo 7 (trabajo conjunto con Uli Walther) estd dedicado al célculo
de la restriccion de M4 () a lo largo de una variedad de coordenadas. En particular, se

generaliza el Corolario 5.1.4.
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