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Abstract: Monkeypox is a smallpox-like disease that was declared a global health emergency in July
2022. Because of this resemblance, it is not easy to distinguish a monkeypox rash from other similar
diseases; however, due to the novelty of this disease, there are no widely used databases for this
purpose with which to develop image-based classification algorithms. Therefore, three significant
contributions are proposed in this work: first, the development of a publicly available dataset of
monkeypox images; second, the development of a classification system based on convolutional neural
networks in order to automatically distinguish monkeypox marks from those produced by other
diseases; and, finally, the use of explainable AI tools for ensemble networks. For point 1, free images
of monkeypox cases and other diseases have been searched in government databases and processed
until we are left with only a section of the skin of the patients in each case. For point 2, various
pre-trained models were used as classifiers and, in the second instance, combinations of these were
used to form ensembles. And, for point 3, this is the first documented time that an explainable AI
technique (like GradCAM) is applied to the results of ensemble networks. Among all the tests, the
accuracy reaches 93% in the case of single pre-trained networks, and up to 98% using an ensemble of
three networks (ResNet50, EfficientNetB0, and MobileNetV2). Comparing these results with previous
work, a substantial improvement in classification accuracy is observed.

Keywords: monkeypox; skin disease; database; convolutional neural network; ensemble

1. Introduction

The first recorded case of monkeypox dates back to 1958, when two outbreaks of a
smallpox-like disease occurred in monkey colonies under investigation. Despite being
named “monkeypox”, the origin of the disease remains unknown. However, African
rodents and non-human primates (such as monkeys) could harbor the virus and infect
humans [1]; and the first human case of monkeypox was reported in 1970. Before the 2022
outbreak, monkeypox cases had been reported in people in several countries in Central and
West Africa (almost all cases outside Africa were associated with international travels or
animal commerce [2]). According to the last report by the Centre for Disease Control and
Prevention (CDC) on 28 July 2022, more than 23,000 cases have been reported worldwide
since the beginning of the 2022 outbreak [3]. Regarding those cases, the two countries with
the most reported cases are the United States with more than 5800, and Spain with more
than 4200. Furthermore, in Spain and Brazil, monkeypox deaths have been reported [4].

Although the spread of this virus does not resemble other recent pandemics such
as COVID-19, its expansion in Western countries has been surprising; so, it is important
to facilitate a rapid diagnosis of the disease that does not require expensive diagnostic
equipment or a long response time. For that purpose, it is necessary that the information it

Sensors 2023, 23, 7134. https://doi.org/10.3390/s23167134 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23167134
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4368-3791
https://orcid.org/0000-0001-8789-6476
https://orcid.org/0000-0003-3306-3537
https://orcid.org/0000-0002-4352-8759
https://orcid.org/0000-0001-8733-1811
https://orcid.org/0000-0001-5669-9111
https://doi.org/10.3390/s23167134
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23167134?type=check_update&version=1


Sensors 2023, 23, 7134 2 of 24

receives can be provided by a non-sanitary user; therefore, the easiest input for a common
user is an image, and, in order to be easily captured for an average user, it should be a
superficial image of the skin. Furthermore, this type of system must take into account other
skin damage caused by similar viruses or other diseases such as smallpox, chickenpox,
or measles. However, currently, there is no dataset of close-up skin images, although some
datasets of full-body images are available. Therefore, for such large-scale work, it would be
necessary to collect an appropriate dataset to design the classifier.

Regarding the development of classifying models, the use of artificial intelligence
techniques has been extended in recent years within the field of health: from the analysis
of physiological signals [5,6] to the study of bad habits and abnormalities during daily-life
activities [7,8]. Furthermore, in relation to this work, the use of techniques derived from
AI and machine learning (ML) has wide use in the design of automatic classifiers with
medical images, making use of advanced Deep Learning (DL) techniques in CNN. Thus,
these techniques have been applied in multiple research works in recent years, obtaining
very positive results with a correct diagnosis rate higher than 80% [9–12], even reaching,
in multiple cases, values higher than 95% accuracy [13–17].

However, these classifier systems are tested with a subset of samples and, in future
classifications, there are possibilities to obtain the wrong classifications due to samples from
other medical centers, or because of using other digitizing devices (among other possible
cases) [18]. Moreover, when an AI system is trained, the weights of the neural network
connections are very difficult to be understood and do not provide useful information: that
is why these systems are referred to as “black boxes” [19].

Because of that, in recent years, the use of Explainable Artificial Intelligent (xAI)
technologies has become widespread. These technologies provide information about
the objective classification criteria used in the automatic system [20,21]. This is of great
importance, not only to detect errors, but also to understand the decisions made. That is
why this type of analysis is essential in diagnostic aid systems [16,22,23].

Following the identification of research gaps, the main objectives of this work are
described next:

• Designing a dataset of superficial skin photographs containing images of monkeypox
cases, healthy people, and people with other types of diseases that produce skin rashes.
This dataset is provided publicly to the community.

• Studying various alternatives of classifiers based on convolutional neural networks
to distinguish between the three classes described above. These classifiers will be
performed by applying transfer learning techniques to pre-trained models.

• Combining different classifier models to form ensemble systems that perform the
same task, comparing the results with those obtained previously.

• Evaluating the results obtained by the classifier using xAI techniques. As far as we
know, this is the first time it is applied to an ensemble classifier.

