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A B S T R A C T

Curved weak interfaces present promising advantages to be implemented as crack arrestors in
structures designed under the damage tolerant-design principles. Among other advantages, they
neither add extra weight nor significantly affect the global stiffness of the structural element,
in contrast with alternative crack arrestors concepts. To be employed as a crack arrestor, it is
key that the interface is able to deviate the crack. If the crack penetrates across the interface,
the effect of the weak interface as a crack arrestor is canceled. In view of this, this work
studies how to set the interface parameters to promote crack deviation along the interface. In
particular, following the dimensional analysis of the problem, the effect of three significant
dimensionless parameters is studied: interface to bulk fracture toughness, interface to bulk
tensile strength, and the interface curvature radius normalized with the material characteristic
length. The corresponding analysis is carried out using three approaches widely applied for
the prediction of cracking events: Linear Elastic Fracture Mechanics, Finite Fracture Mechanics,
and a combination of Phase field and Cohesive Zone Model. The results present a clear effect
of some parameters, such as the ratio of the interface to bulk fracture toughness, for which
the three approaches agree. However, the results are moderately diverse in which correspond
to the effect of the ratio of the interface to bulk tensile strength and quite divergent in what
respect to the effect of the radius. The results are interpreted and explained as a consequence
of the main assumptions behind the approaches studied.

. Introduction

The demanding interest for the achievement of optimized performance in layered materials and structural systems has stimulated
he conception of multiple material arrangements at different scales. These arrangements have been extensively exploited in different
pplications with a special interest in fracture resistance capabilities. This trend ranges from the conception of multilayered systems
t the macroscale to engineering the design of microstructures, mimicking many concepts and designs found in nature. Specifically,
everal investigations aimed at providing a profound mechanical insight into the underlying cracking mechanisms in bio-inspired
nterface designs, pinpointing their potential for the next generation of engineering products, see Bermejo (2017) and the references
iven therein.
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Within this context, one of the most relevant aspects that inherently determines the effective fracture toughness of such systems
s characterized by the stability of the composing interfaces in conjunction with their ability to engineering the potential crack
aths. Representative applications of these events can be found in thermal and environmental barrier coatings (Wang et al., 2012),
elamination events in layered ceramics (Bermejo and Danzer, 2010; Carollo et al., 2018) and laminated composite materials (Turon
t al., 2006; Maimí et al., 2011; Zubillaga et al., 2014), among many other applications. The importance of these phenomena can
e also found in the designs of crack arrestors in many engineering applications, whereby the presence of interfaces plays a major
ole.

The comprehensive understanding of potential fracture phenomena in heterogeneous materials has been a research topic that has
ttracted significant scientific attention over the last decades. The competition propagation vs deflection of a crack impinging on an
nterface is a particular problem within the context of crack path selection, extensively studied for isotropic media (Barenblatt and
herepanov, 1961; Erdogan and Sih, 1963; Hussain et al., 1973). For interfaces, the crack path selection is strongly affected by the

nterface properties and has been investigated by different authors (Cook and Erdogan, 1972; Lin and Mar, 1976; He et al., 1991;
hang and Suo, 2007; Tullock et al., 1994; Alam et al., 2017; Roy Xu et al., 2003; Sundaram and Tippur, 2016; Zeng and Wei, 2017),
ith relevant contributions on the matter originally proposed by Cook and Gordon via strength-based analysis (Cook and Gordon,
964) and posteriorly by Gupta and coworkers at biomaterial interfaces, see e.g. Martínez and Gupta (1994). In this concern, it
s worth mentioning the seminal contribution on the matter carried out by He and Hutchinson (1989). These authors conducted
rigorous asymptotic analysis relying on Linear Elastic Fracture Mechanics (LEFM) that led to the derivation of an energy-based

riterion for crack deflection comparing the ratio between the interfacial and penetrated fracture toughness with respect to the
orresponding energy releases rates. Further studies exploiting LEFM concepts concerned different configurations via the use of He
nd Hutchinson (HH) criterion, which was experimentally validated in different multi-material systems.

Within the last three decades, this prolific research activity has been revitalized due to the advent of novel predictive
ethods based on numerical techniques, especially using the Finite Element Method (FEM) owing to its inherent versatility. These

omputational methods do offer very appealing and powerful aspects that allow the limitations of theoretical approaches to be
vercome. In this regard, several authors employed kinematic-enriched methods such as the eXtended-FEM (XFEM) for predicting
ixed-mode fracture events in multi-material and multi-layered systems, see Stein et al. (2017) and the references therein given.
owever, numerical approaches recalling enriched kinematics generally require the adoption of ad-hoc crack propagation and
inking criteria and can present notable operative difficulties for tracking the crack path in very complex geometrical configurations
nd loading cases. Cohesive zone models (CZMs) can efficiently circumvent such limitations due to the preclusion of any external
rack growth criteria, due to their inherent conception. Specifically, recalling the early concepts of Dugdale (1960) and Barenblatt
nd Cherepanov (1961), Barenblatt (1962), CZMs have been widely used for the analysis of layer-substrate systems and in scenarios
oncerning channel cracks impinging on the interface between the composing layers. CZMs allow bridging the two traditional views
n fracture, i.e. strength- and toughness-based visions via the consideration of the fracture-length scale.

In addition to the previous modeling techniques, in the last decade, the so-called Finite Fracture Mechanics (FFM) and the Phase
ield (PF) approach of fracture have emerged as powerful predictive techniques with proven abilities for efficiently characterize
rack initiation and propagation in a wide range of applications.

From the perspective of FFM, Leguillon (2002) developed a coupled criterion (CC) for brittle fracture that comply with the
oncomitant fulfillment of the stress and energy conditions at the material point level, which was posteriorly developed for interface
racks by Mantič (2009). FFM exclusively requires the use of the material strength and fracture toughness as input parameters
etermining the initiation loading, location and length of the potential crack. Current applications of FFM regarded the prediction
f failure in V-notched specimens (Yosibash et al., 2006; Carpinteri et al., 2008; García and Leguillon, 2012), composite materials at
ifferent length scales (Carraro and Quaresimin, 2014; García et al., 2016), with multiple extensions such as to nonlinear material
ehavior (Rosendahl et al., 2019; Leite et al., 2021) and fracture dynamics (Chao-Correas et al., 2022), among many others,
ee García (2014), Weißgraeber et al. (2016) for reviews. Recently, several authors proposed different numerical schemes for the
E-based implementation of the Coupled Criterion (CC) (Li and Leguillon, 2018), whereas Muñoz-Reja and coauthors developed a
oundary Element Method (BEM)-implementation for the CCFFM for interfaces via the exploitation of the Linear Elastic Interface
odel (Muñoz-Reja et al., 2020).

Following an alternative methodology, the PF approach of fracture was originally postulated by Francfort and Marigo (1998),
ho derived a novel formulation via the regularization of the energetic conception of fracture proposed by Griffith (1921). This
ariational framework is based on the conception of the Griffith fracture as an energy minimization problem, whereby a direct
ompetition between the elastic and dissipated-energy contributions is devised. In this framework, sharp cracks are regularized
sing a scalar spatially-smooth variable, denominated as the crack-like phase field variable, introducing a critical strength that
s related to the regularization parameter 𝓁, which can be interpreted as the characteristic internal length of the material. In

this regard, as was thoroughly investigated in Tanné et al. (2018), Kumar et al. (2020), Nguyen et al. (2016a), this attribute
allows retrieving well-known size effects at small and large length scales. PF methods have become progressively popular due
to their ability to simulate intricate fracture events (Bourdin et al., 2000; Wu and Nguyen, 2018), and accommodating different
behaviors ranging from anisotropic solids (Teichtmeister et al., 2017), elastoplastic materials (Ambati et al., 2015; Borden et al.,
2016), among many others. Alternative applications have also concerned multi-field applications, composite materials, and rock-
fracture, to quote a few of them, and other authors have intensively explored the use of alternative solution procedures for the
corresponding multi-field variational formalism (Miehe et al., 2015). Within the context of heterogeneous media, Paggi and Reinoso
consistently coupled PF and CZM for triggering fracture phenomena for heterogeneous media (Carollo et al., 2017; Paggi and
2

Reinoso, 2017) encompassing a coupling between bulk and interface damage, whereas (Zambrano et al., 2022) proposed a different
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numerical strategy based on the combination of PF and CZ-interface methods uncoupling the damage between them. This latter
numerical approach provided excellent agreement with respect to theoretical results from LEFM and the alternative study conducted
in Parmigiani and Thouless (2006). In addition to the previous techniques, Nguyen et al. (2016b) and Hansen-Dörr et al. (2020)
presented alternative formulations in order to account for the effects of the presence of interfaces within the context of the variational
approach of fracture.

