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Abstract

Indentation tests are largely exploited in experiments to characterize the mechanical and fracture properties
of the materials from the resulting crack patterns. This work proposes an efficient theoretical and compu-
tational framework, whose implementation is detailed for 2D axisymmetric and 3D geometries, to simulate
indentation-induced cracking phenomena caused by non-conforming contacts with indenter profiles of arbi-
trary shape. The formulation hinges on the coupling of the MPJR (eMbedded Profile for Joint Roughness)
interface finite elements which embed the indenter profile to solve the contact problem between non-planar
bodies efficiently and the phase-field for brittle fracture to simulate crack evolution and nonlocal damage
in the substrate. The novel framework is applied to predict cone-crack formation in the case of indentation
tests with smooth spherical indenters, with validation against experimental data. Then, the methodology is
employed for the very first time in the literature to assess the effect of surface roughness superimposed on
the shape of the smooth spherical indenter. In terms of physical insights, numerical predictions quantify the
dependencies of the critical load for crack nucleation and the crack radius on the amplitude of roughness
in comparison with the behavior of smooth indenters. Again, the consistency with available experimental
trends is noticed.
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1. Introduction

An indentation test consists of a sharp or spherical hard tip pressed onto a sample to be mechanically
characterized. When the tip is removed after indentation, an impression is left on the target material, and
the information on the resulting inelastic deformation can be exploited to assess the mechanical properties
of the substrate, see (Hutchings, 2009) for a review of the development of the method before and after 1950.
For instance, the method has been largely applied to estimate the hardness H of an elasto-plastic material,
being H the material resistance to plastic deformation, defined as the indentation load divided by the area
of impression: H = Pm/AC . In the above equation, AC is the projected contact area between the indenter
tip and the surface evaluated at the indentation load Pm.

In case of brittle and quasi-brittle materials, like glass, silicon, ceramics, etc., cracks develop during
indentation. The dimension of these cracks and the indentation loads are related to other material properties
of the specimen, and in particular, to the fracture toughness (Lawn, 1998).
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Different types of indentation tests can be performed according to the tip’s dimension and shape. Sharp
pyramidal indenters are used in Vickers and Berkovich indentation tests, while the Brinell indentation
exploits a spherical tip. For this reason, indentation tests can be applied to different classes of materials,
from ceramics and metals, to composites and bio-materials, and at different scales. In this regard, the crack
morphology generally depends on the indenter shape: median, radial, and lateral cracks can be recognized
in the post-indentation samples (Johanns, 2014; Schneider et al., 2012).

Spherical indentation tests on quasi-brittle materials (see the sketch in Fig. 1) present the complexity
related to the fact that the contact is non-conformal, i.e., the contact area between the sphere and the
substrate grows with the applied load. Fracture is characterized by the occurrence of cone-shaped cracks.
Moreover, by further increasing the load level, the expanding contact circle may reach and overcome the
position of the surface ring crack, resulting in the generation of secondary ring cracks (Lawn, 1998). The
formation of such cracks has been pioneeringly studied by Hertz (1882) at the end of the 19th Century. By
assuming frictionless contact between two elastic solids, the Hertzian description of the stress field under a
spherical indenter was used to interpret the fracture nucleation and propagation stages. The fracture pattern
develops under the form of a surface ring crack close to the contact boundaries, which then propagates as a
cone-crack in the substrate by further increasing the applied load, see the sketch in Fig. 1. Most of the early
experiments on cone fracture were conducted on glass, notably soda–lime glass, or PMMA, under static
loading or by considering a free-fall of a spherical indenter onto the specimen. The transparency of these
brittle materials allows easy visualization of the crack growth (Lawn, 1998; Lee et al., 2012; Puttick, 1978;
Ritter et al., 1988; Schneider et al., 2012).

(a) (b)

Figure 1: Hertzian fracture topology: (a) sketch of a spherical indentation test and cone-shaped crack; (b) top view and cross-
section of the Hertzian indentation crack in a Silicon Nitride specimen caused by a Tungsten Carbide sphere with Rs = 1.98 mm,
adapted from (Lawn, 1998).

A cone-crack topology can also be obtained by indenting a substrate with a cylindrical flat punch, see
Fig. 2. In this case, the theoretical analysis of the flat cylinder problem is easier than the spherical one since
the type of contact is conformal, i.e., the extension of the contact area does not change with the applied
load, and, in this case, it is given by the punch base area.

An experimental comparison between the flat punch and the spherical indenter geometries has been
conducted in (Mouginot and Maugis, 1985). For both indenting geometries, the experimental tests showed
that the ring-crack radius r0 is always larger than the contact radius at the crack onset ac: the ratio r0/ac
varies from 1.1 to 1.4 for the spherical indentation tests, and it is even higher for the flat punch. Moreover,
the ratio r0/ac was found to be a decreasing function of the indenter radius Rs (Conrad et al., 1979; Mouginot
and Maugis, 1985).

After Hertz, Auerbach (1893) extensively studied the effect of the indenter size of spherical indenters on
cone-crack initiation and gave an empirical linear relationship between the critical indentation load Pc and
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(a) (b)

Figure 2: Indentation fracture caused by a flat-ended cylinder: (a) sketch of the indentation test and crack topology; (b)
cone-shaped crack obtained with a cylindrical punch in soda-lime glass, adapted from (Lawn, 1998).

the sphere radius (Pc ∝ Rs, known as Auerbach’s law). Later, it was noticed that the linear relationship
holds only for small indenters when a is comparable with Rs. The linear dependency has also been questioned
since experimental observations in (Tillett, 1956) showed that Pc asymptotically grows with R2

s for larger
radii.

As an advancement from stress theories that have been applied to assess the critical load for damage
nucleation and to predict the direction of crack growth based on the principle stress direction, see e.g.
(Mouginot and Maugis, 1985) for flat punches, the application of linear elastic fracture mechanics (LEFM)
has been fostered to study more in detail the problem of crack growth. In (Kocer and Collins, 1998; Roesler,
1956; Tillett, 1956), LEFM has been used to simulate the propagation of a crack from an existing flaw placed
on the surface and to assess the evolution of the crack inclination based on the updated stress field during
crack growth, which is clearly different from the estimate based on the uncracked configuration on the base
of stress theories. For more details on the experimental and theoretical analyses of the indentation-induced
fracture, see, e.g., the review articles in (Guin and Gueguen, 2019; Kocer, 2003).

As far as numerical approaches are concerned, an incremental finite element model has been employed
in (Kocer, 2003) to determine the trajectories of the Hertzian cone cracks for various initiation radii by
evaluating the change of the stress field caused by crack propagation. The preferred direction of crack
growth for its incremental extension was determined using the criterion of maximum strain energy release
rate (Sun and Jin, 2012).