The rest of the manuscript is structured as follows: first, a presentation of the latest
similar works published is presented; next, the methods used to develop and test the
diagnosis-aid system are presented in Section 3, including the description of the dataset
developed for this work. The accuracy results obtained after testing the classifier are
detailed and discussed in Section 4, with the application of the explainable AI techniques
and the comparison with previous works. Finally, in Section 5, the final conclusions of this
work and future research lines.

2. Background

A global search is performed on the main search engines (Scopus, IEEExplorer,
and Google Scholar) with the following search phrase: “monkeypox” AND (“deep learn-
ing” OR “convolutional neural network”). Due to the current spread of the monkeypox
outbreak, the results have not been filtered or restricted by year. Moreover, those preprints
or arXiv/bioRxiv works that are waiting for acceptance are selected as well.
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However, the results after the search process and the elimination of articles not focused
on the design of a classifier, reflect very few works in this area (focused on only 2022). So,
the works used for the comparison will only be those detailed next:

• Ali et al. [24]: In this work, a binary classification of monkeypox and other skin
diseases is performed using skin images taken by users. The authors tested several
convolutional neural network models such as VGG-16, ResNet50, and Inception-V3.
The dataset uses 102 monkeypox images and 126 images of other skin diseases, but it
does not include images of healthy skin tissue. The best classifier has an accuracy
greater than 82%.

• Ahsan et al. [25]: this work uses a custom dataset formed by the four classes “healthy”,
“measles”, “chickenpox” and “monkeypox”, containing 54, 17, 47, and 43 images
for each class, respectively. Although the authors use a data augmentation process,
the dataset has very few images for some classes, and it is quite unbalanced. How-
ever, the developed classifiers are trained only for two classes (“monkeypox” versus
“others”, and “monkeypox” versus “chickenpox”). Using a VGG-16 CNN for each
implemented system, the authors obtain an 83% accuracy for the “monkeypox” vs.
“others” study for the training subset, and a 78% accuracy for the second experiment
using the training subset.

We believe that the lack of work in this area is due, first, to the novelty of the global
spread of the virus; but, second, it is also due to the lack of a sufficiently balanced and
formal public dataset. This latter point is founded on the fact that the works detailed in
this section are the same as those named in Section 3.1, when exposing the existing datasets
(i.e., each work uses its own dataset). This aspect is one of the main objectives of this work
when collecting a new public dataset.

3. Materials and Methods

This section presents the custom dataset used to train and test the classification sys-
tem, the developed classifiers, and the metrics used to evaluate them. For this purpose,
the methodology applied to achieve these goals is summarized in Figure 1. The collected
dataset will be used to evaluate some pre-trained models (explained in the next subsec-
tions), applying a grid search with several hyperparameter combinations. Moreover, some
ensemble models are evaluated too (the selection of these ensembles is detailed in the next
subsections). After these testing, the best model will be compared with the previous works.

3.1. Dataset

The custom dataset consists of 224 × 244-pixel images in RGB format. Images were
obtained from contrasted online media (such as CDC or WHO) and from public datasets.
The only public datasets found are the one collected by [24] and the one collected by [25,26].
For the dataset collected in this work, three main premises are taken into account:

• Classes: the dataset needs to distinguish between healthy and ill tissue (with Monkey-
pox). In addition, it is essential to include other skin diseases to determine the degree
of importance of the injury.

• Number of images: It is important to develop a balanced dataset with the same
number of images for each class.

• Type of images: To develop a classifier that can be integrated into a mobile device, im-
ages with similar characteristics for all classes and highlighting skin lesions (avoiding
images taken from a distance or of whole body parts) are required.

Following these premises, the final dataset collected is composed of three classes:
“monkeypox”, “healthy”, and “other diseases”. Each class contains 100 images of the skin
surface. The summary of the collected dataset can be seen in Table 1, which also contains
the comparison with the public dataset found. The dataset collected for this work is publicly
accessible [27].
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Figure 1. Full system scheme. The main difference between both implementations is: (bottom) each
model is evaluated independently using only its own results; and (down) some combinations of three
individual models (ensembles) are evaluated by the combination of the individual models.

Table 1. Public monkeypox datasets compared with the dataset collected for this work. Clarification:
the number inside the brackets indicate the number of classes labelled in the dataset.

Dataset Classes Number
of Images

Type
of Images

Ali (2022) [24] 2: Monkeypox, Others 102, 126 Full body, Limbs,
Face, Trunk

Ahsan (2022) [25,26] 4: Healthy, Monkeypox,
Chickenpox, Measles

54, 43,
47, 17

Full body, Limbs,
Face, Trunk

MonkeypoxSkin dataset
(this work) [27]

3: Healthy, Monkeypox,
Other skin diseases

100, 100,
100 Close skin tissue

The main problems observed in Table 1 for the previous public datasets are de-
scribed next:

• Ali et al. [24]: the main problem of this dataset is the image classes. It has only
two classes, and, moreover, there is no “Healthy” class, and this absence can lead
to failures when evaluating the classifier with healthy tissue images; since there is
no class containing it, any image that it classifies is labeled as damaged tissue (by
Monkeypox or some other disease). This problem was previously addressed in other
works [28].

• Ahsan et al. [25]: this second dataset contains a good number of classes (including
“Healthy” ones), but it has two main drawbacks. The first is the total number of
images, only surpassing 50 images for the “Healthy” class (54 images) and giving only
17 images for one of the classes (Measles). The second drawback is data balance: the
worst case is observed with the “Healthy” class, which has more than three times the
images given by the “Measles” class.

