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Abstract—This paper presents a sensory fusion neuromorphic
dataset collected with precise temporal synchronization using a
set of Address-Event-Representation sensors and tools. The target
application is the lip reading of several keywords for different
machine learning applications, such as digits, robotic commands,
and auxiliary rich phonetic short words. The dataset is enlarged
with a spiking version of an audio-visual lip reading dataset col-
lected with frame-based cameras. LIPSFUS is publicly available
and it has been validated with a deep learning architecture for
audio and visual classification. It is intended for sensory fusion
architectures based on both artificial and spiking neural network
algorithms.

Index Terms—Neuromorphic dataset, sensory fusion, dynamic
vision sensor, neuromorphic auditory sensor

I. INTRODUCTION

Sensor fusion is known as the process of combining sensor
data derived from several sources of the same reality such that
the fused information has less uncertainty than when these
sources are used individually. In [1] authors demonstrated that
combining radar and visual information improves the accuracy
in vehicle detection systems, where radar information is used
to focus on the important part of the visual information. In
the healthcare field sensory fusion improves decision-making
when combining data from different sensors, like in [2], where
up to eight data sources are combined for the detection of
diabetes. In urban search and rescue robots the sensory fusion
goes further and combines proprioceptive (inertial measure-
ment unit and tracks odometry) and exteroceptive sensors
(omnidirectional camera and rotating laser rangefinder) to
improve the accuracy [3]. In [4] a review of sensory fusion for
quality control in manufacturing is presented, where different
kinds of sensors are combined including visual, acoustic, laser,
vibration, thermal, etc. In general, data fusion is a challenging
task because of a several difficulties. The majority of these
difficulties arise from the data being fused, imperfection and
diversity of the sensor technologies, and the nature of the
application environment as data imperfection, outliers and spu-
rious, conflicting, modality, correlation, alignment, association
data, operational timing, etc. [5].
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Living organisms usually have several sensory mechanism
to interact with the real world. Those with neural architectures,
learn from the experience taken from sensory systems and
their combination or fusion. Neuromorphic engineering is
devoted to study these and others neural systems in biology by
the implementation of engineering systems that mimics those
present in biology [6]. One of those neural architectures is
in charge of audio-visual sensory fusion, where the temporal
synchrony is one of the strongest binding cues in multi-sensory
perception [7] [8], where the consideration of a temporal
window is of utmost importance for this type of sensory fusion
[9]. This window temporal length decreases in humans with
the age [10].

Audio-visual sensory fusion developments with neuromor-
phic engineering open the range of applications i.e, Mobile
robotics, Internet of Things (IoT), Edge Computing, etc where
low latency and low power consumption are important factors.
The use of spiking sensors and spiking neural networks will
considerably improve these characteristics over conventional
sensors and artificial neural networks.

This paper is focused on the collection of a neuromorphic
audio-visual dataset for machine learning applications around
lip reading. It takes into account the temporal synchronization
of the measured data using specific neuromorphic sensors
and hardware tools. The dataset is collected from people of
different nationalities and age, speaking the number of Natural
Language Processing (NLP) words and one English-language
pangram ”The quick brown fox jumps over the lazy dog” for
training of learning architectures. The dataset is publicly avail-
able and it has been tested, for validation, with convolutional
neural networks. To the best of our knowledge, there is no
previous neuromorphic dataset recorded with spiking sensors
and specific logic to ensure temporal synchronization.

II. MATERIALS AND METHODS

This section explains the setup for the dataset collection that
has been recorded directly from neuromorphic sensors while
maintaining the time synchronization of the visual and audio
parts. It also explains how the BBC dataset has been converted
to the spikes domain.