Cone cracking resulting from spherical indentation has also been simulated using the extended finite
element method (XFEM) implemented in Abaqus in (Marimuthu et al., 2017) to improve remeshing opera-
tion due to crack growth. A more recent analysis can be found in (Strobl et al., 2017), where the Hertzian
cone crack obtained with a cylindrical punch has been analyzed in the context of Finite Fracture Mechanics
(FFM). This approach requires the simultaneous fulfillment of a strength and a fracture criterion that in-
volve two well-defined material parameters, i.e., the (tensile) strength σc and the specific (i.e. per unit area)
fracture energy Gc (Doitrand et al., 2022; Leguillon, 2002; Leguillon et al., 2018). The FFM approach in
(Strobl et al., 2017) reproduced the decrease of the ratio r0/a and the increase of Pc/a

3/2 with the increase
of the indenter radius, consistently with experiments. The FFM coupled criterion has also been applied
in (Hahn and Becker, 2021) where the authors well reproduced the experimental results in (Mouginot and
Maugis, 1985) using, however, different Gc and σc compared to the values available in the literature.

Cone-shaped fracture has also been recently studied using the Phase-Field (PF) approach. This method
relies on the seminal work by Francfort and Marigo (1998), see also the subsequent developments in (Amor
et al., 2009; Bourdin et al., 2000; Miehe et al., 2010). The PF method is based on Griffith’s idea of the
competition between the elastic and fracture energy counterparts: a pre-existing crack propagates if the
increase in the surface energy necessary to create a new crack front is balanced by the reduction of the
elastic strain energy stored in the body (Griffith, 1921). In the PF variational approach, the fracture
phenomenon is treated as nonlocal damage, and it is solved through an energy minimization which, in the
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Γ-convergence limit, consistently reproduces the Griffith theory of fracture. Therefore, a damage variable
at the material point level is introduced as an additional primary unknown of the problem in addition to
the displacement field. A recent review of the method can be found in (Wu et al., 2020). The approach
has been proved to successfully capture crack nucleation and propagation not only in isotropic linear elastic
materials but also in the case of plasticity (Ambati et al., 2015; Miehe et al., 2016), hyperelasticity (Mandal
et al., 2020; Marulli et al., 2022; Miehe and Schänzel, 2014; Russ et al., 2020) and heterogeneous composites
(Carollo et al., 2018; Dean et al., 2020; Guillén-Hernández et al., 2020). Experimental validation of two
different variants of the PF method, with a rigorous convergence check of the staggered formulation, has
been discussed in (Cavuoto et al., 2022) in relation to PMMA specimen geometries with circular holes
and V-notches, leading to complex patterns featuring crack nucleation, propagation, and even secondary
propagation events.

Concerning indentation problems, the PF approach has been applied to cone-shaped fracture in (Kumar
et al., 2022; Strobl and Seelig, 2019, 2020; Wu et al., 2022), where the authors discussed the most appro-
priate phase-field formulation to simulate cracking of glass substrates due to flat-ended cylindrical punches,
proposing a specific form of the tensile-compressive strain energy specific for the indentation tests (Strobl
and Seelig, 2019, 2020). An alternative formulation has been given in (Wu et al., 2022) with the so-called
phase-field cohesive zone model (PF-CZM), where the geometric crack function and the energetic degrada-
tion function have been adapted to reproduce a brittle fracture law with a linear softening curve. A revised
PF approach can also be found in the work of Kumar et al. (2022), where the authors introduced a strength
of the glass boundary layer on the surface (60 MPa) different from that in the bulk (150 MPa), to account
for microscopical defects located on the material surface, frequent in glass.

According to the above state of the art, it has to be noticed that less attention has been so far devoted
to the case of spherical indentation, which has been discussed numerically using the PF approach only
in (Phase Field Modeling of Hertzian Cone Cracks Under Spherical Indentation, 2020) for the case of a
sphere with radius 1 mm. The problem of spherical indentation requires, in fact, the solution of the contact
problem in addition to the simulation of fracture in the bulk, which implies the solution of a strong nonlinear
mechanical problem with two forms of nonlinearities. In (Phase Field Modeling of Hertzian Cone Cracks
Under Spherical Indentation, 2020), the continuous update of the contact area was addressed by solving the
contact problem with a penalty method, coupling the mechanical and the phase-field evolution equations
using a staggered solution scheme.

To make further progress on the prediction of cone cracks resulting from non-conforming contact, we
propose here an innovative computational approach where we simulate the contact problem with the MPJR
(eMbedded Profile for Joint Roughness) interface finite element formulation proposed in (Reinoso and Paggi,
2014), and extended in (Bonari and Paggi, 2020; Bonari et al., 2022) for frictional and adhesive contact
problems. The method allows considering the contact surfaces as nominally flat, but preserving the actual
geometry of the indenter by embedding its geometry into an internal variable of the interface finite element
to correct the normal gap function. As proved in the previous publications, the method can be successfully
applied to 2D and 3D contact problems with a smooth shape of the indenter (spherical, wavy) and also to
the more challenging contact problem involving a random fine-scale roughness. Therefore, this predictive
methodology precludes the need to explicitly discretize the actual boundary geometry, which is, however,
fully taken into account as an exact correction to the gap function.

In this study, for the simulation of crack growth, the state-of-the-art version of the PF approach to
fracture in (Wu et al., 2022) is also implemented for the continuum substrate. To make both formulations
compatible, the nodal degrees of freedom of the MPJR interface finite elements are augmented to be consis-
tent with the degrees of freedom of the finite elements used to discretize the continuum with the PF, which
involve the nonlocal damage variable in addition to the displacement field components. This methodology
also opens new perspectives in terms of modeling constitutive coupling effects between damage in the bulk
surrounding the surface and the tribological properties, such as friction, wear, and adhesion. Moreover, the
3D formulation has also been detailed for 2D axisymmetric problems since they are particularly relevant to
efficiently simulate spherical indentation fracture reducing the computation cost as compared to full-scale
3D simulations.

The resulting overall computational formulation, equipped with both nonlinearities due to contact and
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fracture, is herein tested for the first time in relation to spherical indentation with smooth or rough spheres.
It is, in fact, known that another critical aspect often neglected in indentation-induced fracture simulations
is the influence of surface morphology on the test results. In this concern, experimental results provide
non-consistent trends depending on the indenter material. In the case of steel indenters, the critical load
and the ring crack radius in the abraded cases were greater than on the as-received surfaces, as reported in
(Conrad et al., 1979; Jyh-Woei et al., 1993; Lu et al., 1995; Mouginot and Maugis, 1985). Similarly, etching
treatments in hydrofluoric acid of the glass surface increased the critical load Pc with respect to the simply
polished surface in (Hamilton and Rawson, 1970). Similarly, steel ball indentation on silicon wafer substrate
in (Jyh-Woei et al., 1993) showed that the critical load was higher for the polished silicon surface than for
the abraded one, while the crack ring radius increased.

On the other hand, in the case of a glass indenter on a glass substrate (Johnson et al., 1973), surface
abrasion was reported not to affect the critical load.

Hence, we expect that mechanical properties and surface roughness resulting from different surface treat-
ments might influence crack formations, and a computational framework accounting for surface roughness
is desirable to gain insight into these issues.