Also, for both datasets, the images used do not follow a similarity pattern, including
full-body images or images of single body parts (even with images in which more than one
person appears). For correct training of the classifier, it would be necessary to discard a
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significant part of the images in these datasets due to deficiencies such as those indicated,
or even cases where two different images overlap.

Trying to solve these drawbacks, and shown in Table 1, the dataset collected for this
work has a perfect balance between classes, which facilitates the classifier training task.
In addition, the use of close images of the skin surface for all classes helps to present a
more uniform dataset that better represents the information that can be obtained from
a photograph with a mobile device. Figure 2 shows some examples of images from the
collected dataset.
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Figure 2. Sample images from MonkeySkin dataset.

The images of the dataset are used to train the classifiers, using 60% of the images
for training, 20% for validation, and the last 20% for testing. In addition, to improve the
training, a data augmentation process is performed only on the images of the training set
(performing random rotations of the images until a total of 9000 images are obtained). This
division is presented in Table 2.

Table 2. Dataset elaborated for this work and subsets division.

Class Original Dataset Augmented Dataset
Train Validation Test Train Validation Test

Healthy 60 20 20 3000 20 20
Monkeypox 60 20 20 3000 20 20

Other skin damages 60 20 20 3000 20 20

TOTAL 180 60 60 9000 60 60

The justification for using a dataset from online sources is due to the need to have the
class of each image already labeled by contrasted sources. However, the objective of this
work is to design a classifier that is able to work with images obtained by users using easily
accessible vision sensors, such as a cell phone camera. This would provide a quick first
response to the user without the need to go to a hospital, performing an initial screening
that would reduce the burden on healthcare professionals.

Of course, this preliminary diagnosis should be corroborated by a professional at a
later stage and, for this purpose, in the last part of the paper, explainable AI techniques will
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be presented in order to provide more information to the healthcare professional verifying
the classification initially obtained by the diagnostic aid system.

3.2. Classifiers

The classifiers evaluated are pre-trained models on which the weights of the first
layers of neurons will be maintained and trained on the weights of the last layers (applying
transfer learning techniques for this purpose). For them, a preliminary study was carried
out by means of a grid search with multiple combinations of custom classifiers. However,
two main problems related to it were found:

• The results show that the system required complex architectures to converge, in ad-
dition to a very long training process. In those previous tests, an architecture of
10 convolutional layers and 3 dense layers required a total of 100K epochs to obtain an
accuracy of around 80% (after ten days). Because of this, we estimate that this type of
architecture required more complexity and more training time to obtain acceptable re-
sults (at least 95%); in fact, observing the training tendency, obtaining an 85% accuracy
would require more than two months (needing more than a year to reach 90%).

• Searching for previous works, it was observed that the trained systems were based
on pre-trained models. Therefore, if we wanted to compare ourselves with those
works, we had to work with similar systems that would allow us to measure the
improvement obtained.

Therefore, because of that, in this work several pre-trained models will be used
(applying transfer learning techniques): each model will be independently evaluated,
and subsequently combinations of models will be performed to evaluate whether there
is an improvement in classification. As for the hyperparameters used, they will be those
commonly used for these models, which are a batch size of 32 and a learning rate of
1 × 10−4, with training of 50 epochs. The individual models used, and the ensembles will
be presented below.

3.2.1. Individual Models

The individual models used in this work are as follows:

• VGG-16: is a convolutional neural network proposed by [29] of Oxford University,
and gained notoriety by winning the ImageNet Large-Scale Visual Recognition Chal-
lenge (ILSVRC) in 2014. It is composed of 13 convolutional layers, 5 polling layers,
and 3 dense layers.

• VGG-19: It is a variant with more computational layers than VGG-16, therefore,
heavier in memory storage and computational requirements. In this case, the number
of polling and dense layers are the same, but the convolutional layers increase to 16.

• ResNet50: It was introduced by Microsoft and won the ILSVRC (ImageNet Large-
Scale Visual Recognition Challenge) competition in 2015 [30]. Its operation is based on
increasing the number of layers by introducing a residual connection, moving on to
the next one directly, and improving the learning process. This model is much more
complex than the previous one: it has almost 50 convolutional layers, 2 polling layers,
and one dense layer.

• MobileNet-V2: is a convolutional neural network architecture that seeks to perform
well on mobile devices. It is based on an inverted residual structure in which the
residual connections are between the bottleneck layers [31]. In this case, the number
of convolution layers is similar to that used by ResNet50 (around 50), as well as the
polling layers (1) and the dense layers (1).

• EfficientNet-B0: It is a convolutional neural network architecture and scaling method
that uniformly scales all dimensions of depth/width/resolution using a compound
coefficient [32]. The base EfficientNet-B0 network is based on the inverted bottleneck
residual blocks of MobileNetV2, in addition to squeeze-and-excitation blocks. Finally,
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in this case, the number of convolutional layers is reduced to 33, increasing the number
of polling layers to 17, and the number of dense layers to 33.

3.2.2. Ensemble Classifiers

Therefore, if we design ensembles of 3 nets, we will have a total of 24 possible combina-
tions without repetition. In addition, if we include the three usual types of combination of
information (concatenation, simple average, and weighted average, which will be detailed
below) we would have a total of 72 possibilities.

Although results could be presented for all of them, we believe that many of these
combinations do not contribute anything interesting to this work due to the low classifica-
tion results.