However, as recalled above, many systems are characterized by the presence of interfaces with non-planar profiles, including
extured definitions or wavy patterns which can be accordingly engineered in order to achieve outstanding fracture response. Despite
his potential, at present, the vast majority of previous studies have been concerned with scenarios in which a crack with an arbitrary
rientation impinges on flat (straight) interfaces. Notwithstanding, structured- and wavy interfaces might lead to crack trapping or
etardant phenomena, whose efficiency strongly depend upon the geometric definition in conjunction with the materials (in terms
f stiffness, strength, and fracture toughness) characteristics of the interface and the adjoining bodies. Stemming from the scarcity
f previous studies on the matter, in this investigation, the problem of the competition between penetration and deflection of a
rack impinging at a curved interface is analyzed. The motivation of this work is twofold:

• First, from the point of view of the application of curved weak interfaces as crack arrestors, the objective is to evaluate the
effect of the interface radius on the ability of the interface to deviate the crack. Some preliminary experimental evidences
by Aranda et al. (2020) showed that the interface radius could take a notable effect on that. These preliminary results are
summarized in Fig. 1, where it can be appreciated that smaller radii seem to promote penetration. This could be very positive
if confirmed because the curvature radius can be a parameter easy to be tailored. Given these results, it could argue that the
straight interface is the optimum because larger radii promote deflection. However, once the crack is deflected, the concave
interface showed a better ability to arrest the crack progression through the interface, see Aranda et al. (2020). Thus, for
the overall arrestor mechanism, the straight interface could not be optimum. It will be necessary to know the conditions for
deflecting of concave interfaces.

• The second objective is to examine the ability of the different approaches studied, LEFM, FFM and PF+CZM, to predict the
influence of the main parameters on the competition between deflection and penetration. In addition, since they are three
approaches used for the study of similar problems, the comparison for this problem will allow to contribute to the knowledge
of the potential relationship between them, in line with previous works, see e.g. García et al. (2014), Cornetti et al. (2019),
Molnár et al. (2020). In particular, the effect of a local geometrical parameter such as the curvature radius and its interaction
with the material characteristic length is key to understanding how the different criteria deal with this competition for quasi-
brittle scenarios. Previous works deal with the effect of other geometrical parameters, such as the distance from the crack tip
to the interface (Zambrano et al., 2022). However, to the best of the authors’ knowledge, no previous work deals with the
effect of the interface local radius.

The document is organized as follows. The problem under investigation is described in Section 2, including a dimensional
nalysis of it. The Sections 3–5 present the models based on the LEFM, FFM, and PF+CZM approaches, respectively. Finally, the
esults are compared and discussed in Section 6.

. Problem description and dimensional analysis

The problem under study concerns the investigation of the competition between penetration and deflection in a crack impinging
n a curved weak interface, and the analysis of how the mechanical and geometric properties of the specimen affect the competition
etween the two main failure mechanisms: (i) crack deflection along the prescribed interface and (ii) crack propagation into the
djacent body. This analysis is designed in such a way that the corresponding results can be taken as reference solutions in order
o exploit curved weak interfaces as potential crack arrestors in engineering structures.

The geometry is composed of a relatively large plate containing a straight and horizontal primary crack impinging on a curved
eak interface, see Fig. 2. The local curvature radius of the interface at the impinging point is denoted as 𝑅. The remaining

geometric parameters of the specimen are denoted as in-plane width 𝑊 , length 𝐿, and out-of-plane thickness 𝐵. These parameters
are related to the radius 𝑅 using the next ratio: 𝑊 = 2𝑅, 𝐿 = 10𝑅, and 𝐵 = 0.1𝑅. The initial crack is defined from the leftmost
boundary of the specimen till the prescribed interface, which is placed at the middle of the specimen width, i.e. the initial crack
length is 𝑎0 = 𝑊 ∕2. The interface is assumed to comply with a very thin adhesive layer 𝑡 (𝑡 ≪ 𝑅), with elastic properties very
similar to the material of the bulk in line with the previous experiments from the authors (Aranda et al., 2022). Correspondingly,
the adhesive layer is not expected to have any remarkable influence on the overall stress and strain solution of the system prior to
the occurrence of either crack deflection or penetration. This assumption, along with the fact that the two materials joined by the
curved interface are coincident with each other, enables studying the problem as a homogeneous solid, from the point of view of
the elastic analysis. This fact allows focusing on the properties to be designed in the definition of a crack arrestor in a homogeneous
structural element: the curvature radius and the contrast on the fracture and strength properties of bulk and interface.

The specimen is subjected to a remote vertical stress 𝜎. This remote stress is increased quasi-statically from zero to a critical
value 𝜎max, for which the crack either penetrates (𝜎max

pen ) or deflects (𝜎max
def ) along the interface. The comparison between 𝜎max

pen and
max
3

𝜎def provides the preferential of the system.
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Fig. 1. Photographs of fractured specimens for different radii of curvature of curved interface configuration, showing (a) deflection of the crack path and
(b) penetration.

Fig. 2. Schematic of the problem under study: A straight crack implying a curved weak interface.

By conducting the corresponding dimensional analysis of the system, it is possible to identify the main dimensionless parameters
governing the problem. In general, the critical stress value (𝜎max

pen or 𝜎max
def ) for which the crack either penetrates or deflects can be

expressed respectively as the next two functions:

𝜎max
pen = 𝐹pen

(

𝜎bc , 𝐺
b
c , 𝐸, 𝜈, 𝑎0,𝑊 ,𝐿, 𝐵

)

(1)

𝜎max = 𝐹
(

𝜎i , 𝜏 i , 𝐺i , 𝐺i , 𝐸, 𝜈, 𝑎 , 𝑅,𝑊 ,𝐿, 𝐵
)

(2)
4

def def c c 1c 2c 0
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where 𝜎bc is the tensile strength of the bulk, and 𝐺b
c is its fracture toughness. The terms 𝜎ic and 𝜏 ic are respectively the tensile and shear

trength of the interface. The terms 𝐺i
1c and 𝐺i

2c are the interface fracture toughness properties for pure Modes 1 and 2, respectively.
inally, the mechanical properties 𝐸 and 𝜈 stand for the Elastic modulus and Poisson’s ratio of the bulk.

Based on the previous expression and taking 𝜎bc and 𝑅 as the base set of dimensional units, the ratio between the two previous
functions can be rewritten as:

𝜎max
pen

𝜎max
def

= 𝛷comp

(

𝜎ic
𝜎bc
,
𝜏 ic
𝜎ic
,
𝐸𝐺b

c

(𝜎bc )2𝑅
,
𝐺i
1c

𝐺b
c
,
𝐺i
2c

𝐺i
1c

, 𝐸
𝜎bc
, 𝜈,

𝑎0
𝑅
, 𝑊
𝑅
, 𝐿
𝑅
, 𝐵
𝑅

)

(3)

after the subsequent invocation of the Π-theorem of dimensional analysis. Assuming that the competition between crack penetration
and deflection will be ruled by the failure mechanism requiring a lower stress value, the competition can be analyzed through the
computation of the former ratio.

It is worth noting that in line with the general description of the problem and the applications, the only geometrical parameter
with a relevant role in the current analysis is the interface curvature radius. Thus, in order to avoid any influence of the external
geometry on the results, the ratio between the curvature radius and the other geometrical parameters has been fixed. This fact
leads to the simplification of Eq. (3) since the geometrical ratios can be removed from the primary arguments. This also holds
for scenarios in which these ratios are fixed. Moreover, we assume that the terms 𝐸∕𝜎bc and 𝜈 are fixed since depend upon the

echanical properties of the bulk. Based on this discussion, Eq. (3) can be reduced to:

𝜎max
pen

𝜎max
def

= 𝛷comp

(

𝜎ic
𝜎bc
,
𝜏 ic
𝜎ic
, 𝑅
𝐸𝐺b

c∕(𝜎bc )2
,
𝐺i
1c

𝐺b
c
,
𝐺i
2c

𝐺i
1c

)

. (4)

The value of this ratio can be associated directly with the possible preferential failure mechanism: (i) penetration in the case of
𝜎max
pen ∕𝜎

max
def < 1, and (ii) deflection for 𝜎max

pen ∕𝜎
max
def > 1.

Note that in Eq. (4) and based on the characteristics of the present investigation, the dimensionless parameter depending on the
radius has been reversed with respect to Eq. (3) in order to provide a direct measure of the dimensionless radius of the interface.
Moreover, it is worth mentioning that this parameter can be also rewritten and interpreted as a dimensionless brittleness number,
see Carpinteri (1982), Bažant and Kasemi (1990), Mantič (2009) for further details.

It is worth noting that other dimensionless groups could have been chosen. The choice proposed in this work was based on
recovering the physical contrasts playing a role in the penetration/deflection competition: on one side the contrast between interface
and bulk in terms of fracture and strength properties, and on another side the contrast between the curvature radius and the material
characteristic length in the bulk.

Taking as the final form of the 𝛷comp the expression given in Eq. (4), subsequent contents of the present manuscript will
analyze the prospective crack propagation scenarios based on the values of this function using the following well-established failure
predicting methodologies: (i) Linear Elastic Fracture Mechanics (LEFM) through the adoption of the classical energy-based Griffith’s
criterion, (ii) the Finite Fracture Mechanics (FFM) via the use the Coupled Criterion and (iii) Phase Field approach combined with
Cohesive Zone Model using nonlinear implicit FE simulations.

3. Linear Elastic Fracture Mechanics

This section presents the prediction of Linear Elastic Fracture Mechanics (LEFM) on the competition between penetration across
the interface or deflection along the curved interface. The application of LEFM to this problem will be briefly described, obtaining
the expressions governing the competition.