Therefore, the present article aims at developing a new simulation framework with strong mechanical
foundations that allows testing the potential of the PF approach coupled with the MPJR interface formula-
tion for non-conformal indentation cracking problems. The article is structured as follows: Sec. 2 provides
the overall coupled problem formulation, and it includes the treatment of the contact problem in Sec. 2.1 and
the phase-field formulation for fracture in Sec.2.2. The axisymmetric MPJR method, presented for the first
time in this work, is applied in a benchmark test to prove its efficiency against a standard node-to-segment
approach in Section 3. Section 4 shows the application of the computational method to smooth and rough
spherical indenters, with novel insights into the physical problem.

2. Governing equations of the coupled contact and fracture problem

The present section describes the general variational framework of the system which includes: (i) the
contact interaction between two solid domains (Ωi with i = 1, 2) at the contact interface Γc; and (ii) the
treatment of the brittle fracture problem. A crack Γf is assumed to nucleate and propagate in the substrate,
as shown in Fig. 3.

Figure 3: Non-conformal contact between two solids Ω1 and Ω2 that will lead to a contact domain Γc, function of the applied
load or displacement, and an evolving crack Γf ∈ Ω1.

The free energy functional of the system reads:

Π(u,Γf ,Γc) = ΠΩ1
+ ΠΩ2

+ ΠΓf
+ ΠΓc

(1)
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where ΠΩ1 and ΠΩ2 denote the total potential energy of the solids, ΠΓf
is the energy dissipated due to

fracture, and ΠΓc is the contribution due to the contact interactions. Both contributions are discussed in
the following subsections.

2.1. Contact contribution to the weak form

This section focuses on the treatment of the contact problem between the indenter and the substrate.
The MPJR interface finite element formulation introduced in (Paggi and Reinoso, 2018) is herein adopted
to discretize the interface. The formulation is herein specialized to frictionless and adhesiveless indentation
problems, although the method also applies to such scenarios as shown in (Bonari et al., 2022).

The proposed numerical method consists of a zero-thickness interface finite element separating the in-
denter and the substrate. Both materials can be modeled with their actual elastic properties, as in (Reinoso
and Paggi, 2014). It can also be applied to the case of a rigid indenter in contact with an elastic substrate
as a special case. Let the two solids occupy the 3D domains Ωi ∈ R3 with (i = 1, 2) in the undeformed
configuration defined by the reference system Oe1e2e3, as shown in Fig. 4. The position of a point in the
body is given by the vector of its Cartesian coordinates x. The bodies are separated by an interface Γc ∈ R2

defined by the two opposite sides Γ1 and Γ2.

Figure 4: Solid domains Ω1 and Ω2 interacting through the contact interface Γc.

Kinematic and traction boundaries conditions can be prescribed on disjointed parts of the solids’ bound-
aries such that each boundary can be split into three parts: (i) a portion where displacements are imposed,
∂Ωiu; (ii) a portion where tractions t̂ are specified, ∂Ωit; (iii) the contact interface Γi where contact trac-
tions are exchanged. Let the body Ω1 be the substrate with a smooth contact interface, while Ω2 is the
indenter whose contact interface Γ2 has an arbitrary shape that can be described by an analytical function
(e.g., a parabolic or harmonic profile) or by a set of discrete data related to a more complex rough topology.

The core of the approach consists in simplifying the original boundary of the indenter Γ2 into a smooth
surface Γ∗

2, while the actual profile of the boundary is embedded point-wise in its exact form into the interface
finite element formulation. The geometrical difference between Γ2 and Γ∗

2 is mathematically described by a
function z(x) where x = (x, y)T is the coordinate position vector on the surface, see Fig. 5.

This method reduces the contact problem to a nominally flat-to-flat interface Γ∗
c . It is solved by intro-

ducing the displacement field of the solids u(i) = (u(i), v(i), w(i))T such that the configuration of the system
at the contact interface is described by the gap field g = (gn, gt1, gt2)T defined as the projection of the
relative displacement u(1) − u(2) onto the normal and tangential directions of the interface:

gn = n · (u(1) − u(2)), gt1 = t1 · (u(1) − u(2)), gt2 = t2 · (u(1) − u(2)) (2)

The normal gap g∗n is then corrected to restore the exact shape of the indenter as follows:

g∗n = gn + z(x) (3)
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Figure 5: From original boundary to embedded geometry

In the hypothesis of a frictionless and adhesiveless contact problem, the contact traction p = (pn, τ1, τ2)T

reduces to the normal component pn. The associated contact conditions expressed using the standard Hertz-
Signorini-Moreau inequalities read:

g∗n ≥ 0, pn ≤ 0, g∗npn = 0 on Γi (4)

and are treated with a penalty approach (Wriggers, 2006)[p. 118]:

pn =

{
0 if g∗n ≥ 0

kpg
∗
n if g∗n < 0

(5)

where kp is the penalty stiffness.
Equation (5) gives a nonzero contact pressure for all the points within the nominally flat-to-flat interface

where the corrected normal gap is negative valued. Since the exact geometrical corrective term z(x) is
provided at each integration point of the interface finite elements, the surface geometry is embedded directly
inside the derivation of the system’s stiffness matrix without the need for an explicit discretization of its
geometry, which leads to a significant advantage in terms of modeling and discretization of complex surface
topologies.

In the case of spherical indentation problems, it is convenient to specialize the above 3D formulation
by introducing the 2D axisymmetric model to devise a computationally effective method. In such a case,

the displacement field vector of the i-th solid is reduced to two terms, u(i) = (u
(i)
r , v(i)), where ur and v

denote, respectively, the displacement in the radial direction and on the vertical direction. The gap vector
also reduces to two terms, g = (gn, gt), computed according to the first two equations (2). The corrective
term of the normal gap vector is still evaluated according to Eq.(3), where the position vector x coincides
with the radial coordinate r, such that z(x) = z(r). The contact constraint conditions in Eq.(5) still apply,
provided that the contact traction vector p = (pn, τ)T with only two components is considered.

The numerical treatment of the contact problem requires the discretization of the interface, which is
conducted with 8-nodes MPJR interface finite elements in 3D and with 4-nodes interface finite elements in
2D, see Fig. 6.

A conformal mesh discretization is adopted for the continuum at the interface between the two solids.
The solution method has, therefore, the same features as a segment-to-segment contact algorithm with fixed
pairings (Paggi and Wriggers, 2016).

Given the nodal displacement vector ū = (u1, v1, w1, ..., u8, v8, w8)T for a 3D problem, or ū = (ur1, v1, ..., ur4, v4)T

for the 2D axisymmetric one, the normal gap inside the interface finite element can be derived by computing
the relative displacement ∆u between the couples of nodes from the opposite sides of the interface using a
matrix operator L. The result is then interpolated at any point inside the interface element through standard
linear shape functions collected in the matrix operator N. Finally, the normal and tangential components
of the gap are determined using a rotation matrix R defined by the unit vectors n, t1 and t2 in 3D, or just
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Figure 6: 2D and 3D interface finite elements.