This is why preliminary tests were carried out and, in this paper, only the three ensem-
bles (with their three information combination mechanisms, for a total of 9 possibilities)
with the best classification results are presented.

These three ensembles are listed below, and their results are presented in Section 4.1.2:

• Ensemble 1: VGG-16 + VGG-19 + ResNet50
• Ensemble 2: VGG-16 + ResNet50 + EfficientNet-B0
• Ensemble 3: ResNet50 + EfficientNet-B0 + MobileNet-V2

The models of each ensemble are run in parallel, and the results of each ensemble are
subsequently merged. The combinations of these models are performed following the three
classical approaches of ensemble neural networks:

• Concatenation Ensemble: This is the most common technique to merge different
data sources. A concatenation ensemble receives different inputs, whatever their
dimensions, and concatenates them on a given axis. This operation can be dispersive,
not allowing the final part of the network to learn important information, or resulting
in overfitting.

• Average Ensemble: this can be considered to be the opposite of the concatenation
operation. The pooled outputs of the networks are passed through dense layers with
a fixed number of neurons to equalize them. In this way, the average is computed.
The drawback of this approach is the loss of information caused by the nature of the
average operation.

• Weighted Ensemble: This is a special form of average operation, where the tensor
outputs are multiplied by a weight and then linearly combined. These weights
determine the contribution of each model in the final result, but they are not fixed
because these values are optimized during the training process. For the weighted
ensemble, we have proceeded to create a function that calculates this weighting in real
time. In this case, it creates an average with adaptive weights between the outputs
and trains the weights by backtracking just like those of any other layer. Finally, it
adjusts them with softmax so that they always add up to 1. This mechanism has been
used in previous works such as the one recently published in [33].

3.3. Evaluation Metrics

To evaluate the effectiveness of the classification systems, it is common to use different
and well-known metrics: accuracy (most-used metric), sensitivity (also known as recall),
specificity, precision, and F1score [34].

To apply them, the classification results obtained for each class must be tagged individ-
ually as “True Positive” (TPc: belonging to a class and classified as the same class), “True
Negative” (TNc: belonging to another class and classified as that class), “False Positive”
(FPc: belonging to another class and classified to the evaluated class), or “False Negative”
(FNc: belonging to the class and classified as other class). According to them, the high-level
metrics are presented in the following equations:

Accuracy = ∑
c

TPc + TNc

TPc + FPc + TNc + FNc
, c ∈ classes (1)
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Speci f icity = ∑
c

TNc

TNc + FPc
, c ∈ classes (2)

Precision = ∑
c

TPc

TPc + FPc
, c ∈ classes (3)

Sensitivity = ∑
c

TPc

TPc + FNc
, c ∈ classes (4)

F1score = 2× precision× sensitivity
precision + sensitivity

. (5)

About those metrics:

• Accuracy: All samples are classified correctly compared to all samples (see Equation (1)).
• Specificity: proportion of “true negative” values in all cases that do not belong to this

class (see Equation (2)).
• Precision: Proportion of “true positive” values in all cases that have been classified as

it (see Equation (3)).
• Sensitivity (or Recall): Proportion of “true positive” values in all cases that belong to

this class (see Equation (4)).
• F1score: It considers both the precision and the sensitivity (recall) of the test to compute

the score. It is the harmonic mean of both parameters (see Equation (5)).

There are other commonly used metrics, but not all works use them. However, the ROC
curve (Receiver Operating Characteristic) [35] is of particular interest in diagnostic systems,
because it is the visual representation of the True Positives Rate (TPR) versus the False
Positives Rate (FPR) as the discrimination threshold is varied. Usually, when using the ROC
curve, the area under the curve (AUC) is used as a value of the system’s goodness-of-fit.

3.4. Explainable AI

As mentioned in the introduction, it is, therefore, essential that the health professional
has the possibility of accessing the justifications that have led the classifier to give a certain
result. To this end, some tools have been developed in order to access various aspects
related to the network’s decision-making.

Among all of them, the use of the Grad-CAM algorithm for CNN-based systems is
very widespread [36]. The Gradient-weighted Class Activation Mapping (Grad-CAM) uses
the gradients of any target concept, flowing into the final convolutional layer, to produce
a coarse localization map highlighting the important regions in the image for predicting
the concept.

Unlike the usual application of this algorithm, in this work, we apply it to an ensemble
network. To do so, it is necessary to combine the Grad-CAM results from each of the
networks that form the ensemble. To date, we are not aware of any other work that
has used the Grad-CAM algorithm on an ensemble network formed by network models
pre-trained with transfer learning techniques. In Section 4, the results obtained are detailed.

4. Results and Discussion

In this section, results may be presented in depth, and those results will be discussed as
they are presented. First, the classification results are detailed and, after that, the explainable
AI system results are presented.

4.1. Classification Results

This section presents the results obtained after the training process for each model or
ensemble. These results are shown by the most commonly used metrics (described earlier)
and the confusion matrixes. First, the individual model results are detailed; and then the
ensemble results are shown.
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4.1.1. Individual CNN Results

In this subsection, the results for each individual model are detailed. These models
are VGG-16, VGG-19, ResNet50, MobileNet-V2 and EfficientNet-B0.

VGG-16

The first individual model evaluated is VGG-16. The results obtained for this model
are detailed in Table 3. As can be observed, global accuracy exceeds 91% on average,
obtaining a value of almost 97% for the “monkeypox” class.

Table 3. Classification results obtained for VGG-16 classifier.