3.1. Model description

According to the energy-based fracture criterion proposed by Griffith (1921), a predefined crack grows when the energy release
rate 𝐺 equals or exceeds the fracture energy 𝐺c. This crack growth can be stable (𝐺′(𝑎0) ≤ 𝐺′

c) or unstable (𝐺′(𝑎0) > 𝐺′
c). In the

context of this problem, these conditions are evaluated for the two options herewith considered. The comparison of the critical load
for which the conditions are fulfilled in each option will determine the preferential scenario. Note that this is equivalent to the
classical He and Hutchinson (1989) approach.

Accordingly, for penetration cases, Griffith’s criterion can be expressed as

𝐺pen ≥ 𝐺b
c (5)

where the fracture energy has been identified with the fracture toughness of the bulk material 𝐺b
c in Mode 1, since the crack, in

case of penetration, is assumed to grow straight, see Fig. 2.
The energy release rate 𝐺pen for penetration can be approximated using the (Takeda and Ogihara, 1994) expression for a free-edge

crack in a finite-width plate subjected remote tensile loading 𝜎:

𝐺(𝑎) = 𝜎2𝜋𝑎
𝐸

𝐹 2
( 𝑎
𝑊

)

(6)

here the function 𝐹 is an explicit function on 𝑎∕𝑊 , see Tada et al. (2000).
5
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Introducing Eq. (6) into Eq. (5), after some manipulations and taking into account that 𝐺′(𝑎) > 0, the remote load 𝜎 for which
he crack penetrates 𝜎 = 𝜎max

pen is given by the following closed-form expression, which has been manipulated in order be expressed
s a function of the dimensionless parameters given in Eq. (4):

𝜎max
pen

𝜎bc
≥ 1
𝜎bc

√

𝐺b
c𝐸
𝑅

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝛾

√

1
𝜋 𝑎0𝑅 𝐹

2(𝑎0∕(2𝑅))
(7)

where the dimensionless brittleness number 𝛾 = (1∕𝜎bc )
√

𝐺b
c𝐸∕𝑅 proposed by Mantič (2009) can be identified, or equivalently the

inverse of the square root of dimensionless radius 𝑅∕(𝐸𝐺b
c∕(𝜎

b
c )

2) (that can be interpreted as the ratio between 𝑅 and a number
proportional to the well-known Irwin length 𝑙Irwin within LEFM context). Finally, the previous expression renders:

𝜎max
pen

𝜎bc
≥ 1
𝜎bc

√

𝐺b
c𝐸
𝑅

√

1
𝜋𝐹 2

(8)

with 𝐹 2 corresponding to the value of this function for 𝑎0∕(2𝑅) = 0.5, since 𝑎0 = 𝑊 ∕2 = 𝑅 as discussed in Section 2. Since this
argument remains constant in this investigation, the argument of the function 𝐹 will be omitted in subsequent developments.

Following a similar procedure, for deflection scenarios, the cracking propagation condition is given by

𝐺def ≥ 𝐺i
c (9)

where 𝐺def is approximated using the expression by Leblond (1989) for an abrupt deviation of a crack from a primary crack.
Exploiting this approach, the energy release rate for deflection corresponds to the energy release rate of the primary crack multiplied
by a particular factor:

𝐺def = 𝜎2𝜋𝑎
𝐸

𝐹 2
( 𝑎
2𝑅

)

(

𝑄2
11(𝑚) +𝑄

2
21(𝑚)

)

(10)

where 𝐹 replicates the same function previously employed for penetration cases, and 𝑄11(𝑚) and 𝑄21(𝑚) are functions that exclusively
depend on the deviation angle, see Leblond (1989), Amestoy and Leblond (1992). In this case, the deviation angle is 𝜋∕2 since the
crack impinging perpendicularly on the interface, and therefore the particular values of 𝑄11 and 𝑄22 are set constants for the purposes
of this work. It is worth mentioning that in the present analysis, the value of this angle is independent of 𝑅 because the very first
crack growth is considered as an infinitesimal propagation.

With respect to the right-hand side of Eq. (9), the fracture energy, in this case, is affected by the fracture-mode mixity.
The dependence of fracture energy upon the fracture-mode mixity has been extensively investigated by different authors, see
e.g. Hutchinson and Suo (1992), Banks-Sills et al. (2000). The case of a crack growing along a thin interface, with similar elastic
properties to those of the bulk, was recently studied by the authors (Aranda et al., 2022), pinpointing that the phenomenological
law by Hutchinson and Suo (1992) can be taken as an accurate approximation for this case. The particular form of the fracture
criterion proposed in Hutchinson and Suo (1992) renders

𝐺i
c = 𝐺i

1c
(

1 + tan2(1 − 𝜆(𝐺i
2c∕𝐺

i
1c)𝜓)

)

(11)

where 𝜆 can be expressed as a function of the ratio 𝐺i
2c∕𝐺

i
1c:

𝜆 = 1 − 2
𝜋
arctan

⎛

⎜

⎜

⎝

√

√

√

√

𝐺i
2c

𝐺i
1c

− 1
⎞

⎟

⎟

⎠

(12)

and 𝜓 is the stress fracture mode-mixity, which can be expressed as a function of 𝑄21 and 𝑄11:

𝜓 = arctan
𝑄21
𝑄11

. (13)

Moreover, in line with the previous discussion, 𝑄21 and 𝑄11 can be considered as constant values for the particular problem under
consideration. This yields that the mixity angle 𝜓 can be also taken as constant.

Further steps in the current procedure encompass the insertion of Eqs. (10) and (11) into the original balance Eq. (9). Thus, after
some algebraic manipulations and taking into account that 𝐺def ′(𝑎) ≥ 0, the remote load 𝜎 = 𝜎max

def for which deflection scenario is
xpected, renders:

𝜎max
def ≥

√

√

√

√

𝐺i
1c𝐸

(

1 + tan2(1 − 𝜆(𝐺i
2c∕𝐺

i
1c)𝜓)

)

𝜋𝑎0𝐹 2(𝑎0∕(2𝑅))
(

𝑄2
21 +𝑄

2
11
) (14)

This condition can be manipulated in order to be expressed in terms of the dimensional parameters in Eq. (4):

𝜎max
def
b

≥ 1
b

√

𝐺b
c𝐸
𝑅

√

√

√

√

𝐺i
1c
b

√

√

√

√

1 + tan2(1 − 𝜆(𝐺i
2c∕𝐺

i
1c)𝜓)

2
( 2 2 ) (15)
6

𝜎c 𝜎c 𝐺c 𝜋𝐹 𝑄21 +𝑄11



Journal of the Mechanics and Physics of Solids 178 (2023) 105326M.T. Aranda et al.

B
𝜎

4

o
a

T
s
i
h
i

p
o
i
w
t
a

4

v

T
S

where the dimensionless parameters can be identified: 𝛾 (or equivalently the inverse of the square root of the dimensionless radius),
the ratio of bulk to interface fracture toughness in Mode 1: 𝐺i

1c∕𝐺
b
c and the ratio of Mode 2 to Mode 1 interface fracture toughness

𝐺i
2c∕𝐺

i
1c.

The preferential failure mode will be governed by the ratio in Eq. (4). Thus, dividing Eq. (8) by Eq. (15), the ratio Eq. (4)
according to LEFM yields

𝜎max
pen

𝜎max
def

=

√

√

√

√

𝐺b
c

𝐺i
1c

√

√

√

√

𝜋𝐹 2(𝑄2
21 +𝑄

2
11)

1 + tan2(1 − 𝜆(𝐺i
2c∕𝐺

i
1c)𝜓)

(16)

This results in a fully explicit expression of the competition as a function of the dimensionless parameters defined in Section 2.
ased on this expression, two possible scenarios can be identified: (i) penetration cases for 𝜎max

pen ∕𝜎
max
def < 1, and (ii) deflection cases

max
pen ∕𝜎

max
def > 1.

For the sake of brevity, the results of LEFM will be presented and discussed along with the results predicted by FFM in Section 4.2.

. Coupled criterion of the Finite Fracture Mechanics

Finite Fracture Mechanics (FFM) is based on the assumption that a finite increment of the crack length during the crack initiation
r growth. Within this approach, the coupled criterion (CC) (Leguillon, 2002; Cornetti et al., 2006) postulates that the necessary
nd sufficient condition for crack initiation or growth occurs when the next two conditions are simultaneously fulfilled:

• Stress condition: The stresses over the future crack path reach or exceed a certain level, typically identified with the material
strength.

• Energy condition: The released energy during the increment of crack length is enough for the energy required to be dissipated.
This energetic balance is similar to that proposed by Griffith (1921) but in an incremental way.

he coupled criterion is particularly useful to predict crack initiation there where Griffith’s criterion fails: that is in the vicinity of
tress concentrations or weak stress singularities. For these cases, of practical relevance, the Griffith’s criterion requires an unrealistic
nfinite critical load for crack initiation. Thanks to this ability of the coupled criterion, many problems involving crack initiation
ave been solved in the last two decades for very different material systems and scales, see the comprehensive revisions given
n García (2014), Weißgraeber et al. (2016).

Apart from the inherent potential to the accurate prediction of crack initiation events, the coupled criterion can be also
articularly useful in order to estimate crack-growth phenomena. In particular, this methodology enables capturing the effect
f the size of the process zone as reported by Cornetti et al. (2016). This fact is particularly relevant in this study since the
nteraction between the process zone, whose size is related to a material characteristic length, and the curvature radius of the
eak interface could induce a dependency of the penetration/deflection competition on the curvature radius in situations where

he material properties of the system remain unchanged. This is interesting for design purposes and cannot be captured by LEFM in
ny circumstances.