Figure 7: Element-wise profile discretization.

n and t1 in 2D, both related to the local reference system of the interface finite element. In formulae, the
discretized gap field can be written as:

g = RNLu (6)

The deviation from planarity of the shape of the indenter profile can be taken into account by computing
the corrected gap vector g∗ at each interface integration point, according to Eq. (3).

If an analytical function is used to define the profile shape, then the correction z(x) is computed by
introducing the coordinates of the interface finite element nodes. Otherwise, if the surface/profile data are
provided as a discrete set of elevations, as from data acquired from a profilometer or AFM, then those data
are provided in input to the software. Such input data are stored in a history variable inside the user element
routine only once, at the initialization of the problem. A mapping routine connects the external data to the
proper node. The finite element discretization at the interface will be related to the spatial spacing of the
external data. If the phase-field problem requires a discretization of the continuum finer than the sampling
spacing of the surface data field at the interface, which can be due to the internal length-scale constraint
of the method (see Sec. 2.2), then a linear interpolation of the input heights field is performed to locally
refine the data assigned to the nodes of the conformal interface discretization. Such an issue is not at stake
in case of pure contact problems without fracture.

The contribution of a single interface finite element to the variational formulation of the system is given
by:

δΠ =

∫
Γ∗
c

δg∗npn dA, (7)

where dA denotes the area of the surface patch in 3D, while it is equal to 2πr dr for the 2D axisymmetric
case.

The equation leads to the following expressions for the element residual vector Rc and the element contact
stiffness matrix Kc associated with the mechanical field to be used in a Newton-Raphson incremental-iterative
solution scheme:

Rc =

∫
Γ∗
c

LTNTRTt dA, Kc =

∫
Γ∗
c

LTNTRTCRNLdA (8)
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where C is the linearized interface constitutive matrix having only one nonzero component C11 = ∂pn/∂gn =
kp for the contact points.

The combined phase-field interface finite element framework has been herein implemented using a mono-
lithic fully implicit solution strategy in the finite element software FEAP8.6 (Zienkiewicz et al., 2013), fol-
lowing the methodology discussed in (Reinoso et al., 2017). To make compatible the interface finite element
with the phase-field finite element for the bulk which presents an additional degree of freedom associated to
the damage variable in each node, the element residual vector and the element stiffness matrix contributions
are expanded by mapping the corresponding terms in reference to the augmented vector of degrees of free-
dom ūe = (u1, v1, w1, ϕ1, ..., u8, v8, w8, ϕ8)T for a 3D problem, or ūe = (ur1, v1, ϕ1, ..., ur4, v4, ϕ4)T for the
2D axisymmetric case. Operatively, this is done by using a matrix operator P whose expression is collected
in the Appendix for the 3D and the 2D cases, P2D and P3D:

Re
c = PRc, (9a)

Ke
c = PKcP

T. (9b)

2.2. phase-field contribution to the weak form

The present subsection deals with the governing equations of the continuum solids in contact, which
are treated according to the phase-field approach for fracture. The spherical indentation problem does not
lead to micro-cracks, phase transformation in the materials, or plasticity, in contrast to sharp indentation.
Hence, the tested materials will be considered linear elastic with nonlocal damage that, in the phase-field
approach, tends to Griffith fracture in the limit of a vanishing internal length scale governing the nonlocality
of the method.

The variational formulation is developed considering a standard solid domain Ωi ⊂ R3 with i = 1, 2
having boundaries denoted by ∂Ωi, see Fig. 8.

(a) (b)

Figure 8: A cracking solid Ωi with a sharp crack Γf in (a) and its phase-field nonlocal regularization in (b).

It is also assumed that the arbitrary solid is subjected to specific body forces b̄, imposed displacements
ū on Ωi,t, and boundary tractions t̄ on Ωi,t, possibly caused by contact. The external potential energy of
the system reads:

P =

∫
Ωi\Γf

b̄ · udV +

∫
∂Ωi,t

t̄ · udA (10)

and the free energy functional of the systems is:

Π(u,Γf ) =

∫
Ωi\Γf

ψ(ϵ) dV +

∫
Γf

Gc dA (11)

Where ψ(ϵ) is the elastic energy density of the body written in terms of the strain field ϵ. The integral∫
Γf
Gc dA identifies the energy dissipation due to fracture events at the crack set Γf , while Gc is the critical
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energy release rate or fracture toughness of the bulk material. This integral cannot be directly evaluated
because the crack set Γf is apriori unknown. According to the variational approach to fracture proposed in
Francfort and Marigo (1998), the problem is solved by substituting the sharp crack with a transition region
from undamaged to broken material. The sharp crack is therefore approximated as a band of finite width
l0 characterized by a crack phase-field parameter ϕ ∈ [0, 1] such that ϕ = 0 denotes the intact material and
ϕ = 1 represents the cracked one. The crack approximation converges to the sharp crack when such a band
thickness approaches zero.

The energy contribution due to fracture is obtained through its smeared nonlocal approximation:∫
Γf

Gc dA ≈
∫
Ωi

Gcγ(ϕ;∇ϕ) dV (12)

Accordingly, the free energy functional expressed in Eq. (11) becomes

Π(u;ϕ) =

∫
Ωi

g(ϕ)ψ(ϵ) dV +

∫
Ωi

Gcγ(ϕ;∇ϕ) dV (13)

where g(ϕ) is called energetic degradation function and acts to reduce the elastic stiffness of the material.
There are different choices for the function g(ϕ). In this work, we used the model introduced by Bourdin

et al. in Bourdin et al. (2000):
g(ϕ) = (1 − ϕ)2 + kres (14)

Where a small positive parameter kres is used to avoid numerical instabilities at the fully cracked state. In
Eq. (13), γ(ϕ;∇ϕ) is the crack surface density function that assumes this generic form for the AT2 approach
(Miehe et al., 2010):

γ(ϕ,∇ϕ) =
1

2

(
ϕ2

l0
+ l0|∇ϕ|2

)
(15)

where l0 is the length scale that defines the width of the diffusive crack band as shown in Fig. 8b.
The reader is referred to Amor et al. (2009), Tanné et al. (2018), Strobl and Seelig (2020), and Cavuoto

et al. (2022) for a specific discussion on how to identify the value of l0 from experimental data.
According to the above state-of-the-art literature, the following variational formulation with respect to

the primary field u and ϕ can be derived:

δΠu =

∫
Ωi

g(ϕ)σ(u) : ϵ(δu) dV (16a)

δΠϕ =

∫
Ωi

dg(ϕ)

dϕ
ψ(ϵ)δϕdV −

∫
Ω

Gc

{
ϕ

l0
δϕ+ l0∇ϕ · ∇δϕ

}
dV (16b)

where δu and δϕ stand for the virtual variation of the displacements and the phase-field, σ(u) is the
Cauchy stress tensor for the undamaged configuration defined as σ = C0 : ϵ with C0 the standard fourth-
order stiffness tensor of an isotropic linear elastic material.

