
Meetings

Root biology never sleeps

11th Symposium of the International Society of Root
Research (ISRR11) and the 9th International
Symposium on Root Development (Rooting2021),
24–28 May 2021

Emerging frontiers: root and rhizosphere research in
the context of global environmental change

Natural ecosystems and agricultural production have been threat-
ened by multifaceted global environmental changes. Soil degrada-
tion, extreme drought and flooding events, shifting climatic
patterns and other challenges have prompted many disciplines
within plant science to pivot to find solutions. Accordingly, root
research has expanded from fundamental studies on roots, as
providers of physical support, water and essential nutrients uptake,
towards identification of beneficial traits for stress adaptation and
control of key biological soil processes. Advances in trait identi-
fication, data acquisition, management andmodelling are enabling
root researchers to develop predictivemodels to support ecosystems
in these changing environments.

Through technical presentations, posters, industry exhibits and a
root phenotyping workshop, the international, jointly presented,
completely virtual International Society of Root Research (ISRR)
11/Rooting2021 meeting provided a unique platform for
researchers across disciplines to share recent advances in root
biology, from molecular to ecosystem-level scales, in agricultural
and natural ecosystems, addressing critical questions in response to
climate change and its impact on crop productivity and ecosystem
services. In this report, the 2021 ISRRAmbassador cohort provides
an overview of the current root research landscape and reflection on
the importance of frontier research for a more sustainable future.

ISRR11 and Rooting2021: A joint, virtual meeting

In response to global travel restrictions imposed by the COVID-19
pandemic, the 11th Symposium of the International Society of
Root Research (ISRR11, https://www.rootresearch.org/) and the
9th International Symposium on Root Development (Root-
ing2021) merged into a single online event co-organised by the
Interdisciplinary Plant Group at the University of Missouri
(Columbia, MO, USA) and the University of Nottingham (UK).
Over 700 participants representing academia, government and
industry from more than 53 countries (Supporting Information
Fig. S1) joined the virtual event held 24–28 May 2021. The
schedule ran almost uninterrupted across international time zones,
featuring 74 talks (10 plenaries, 16 keynotes, and 48 invited) and c.
300 posters, spanning a broad range of disciplines. In addition, the

2021 ISRR Lifetime Achievement Award was presented toWendy
Silk, Emeritus Professor at the University of California-Davis
(USA).

The Ambassador Program

ISRR11/Rooting2021 hosted the 3rd ISRR Ambassador Program,
a unique platform for early-career root researchers. The virtual
ISRR11/Rooting2021 Ambassador Program provided networking
activities, experience with conference organisation, interaction
with professionals in diverse career areas, and opportunities to
discuss advances in the field with a broadly multidisciplinary
cohort (Notes S1). Ambassador tasks at the ISRR11/Rooting 2021
meeting included session note-taking, the production of this
Meeting report, and a set of recommendations for diversity and
inclusion in future scientific events (Notes S2).

Root phenotyping workshop

The ISRR11/Rooting2021 meeting concluded with a root
phenotyping workshop with virtual tours of major root pheno-
typing facilities and demonstrations of methods. Organised by
Larry York (Oak Ridge National Laboratory, TN, USA) and
Darren Wells (University of Nottingham, UK), in collaboration
with other experts and the ISRRAmbassadors, the workshopwith a
Q&A format was used to discuss the latest advances in root
phenotyping techniques. The potential complementarity of image
analysis software tools emerged as a key topic as depicted in Fig. S2.
The availability of standardised protocols for root collection and
trait measurement was also highlighted by the participants of
the online survey, organised by the Ambassadors in addition to
the Symposium (Delory et al., 2022) and the workshop as an
important issue for future research. The Root Ecology Handbook
recently published in New Phytologist provides a comprehensive
guide on root sampling, processing and measuring for a wide
variety of traits in a standardised manner (Freschet et al., 2021).