.1. Model description

According to the coupled criterion, the remote load 𝜎max for which the crack initiates or propagates is given by the minimum
alue of the remote load 𝜎 fulfilling the two next conditions:

• Stress criterion: The stresses along the future crack path should exceed the strength of the material. This can be written as,

𝜎cpeq (𝜎cp(𝑥), 𝜏cp(𝑥), 𝜏c∕𝜎c) ≥ 𝜎c, ∀𝑥 ∈ [0, 𝛥𝑎], (17)

where 𝜎cpeq is an equivalent stress, homogeneous function of the first order of the normal 𝜎cp and shear 𝜏cp stresses associated
to the future crack path. The particular expression for 𝜎cpeq depends on the material system. The values 𝜎c and 𝜏c respectively
stand for the tensile and shear strength at the future crack path. These values will be identified with the interface or bulk
strength, depending on the case. The curvilinear coordinate 𝑥 has its origin at the initial crack tip and runs along the future
crack path (in this problem, either straight across the interface or along the interface). The term 𝛥𝑎 represents the increment
in crack length, which will be a result of the analysis.

• Energy criterion:

∫

𝑎0+𝛥𝑎

𝑎0
𝐺(𝑎)d𝑎

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
−𝛥𝛱

≥ ∫

𝑎0+𝛥𝑎

𝑎0
𝐺c(𝑎)d𝑎

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐸d

(18)

where −𝛥𝛱 and 𝐸d correspond, respectively, to the energy released and dissipated during the process of increment on crack
length, i.e. during the abrupt crack propagation.

he previous criteria can be rewritten as conditions over the critical remote load following the dimensional analysis outlined in
ection 2:
7
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• Stress criterion:

𝜎max

𝜎bc
≥ max
𝑥∈(0,𝛥𝑎)

𝜎c∕𝜎bc
�̂�cpeq (𝑥, 𝜏c∕𝜎c)

(19)

where �̂�cpeq = 𝜎cpeq (𝑥)∕𝜎. Note that the condition in (17) imposing that the equivalent stress has to exceed a critical value at every
point in (0, 𝛥𝑎) is rewritten here as a maximization of this condition over the whole segment (0, 𝛥𝑎). This equivalent expression
is easier to be implemented for automatic analysis.

• Energy criterion:

𝜎max

𝜎bc
≥ 1
𝜎bc

√

𝐺b
c𝐸
𝑅

√

𝐺1c

𝐺b
c

√

√

√

√

√

√

∫ �̂�0+𝛥�̂�0�̂�0
�̂�c(�̂�)d�̂�

∫ �̂�0+𝛥�̂�0�̂�0
�̂�(�̂�)d�̂�

(20)

where the expressions have been manipulated to make appear the dimensionless parameters and functions introduced in
Section 2, adding �̂� = 𝑎∕𝑅, �̂�c(�̂�) = 𝐺c(�̂�)∕𝐺1c, and �̂�(�̂�) = 𝐺(𝑎)𝐸∕(𝜎2𝑅). This is the general expression, valid for penetration
and deflection. Thus, the terms and functions 𝐺1c, �̂�c(�̂�), �̂�(�̂�) will be particularized for either penetration or deflection below.

According to the coupled criterion, the crack initiation or propagation occurs when the two previous conditions are fulfilled
simultaneously, so it can be rewritten by taking the more restrictive, i.e. finding the minimum value of 𝜎 fulfilling the two previous
conditions simultaneously (i.e. the maximum of the two):

𝜎max

𝜎bc
= min

𝛥�̂�

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

max

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

max
𝑥∈(0,𝛥𝑎)

𝜎c∕𝜎bc
�̂�cpeq (𝑥, 𝜏c∕𝜎c)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑠(𝛥�̂�)

; 1
𝜎bc

√

𝐺b
c𝐸
𝑅

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝛾

√

𝐺1c

𝐺b
c

√

√

√

√

√

√

∫ �̂�0+𝛥�̂��̂�0
�̂�c(�̂�)d�̂�

∫ �̂�0+𝛥�̂��̂�0
�̂�(�̂�)d�̂�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑔(𝛥�̂�)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(21)

This expression can be particularized for the two cases studied here: (i) penetration across the interface, and (ii) deflection along
the interface.

First, for penetration scenarios, the crack propagates through the bulk, so 𝜎c = 𝜎bc , and 𝐺1c = 𝐺b
1c. In addition, shear stresses are

zero along the future crack path:

�̂�cpeq (𝑥, 𝜏c∕𝜎c) = �̂�pen(𝑥) (22)

Finally, since in this case, the crack grows in pure Mode 1, 𝐺pen
c = 𝐺b

1c, so �̂�pen
c = 1, and consequently:

∫

�̂�0+𝛥�̂�

�̂�0
�̂�c(�̂�)d�̂� = 𝛥�̂� (23)

Thus, the expression in Eq. (21) can be rewritten as:

𝜎max
pen

𝜎bc
= min

𝛥�̂�

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

max

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

max
𝑥∈(0,𝛥𝑎)

1
⟨�̂�pen⟩+ (𝑥)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑠pen(𝛥�̂�)

; 1
𝜎bc

√

𝐺b
c𝐸
𝑅

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝛾

√

√

√

√

𝛥�̂�

∫ �̂�0+𝛥�̂��̂�0
�̂�pen(�̂�)d�̂�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑔pen(𝛥�̂�)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(24)

Note that both 𝑠pen(𝛥�̂�) and 𝑔pen(𝛥�̂�) are functions of the elastic solution for stresses, so these terms are universal for this problem
and independent of elastic, fracture and strength properties. Similarly to the analysis with LEFM in Section 3, a single dimensionless
parameter 𝛾 contains the full dependence on the elastic, geometric, fracture, and strength properties.

The values of the stresses �̂�pen and energy release rate �̂�pen are obtained using a set of linear finite element models in ABAQUS,
similar to that used in Aranda et al. (2020). The results are presented in Fig. 3. Note that �̂�pen is decreasing from a singular value,
corresponding to the value at the crack tip. In contrast, �̂�pen has a finite value for the initial crack length and is always increasing.

Fig. 4 shows the curves corresponding to the condition given by the stress and energy criteria over 𝜎max
pen ∕𝜎

b
c as a function of the

crack length 𝛥�̂�. As can be observed in Eq. (24), the stress criterion is directly given by 𝑠pen(𝛥�̂�), so the curve is universal for this
problem regardless the interface radius. In addition, this curve is increasing, as a consequence of that 𝜎pen is decreasing. Therefore,
for penetration, the stress criterion requires a higher remote load if the crack-length increment is larger. In fact, the stress condition
goes from zero for 𝛥�̂�→ 0+ (a consequence of the singularity of �̂�pen for 𝑥∕𝑅 = 0) to a vertical asymptote in the limit for 𝛥�̂� ∼ 0.85,
which corresponds to the tension–compression transition in Fig. 3. In contrast with the stress criterion, the curve corresponding to
the energy criterion is decreasing, as a consequence of the increasing characteristic of �̂�pen. Thus, the energy criterion requires for
penetration a lower remote load when the crack length increment is larger. In addition, the curve is translated when the parameter
𝛾 is modified. Since this parameter contains the interface radius 𝑅, the energy criterion is affected by 𝑅, moving downwards the
curve when the interface radius is larger. As a consequence, the energy criterion becomes less restrictive for larger 𝑅.
8
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Fig. 3. Stresses along the future crack plane and energy release rate for a crack propagating in the bulk across the interface.

Fig. 4. Stress and energy criteria for crack penetration across the interface.

The coupled criterion postulates that 𝜎max
pen ∕𝜎

b
c for crack initiation or propagation is given by the minimum fulfilling the two

riteria (i.e. the maximum of their respective conditions, see (24)). For penetration, since the stress criterion is increasing with 𝛥�̂�
nd the energy criterion is decreasing, the minimum 𝜎max

pen ∕𝜎
b
c fulfilling the two criteria corresponds to the intersection point of the

wo criteria. The intersection point is strongly affected by the value of the interface radius as can be observed in Fig. 4.
An analogous analysis can be carried out for deflection by particularizing the general expression in (21) for crack propagating

long the interface. In this case, 𝜎c = 𝜎ic, and 𝐺1c = 𝐺i
1c. In this case, shear stresses are expected to play a role coupled with tensile

tresses, so an equivalent stress �̂�defeq , following García and Leguillon (2012), is defined,

�̂�defeq = 𝑚

√

(

�̂�def
)𝑚 +

|

|

|

|

|

𝜏def
𝜎ic
𝜏 ic

|

|

|

|

|

𝑚

(25)

here 𝑚 is a setting parameter, allowing to recover several classical failure curves, e.g. for 𝑚 = 1, the Mohr–Coulomb criterion is
recovered. For this study 𝑚 = 2, which is a typical value for weak interfaces.

In what concerns �̂�c(�̂�), in this case the fracture mode mixity is expected to be high, thus its influence over the fracture toughness
should be taken into account. This influence is approximated following the same phenomenological law used in Section 3 for the
9

LEFM analysis, see (11).
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Fig. 5. Stresses along the future crack plane and energy release rate for a crack propagating along the interface.