The strain and stress tensors in Voigt notation for the 3D and the 2D axisymmetric models read,
respectively:

ϵ = [ϵx, ϵy, ϵz, γxy, γyz, γxz]
T
, ϵ = [ϵr, ϵz, ϵθ, γrz]

T
(17)

σ = [σx, σy, σz, τxy, τyz, τxz]
T
, σ = [σr, σz, σθ, τrz]

T
(18)

In Eq. (16b), the elastic strain energy has to be split into its positive and negative counterparts to avoid
crack propagation in compression: ψ(ϵ) = ψ+(ϵ) + ψ−(ϵ). Considering only the positive contribution, the
same equation becomes:

δΠϕ =

∫
Ωi

dg(ϕ)

dϕ
ψ+(ϵ)δϕdV −

∫
Ω

Gc

{
ϕ

l0
δϕ+ l0∇ϕ · ∇δϕ

}
dV (19)
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The energy driving the crack growth ψ+ has been derived as in Strobl and Seelig (2020):

ψ+ :=
1 + ν

2E

(
⟨σ1⟩2+ + ⟨σ2⟩2+ + ⟨σ3⟩2+

)
− ν

2E
⟨tr(σ)⟩2+ (20)

where ⟨□⟩ is the Macaulay bracket operator ⟨□⟩+ := (|□| + □)/2, and σi are the eigenvalues of the stress
tensor for the intact material.

The irreversibility of the phase-field evolution has been enforced by following the approach in Miehe
et al. (2010) by using a history-field variable of the maximum positive energy contribution:

H(u, t) = max
t∈[0,T ]

ψ+(ϵ) (21)

where t is the current pseudo-time step in a quasi-static simulation. With this assumption, Eq. (19) becomes:

δΠϕ =

∫
Ωi

dg(ϕ)

dϕ
HδϕdV −

∫
Ω

Gc

{
ϕ

l0
δϕ+ l0∇ϕ · ∇δϕ

}
dV (22)

Isoparametric finite elements with standard bilinear shape functions N I(ξ) have been used for the spatial
discretization of the domain (see Msekh et al. (2015) for more details). The approximated displacement field,
the phase-field, and their variations read:

u =

nd∑
I=1

N IuI , δu =

nd∑
I=1

N IδuI , ϕ =

nd∑
I=1

N IϕI , δϕ =

nd∑
I=1

N IδϕI (23)

where nd stands for the number of nodes for each finite element, uI and ϕI denote the nodal values of the
displacement and phase-field, respectively, which are collected in the corresponding vectors ū and ϕ̄.

The strain field is interpolated through the displacement-strain operator Bu, while the gradient of the
phase-field via Bϕ:

ϵ = Buu, ∇xϕ = Bϕϕ (24)

where Bu needs to be specialised for the 3D and the 2D axisymmetric cases:

Bu =



∂N I

∂x
0 0

0
∂N I

∂y
0

0 0
∂N I

∂z
∂N I

∂y

∂N I

∂x
0

0
∂N I

∂y

∂N I

∂z
∂N I

∂z
0

∂N I

∂x



, Bu =



∂N I

∂r
0

0
∂N I

∂z
N I

r
0

∂N I

∂z

∂N I

∂r


(25)

while Bϕ for the 3D and the 2D axisymmetric cases read:

Bϕ =


∂N I

∂x
∂N I

∂y
∂N I

∂z

 , Bϕ =

∂N
I

∂r
∂N I

∂z

 (26)

11



With the previous interpolation schemes, the residual vectors Ru and Rϕ associated with the displace-
ment and the phase-field, respectively read:

Ru =

∫
Ωi

[
(1 − ϕ)2 + kres

]
BT

uσ dV (27a)

Rϕ =

∫
Ωi

−2(1 − ϕ)NTH dV +

∫
Ωi

Gcl0

[
BT

ϕ∇xϕ+
1

l20
NTϕ

]
dV (27b)

where the volume integration dV is equal to 2πr drdz for the axisymmetric setting. The expressions of the
element stiffness matrices necessary for linearizing the resulting nonlinear system can be found in Msekh
et al. (2015).

3. Benchmark tests: MPJR method for axisymmetric contact problems

The MPJR method described in Sec. 2.1 embeds the spherical (in 3D) or circular (in 2D axisymmetric
problems) indenter geometry into the interface elements, in order to retrieve the exact solution of the actual
problem without the need of explicitly discretizing its shape. For a benchmark test, the reader is referred to
(Bonari et al., 2022) for the Hertzian contact problem between a cylinder and a plane, with friction, under
plane strain conditions.

In the present work, the methodology has been extended to 2D axisymmetric contact problems with
spherical indenters, with the aim of studying the problem of indentation-induced cracks in the substrate.
The contact solution obtained with the MPJR method, for a radius of the sphere Rs = 10 mm, is compared
with: (i) the Hertzian analytical solution for a half-space; (ii) the numerical solution obtained by explicitly
discretizing the spherical indenter following exactly its shape and solving the contact problem with the
standard node-to-segment contact algorithm, with the same value of the penalty parameter.

The FEM models used for the standard spherical contact problem and the MPJR method are presented
in Fig. 9.

Figure 9: Finite element model with the indenter explicitly discretized for the standard node-to-segment algorithm on the left
and the model with the MPJR interface finite elements on the right. The same substrate mesh has been used in both models.

The simulation has been carried out under displacement control, with a maximum displacement perpen-
dicular to the substrate of 0.01 mm, achieved in 100 steps. The substrate size (4 mm wide and 10 mm deep)
is large enough with respect to the contact radius according to Hertz’s theory. Regarding the mechanical
properties, the Young’s modulus of the substrate is 63.40 GPa, and the Poisson ratio is 0.2, while the in-
denter Young’s modulus has been set 100 times higher than that of the substrate to simulate a rigid one.
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No damage has been considered for the solids in this benchmark test. The penalty parameter has been set
equal to 1 × 109 N/mm.

Results of the comparison shown in Figs. 10 and 11 highlight the excellent performance of the MPJR
method, which also outperforms the standard node-to-segment contact algorithm, which presents some
larger error for the first pseudo-time step, due to the contact search algorithm which is avoided in the
MPJR formulation. The solution obtained with the MPJR method for two uniform FE discretizations and
different mesh sizes, he, shows that the accuracy can be improved by mesh refinement, as shown in Fig. 10
where the solutions for elements size he = 0.01 mm and he = 0.005 mm have been compared.

Figure 10: Comparison between the Hertz equation (black line) and the result of the axisymmetric simulations obtained with
a standard node-to-segment contact algorithm and the MPJR interface finite elements and two different mesh size, he.

Figure 11: Reaction force error with respect to Hertz solution obtained using a standard FEM axisymmetric model with a
node-to-segment contact algorithm and the MPJR method with the same mesh size.

4. Simulation of Hertzian cone cracks for smooth or rough spheres

The Hertzian indentation test has been simulated by exploiting the axial symmetry of the model in
a quasi-static framework. The model geometry and boundary conditions are sketched in Fig. 12, which
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compares the real geometry of the test with the model geometry which employs the MPJR interface finite
elements embedding the actual spherical shape in the flat indenter. The model of the substrate consists of
a 25 × 10 mm rectangular domain as in the experimental studies in (Conrad et al., 1979; Jyh-Woei et al.,
1993), which exploits symmetry conditions along the vertical axis on the left.