A. LIPSFUS recording setup

The Neuromorphic Auditory Sensor (NAS) [11] and the
Neuromorphic Dynamic Vision Sensor (DVS) [12] has been
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used to record the LIPSFUS dataset. Both sensors generate
spike information at their outputs and both are encoded in
AER (Address-Event-Representation) format at their outputs
using a digital parallel bus (16-bit maximum in our setup) with
a 2-bit asynchronous handshake. The digital words encode the
identifier of the emitter neuron, in the corresponding sensor,
called the address. The length of an address is fixed by
the number of neurons in the sensor: pixels for the DVS
or channels for the NAS. In our setup, it is used the DVS
developed at IMSE-CNM in Seville, called cnmDV. This DVS
has 128x128 pixels, so the output parallel AER bus requires
15-bit for the addresses plus the polarity bit. For the audition,
the selected NAS has been obtained from the openNAS tool
[13] and synthesized for the Spartan6 FPGA of the AER-Node
board [14]. A binaural sensor composed of two identical banks
of 64 band-pass filter per ear has been selected, with the cut-
off frequencies shown in figure 2 in the range from 18,91Hz
to 20,81KHz, with an average error of 0,005% and a standard
deviation of 0,001 along the 64 channels. For this audio sensor,
the AER bus is sending addresses of 8-bit length (6-bit to
identify an active channel, 1-bit for polarity and 1-bit for left
or right filter bank). The input of the NAS comes from a stereo
set of ear-shaped microphones that mimics a human head. This
is the 3DIO Free Space XLR Binaural setup [15]. These two
neuromorphic sensors produce spikes with their own temporal
distributions, that intrinsically depend on the sensed activity.
An AER-tool [16] is used for merging the two sensors’ activity
in such a way that the temporal distribution is maintained for
both sensors. This requires the AER-merger to add 1-bit into
the AER bus to distinguish between a visual spike or an audio
spike. The most significant bit is set to ’0’ for a DVS event,
and to ’1’ for a NAS event. Therefore, the full range of 16-bit
allowed by the hardware is used in this setup. The output of
the AER-merger is then connected to an AER-monitor board
[17], that assigns a timestamp mark to each received event,
regardless of which sensor it belongs to, before queuing the
data (address and timestamp) for sending USB packets to a
computer running jAER, which stores .AEDAT files for each
sample of the dataset.

Fig. 1. LIPSFUS recording dataset setup. Left figure shows the sensors and
boards distribution and the right figure shows the setup sensor distances.

Figure 1 on the left shows the distribution of the neuromor-
phic sensors (cnmDV and NAS), the AER-merger platform
and the AER-monitor. In addition, another neuromorphic sen-
sor, DV-Xplorer-Lite-346-USB, can be seen in the figure, but

Fig. 2. Cut-off frequencies of the binaural NAS 64-channels. Ideals versus
real implemented ones on FPGA with error in %.

it has not been included in the dataset presented in this paper.
It is incorporated in the setup for future use in applications
that requires higher visual resolutions. The right side of the
figure shows the distances of each neuromorphic sensor to the
person to be recorded. The cnmDV is placed at 45cm from
the person face, while the 3DIO microphones are placed at
75cm and they can be oriented at different angles (0º, -45º, -
90º, 45º and 90º in our dataset). The microphones are placed in
the holes of two silicone ears that simulate the human ear, and
both are separated at the same distance as in an average human
head. The dataset is recorded in two different environments:
noisy and quiet. The noisy environment consisted of a glass
meeting room, where the air-conditioning system was running,
and behind the window was a car park and a main street
in the city. In contrast, the quiet environment consisted of a
small room with acoustically insulated walls and a door. The
lighting condition in both environments were kept similar. The
dataset, for each of the environments, consisted of 22 persons
of 5 different nationalities (Indian, Iranian, Irish, Pakistani,
Spanish), of both genders and aged between 6 and 61 years.

The dataset consists of a series of words that have been
selected from different challenges or are considered to be of
interest in the area of language processing. The words in the
dataset are:

• Spoken digits: One, two, three, four, five, six, seven,
eight, nine, zero and o [18].

• Robotic commands: Yes, no, up, down, left, right, on, off,
stop and go [19].

• Bed, bird, cat, dog, happy, house, Marvin, Sheila, tree,
wow [20].

• About, border, forward, missing, press, short, threat,
young [21].

• The quick brown fox jumps over the lazy dog [22].

Each participant was reading each word (or sentence) when
it is shown in a presentation with 2 seconds delay between
words. An AEDAT file was recorded for the whole presen-
tation from the word ”one” to the ”fox” sentence. This is
repeated five times per participant placing the ears at the
orientations commented before. Therefore, a total of 5 different
AEDAT recordings are stored for the each person. A repository
with access to these files is available on GitHub [23].