Then, the expression of the coupled criterion for deflection is written as,

𝜎max
def

𝜎bc
= min

𝛥�̂�

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

max

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

min
𝑥∈(0,𝛥𝑎)

𝜎ic∕𝜎
b
c

𝑝

√

(

�̂�def
)𝑝 +

|

|

|

|

𝜏def 𝜎
i
c
𝜏 ic

|

|

|

|

𝑝

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑠def (𝛥�̂�)

; 1
𝜎bc

√

𝐺b
c𝐸
𝑅

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝛾

√

√

√

√

𝐺i
1c

𝐺b
c

√

√

√

√

√

√

∫ �̂�0+𝛥�̂��̂�0

(

1 + tan2(1 − 𝜆(𝐺i
2c∕𝐺

i
1c)𝜓)

)

d�̂�

∫ �̂�0+𝛥�̂��̂�0
�̂�def (�̂�)d�̂�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑔def (𝛥�̂�)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(26)

The values for �̂�def , 𝜏def , �̂�def (�̂�), and 𝜓 are obtained using a similar finite element model to that used in Aranda et al. (2020). All
these values could be approximated using different analytical solutions, such as Leblond’s one for infinitesimal kinks or Liu and Wei
(2021) for finite kinks. In this work, they are extracted using a linear finite element analysis, see Fig. 5. Note that both the tensile
𝜎def and shear 𝜏def stresses are singular at 𝑥∕𝑅 = 0 as a consequence of the presence of a crack tip. The monotony of these curves is
more complicated than for penetration but it will not be relevant in this case, as will be discussed below. The energy release rate
�̂�def (�̂�) is always decreasing, which makes this curved weak interface an interesting crack arrestor, as observed by Aranda et al.
(2020).

Fig. 6 shows the curves corresponding to the condition given by the stress and energy criteria over 𝜎max
def ∕𝜎

b
c as a function of

the crack length increment 𝛥�̂�. As can be observed in Fig. 5, the stresses are singular for 𝑥 → 0+ and decreasing for a relevant
interval around, so 𝑠def (𝛥�̂� → 0+) = 0. Similarly to the penetration scenario, �̂�def (�̂�) is finite and non zero for 𝛥�̂� = 0. However,
in contrast with the case for penetration, �̂�def (�̂�) is decreasing. In addition, the fracture mode-mixity increases with 𝛥�̂�. The two
previous considerations contribute to the fact that the crack finds more and more difficulty to grow along the interface. As a result,
𝑔def (𝛥�̂�) is always increasing from a finite value, see Fig. 6.

The coupled criterion postulates that the crack initiates or propagates for the minimum of the maximum of the two curves in
Fig. 6. Since the minimum of the two curves is situated at 𝛥�̂� = 0, the increment on crack length is always infinitesimal. Moreover,
the stress criterion for this crack length increment is 𝑠(𝛥�̂� = 0) → 0, which implies that for this length of the crack onset, the stress
criterion is always fulfilled. Then, the critical load is given exclusively by the energy criterion, whose minimum is governed directly
by the value of the dimensionless parameters 𝛾, 𝐺i

1c∕𝐺
b
c and 𝑔def (𝛥�̂�). The function 𝑔def (𝛥�̂�), in addition, depends slightly on the ratio

of Mode 2 to Mode 1 fracture toughness 𝐺i
2c∕𝐺

i
1c. The dimensionless parameters 𝜎ic∕𝜎bc and 𝜏 ic∕𝜎

i
c has no influence on the coupled

criterion in this case, because they only affect to the stress criterion.
Once the two possible scenarios (penetration and deflection) have been analyzed separately in FFM, the comparison between

the critical load required for each one gives the preferential failure mechanism.

4.2. Analysis of FFM and LEFM results

The predictions given by LEFM and FFM are presented in Fig. 7. As discussed previously, the only dimensionless parameters
affecting the prediction in LEFM are the ratio of interface to bulk fracture toughness 𝐺i

1c∕𝐺
b
c and the ratio of Mode 2 to Mode

1 interface fracture toughness 𝐺i
2c∕𝐺

i
1c. In the case of the coupled criterion, it is necessary to add the dimensionless radius

𝑅∕(𝐸𝐺b
c (𝜎

b
c )

2). The dimensionless parameters relating the strength properties, i.e. 𝜎ic∕𝜎bc and 𝜏 ic∕𝜎
i
c have been proved not to affect

to the results of either LEFM or FFM. In view of this, the competition between deflection and penetration is presented in the plane
(𝑅∕(𝐸𝐺b

c (𝜎
b
c )

2), 𝐺i
1c∕𝐺

b
c ) in Fig. 7 with curves for LEFM and FFM which separate the values of the parameters for which penetration

i i
10

or deflection are preferential. The dependence on 𝐺2c∕𝐺1c is represented using different curves.
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Fig. 6. Stress and energy criteria for crack deflection along the interface.

Fig. 7. Transition from deflection to penetration by increasing the interface radio. Solid line: FFM, Dashed line: LEFM.

The results show that the LEFM (dashed lines) predicts a full dependence on the ratio of toughness, which agrees with the
prediction of He and Hutchinson (1989). The FFM (solid lines) also predicts that the most relevant parameter for the competition
is the ratio of interface to bulk fracture toughness. This result is similar for large crack to the prediction for LEFM (dashed line).
However, according to FFM, the interface radius does play a relevant role. In fact, for any situation in the map where deflection is
11
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Fig. 8. Combined phase field (PF) and cohesive zone model (CZM) for heterogeneous media. Application to a crack impinging on a curved interface.

predicted, there is always a value of interface radius below which the penetration mechanism becomes preferential. The reason can
be understood through the curves of the critical load as the example shown on the top of Fig. 7. In this example, the critical load
as a function of the interface radius is plotted for penetration and deflection. From this graph, it can be observed that for deflection
the critical load follows the classical LEFM curve. The reason is that, as discussed previously, for deflection the coupled criterion
reduces to the energy criterion. In contrast, for penetration, there is a transition when decreasing the interface radius, from the LEFM
solution for a large interface radius to a part where the stress criterion has a certain influence to finally a new part again governed
asymptotically by the energy criterion. The two extremes are governed by the energy criterion because the stress criterion has a
vertical tangent at 𝛥�̂� = 0 and a vertical asymptote at 𝛥�̂� ∼ 0.85 as highlighted previously in Fig. 4. As a consequence, the interface
radius, as a parameter governing the energy criterion as a factor, promotes this tendency. The transition between the two asymptotic
tendencies of the curve corresponding to penetration promotes that below a certain radius, the critical load for penetration becomes
lower than the critical load for deflection. In the example, that occurs for 𝑅∕(𝐸𝐺b

c (𝜎
b
c )

2) ∼ 0.25. The potential consequence of this
is that the curves separating penetration and deflection in Fig. 4 goes to the origin for (𝜎bc )

2 → 0.

5. Computational methodology: combined phase field (PF) and cohesive zone model (CZM) for heterogeneous media

A computational analysis based on a nonlinear finite element (FE) analysis is performed for the present problem combining
Phase Field (PF) and Cohesive Zone Model (CZM). This combination, as shown by Paggi and Reinoso (2017), allows the automatic
tracking of crack progression at domains containing interfaces. Moreover, the PF and CZM have been proven to capture the size effect
inherent in some fracture problems, see e.g. Paggi and Reinoso (2017), Carollo et al. (2017) for PF and Turon et al. (2006), Camanho
et al. (2012) for CZM. In this respect, recent investigations have introduced concepts to describe different crack pattern scenarios,
e.g. Teichtmeister et al. (2017), Martínez-Pañeda et al. (2018), Quintanas-Corominas et al. (2020), Kristensen and Martínez-Pañeda
(2020).
12
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5.1. Model description

Recalling the modeling setting presented by Paggi and Reinoso (2017), the fracture events of a mechanical system containing
rescribed weak interfaces can be derived from a potential energy defined as:

𝛱(𝐮, 𝛤 ) = 𝛱(𝐮, 𝛤𝑏) +𝛱𝛤c (𝛤 ) = ∫∖𝛤
𝜓𝑒(𝜺)d𝛺

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
Bulk elastic energy

+ ∫𝛤b
𝐺b
c d𝛤

⏟⏞⏞⏞⏟⏞⏞⏞⏟
Bulk fracture energy

+ ∫𝛤i
𝐺i
c d𝛤

⏟⏞⏞⏟⏞⏞⏟
Interface fracture energy

+𝛱ext (𝐮), (27)

where 𝐮 is the displacement field, 𝜓𝑒(𝜺) is the bulk elastic energy density functional governed by the elastic strain tensor 𝜺, 𝐺b
c stands

for the bulk fracture energy, 𝐺i
c is the energy dissipated along the prescribed interfaces of the system, and 𝛱ext (𝐮) is the external

contribution due to the prescribed surface and body actions. As schematically depicted in Fig. 8,  refers to an arbitrary body and
𝛤 = 𝛤i ∪ 𝛤b is the interior boundary where the dissipative mechanisms occur, being 𝛤i the potential path for interface debonding
and 𝛤b the interior boundary consequence of the bulk cracking.