Stress-resilient crops as a root phenotyping target

Root phenotyping for traits related to crop performance or
ecosystem services has been amain focus in the field of root biology
since the 1970s (Hurd, 1974). However, quantitative analysis of
plant phenotypes and their linkages to plant functions remains a
major bottleneck. ISRR11/Rooting2021 highlighted the current
emphasis on phenotyping root traits that will provide resilience to
changing environmental conditions (Fig. 1), including traits
related to root–microbial interactions (Kawasaki et al., 2021).
Rhizosphere processes related to root stress responses are key for
sustainable food production systems, as they impact soil function-
ing and resource use efficiency.
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The impact of drought and limited nutrient supply on plants
under global climate change, and the mechanisms of root response
frommolecular to field scales, have prompted focussed advances on
well established areas in the field of root research. Therefore, the
role of auxin and cytokinin inmolecular crosstalk has prompted the
rise of the ‘hormonics’ to explore their functions in root
development under drought stress (Rodriguez-Alonso et al., 2018),
and to identify signalling pathways that link nutrient availability to
root developmental parameters (Shahzad & Amtmann, 2017).
Hormonal signalling also underlies ‘nutritropism’, an extension of
‘chemotropism’ (Newcombe & Rhodes, 1904), which can now
be explored with advanced imaging and microscopy technology
(T. Fujiwara, University of Tokyo, Japan). Root-related strategies
tomitigate drought stress related to root hydraulic architecture and
water transport were also discussed (Maurel&Nacry, 2020). Root-

system-level traits linkedwithwater andnutrient use efficiency such
as wheat root axial conductance (Hendel et al., 2021), architectural
traits in rice (Ruangsiri et al., 2021) andmaize (Kistler et al., 2018)
have been identified with a combination of shovelomics, pheno-
typing, functional genomics and modelling.

The long-standing challenges of grafting for the introduction of
root traits related to stress tolerance have been partially overcomeby
recent progress on our understanding of graft compatibility and
cell-to-cell adhesion (Notaguchi et al., 2020). Advancing our
understanding of grafting mechanisms will certainly provide new
avenues to understand the effects of specific root genotypes and/or
traits on other parts of the plant body (J. Cantillo, Donald
Danforth Plant Science Center, MO, USA).

Current trends in root research seek to integrate stress responses
inside the root system with a better understanding of these root–
soil–microbe interactions. ISRR11/Rooting2021 highlighted the
role of the rhizosphere microbiome in nutrient homeostasis, for
example, in root diffusion (Salas-Gonz�alez et al., 2021), or during
nitrogen acquisition (Arsova et al., 2012). Root exudates were
introduced as potential targets for rhizosphere engineering to
promote beneficial microbiome functionalities (Kawasaki et al.,
2021) or to control harmful species. Novel studies looking into
root–microbiome interactions have become possible due to
precision genome editing, production of knocked-down lines
and reconstruction of biosynthetic metabolic pathways (Huang
et al., 2019), and advanced imaging techniques such as positron
emission tomography (Schmidt et al., 2020).

Roadmap to high-throughput root phenotyping

Recent advances in imaging techniques and image analysis (Fig. 1)
can support high-throughput root phenotyping of relevant struc-
tural features within the root architecture (Fig. 2). Detailed image-
based root phenotyping techniques such as X-ray computed
tomography (CT) scanning can improve our interpretation of in-
field studies (C. Topp, Donald Danforth Plant Science Center,
MO, USA). Current advances allow high-resolution and/or high-
throughput phenotyping studies, even in mature crops and under
field conditions (Gore et al., 2020; Rich et al., 2020), although
methodological challenges remain (Delory et al., 2022). For
example, root phenotyping of rooting depth and its significance
for deep water or nitrate uptake is being addressed with large-scale
field experiments using minirhizotrons or soil coring on maize
(A. Leakey, University of Illinois, USA), wheat (J. Christopher,
University of Queensland, Australia) and potatoes (O. Popovic,
Copenhagen University, Denmark). Automated, high-resolution
minirhizotrons are also used for visualising the dynamics of roots
and fungi interaction in experimentally warmed peatlands (C.
Iversen, Oak Ridge National Laboratory, TN, USA; Defrenne
et al., 2020). These imaging advances are complemented by the
development of free, open source and high-performance image
analysis software (Fig. S2).