B. BBC-LIPSFUS dataset

The forth set of words recorded with the previous setup
are also part of the ”Lips reading in the wild” dataset from
BBC [21], [24], [25]. In this work, this set of words has
been converted to a neuromorphic format and made avail-
able for training spiking learning architectures. This dataset
includes 1k sentences with 500 different words taken from
news and interviews (MP4 videos) from BBC channels with
1k different speakers [26]. Each MP4 video has 29 frames
(1.16 seconds) and selected word is in its temporal center.
An important difference from our recorded dataset is that our
speakers pronounced each word / sentence in an isolated way.
Nevertheless, for the BBC dataset, the words are part of a
sentence and they are pronounced in a natural conversation.
In order to properly extract the required word from each MP4,
we have used the IBM Watson Studio engine [27], as it was
used in [21] for validation, to extract the precise timestamps
where our chosen words start and end at each MP4. Using
these timestamps, each MP4 was cut to contain only the right
word, in an isolated way, as it is in our recorded dataset. These
cut MP4s were then used for the neuromorphic conversion.
The same neuromorphic auditory sensor (NAS) used in the
previous recordings was connected to the audio output of a
computer and used to capture .AEDAT files in jAER while
the computer was playing each MP4 file of the dataset for
the 8 selected words and 1k speakers of each word. For the
visual neuromorphic representation of the MP4 videos, the
ESIM [28] has been used, which also produces AEDAT files
for each of the 8k given inputs. ESIM behaves as the DVS for
the presented input video.

C. Dataset validation

This dataset has been validated by performing a clas-
sification task on a subset of the words in the dataset,
the spoken digits. This paper proposes an Artificial Neural
Network (ANN) based learning model to classify extracted
neuromorphic words dataset. Currently, the authors are also
working on the design of a Spiking Neural Network (SNN) to
perform the classification task using the spiking information
from the sensors.

1) Data conversion and augmentation: This work has con-
sidered Convolutional Neural Network (CNN), to perform the
classification of the spoken digits, the first step is to convert the
spiking information into a data type that the CNN can process
i.e, an histogram based image. As we have information from
two different sensors that generate different nature of temporal
information. Therefore a separate conversion is designed for
each sensory data.

The NAS used for the recording of this dataset consists
of 64 stereo channels. The number of channels corresponds
to the number of spike-based filters used to decompose the
signal into different frequencies. As this sensor is stereo, it
has 128 channels in total. At the output of each of these
spike-based filters there are two neurons, one encoding the
positive part of the signal and one encoding the negative part
of the same signal. Therefore, this NAS contains 256 neurons

that emit information at its outputs. For the conversion of the
pulsed information of the NAS, we proceeded to generate the
sonogram of each spoken digit sample. The sonogram shows
the activity of each sensor channel over time. To calculate
the activity of each channel, a time window is used in which
the number of spikes emitted by each channel is accumulated
and grouped and the channel value is set to that accumulation
for that time window. Thus, the information of each channel
is encoded in the intensity of spikes produced in each time
window. The figure 3 (left) shows the sonogram of a sample
where on the x-axis is the time, on the y-axis are the neurons
of the channels and the colour represents the intensity of the
channel.

Fig. 3. Stereo sonogram of a spoken digit sample (left). The spoken word
information is delimited by the red box. Mono sonogram for right (top-right)
and left (bottom right) channels cut from the red box.

As can be seen in figure 3, the spoken word information is at
the beginning of the recording (delimited by the red rectangle).
It can be seen that there is a large part of the recording with
some activity in the channels, which corresponds to some
noise. Part of this noise is from the environment as well as
noise generated by the sensor at the output of the filters. This
work focused on the part of the recording that contains the
most activity, the part delimited by the red rectangle, and
we will also divide the stereo recording to obtain two mono
samples as shown in the figure 3 (right).

In order to obtain more samples from the recorded dataset, a
data augmentation process has been carried out. This is done
by starting with a temporal window that is adjusted to the
region where the spoken word activity is located and enlarging
that region by allowing some noise prior to the spoken word
activity. Then, to generate new samples, this region of noise
prior to the activity is reduced a little and enlarged by the
same amount at the end of the spoken word activity allowing
for some noise. This process was repeated 10 times per sample.
The Number of Samples (NS) in the audio dataset is 26,620
(see equation 1, for 22 People (P), 11 Words (W), 2 channel
audio Sensor (S), 10 Data Augmentation (DA) techniques and
5 different microphones Orientation (O).

NS = P × (W × S +W × S ×DA)×O

= 22× (11× 2 + 11× 2× 10)× 5
(1)

The DVS used to record this dataset has a resolution of
128x128 neurons that emit positive and negative spikes de-
pending on the change in brightness that the scene represents.