Within the context of the PF method for brittle fracture (Bourdin et al., 2008), the fracture bulk energy potential can be
approximated by exploiting the 𝛤 -convergence theory as:

∫𝛤c
𝐺b
c d𝛤 ≈ ∫

𝐺b
c𝛾f r (d,∇𝐱d)d𝛺. (28)

where 𝛾f r is the crack density functional, which depends on the PF variable representing the crack topology and its gradient denoted
as d and ∇𝐱d, respectively. In turn, the elastic bulk energy potential is modified to account for the smearing of the crack interface
by introducing a PF dependency:

∫∖𝛤
𝜓𝑒(𝜺)d𝛺 ≈ ∫

𝜓(𝜺, d)d𝛺 = ∫
g(d)𝜓𝑒(𝜺)d𝛺 (29)

where 𝜓 is the energy density of the bulk and g(d) = (1 − d)2 +  is energy degradation function, in which a residual stiffness
parameter denoted by  is introduced for numerical stability proposes.

Within the context of the CZM approach for interface fracture (Turon et al., 2006), the interface fracture energy can be computed
through a cohesive law governed by the displacement gaps or jumps between to flanks of the interface when debonding undergoes:

∫𝛤i
𝐺i
c d𝛤 ≈ ∫𝛤i

𝜓 i(𝐠(𝐮); di) d𝛤 (30)

where 𝜓 i is the interface energy density functional governed by the displacement jump vector 𝐠 and the internal state variable
describing the damaged state of the interface di. In the context of FE, the displacement jump vector can be obtained using the
well-established interface element technology (Schellekens and Borst, 1993).

Steaming from the approximations mentioned above, the potential energy of the system under consideration, Eq. (27), can be
rewritten as,

𝛱(𝐮, 𝛤 ) ≈ 𝛱(𝐮, d) = ∫
g(d)𝜓𝑒(𝜺)d𝛺 + ∫

𝐺b
c𝛾f r (d,∇𝐱d)d𝛺 + ∫𝛤i

𝜓 i(𝐠(𝐮); di) d𝛤 +𝛱ext (𝐮)𝑏 (31)

This approximated form, expressed within the context of the PF and CZM modeling framework, can be solved numerically in an
efficient manner and precludes the use of complex algorithms for tracking and re-meshing as the crack events within the bulk and
along the prescribe interfaces evolve. Note that Eq. (31) depends upon 𝛤𝑖, which identified the prescribed interfaces of the system.

Recalling the variational setting, the fracture events can be predicted under some conditions by minimizing the potential energy,
see e.g. Miehe et al. (2010).

Ultimately, Eq. (31) sets the most general form of the potential energy governing the PF+CZM modeling framework, which
needs to be particularized according to the consecutive demands of the system analyzed. In this sense, the following constitutive
assumptions are used to tackle the problem herein proposed, i.e. the deflection/penetration of cracks in the presence of weak
interfaces:

• Elastic energy density functional. The constitutive behavior of the bulk region is described with a standard isotropic
definition within the infinitesimal deformation setting, which derives from the following Helmholtz free energy function:

𝜓e(𝜺) = 1
2
𝜺 ∶ C ∶ 𝜺 = 1

2
𝜆tr2(𝜺) + 𝜇𝜺 ∶ 𝜺 (32)

where the linear elasticity tensor is defined as: C = 2𝜇I + 𝜆𝟏 ⊗ 𝟏 with the Lame’s constants 𝜆 and 𝜇. The operators I and 𝟏
respectively denote the fourth and second-order identity tensors, where tr[∙] is the trace operator. In the current application, the
positive–negative decomposition of the strain energy usually introduced in PF models is not considered because the prescribed
remote tensile loading under quasi-static conditions precludes the crack closure effect.

• Interface energy density functional. The constitutive response of the interface region is assumed to have a cohesive response,
described by a well-established bilinear Traction Separation Law (TSL) built-in in ABAQUS. For the 2D scenario herein studied,
this assumption means that the fracture of the interface is governed by a phenomenological model relating the normal and
shear displacement jumps across the interface, 𝑔 and shear 𝑔 , with the corresponding components of the traction vector
13
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acting on it, 𝜎𝑖 and 𝜏𝑖, respectively. Hence, the response only accounts for fracture Modes 1 and 2 as shown in see Fig. 8.
Then, the TSL is simply defined as:

𝜎𝑖 = (1 − d𝑖)𝐾𝑛 ⟨𝑔𝑛⟩+ +𝐾𝑛 ⟨𝑔𝑛⟩− (33)

𝜏 𝑖 = (1 − d𝑖)𝐾𝑡𝑔𝑠 (34)

where d𝑖 is the state damage variable tracking the cracking of the interface, being d𝑖 = 0 bonded state (undamaged) and
d𝑖 = 1 debonded state (damaged), while it ensures the irreversible character of the fracture process (Turon et al., 2006). In
line with (Zambrano et al., 2022), it is worth noting that no explicit coupling between the PF for bulk fracture and the CZM
for interface cracks is herein considered.
Finally, a quadratic fracture propagation criterion for mixed-mode fracture conditions adopted (Reinoso and Paggi, 2014),
relating the Modes 1 and 2 energy release rates, 𝐺i

1 and 𝐺i
2, with the corresponding fracture toughness values, 𝐺i

1c and 𝐺i
2c:

(⟨

𝐺i
1
⟩

+

𝐺i
1c

)𝑝

+

(

𝐺i
2

𝐺i
2c

)𝑝

= 1 (35)

where ⟨∙⟩± is the Macaulay brackets supporting the crack closure effects associated with the Mode 1 opening. In the present
work, the interface properties satisfy: 𝐺i

2c∕𝐺
i
1c =7.71 and 𝜎ic∕𝜏

i
c = 1. The exponent 𝑝 = 2 is chosen, but some computations

were carried out for 𝑝 = 4 without finding a strong influence.
• Crack density functional. The crack density functional describing the topology of the crack used in this work is the quadratic

model, known as AT1, introduced by Bourdin et al. (2000) for brittle fracture:

𝛾f r (d,∇𝐱d) =
3
8

(

d

𝓁
+ 𝓁 |

|

∇𝐱d||
2
)

(36)

where 𝓁 > 0 is the regularization length. Although in the original conception of the PF model 𝓁 is essentially a numerical
parameter, Tanné et al. (2018) showed that it can be linked with the classical material’s characteristic length 𝓁𝑐ℎ in order to
match the nominal material’s strength 𝜎𝑐 for a given material properties, namely: fracture toughness 𝐺𝑐 , Young’s modulus 𝐸,
and Poison coefficient 𝜈 or stress intensity factor 𝐾𝐼𝑐 . For the AT1 model, the heuristic expression of interest is given by

𝜎bc =

√

3𝐺b
c𝐸′

8𝓁
⟹ 𝓁 = 3

8
𝐺b
c𝐸

′

(

𝜎bc
)2

(37)

where 𝐸′ = 𝐸 for current plane-stress scenarios. According to previous investigations, it is noting that AT1 version of PF model
can retrieve size effects and transition flaw size for enough refined meshes. In this sense, Tanné et al. (2018), Kristensen et al.
(2021) showed that the PF basic formulation agrees with Griffith’s criterion for large cracks while predicting the smooth
transition to the strength-dominated failure as the crack size decreases below the transition flaw size.

As mentioned above, the influence of the dimensionless design parameters on the crack penetration/deflection competition in
he presence of weak interfaces formulated in the context of the PF+CZM stemming from Eq. (31), is herein spatially discretized
hrough the FEM (Quintanas-Corominas et al., 2020). In this regard, the linearized form of the problem is implemented in ABAQUS,

following a well-established strategy using a UEL and a staggered solution scheme, see e.g. Wu and Huang (2020).

Remark 1. The Dimensional Analysis presented in Section 2 can be applied to this model. Nevertheless, it is required to include
a priori two characteristic lengths which appeared in the computational model and were not included in the general Dimensional

nalysis:

• The regularization length 𝓁. In a PF general formulation, this is a numerical parameter. However, in this case, the parameter
𝓁 can be associated with the material properties through Eq. (37), so it is not an independent parameter.

• The characteristic element size. This length should not affect the results if the mesh is adequately designed. This point is
discussed in the sequel.