Class Accuracy Specificity Precision Sensitivity F1score

Monkeypox 96.67 100 100 90 94.73
Healthy 95 95 90.47 95 92.68

Other skin damages 91.67 92.5 85.71 90 87.8

Global 91.67 95.83 91.67 91.67 91.67

Figure 3 shows the classification details for the test subset. As shown in the confusion
matrix, there are no false positives for the “monkeypox” class. However, 10% failures
of Monkeypox samples are classified as other skin damages; therefore, there are false
negatives, which are the most dangerous cases.

Figure 3. Confusion matrix for VGG-16 classification. Note: the higher the percentage of samples
placed in a box, the higher the intensity of the blue colour.

VGG-19

The second model is VGG-19. The results obtained for this model are detailed in
Table 4. As can be observed, global accuracy exceeds 93% on average, obtaining a value of
almost 97% for the monkeypox class. These results are better than those obtained for the
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VGG-16 model; although, individually, the only class that improves its own accuracy is the
“other skin damages” class.

Table 4. Classification results obtained for VGG-19 classifier.

Class Accuracy Specificity Precision Sensitivity F1score

Monkeypox 96.67 97.5 95 95 95
Healthy 95 97.5 94.73 90 92.31

Other skin damages 95 95 90.47 95 92.68

Global 93.33 96.67 93.33 93.33 93.33

These results can be easily observed in Figure 4. For this case, there are false positive
cases for the “monkeypox” class (5% of the “healthy” class), although false negative cases
are reduced to 5% (classifying them as “other skin damages”).

Figure 4. Confusion matrix for VGG-19 classification. Note: the higher the percentage of samples
placed in a box, the higher the intensity of the blue colour.

ResNet50

The next model is ResNet50. The results obtained for this model are detailed in Table 5.
As can be observed, the global accuracy is 95% on average, obtaining a value of almost
97% for each class individually. These results are the best obtained so far (better than those
obtained for the VGG-19 model).
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Table 5. Classification results obtained for ResNet50 classifier.

Class Accuracy Specificity Precision Sensitivity F1score

Monkeypox 96.67 95 90.91 100 95.24
Healthy 96.67 100 100 90 94.74

Other skin damages 96.67 97.5 95 95 95

Global 95 97.75 95 95 95

Moreover, there is an essential difference between the ResNet50 and VGG-19 results,
as can be seen in Figure 5. This difference relies on the absence of false negatives for the
monkeypox class. For this case, the false negative decreasing is changed for an increase of
false positive cases. Both the accuracy and the absence of false negatives make this model
the most efficient for diagnostic purposes.

Figure 5. Confusion matrix for ResNet50 classification. Note: the higher the percentage of samples
placed in a box, the higher the intensity of the blue colour.

MobileNet-V2

Next, the MobileNet-V2 model is evaluated. The results obtained for this model are
detailed in Table 6. For this case, the global accuracy decreases below 89%, being the worst
evaluated model to date. Not surprisingly, there is a substantial drop in the accuracy of
both the “monkeypox” class and the “other skin damages” class.
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Table 6. Classification results obtained for MobileNet-V2 classifier.

Class Accuracy Specificity Precision Sensitivity F1score

Monkeypox 91.67 95 89.47 85 87.18
Healthy 95 95 90.48 95 92.68

Other skin damages 90 92.5 85 85 85

Global 88.33 94.17 88.33 88.33 88.33

These data can be verified by looking at the confusion matrix in Figure 6. For the
monkeypox class, 15% of the samples are classified as “other skin damages” (false negatives)
and 5% of the samples of the other two classes are classified as monkeypox (false positives).
As detailed above, this model obtains the worst results, mainly due to those false negatives
(detailed by the low value of sensitivity).

Figure 6. Confusion matrix for MobileNet-V2 classification. Note: the higher the percentage of
samples placed in a box, the higher the intensity of the blue colour.

EfficientNet-B0

The last individual model evaluated is EfficientNet-B0. The results obtained for this
model are detailed in Table 7. The results are now better than those obtained with the
MobileNet-V2 model (global accuracy of 90% and monkeypox accuracy of almost 97%),
but these results are worse than those obtained with the ResNet50 model.
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Table 7. Classification results obtained for EfficientNet-B0 classifier.

Class Accuracy Specificity Precision Sensitivity F1score

Monkeypox 96.67 97.5 95 95 95
Healthy 91.67 90 82.61 95 88.37

Other skin damages 91.67 97.5 94.12 80 86.49

Global 90 95 90 90 90

As can be observed in Figure 7, both false negatives and false positives are reduced to
5% for each, but they are not completely eliminated. So, although these results are better
than those obtained with the MobileNet-V2 model, they are worse than those obtained
with the rest of the evaluated models.

Figure 7. Confusion matrix for EfficientNet-B0 classification. Note: the higher the percentage of
samples placed in a box, the higher the intensity of the blue colour.

Therefore, the best classification results obtained so far are those achieved with the
ResNet50 model. Next, the three different ensemble networks are evaluated.

4.1.2. Ensemble CNN Results

As indicated previously, the three ensemble classifiers evaluated will consist of: [VGG-
16 + VGG-19 + ResNet50], [VGG-16 + ResNet50 + EfficientNet-B0] and [ResNet50 + EfficientNet-
B0 + MobileNet-V2]. The results of these ensembles will be combined by concatenation,
simple average, and weighted average. Therefore, in addition to the ensembles, the mecha-
nism used to combine the results will be evaluated.
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There are multiple combinations of the networks, and in preliminary work, we have
evaluated up to 6 combinations of 3 in 3 networks among those presented individually.
The three ensemble networks presented in this paper are the ones that have obtained an
accuracy higher than 90%.