Pairing 3D imaging techniques (e.g. X-ray CT) with mathemat-
ical modelling is a powerful way to study plant–soil interactions on
different scales, from soil pores to growing root systems (Roose
et al., 2016).This hybrid approachhas resulted inkeymilestones by

Fig. 1 Schematic overview of root phenotyping targets andmethodological
approaches discussed at the ISRR11/Rooting2021. The scheme highlights
root system traits of interest for plant adaptation to stress, agricultural
production and ecosystem services. Relevantmethodological approaches to
identify root traits are highlighted, including imaging techniques, rhizobiome
analysis and rhizosphere metabolomics. Comprehensive collections of root
image analysis and modelling tools are currently available (Lobet, 2017).
Further phenotyping approaches such as the measurement of ion uptake
rates and mechanical measurements were also discussed throughout the
meeting. A detailed list can be found in the results of the phenotyping survey
(Delory et al., 2022).
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allowing the elucidation of how root architecture and exudation
jointly affect P mobilisation and uptake (McKay Fletcher et al.,
2020), and to quantify the extent to which the dissolution of N
fertiliser granules affects soil microbial activity (Ruiz et al., 2020).

Imaging techniques can also be used for traits related to root–
microbe interactions (Fig. 1), complementing other multidisci-
plinary approaches that seek to better understand the complex
dialogue between roots, the associated microbiome and soil
processes.

Unleashing the power of mathematical modelling

Mathematical modelling complements phenotyping advances by
overcoming the challenges of experimental approaches and benefits
from the emerging field of functional phenomics (York, 2019).
Highlights from the diversity of modelling approaches presented at
ISRR/Rooting2021, in both spatial and temporal scales, include: a
micro-hydrological model that describes a new symplastic water
pumping mechanism (Couvreur et al., 2021); the dynamics and
regulation of a fast brassinosteroid response pathway inArabidopsis
root tips (Großeholz et al., 2021); functional–structural plant

(FSP) models to identify optimal root phenotypes for nutrient
capture in contrasting environments (Rangarajan, 2021); and field-
scale simulations of plant populations and communities (Postma
et al., 2017; Schnepf et al., 2018; Faverjon et al., 2019). Future
mathematical models will draw on larger, more complex, datasets
incorporating novel imaging technology, high-throughput pheno-
typing and availability of relevant environmental data. The positive
feedback cycles between these models and continued advances in
phenotyping are what will surely advance the field of root science.

Concluding remarks and perspectives

To meet the challenges imposed by the global COVID-19
pandemic, online communication has provided new opportunities
for international multidisciplinary cooperation. The ISRR11/
Rooting2021 online event brought the root research community
together to share knowledge on the latest developments in root and
rhizosphere research, present new technological advances and
identify pressing research questions that still require answers. The
adoption of a holistic approach to root research, that is, one that
takes into account all categories of root traits, from anatomy to root

(a) (b)

(c)

Fig. 2 Nondestructive, high-resolution and
3D imaging techniques offer new insights into
the hidden half of plants. (a) Image of a
soybean root system with N2-fixing nodules
obtained using X-ray computed tomography.
(b) Combining positron emission tomography
and X-ray computed tomography allows the
visualisation of carbon allocation to the N2-
fixing nodules of a soybean root system.
(c) Visualising the architecture and internal
anatomy of a maize root system using X-ray
computed tomography and X-ray microscope
images. Photography credits: Christopher
Topp (Donald Danforth Plant Science Center,
MO, USA).
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morphology, physiology and architecture, as well as interactions
with the rhizospheremicrobiota, was emphasised as a crucial step in
facing the challenges posed by global change. We encourage root
researchers to actively take advantage of the plethora of online
resources currently available for plant phenotyping (https://
quantitative-plant.org/), and to join the ISRR (https://www.
rootresearch.org/). Collaborations to share knowledge, along with
new technological advances, will help us further understand roots
and rhizosphere processes.
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Supporting Information

Additional Supporting Information may be found online in the
Supporting Information section at the end of the article.

Fig. S1Map depicting the distribution and number of attendees to
the joined Symposium ISRR11-Rooting2021.

Fig. S2 Example of root image analysis pairing RootPainter and
RhizoVision explorer.

Notes S1 The ISRR11 3rd Graduate Student and Postdoc
Ambassador Program.

Notes S2 Diversity and inclusion at ISRR11/Rooting2021.

Please note: Wiley Blackwell are not responsible for the content or
functionality of any Supporting Information supplied by the
authors. Any queries (other than missing material) should be
directed to the New Phytologist Central Office.
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