Focusing on the problem of interest, the computational domain concerns the upper half part of the original geometry thanks
exploitation of symmetry conditions, resulting in a rectangular plate of 150 × 50 mm with a quarter circle with radius 25 mm
embedded as shown in Fig. 8. The weak interface is situated in the perimeter of this quarter circle. In turn, the initial crack is
defined at the left half part of the bottom boundary by prescribing a traction-free condition along the corresponding edge. This
approach to introducing a crack in PF (so-called geometric crack) has been shown to overestimate the critical load for propagation,
see Kristensen et al. (2021). However, for several cases of the present study, the strategy based on prescribing d cannot be used
when 𝓁 is related to the process zone because the initial damaged region could be very large (and therefore providing meaningless
predictions). The present problem is particularly affected by this limitation since the size of the model plays a key role in capturing
the effect of the curvature radius. The initial crack tip intersects between the weak interface and the bottom boundary, corresponding
to the bottom edge’s center point. According to a preliminary study of the fields near the crack tip, this setup has been selected to
mitigate the possible influence of the lateral boundaries. A symmetry condition is prescribed at the part of the boundary which is
still intact. Although this condition is not fully compatible with the expected phase field near the symmetry line because 𝜕d ≠ 0
where d = 1, several previous investigations within the related literature have employed this approach showing a good accuracy,
see e.g. Tanné et al. (2018) and the references therein.
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Regarding the FE mesh, the bulk region is discretized by 161,150 quadrilateral elements with linear interpolation of the
isplacements and the phase field variable, with a minimum size of ℎ = 0.125 mm in the expected crack path and complying with

the recommendation of Miehe et al. (2010) of having enough elements in the region affected by the regularization length 𝓁. This
condition is fulfilled here, even if the mesh remains unchanged. Since the maximum 𝑅∕(𝐸𝐺b

c∕(𝜎
b
c )

2) is set equal to 5.0 and 𝑅 is kept
fixed with the mesh, the minimum 𝓁 corresponds to 1.875 mm, then fulfilling ℎ∕𝓁 < 0.2 in the worst case scenario. The weak interface
region is discretized by 256 interface elements with a minimum in-plane size of 0.15 mm, satisfying the minimum requirements
associated with the fracture process zone identified by Turon et al. (2006). Finally, concerning the loading conditions, a monotonic
increasing displacement 𝑢 upon failure is prescribed on the upper edge boundary by employing a displacement-control scheme. It
is worth noting that the distance between the upper edge and the crack tip is far enough for the displacement-controls scheme, and
therefore providing similar results to those associated with the uniform remote stress loading conditions (which corresponded to
the applied loading conditions for the LEFM and FFM models).

The modeling framework and the computational domain described previously set the baseline configuration for the current
dimensional analysis detailed above. In the FE context, it has twofold characteristics that make it a powerful tool for parametric
studies involving size effects: (i) the reduction of the number of simulations to be conducted without loss of universality on the
results and (ii) the proper evaluation of the size effect of the radius without modifying the mesh between models, avoiding mesh-
dependency of the results. Thus, the characteristic element sizes of the baseline mesh have been selected for the most restrictive
scenario in order to prevent any interference between the fracture process zones and the regularization PF length. Some tests have
been performed to check the accuracy of this strategy for some extreme values of the radius. The results showed relative differences
lesser than 0.01% in the worst case.

5.2. Numerical results

A total set of 600 models have been computed varying the three dimensionless parameters governing the failure mechanism: the
ratios of strength 𝜎ic∕𝜎

b
c and fracture toughness 𝐺i

1c∕𝐺
b
c ; and the dimensionless radius 𝑅∕(𝐸𝐺b

c∕(𝜎
b
c )

2).
Fig. 9 shows some illustrative examples of the behavior observed in the computational results. In particular, it is interesting to

emark the influence of the dimensionless parameter on the damaged zone and its progression beyond the penetration/deflection
ompetition. In this graph, representative points are labeled as a and b for a clear identification in the subsequent discussion.
oreover, the shaded region in Fig. 9 is introduced due to the minor significance of the FE predictions since the bulk-damaged

egions did not correspond to localized fracture phenomena.

• For 𝜎ic∕𝜎bc = 4.0, the overall numerical results render penetration scenarios regardless the value of the other parameters.
This result agrees with the observations by Zambrano et al. (2022) for straight interfaces studied with a PF+CZM with some
differences in the numerical modeling and implementation. The explanation for this will be discussed in Section 6. This trend
holds with the exception of a very low value of 𝑅∕(𝐸𝐺b

c∕(𝜎
b
c )

2) and 𝐺i
1c∕𝐺

b
c leading to deflection cases. The contour map of

the damage variable shows a clear penetration for the case b, corresponding to intermediate values of the ratio of fracture
toughness 𝐺i

1c∕𝐺
b
c and the dimensionless radius 𝑅∕(𝐸𝐺b

c∕(𝜎
b
c )

2). In this case, the crack progression is clearly recovered by
the phase field, while the interface remains intact. This result is a direct consequence of the threshold role associated to the
strength criterion in the cohesive model. For the case a, where the radius is very small, crack deflection is observed. However,
the damage variable in the bulk reaches a very high value but with a very diffused area, affecting the whole bulk domain.
The interaction between the cohesive damage along the interface and this diffusive region presents a difficulty in combining
CZM and PF when the latter is used beyond the asymptotic approach of LEFM for 𝓁 → 0, justifying the definition of the
aforementioned shaded region in the diagrams as will be discussed for 𝜎ic∕𝜎bc = 1.0.

• For 𝜎ic∕𝜎bc = 1.5 and 2.0, the general trend also complies with penetration scenarios, except for very low values of 𝐺i
1c∕𝐺

b
c and/or

𝑅∕(𝐸𝐺b
c∕(𝜎

b
c )

2). For instance, for the case a, crack deflection is predicted, showing a clear zone debonded at the interface closer
to the crack tip. Note however that for this particular case a, a concomitant small damaged zone can be observed at the vicinity
of the crack tip below the interface. This suggests that this case lies within the limit of the transition between penetration and
deflection cases, which is confirmed by the situation of the corresponding point in the figure. In fact, the case b corresponds
to a nearby case with penetration where only 𝑅∕(𝐸𝐺b

c ) was increased, highlighting the influence of this parameter.
• For 𝜎ic∕𝜎bc = 1.0, the corresponding predictions are very similar to the previous configurations. The illustrative cases were

chosen here in order to provide further insight into the analysis of the effect of the dimensionless radius 𝑅∕(𝐸𝐺b
c∕(𝜎

b
c )

2).
Both points a and b correspond now to cases where deflection is predicted. However, the computed damaged zone within
the specimen is very different from each other. Focusing on the damaged region in the bulk the denominated case a recalls
a very diffuse damaged zone, whereas, conversely, the damaged zone for the case b is constrained to a very small zone of
the bulk below the crack tip. The reason for this difference in the bulk-damage predictions is attributed to the variation
of the dimensionless radius 𝑅∕(𝐸𝐺b

c∕(𝜎
b
c )

2), which can be interpreted as the inverse of the ratio of a material characteristic
length 𝐸𝐺b

c∕(𝜎
b
c )

2 to the curved interface radius 𝑅 and associated to the length of the process zone. Thus, the inverse of the
dimensionless radius characterizes the relative size of the process zone on the bulk with respect to the problem geometry.
While these considerations correspond only to the process zone of the bulk because the radius is normalized with the bulk
properties, an analogous dimensionless parameter could be obtained by combining 𝑅∕(𝐸𝐺b

c∕(𝜎
b
c )

2) with 𝜎ic∕𝜎
b
c and 𝐺i

1c∕𝐺
b
c ,

giving a parameter characterizing the contrast between the curved interface radius and the estimation of the size of the process
zone at the interface. Since between the cases a and b, 𝜎i∕𝜎b and 𝐺i ∕𝐺b remain fixed, the variation on this new parameter is
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Fig. 9. Computational results extracted from the models combining the Phase Field approach and Cohesive Zones. Illustrative examples of the different behavior
observed. Gray-shaded areas correspond to results with large 𝓁 compared with the radius.

equivalent to the variation of 𝑅∕(𝐸𝐺b
c∕(𝜎

b
c )

2). As a consequence, the process zone is also relatively much larger at the interface
for case a than for case b. Both process zones, at the bulk and at the interface modulate the relevance of the curvature of the
interface over the result of the competition, and therefore one can conclude that: a larger process zone yields relevance to the
part of the interface farther from the crack tip.

• For 𝜎ic∕𝜎bc = 0.5, the situation is qualitatively similar to the previous case (𝜎ic∕𝜎bc = 1), but with deflection scenarios being
predicted for a much larger range of values of the dimensionless parameters. In particular, it is interesting to remark the clear
relevance of the interface radius on the penetration/deflection competition. The cases a and b are very close to each other,
with the only difference on the value of 𝑅∕(𝐸𝐺b

c∕(𝜎
b
c )

2).
• For 𝜎ic∕𝜎bc = 0.1, the situation is the opposite to that found for 𝜎ic∕𝜎bc = 4.0. In this case, crack deflection is predicted for the

whole range of values studied for 𝐺i
1c∕𝐺

b
c and 𝑅∕(𝐸𝐺b

c∕(𝜎
b
c )

2). This fact highlights again that for the computational strategy
of combining PF and CZM, the ratio of strengths between both methodologies is the key parameter, as discussed previously
for 𝜎ic∕𝜎bc = 4.0 and already described and explained by Parmigiani and Thouless (2006), Zambrano et al. (2022) for similar
models. For the sake of illustration, damaged patterns are plotted for cases a and b, corresponding to cases where deflection
is predicted. However, the damaged zones of the bulk are very different from each other. For case a, a very diffuse damaged
zone is predicted, whereas in case b, the damaged zone is constrained to a very small zone of the bulk below the crack tip.

Previous considerations on the analysis of the role of the different parameters that govern the mechanical response of the system
can be also observed in Fig. 10. This graph presents a summary of the prediction of this model about the penetration/deflection
competition, showing the influence of the three dimensionless parameters studied. From this plot, it becomes clear the fact that the
ratio of strengths 𝜎i∕𝜎b represents the key parameter in the current numerical predictions.
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Fig. 10. Penetration/deflection competition. Results predicted by the approach based on combining Phase Field and Cohesive Zone Model.