VGG16 + VGG19 + ResNet50

For this first ensemble, the results obtained for each combination mechanism are de-
tailed in Table 8 (concatenation), Table 9 (simple average) and Table 10 (weighted average).

Table 8. Classification results obtained for the ensemble VGG-16 + VGG-19 + ResNet50. Combination
results obtained by concatenation.

Class Accuracy Specificity Precision Sensitivity F1score

Monkeypox 83.33 85 72.72 80 76.19
Healthy 91.67 95 89.47 85 87.18

Other skin damages 88.33 92.5 84.21 80 82.05

Global 81.67 90.83 81.67 81.67 81.67

Table 9. Classification results obtained for the ensemble VGG-16 + VGG-19 + ResNet50. Combination
results obtained by simple average.

Class Accuracy Specificity Precision Sensitivity F1score

Monkeypox 85 82.5 72 90 80
Healthy 95 97.5 94.74 90 92.31

Other skin damages 86.67 95 87.5 70 77.78

Global 83.3 91.67 83.33 83.33 83.33

Table 10. Classification results obtained for the ensemble VGG-16 + VGG-19 + ResNet50. Combina-
tion results obtained by weighted average.

Class Accuracy Specificity Precision Sensitivity F1score

Monkeypox 93.33 95 90 90 90
Healthy 96.67 100 100 90 94.74

Other skin damages 93.33 92.5 86.36 95 90.48

Global 91.67 95.83 91.67 91.67 91.67

The best results for this ensemble are obtained using the weighted average mechanism
(see Table 10). Here, a global accuracy of almost 92% is obtained, very similar to the best
result obtained with individual models (93.33% with ResNet50); however, the increase in
computational cost does not justify the use of this ensemble. The main problems of this
ensemble are the false negatives for the monkeypox class (10% of monkeypox samples),
as can be observed in Figure 8.
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(a) (b)

(c)

Figure 8. Confusion matrix for the ensemble composed by VGG-16, VGG-19 and ResNet50. Mixed
results obtained by (a) concatenation, (b) simple average and (c) weighted average. Note: the higher
the percentage of samples placed in a box, the higher the intensity of the blue colour.

VGG16 + ResNet50 + EfficientNetB0

For the second ensemble, the results obtained for each combination mechanism are de-
tailed in Table 11 (concatenation), Table 12 (simple average), and Table 13 (weighted average).

Table 11. Classification results obtained for the ensemble VGG-16 + ResNet50 + EfficientNet-B0.
Combination results obtained by concatenation.

Class Accuracy Specificity Precision Sensitivity F1score

Monkeypox 91.67 97.5 94.12 80 86.49
Healthy 93.33 95 90 90 90

Other skin damages 95 92.5 89.96 100 93.02

Global 90 95 90 90 90
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Table 12. Classification results obtained for the ensemble VGG-16 + ResNet50 + EfficientNet-B0.
Combination results obtained by simple average.

Class Accuracy Specificity Precision Sensitivity F1score

Monkeypox 91.67 95 89.47 85 87.18
Healthy 91.67 95 89.47 85 87.18

Other skin damages 93.33 92.5 86.36 95 90.48

Global 88.33 94.17 88.33 88.33 88.33

Table 13. Classification results obtained for the ensemble VGG-16 + ResNet50 + EfficientNet-B0.
Combination results obtained by weighted average.

Class Accuracy Specificity Precision Sensitivity F1score

Monkeypox 93.33 95 90 90 90
Healthy 96.67 100 100 90 94.74

Other skin damages 93.33 92.5 86.36 95 90.48

Global 91.67 95.83 91.67 91.67 91.67

As happened for the previous ensemble, the best results are obtained with the weighted
average and, moreover, the accuracy results are the same too. Moreover, both the individual
accuracy of each class and the false positives and negatives are the same. Therefore,
the problem is the same as before: this system is too computationally complex for the
results obtained (especially when comparing them with the individual ResNet50 model).

To date, the ensembles developed for this work do not obtain better accuracy results
than those obtained with individual models. However, the last ensemble is analysed in the
next subsection.

ResNet50 + EfficientNet + MobileNetV2

For this last ensemble network, the results are detailed in the same way as for the
previous ones, dividing them by the combination mechanism: concatenation (see Table 14),
simple average (see Table 15), and weighted average (see Table 16).

Table 14. Classification results obtained for the ensemble ResNet50 + EfficientNet-B0 + MobileNet-V2.
Combination results obtained by concatenation.

Class Accuracy Specificity Precision Sensitivity F1score

Monkeypox 95 100 100 85 91.89
Healthy 96.67 95 90.91 100 95.24

Other skin damages 95 95 90.48 95 92.68

Global 93.33 96.67 93.33 93.33 93.33

Table 15. Classification results obtained for the ensemble ResNet50 + EfficientNet-B0 + MobileNet-V2.
Combination results obtained by simple average.

Class Accuracy Specificity Precision Sensitivity F1score

Monkeypox 98.33 97.5 95.24 100 97.56
Healthy 100 100 100 100 100

Other skin damages 98.33 100 100 95 97.44

Global 98.33 99.17 98.33 98.33 98.33
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Table 16. Classification results obtained for the ensemble ResNet50 + EfficientNet-B0 + MobileNet-V2.
Combination results obtained by weighted average.