Symmetry

a

(a) Real geometry.

Interface with embedded sphere pro ile

Nominally lat indenter

(b) Model geometry.

Figure 12: Real geometry (a) and equivalent model geometry based on the MPJR interface finite elements embedding the
actual shape of the spherical indenter (b).

Thanks to the MPJR methodology, the indenter has been modeled as a nominally flat punch using
a layer of interface finite elements embedding the exact spherical profile as an analytical function of the
interface coordinates: z(x) = Rs −

√
R2

s − ∥x∥, where Rs = 1 mm. The simulation is carried out under
displacement control up to a value leading to a maximum contact radius a smaller than the radius of the
sphere. Therefore, for this model, the portion of the interface embedding the spherical profile has been set
equal to 0.5 mm, corresponding to the size of the refined FE discretization in Fig. 13, which is also much
larger than the maximum contact radius reached in the simulation.

Figure 13: Discretization of the indentation test with the magnification of the refined area having a characteristic elements size
he = 0.0025 mm.

The material properties of the soda-lime glass substrate have been taken from (Conrad et al., 1979) and
reported in Tab. 1. The fracture energy of the glass has been estimated to 0.009 N/mm in (Mouginot and
Maugis, 1985).

A discussion on the appropriate value for l0 and the effect of the choice on the crack pattern can be found
in Strobl and Seelig (2019), (Wu et al., 2022), where different values of l0 and glass tensile strength ranging
between 50 MPa and 150 MPa have been tested in the simulations and compared with experimental data for
the case of flat-ended cylindrical indenters. The authors showed that the critical displacement required for
the crack nucleation increases with σc, while the ring radius r0 decreases when the tensile strength increase.
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Moreover, according to Strobl and Seelig (2020), the length scale parameter has to satisfy another
criterion: it has to be chosen small enough to capture the extension of a spontaneous ring crack on the
surface given in (l0 ≤ 0.04 mm).

Considering both aspects, the length scale parameter has been set equal to 0.01 mm; it corresponds
to a tensile strength of the glass of 77 MPa according to the well-known formula for the AT2 phase-field

approach to correlate the strength to the other model parameters: σc =
√

27
256

EGc

l0
. As shown in the

following paragraph, the value l0 = 0.01 mm allows a good reproduction of the experimental trends, and the
phase-field discretization of the model has been refined where cracks are expected to nucleate (element size
he ≤ l0/4 = 0.0025 mm).

Young’s Modulus Poisson Ratio Fracture energy Tensile strength Length scale
Glass 63.40 GPa 0.20 0.009 N/mm 77 MPa 0.01 mm

Table 1: Mechanical and fracture properties of the substrate taken from Conrad et al. (1979); Mouginot and Maugis (1985).

As already stated, we remark here that, even though the model in Fig. 18 shows a flat indenter, the
interface finite elements exactly embed the spherical profile shown in Fig. 14.

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

Figure 14: Profile of the spherical indenter with radius 1 mm.

The vertical displacement field plotted at different pseudo-time steps is shown in Fig. 15, with the
expected Hertzian distribution correctly reproduced (see also Bonari and Paggi (2020) for more details on
the analysis of the stress field for this benchmark solution).

The crack develops with its typical conical shape, as shown in Fig. 16. The contour plots presented in
this section show only a portion of the entire domain to evaluate the crack pattern better. In order to clarify
this aspect, the proportion between the dimension of the entire domain and the detail of the crack pattern
is shown in Fig. 17.

The fracture evolution at different pseudo-time steps is shown in Fig. 18 for different values of the imposed
far-field displacement ū.
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(a) ū = 5.2 × 10−3 mm (b) ū = 5.4 × 10−3 mm

(c) ū = 6.5 × 10−3 mm (d) ū = 8.4 × 10−3 mm

Figure 15: Snapshots of the contour plots of the vertical displacement component for the indentation test with a sphere of
radius Rs = 1 mm. In (d), the displacement discontinuity due to fracture is evident from the jump from blue to red colors.

Figure 16: 3D post-process view of the 2D axisymmetric crack pattern where fractured finite elements with ϕ ∼= 1 have been
removed, for ease of visualization, at a far field vertical displacement of ū = 0.01 mm.
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Figure 17: Crack pattern due to the indentation with a sphere having R = 1 mm shown in the entire domain and in a magnified
view.

(a) ū = 5.2 × 10−3 mm (b) ū = 5.4 × 10−3 mm

(c) ū = 6.5 × 10−3 mm (d) ū = 1.× 10−2 mm

Figure 18: Snapshots of the fracture evolution for the indentation test with a sphere radius 1 mm.
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A quantitative analysis of the results shows that the interface contact pressure increases according to
the Hertzian pressure distribution as shown in Fig. 19(a), where the red curve corresponds to the crack
onset. For the same pseudo-time steps, the phase-field variable evolution along the interface is shown in
Fig. 19(b). The contact pressure and the phase-field plots are used to evaluate, respectively, the contact
radius at crack nucleation, ac, and the ring crack radius, r0. The contact radius at crack nucleation is defined
by the coordinate where the contact pressure becomes vanishing after having been negative valued, for the
red curve in Fig. 19(a) that corresponds to the first point of the interface where the phase-field variable
reaches unity. The coordinate of that point, which can be assessed from Fig. 19(b), gives the ring crack
radius, r0. Hence, the propagation of the crack outside the contact area can be clearly noted in Fig. 19 by
comparing the two red curves which gives r0/ac = 1.28.

(a)

(b)

Figure 19: Contact pressure in (a) and phase-field variable in (b) along the interface at different pseudo-time steps for the
indentation test with Rs = 1 mm. The red curves correspond to the variables at the point of crack nucleation.

The effect of the sphere radius on the critical load causing crack nucleation has been investigated by
considering five cases with a radius Rs varying from 1 to 7.5 mm. The introduction of the interface finite
elements allows changing the spherical indenter radius without changing the model geometry since the
modified spherical geometry is embedded into the finite elements and analytically defined as a function of
its radius.

The results of the simulations are collected in Fig. 20 where current simulations are compared with the
values obtained in the experimental campaign in (Conrad et al., 1979) for smooth spheres. This graph shows
a very satisfactory agreement between the experimental and numerical data.
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Figure 20: Critical load variation with respect to the sphere indenter radius and comparison with experimental data from
Conrad et al. (1979) for the case of as-received (smooth) specimens.

The ring crack radius r0 is always greater than the critical contact radius ac, consistently with results in
(Conrad et al., 1979; Jyh-Woei et al., 1993; Mouginot and Maugis, 1985), see the plots in Fig. 21 where the
ratio r0/ac is related to the indenter radius, Rs.