6. Comparison and discussion

This section presents a critical comparison between the present predictions using the three approaches presented previously
(namely, LEFM, FFM and combined PF-CZ). In particular, the comparison focuses on how the governing mechanical parameters of
the system affect to the results of the penetration/deflection competition, pinpointing the physical sense of the predictions.

Fig. 11 presents a set of maps containing the prediction of the three approaches. For the sake of simplicity, only the results
from the Phase Field + Cohesive Zone Model analysis are represented with different color symbols, whereas the predictions by
LEFM and FFM are presented by dashed and solid lines, respectively, separating deflection from penetration scenarios. For these
two approaches, above and below this line always correspond to penetration and deflection, respectively.

Table 1 summarizes the effect of the dimensionless parameters on the penetration/deflection competition. In what follows the
effect of each dimensionless parameter is discussed:

Effect of the ratio of fracture toughness 𝐺i
1c∕𝐺

b
c . Based on the previous results, it was clearly observed that the effect of the ratio

of fracture toughness is the governing parameter that rules the deflection/penetration competition according to LEFM. Thus, when
𝐺i ∕𝐺b increases the crack tends to penetrate instead of deflecting. Under their assumptions of infinitesimal crack growth and
17
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Fig. 11. Comparison between the predictions given for the different approaches for the penetration/deflection competition. Gray-shaded areas corresponds to
F+CZM results with large 𝓁 compared with the radius.
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Table 1
Influence of the dimensionless parameter on the penetration/deflection
competition. p: Increasing this parameter promotes crack penetration. d:
Increasing this parameter promotes crack deflection. =∶ This parameter
has no effect on the penetration/deflection competition.

𝐺i
1c∕𝐺

b
c ↑ 𝜎ic∕𝜎

b
c ↑ 𝑅∕(𝐸𝐺b

c∕(𝜎
b
c )

2) ↑

LEFM Penetration No influence No influence
FFM Penetration No influence Deflection
PF+CZM Penetration Penetration Penetration

vanishing process zone, the parameter 𝐺i
1c∕𝐺

b
c modulates if penetration or deflection is more preferential exclusively from an

energetic point of view. Finite Fracture Mechanics agrees qualitatively with this behavior, so that a larger value for 𝐺i
1c∕𝐺

b
c promotes

crack penetration. The reason is that FFM is based partially on optimizing the energetic balance. However, the prediction of a process
zone and the need of fulfilling a stress criterion in FFM modulates the influence of 𝐺i

1c∕𝐺
b
c . Concerning PF + CZM the behavior is

qualitatively similar to the two previous methodologies in what respect to 𝐺i
1c∕𝐺

b
c , but much more ruled by the other parameters.

In fact, it is only particularly relevant for 𝜎ic∕𝜎bc = 1.

Effect of the ratio of strengths 𝜎ic∕𝜎bc . The predictions corresponding to the effect of 𝜎ic∕𝜎bc are more diverse among the three
approaches under consideration. First, as expected, LEFM analysis are independent upon this ratio since the strength does not play
any role in LEFM. Conversely, for FFM results, where stress and energy criteria are simultaneously fulfilled, it would be expected
that 𝜎ic∕𝜎bc could affect the results on penetration/deflection competition. However, for this particular problem, the decreasing value
of the stresses when advancing along the interface yields that FFM predicts a vanishing length of the crack onset when it occurs at
the interface, see Section 4 for a detailed discussion. As a consequence, for the interface crack onset, the solution of FFM matches
with that of LEFM, removing the influence of 𝜎ic∕𝜎bc . In contrast, the PF+CZM approach predicts a strong effect of the ratio of
strengths on the penetration/deflection competition. The reason is the triggering role of the strength on the cohesive zone model
(very particularly for the bilinear cohesive law used) and partly on the phase field. This effect is particularly relevant for short
cracks, being expected that for long cracks the fracture energy plays a role. However, as described and explained by Parmigiani and
Thouless (2006), Zambrano et al. (2022) for CZM+CZM and PF+CZM models respectively, the deflected crack in most situations
is short enough to avoid the influence of the toughness. Thus, the deflection/penetration can be preferential according to PF+CZM
even if the solution is not preferential from the energetic point of view. Concerning the influence of the ratio 𝜏ci∕𝜎ci , LEFM and FFM
do not predict any influence in line with the independence of the strength properties. However, for PF+CZM some numerical tests
have been performed, showing that the influence is similar to that of 𝜎ic∕𝜎bc , i.e. promoting penetration.

Effect of the dimensionless radius 𝑅∕(𝐸𝐺b
c∕(𝜎

b
c )

2). The interface radius is the parameter which can be tailored more easily as a design
parameter in the application of curved weak interfaces as crack arrestors. The LEFM approach does not predict any influence of
this parameter on the competition. The cause is that LEFM is based on an infinitesimal crack advance and on assuming a vanishing
process zone. Under this hypothesis, the crack deflection along the interface is always an infinitesimal crack deviation of 90◦, without
any effect of the curvature. In contrast, the FFM approach does predict a certain process zone, understanding that in the sense of
the analysis as a zone of finite length where the stress state is taken into account. The length of this process zone in FFM is strongly
affected by the analysis itself. In particular, in this case, this kind of process zone predicted by FFM along the interface is vanishing,
whereas the process zone along the bulk is strongly affected by the problem parameters. This contrast produces an influence of the
radius, i.e. when this is reduced the crack penetration is promoted. The effect of the radius is predicted to be much more strong by
the PF + CZM approach. In this case, a process zone is also predicted, being very related with the material characteristic length at
the bulk 𝐸𝐺b

c∕(𝜎
b
c )

2 and at the interface 𝐸𝐺i
1c∕(𝜎

i
c)
2. As a consequence, the radius has a strong effect on the penetration/deflection

competition, as can be observed in the preliminary experimental results reported in Table 1.

7. Concluding remarks

The ability of a weak curved interface to deviate a crack was studied using three different approaches: Linear Elastic Fracture
Mechanics (LEFM), Finite Fracture Mechanics (FFM), and a combination of Phase Field and Cohesive Zone Model (PF+CZM). These
methodologies were employed to evaluate potential penetration/deflection competition in specimens with a prescribed curved
interface.

Current results based on LEFM, FFM and PF+CZM agree general trends regarding the expected effect of the ratio of interface
to bulk fracture toughness. However, these methods present significant differences on corresponding predictions with reference to
the effect of the ratio of interface to bulk strength. Thus, on the one hand, LEFM and FFM predicted that 𝜎ic∕𝜎bc had no effect on
the potential failure scenarios, whereas, on the other hand, PF+CZM yielded to simulation results where an increasing value for
𝜎ic∕𝜎

b
c promoted strongly the penetration of the primary crack on the adjacent body. Finally, with reference to the effect of the ratio

𝑅∕(𝐸𝐺b
c∕(𝜎

b
c )

2), current results rendered that this parameter had no influence on the crack path for LEFM, but governing the failure
characteristics in FFM (𝑅∕(𝐸𝐺b

c∕(𝜎
b
c )

2) ↑ deflection) and PF+CZM (𝑅∕(𝐸𝐺b
c∕(𝜎

b
c )

2) ↑ penetration).
In addition to the previous main conclusions on the corresponding results, it is worth to mention that the complexity of the
19

models for this problem in terms of computational cost is very diverse between the chosen methods. Thus, while LEFM can be
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applied using an explicit equation, the use of FFM required the solution of some simple nonlinear equations. In contrast, the current
numerical technique PF+CZM needed the computation of nonlinear finite element models with relatively fine mesh (leading to
computation times of around 1 h per model).

From a more physically sound point of view, current analysis pinpointed the relevance of the process zone on the prediction
bout the penetration/deflection competition in curved interfaces, showing that the effect of the radius was strongly affected by
he assumptions made by the different approaches. In this sense, beyond the motivation of the application itself, this problem is an
nteresting laboratory for testing these three approaches. This is highlighted by the differences found between PF+CZM and FFM,
hich are a priori conceptually equivalent to each other, if the regularization length 𝓁 corresponds to a material-based parameter,

as has been assumed in this work. However, there are some differences that are key for the results presented here and are related to
how PF and FFM deal with the finite length differently. Whereas the finite length on which the PF approach is relied on is now given
by material properties, in FFM this finite length is a result stemming from the corresponding analysis, see e.g. Leguillon (2002).
The length scale affecting to the fracture behavior plays an essential role here because it can interact with the curvature radius, as
observed in the results, then promoting divergent results in some cases, as observed here. Moreover, current analysis assumed that
the initial crack is much larger than the deflected or penetrated finite crack. However, in some situations, the initial crack length
could be similar to the finite crack, and it could affect the value of the energy release rate as shown by Liu and Wei (2021).

Finally, from a qualitative point of view, it is noted that FFM predictions are more in line with the preliminary experiments that
motivated the realization of this study (see Fig. 1).

Future experiments are planned with specimens with varying interface radii, in order to evaluate the assumptions made by the
three approaches used herein. Potential experimental campaigns are also considered for the assessment of cracking phenomena of
multi-material specimens with the presence of weak curved interfaces. As final comment, note that this work focuses on cracks
reaching the interface at the symmetry line and perpendicular to the interface. Deflection angle could affect significantly the results
and could be the objective of future works.
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