Class Accuracy Specificity Precision Sensitivity F1score

Monkeypox 98.33 97.5 95.24 100 97.56
Healthy 100 100 100 100 100

Other skin damages 98.33 100 100 95 97.44

Global 98.33 99.17 98.33 98.33 98.33

For this last ensemble, the results obtained are better than all the previous ones.
For combinations of simple average and weighted average, an overall accuracy greater
than 98% is obtained. Moreover, for the “healthy” class, the accuracy is 100%, while for the
other two classes (including “monkeypox”), the accuracy obtained is 98.33% (Figure 9).

(a) (b)

(c)

Figure 9. Confusion matrix for the ensemble composed by VGG-16, ResNet50 and EfficientNet-B0.
Mixed results obtained by (a) concatenation, (b) simple average and (c) weighted average. Note: the
higher the percentage of samples placed in a box, the higher the intensity of the blue colour.
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As can be seen in the confusion matrixes (see Figure 10), for the cases of a simple and
weighted average (Figure 10a,b), no false negatives are observed (sensitivity value of 100%),
although there is a 5% false positives cases from the “other skin damages” class.

(a) (b)

(c)

Figure 10. Confusion matrix for the ensemble composed by ResNet50, EfficientNet-B0 and MobileNet-
V2. Mixed results obtained by (a) concatenation, (b) simple average and (c) weighted average. Note:
the higher the percentage of samples placed in a box, the higher the intensity of the blue colour.

Summarizing the results, The results obtained with this ensemble are almost a 4%
better than those obtained so far with the individual ResNet50 model. The final results
obtained for the best classifier include no misclassifications for both “monkeypox” and
“healthy” classes, and a 5% misclassified samples for the “other skin damages” class (that
are classified as “monkeypox”).

Table 17 summarizes the accuracy results obtained. In this table, columns 2 to 4 show
the results obtained depending on the mechanism used by the ensemble to combine the
results; this is the reason why these columns are not filled for individual models.
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Table 17. Summarized results for all the classifiers.

Classifier Accuracy Results
Concatenated Simple Avr Weighted Avr Best

VGG-16 − − − 91.67
VGG-19 − − − 93.33

ResNet50 − − − 95
EfficientNet-B0 − − − 90
MobileNet-V2 − − − 88.33

VGG16 + VGG19 + ResNet 81.67 83.3 91.67 91.67
VGG16 + ResNet + EfficientNet 90 88.33 91.67 91.67

ResNet + EfficientNet + MobileNet 93.33 98.33 98.33 98.33

Looking at the information presented in Table 17, the best results are those obtained
with the individual model ResNet50, and with the ensemble formed by
ResNet50 + EfficientNet-B0 and MobileNet-V2. Of all these cases, the individual model
obtained an accuracy of 95% and the ensemble an accuracy of 98.33%, improving the results
of the individual models by 3.33%.

It could be considered whether it is worth using an ensemble network consisting of
three individual networks to improve by more than a 3%; however, it is important to note
that, analyzing each class individually, an improvement is obtained in all of them: 2%
improvement in the “monkeypox” class (keeping false negatives to zero and reducing false
positives); 4% improvement for the “healthy” class (reducing both false positives and false
negatives to zero); and 2% improvement in the “other skin damages” class (reducing false
positives to zero, while slightly maintaining some false negatives). In any case, all the
indicators analyzed show an improvement using the ensemble network.

4.2. Explainable AI Results

This section presents the results obtained from the application of the Grad-CAM algo-
rithm to the best-performing ensemble of those previously analyzed. That is, the one formed
by the following three pre-trained models: ResNet50, EfficientNet-B0, and MobileNet-V2.

The implemented Explainable Deep Learning algorithm (custom Grad-CAM) extracts
the resulting information after the last convolution layer (numerical weight matrix) and
converts it to a heat map for each of the pre-trained models included in the ensemble.
The results obtained from them are combined using the same algorithm as the ensemble
itself. The result is the full ensemble heat map that shows the areas on which the classifier
has been focused to obtain the verdict. This heat map is overlapped with the original image
so that the health professional can appreciate the areas that determine the verdict.

However, if only the overlapped image is presented to the healthcare professional,
he/she may not be able to see the affected area properly. This is why, in the final report,
the original image and a text report with the percentage of confidence of belonging to each
class are also provided.

Figure 11 shows the original image with the overlapped heat map and the classification
obtained provided. Based on these parameters, the healthcare professional can make the
final verdict, which could be to validate these results or to proceed with a more thorough
study of the sample.

Some reporting results for the training dataset are shown in Figure 12 regarding the
Grad-CAM results for each pre-trained model individually and its comparison with the
custom Grad-CAM of the ensemble.
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Figure 11. System’s final report given to the healthcare professional. Note: the arrows with continuous
lines represent the flow of the result provided by the classifier, while the arrows with non-continuous
lines represent the additional information extracted with the explainable AI technique and the
additional results of the final report.

Looking at the results shown for a specific example in Figure 11, several aspects can
be appreciated:

• For the case of Monkeypox images, most systems focus individually on the central
pustule of the image. However, it is true that in some cases they focus on the skin
wrinkles produced by it. This situation, thanks to the Grad-CAM applied to the
ensemble network, is solved by focusing on those aspects common to all networks.
Not surprisingly, it can be seen for the ensemble that the resulting heatmap is located
entirely on the pustule.