Since no experimental data are available in (Conrad et al., 1979), the simulations results have been
compared in Fig. 21a against the indentation tests presented in (Jyh-Woei et al., 1993) where the authors
used the same type of glass and test geometry for the specimens. In this case, the scatter in the experimental
data does not allow to confirm the obtained numerical trend. However, although a one-to-one comparison is
not possible, the predicted trend is consistent with that found in the experiments in (Mouginot and Maugis,
1985) for flat-ended cylindrical punch (Fig. 21b, upper panel) and for spherical indenters on glass specimens
abraded with 1000 grit silicon carbide paper (Fig. 21b, lower panel).

Although those experimental trends have been obtained with glass specimens of different sizes (50 mm×
50 mm × 25.4 mm) and material properties (borosilicate glass with E = 80 GPa, ν = 0.22 ) than those used
in the simulations in Fig. 21a, the trends are fully consistent and confirm that the ratio r0/ac decreases by
increasing the indenter radius.

The variation of the ratio r0/ac has been related to the inverse of the contact radius 1/ac in Fig. 22a and
compared with the experimental data in (Conrad et al., 1979) which show again a very high scatter. For
this reason, the trend resulting from the numerical model has been compared also with that resulting from
the experimental tests in (Mouginot and Maugis, 1985) for different types of indenter, see Fig. 22b. It has
to be noted that in the case of a flat-end cylindrical punch, the radius of the indenter Rs always coincides
with the contact radius, which does not happen in the case of non-conformal contacts, as explained in the
introduction.

The data on the spherical indenters in Fig. 21b, as well as the investigations in (Conrad et al., 1979;
Jyh-Woei et al., 1993), show that the surface treatment (abrasion with 1000 grit SiC paper, or with 7µm
diamond paste) influences the indentation tests and increases the r0/ac ratio. This latter aspect will be
treated in the following paragraphs dealing with the case of rough indenters.
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(a) Simulations results compared with the experi-
mental data in (Jyh-Woei et al., 1993) on as-received
glass substrates.

(b) Indentation of flat-ended cylinders and spheres
on abraded glass substrates with 1000 grit silicon
carbide paper in (Mouginot and Maugis, 1985).

Figure 21: Ratio between the crack radius and the critical contact radius vs the indenter radius. The experimental data in (b)
concern indentation tests on glass specimens with different mechanical and geometrical properties.

(a) Results of the numerical simulations compared
with the experimental data in Conrad et al. (1979).

(b) Indentation of flat-ended cylinders and spheres
on glass abraded with 1000 grit SiC paper or 7µm
diamond paper in Mouginot and Maugis (1985)

Figure 22: Ratio between the crack radius and the critical contact radius vs the inverse of the contact radius.

To further exploit the advantage of the present approach, which enables to embed any indenter profile
along a nominally flat interface and efficiently solve the contact problem, we now consider the effect of
surface roughness on cone indentation fracture, using the same axial symmetric finite element model for the
smooth sphere, but modifying the embedded indenter profile.

Generally, a real rough surface does not present axial symmetry; however, a 3D indentation model
requires a high computational effort compared to the axisymmetric configuration. For example, the 2D
axisymmetric model of the smooth spherical indentation test presented at the beginning of this section
requires a computational time of around 30 min to solve 100 pseudo-time steps up to an imposed displacement
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of 0.01 mm. In the case of a 3D simulation of the same problem, because of the drastic increase of the
degrees of freedom, parallel computing facilities are required: with 20 cores, the CPU time for a 3D FE
simulation becomes comparable with the CPU time for a single CPU calculation of the 2D axisymmetric
problem. Moreover, for the 3D simulations of a rough sphere, the CPU time increases up to 5 h, even
with parallel computing, because of the more complex damage pattern, as shown later. For this reason,
the 2D axisymmetric configuration has been chosen for the simulations in this work. To the best of the
authors’ knowledge, even the 2D axisymmetric solutions represent the first attempt to investigate the effect
of roughness for this kind of complex nonlinear coupled problem involving contact and fracture.

For this purpose, one rough surface has been generated using the Random Midpoint Displacement (RMD)
algorithm already widely exploited in the contact mechanics literature to simulate realistic surface roughness
(Paggi and Ciavarella, 2010), with a spatial resolution of 2.5µm, and fractal dimension D = 2.1. From the
numerically generated rough surface, one profile has been extracted and superimposed to the spherical shape
of the smooth indenter (see the profile in Fig. 23(a) and the resulting shape of the indenter in Fig. 23(b).

In the experimental data in (Conrad et al., 1979; Jyh-Woei et al., 1993; Mouginot and Maugis, 1985),
the authors did not directly measure the specimens’ roughness due to the abrasion process; however, they
reported the presence of defects on the surface of a few microns after the treatment with grit papers or
diamond paste. The rough profile chosen for the simulation has the statistical parameter Rz equal to
1.3µm, which measures the average peak-to-valley distance of the profile.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-6

-4

-2

0

2

4

6
10-4

(a) Profile obtained with RMD, with Rz = 1.3µm and sampling 2.5µm.

(b) Final profile of the indenter embedded into the interface.

Figure 23: Profile of the rough spherical indenter (b) embedded into the MPJR interface finite elements, obtained by superim-
posing the rough profile (a) to a sphere of radius Rs = 5 mm.

The fracture evolution for the case with rough indenter radius Rs = 5 mm is detailed in Fig. 24. The
crack propagates with a conical shape, as in the case of a smooth spherical indenter. However, the presence
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of roughness causes local damage at different points on the glass surface before the main crack propagates.

(a) ū = 9.2 × 10−3 mm (b) ū = 9.3 × 10−3 mm

(c) ū = 9.6 × 10−3 mm (d) ū = 0.01 mm

Figure 24: Evolution of damage and the main crack for the indentation of glass with a rough spherical indenter with Rz = 1.3µm.

The local damage can also be seen by looking at the phase-field variable plotted along the interface
in Fig.s 25, 26 and 27 together with the contact pressure at the interface. In Fig. 25, the two variables
have been plotted at different time steps until the phase-field variable is ≈ 1 at the interface coordinate
x = 0.175 mm, see the blue curve corresponding to the imposed displacement ū = 9.2 × 10−3 mm. The main
crack does not propagate from that point but from the last peak of the phase-field red curve in Fig. 26 at
x = 0.285 mm, representing the ring radius r0. This point is again outside the contact area, as in the case
of the smooth indenter, since the last point in contact has a radial coordinate x = 0.2625 mm. No further
damage along the interface can be seen after the main crack propagates, as shown in Fig. 27.

The case of the rough indenter has been compared with the smooth case, considering the same spherical
radius Rs = 5 mm, in terms of contact pressure and phase-field along the interface at the onset of main crack
propagation, which happens at an imposed displacement equal to ū = 0.92 mm for the smooth sphere and
ū = 0.93 mm for the rough indenter. The comparison shown in Fig. 28 highlights that roughness induces
stress concentrations and damage at the points in contact, which do not occur for smooth profiles.

The rough profile presented in Fig. 23 has been rescaled to simulate three different maximum peak-to-
valley distances Rz = 1.3µm, Rz = 2.6µm, and Rz = 5.2µm. The comparison with the corresponding
smooth spherical indenter shows that the ring crack radius increases by amplifying roughness, see Fig. 29
where the predictions for the smooth case and the three rough profiles are shown. For each case, the contour
plots are taken at the time step corresponding to the crack propagation.