For the conversion of the spiking information from the DVS
sensor, only the lip area of the original sample was trimmed,
discarding the rest of the information from the scene. The
entire recording is then divided into equal temporal regions and
the spikes are accumulated to generate a histogram equivalent
to an image. The activity of each pixel or neuron in the
sensor is encoded in the colour intensity of the pixel in
the generated image. This approach provides a sequence of
images that capture the movement of the lips when saying the
corresponding word. Figure 4 shows how this conversion is
performed.

Fig. 4. Conversion process from spiking information to histograms.

A similar data augmentation process has been repeated
for the audio dataset to generate more samples. A temporal
window is adjusted to the region where the lip movement
activity is found when the word is spoken. This region is
enlarged thus allowing some noise before the activity of the
spoken word. To generate new samples, the selected region of
noise prior to the activity is reduced marginally and enlarged
by the same amount at the end of the speech activity allowing
for some noise. This process was repeated 10 times per sample.
The number of samples in the visual dataset is 13,310 (see
equation 2):

NS = P × (W +W ×DA)×O

= 22× (11 + 11× 10)× 5
(2)

2) Visual and Audio networks: As mentioned at the end
of the introduction section, to validate the dataset, two CNNs
have been used to classify the spoken digits, one for the audio
part and one for the visual part. The aim is to demonstrate
with a simple application that the data collected in this dataset
are valid for use by the community. The CNN architecture
that will be trained to classify the spoken digits using the
audio information from the sonograms (via NAS sensor) has
the following layout:

• Input(64,32,1) → Conv2D(3,3,100) → MaxPool(2, 2)
→ Conv2D(2,2,200) → MaxPool(2,2) → Dropout(0.5)
→ Dense(10).

In contrast, the CNN architecture that will be trained to
classify the spoken digits using the visual information from the
sequence of histograms (via the DVS sensor) has the following
configuration:

• Input(33,49,6) → Conv2D(3,3,16) → MaxPool(2,2) →
Conv2D(2,2,32) → MaxPool(2,2,2) → Conv2D(2,2,64)
→ MaxPool(2,2,2) → Dropout(0.5) → Dense(10).

Both networks have been trained using the Keras+Tensorflow
framework.

III. RESULTS

The Keras+Tensorflow framework was used to train the
CNNs described in the previous section. For the different
training sessions performed, the datasets have been partitioned
into 70% for training, 20% for validation and the remaining
10% has been used to test the network once it has been
trained. The samples of the 10% used for testing belong to
a subject whose samples have not been used in the training
phase, thus ensuring that during the test all the samples are
totally unknown to the trained network.

Table I shows the results obtained when testing the audio
(A ) and the visual (V ) CNNs across different training
scenarios. Each row of the table represents the result of testing
the CNN using the specified number of training epochs (Tr ep)
and batch size (B size). The learning ratio has been set to the
same value for all training epochs, in this case to 0.001.

Tr ep; B size A Loss A Acc V Loss V Acc
100; 32 0.661 0.853 1.266 0.685
200; 32 0.704 0.882 1.191 0.694
100; 64 0.589 0.850 1.030 0.709
200; 64 0.475 0.896 0.997 0.727
100; 128 0.605 0.832 1.099 0.701
200; 128 0.591 0.824 1.145 0.698

TABLE I
TEST AUDIO AND VISUAL RESULTS USING DIFFERENT TRAINING

PARAMETERS. THE LEARNING RATE VALUE IS 0.001 FOR ALL.

In the table the best test loss and accuracy values are high-
lighted for both cases. These results do not seem promising
initially when compared to other applications that can be found
in the literature, however the aim of this work is not to design
a network model that is optimal in the classification of the
spoken digits, but rather to validate the dataset in order to
make it available to the community.

IV. CONCLUSION

This paper presents a dataset in which there is visual and
auditory information when speaking a set of words. The visual
information consists of the lip movement when the subject
articulates a word, while the auditory information refers to
the sound that the subject makes when pronouncing a word.
This information has been captured by the NAS sensor for the
audio and the DVS sensor for the visual part, synchronising the
information from both sensors with the same timing source,
therefore, achieving a perfect temporal sequencing of the
spikes generated by both sensors. To validate the dataset, a
classification task has been performed on a subset of words
from the dataset using Deep Learning algorithms. Although
the reported classification results are not the same as those
obtained with Deep Learning techniques in the literature, they
are satisfactory to validate that the dataset samples are useful
and suitable for the research community to implement sensory
fusion algorithms.
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M. J. Domı́nguez-Morales, F. de Ası́s Gómez-Rodrı́guez, A. Linares-
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