• For the normal skin case, discrepancies are observed between all the models individu-
ally, causing the ensemble heatmap to be more dispersed.

• Finally, for the case of other skin damage, being an example in which multiple spots
and pimples appear, each model focuses its attention on a particular part of the
image, although they all agree to focus on groups of skin spots and/or pimples.
Coincidentally, the model with the best individual results (ResNet) focuses its attention
on the area with the highest concentration of bumps. As for the ensemble heatmap, it
also focuses on this group of bumps.
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Figure 12. Results obtained for the Grad-CAM algorithm applied to each pre-trained model and to
the ensemble.

Summarizing, it can be observed that the result of applying the customized Grad-CAM
on the ensemble network by combining the heatmaps of the pre-trained models involved,
causes the attention on specific areas of the image to be diluted in favour of those areas
common among all the models. Thus, if a model focuses its attention on an area on which
the others are not focused, the ensemble will not take it into account in the final result.

4.3. Comparison with Previous Works

Finally, the results of the classifier developed in this work can be analysed in com-
parison with the two previous works detailed in Section 2. The comparative results are
presented in Table 18.

Table 18. Comparison with previous works.

Work Dataset Classes Classifier Results (%)

Ali et al. [24] Own 2: Monkeypox, Others

VGG-16
ResNet50

Inception-V3
Ensemble

[VGG16] Acc: 81.48, Pre: 85, Sen: 81, F1: 83
[ResNet] Acc: 82.96, Pre: 87, Sen: 83, F1: 84
[Inception] Acc: 74.03, Pre: 74, Sen: 81, F1: 78
[Ensemble] Acc: 79.26, Pre: 84, Sen: 79, F1: 81

Ahsan et al. [25] Own 2: Monkeypox, Chickenpox
2: Monkeypox, Others VGG-16 [Case 1] Acc: 83, Pre: 88, Sen: 83, Spe: 66, F1: 83

[Case 2] Acc: 78, Pre: 75, Sen: 75, Spe: 83, F1: 75

This work (2022) MonkeypoxSkin 3: Healthy, Monkeypox,
Other skin diseases

VGG-16
VGG-19

ResNet50
MobileNet-V2
EfficientNet-B0

Ensemble 1
Ensemble 2
Ensemble 3

[VGG16] Acc: 91.67, Pre: 92, Sen: 92, Spe: 96, F1: 92
[VGG19] Acc: 93.33, Pre: 93, Sen: 93, Spe: 97, F1: 93
[ResNet] Acc: 95, Pre: 95, Sen: 95, Spe: 97.75, F1: 95

[MobileNet] Acc: 88.33, Pre: 88, Sen: 88, Spe: 94, F1: 88
[EfficientNet] Acc: 90, Pre: 90, Sen: 90, Spe: 95, F1: 90
[Ensemble1] Acc: 91.67, Pre: 92, Sen: 92, Spe: 96, F1: 92
[Ensemble2] Acc: 91.67, Pre: 92, Sen: 92, Spe: 96, F1: 92
[Ensemble3] Acc: 98.33, Pre: 98, Sen: 98, Spe: 99, F1: 98
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If we look at the results obtained in previous work, the classifier developed in this
work improves the overall accuracy of the system (in addition to the individual accuracy of
all classes).

The first compared work uses its own two-class dataset and, therefore, its classifier
is a two-class classifier (“Monkeypox” and “others”). The best classification results are
obtained with the individual ResNet50 model (almost 83%). In this aspect, it is similar
to our work, since the best results for individual models are obtained with the ResNet50
model; even so, our work improves the classification results for the ResNet50 model by a
12% (it should also be taken into account that our work uses three classes, not two). Finally,
this first previous work also evaluates an ensemble (consisting of VGG-16 + ResNet50 +
Inception-V3), obtaining worse results than those obtained with ResNet50.

The second compared work uses its own dataset too, but in this case it contains four
classes. However, in that work, two two-class classifiers are developed: one classifies
between “monkeypox” and “chickenpox”, and the other classifies between “monkeypox”
and “others”. This work only analyses the VGG-16 model, obtaining classification results of
83% for the first case and 78% for the second one (taking into account the results presented
for the test subset). If we compare our work with this one, we obtain an improvement of
9% using the VGG-16 model (although it is one of the worst results obtained in our work).
In general, the improvement we obtain with respect to this work is more than 15%.

5. Conclusions

This works presents the need to develop a diagnostic aid for low-resolution images
obtained with a mobile phone. To this end, the need for artificial intelligence techniques is
justified as an initial screening mechanism to avoid saturation of emergency departments
and also for areas where advanced diagnostic equipment is not available.

To this end, images have been collected from government sources to build a proprietary
(and public) dataset that distinguishes between images of healthy skin, Monkeypox, and
other skin diseases.

With this dataset, a process of classifier development and evaluation has been followed
in which, in the first instance, several pre-trained models are trained with variations
in the hyperparameters. In addition, combinations of these models are used to train
different ensembles.

The results obtained exceed 98% accuracy for the best classifier.
With these results, we proceeded to compare this work with previous work on Mon-

keypox classification. The comparison shows an improvement in accuracy with respect to
these other works.

In addition to the classification results, two added values are provided: the new
dataset developed specifically for this work (which has more images and is better balanced
than the existing ones), and the inclusion of explainable AI tools (which provide a more
detailed report to the healthcare professional).

Ultimately, the three notable aspects of this work are the improvement of the classifier
developed, the public dataset, and the application of xAI techniques.
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