The presence of roughness also affects the critical load for the crack initiation, as highlighted in Fig. 30.
The result is in line with the experimental data in (Conrad et al., 1979), where an increase of the critical load
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(a)

(b)

Figure 25: Rough spherical indenter with Rz = 1.3µm: (a) contact pressure; (b) phase-field variable for different pseudo-time
steps up to the occurrence of the first point along the interface with ϕ ≈ 1 (blue curve, corresponding to a displacement
ū = 9.2 × 10−3 mm).

in the case of abrasion of the glass substrate was reported. In particular, for the indenter radius Rs = 5 mm
analyzed here, (Conrad et al., 1979) reported an increase of the critical load from 210N to 300N in case
of abrasion with 600 SiC paper, while the simulations show an increase from 173N to 346N for the rough
profile with Rz = 5.2µm.

23



(a)

(b)

Figure 26: Rough spherical indenter with Rz = 1.3µm: (a) contact pressure; (b) phase-field variable for different pseudo-time
steps from the occurrence of the first point along the interface with ϕ ≈ 1 (blue curve), up to the situation corresponding to
crack propagation for a higher displacement equal to ū = 9.3 × 10−3 mm (red curve).
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(a)

(b)

Figure 27: Rough spherical indenter with Rz = 1.3µm: (a) contact pressure; (b) phase-field variable for different pseudo-time
steps from the occurrence of crack propagation (red curve) onward, up to an imposed displacement equal to ū = 0.01 mm.
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(a) Contact Pressure comparison. (b) Phase-field variable comparison.

Figure 28: Comparison between smooth and rough spherical indenters (Rs = 5 mm) at the onset of crack nucleation, respectively
at the imposed far-field displacements of ū = 0.92 mm and ū = 0.93 mm in the two cases.
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(a) Smooth spherical indenter, ū = 0.0089 mm. (b) Rough spherical indenter with Rz = 1.3µm,
ū = 0.0093 mm.

(c) Rough spherical indenter with Rz = 2.6µm,
ū = 0.012 mm.

(d) Rough spherical indenter with Rz = 5.2µm,
ū = 0.022 mm.

Figure 29: Radial position of the cone-shaped crack (r0) on the surface of the glass substrate due to smooth and rough indenters
with radius Rs = 5 mm and different amplitude of roughness, Rz .

Figure 30: Reaction force vs. far field imposed displacement for the smooth and rough indenters (radius of the sphere
Rs = 5 mm).
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5. Conclusion

In this work, the simulation of cone-shaped cracks generated by spherical indentation tests has been
successfully addressed by combining the MPJR interface finite elements to solve the non-conforming contact
problem and the PF finite elements to predict nonlocal damage and fracture in the substrate. Coupling
these two sources of nonlinearities, namely the contact mechanics problem and the fracture mechanics one,
was one of the major challenges and contributions of the present work from the methodological point of
view. In this regard, the MPJR interface finite elements have been demonstrated to be particularly efficient
in treating complex interface profiles, as in the case of the simulated rough spherical indenters, where no
previous solutions were obtained in the related literature.

This computational framework allowed us to assess the indenter radius influence on the indentation
cracking. The comparison with the benchmark experimental results from Conrad et al. (1979) demonstrated
that the current variational formalism enables reproducing the critical load for crack initiation and the major
features of the physical problem.

The influence of roughness at the contact interface has been investigated by considering three different
spherical rough profiles with increasing roughness amplitude. The comparison with the smooth case showed
an increase in the critical load for crack propagation and in the ring crack radius by increasing roughness,
in agreement with the experimental trends available in the literature. As an additional main insight into
the problem, we obtained that the presence of roughness can induce higher stresses in the contact zone and
therefore localized damage approaching ϕ = 1 in that area, which does not occur in case of smooth contacts.
However, the origin of the propagating crack leading to cone fracture was always found outside the contact
area.

In terms of perspectives for future research, the present cases exploited the axial symmetry of the spherical
indenter, which is computationally convenient. The framework is already suitable for addressing 3D models
where the entire rough surface can be incorporated into the FE simulations, even though it requires a high
computational effort. A current line of research aims at developing a further HPC-enhanced framework to
speed up the simulations. Moreover, the developed framework opens new research directions in the field of
indentation-induced fracture, also in the case of coated, FGM, or elasto-plastic substrates.
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Appendix

To map the 3D nodal displacement vector ū = (u1, v1, w1, ϕ1, ..., u8, v8, w8, ϕ8)T into a global field vector
also including the nodal values of the phase-field damage variable, ūe = (u1, v1, w1, ϕ1, ..., u8, v8, w8, ϕ8)T,
the following matrix operator P3D (32 × 24) is introduced:

ūe = P3Dū, (28)
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whose expression reads:

P3D =



I3×3 O3×3 O3×3 O3×3 O3×3 O3×3 O3×3 O3×3

O1×3 O1×3 O1×3 O1×3 O1×3 O1×3 O1×3 O1×3

I3×3 O3×3 O3×3 O3×3 O3×3 O3×3 O3×3 O3×3

O1×3 O1×3 O1×3 O1×3 O1×3 O1×3 O1×3 O1×3

I3×3 O3×3 O3×3 O3×3 O3×3 O3×3 O3×3 O3×3

O1×3 O1×3 O1×3 O1×3 O1×3 O1×3 O1×3 O1×3

I3×3 O3×3 O3×3 O3×3 O3×3 O3×3 O3×3 O3×3

O1×3 O1×3 O1×3 O1×3 O1×3 O1×3 O1×3 O1×3

I3×3 O3×3 O3×3 O3×3 O3×3 O3×3 O3×3 O3×3

O1×3 O1×3 O1×3 O1×3 O1×3 O1×3 O1×3 O1×3

I3×3 O3×3 O3×3 O3×3 O3×3 O3×3 O3×3 O3×3

O1×3 O1×3 O1×3 O1×3 O1×3 O1×3 O1×3 O1×3

I3×3 O3×3 O3×3 O3×3 O3×3 O3×3 O3×3 O3×3

O1×3 O1×3 O1×3 O1×3 O1×3 O1×3 O1×3 O1×3

I3×3 O3×3 O3×3 O3×3 O3×3 O3×3 O3×3 O3×3

O1×3 O1×3 O1×3 O1×3 O1×3 O1×3 O1×3 O1×3



, (29)

where I3×3 is a (3 × 3) identify matrix, O3×3 is a (3 × 3) null matrix, and O1×3 is a (1 × 3) null matrix.
For the 2D axisymmetric problem, the displacement field ū = (u1, v1, ..., u4, v4)T is mapped onto the

vector ūe = (u1, v1, ϕ1, ..., u4, v4, ϕ4)T with the following matrix operator P2D:

P2D =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0



, (30)

The above operators have the fundamental property PTP = I and the following inverse relation holds:
ū = PTūe.
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